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Extended Hubbard Model in the Dimer
Representation. II. Lattice Hamiltonian
in the Large U Limit

B. GRABIEC AND M. MATLAK*

Institute of Physics, Silesian University
Uniwersytecka 4, 40-007 Katowice, Poland

(Received December 14, 2001)

Using the exact decomposition of the sc lattice into a set of interacting
dimers (each dimer is described by the extended Hubbard Hamiltonian) and
exact solution of the dimer problem (preceding paper) we exactly find the
form of the extended Hubbard model in the case of a crystal in the large U
limit. We apply a new, nonperturbative approach based on the exact projec-
tion procedure onto a dimer subspace occupied by electrons in this limit (it
is the only assumption). The resulting Hamiltonian is very complicated and
contains a variety of multiple magnetic and nonmagnetic interactions deeply
hidden in its original form (site representation). We also present a simplified
version of the model to better visualize a mixture of different interactions
resulting from this approach.

PACS numbers: 71.10.—w, 71.10.Ca, 71.10.Fd

1. Introduction

The tendency of electrons to avoid each other is very well known in the the-
ory of strongly correlated electron systems (see e.g. Refs. [1, 2] for a review). This
tendency, identifying in this way strongly correlated systems, can be expressed
by the condition U > W (U — intrasite Coulomb repulsion, W — band width
of the conduction band). In the limit U > W (large U limit) the second-order
perturbation theory applied to such systems leads to the well-known t—J model
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(see Ref. [3]) describing indirect exchange interaction between electron spins lo-
cated on different lattice sites. The popularity of the {—J model has enormously
increased in recent years after the suggestion, Ref. [4], that the electronic proper-
ties of high-T¢ superconductors can be described with the use of this model (see
e.g. Refs. [2, 5] for a review and papers cited therein). This fact strongly enhances
the importance of the ¢—J model in the physics of strongly correlated electron
systems.

The t—J model can be derived by applying perturbation expansion or canon-
ical transformation (see Refs. [3, 6-10] and also [2, 5] for a review) to the Hubbard
Hamiltonian, Ref. [11], where one takes into account that in the strong correlation
limit W/U is very small. In other words, each of these methods is equivalent to the
perturbation expansion with respect to W/U. It is, however, possible to propose
quite general approach and to derive the resulting Hamiltonian in the large U limit
without using perturbation expansion and perform the calculation for a more gen-
eral case of extended Hubbard model (see preceding paper [12]). In Ref. [12] we
have presented the exact decomposition of the original extended Hubbard model
for the sc lattice (it can be generalized to any lattice, too) into a set of interacting
dimers where each dimer problem has been exactly solved (see (12) in Ref. [12]).
The method has been tested in Ref. [12] for a dimer (the smallest complex of in-
teracting atoms), described by the extended Hubbard model (see (3) in Ref. [12]).
The dimer energy spectrum consists of 16 energies, 6 of them in the large U limit
take on large, positive values (see (12) in Ref. [12]), much larger than the other.
It means that the mentioned 6 levels, producing negligible small terms in the par-
tition function cannot be occupied by electrons and therefore we can reject them
from the considerations in the large U limit. Taking this into account we could
rewrite the dimer Hamiltonian in the large U limit (see (22) in Ref. [12]) and after
introducing Hubbard operators and spin operators (see (23), (24) in Ref. [12]) we
were able to present the dimer Hamiltonian in the second quantization. The final
form of this Hamiltonian is nothing else but a generalization of the t—.J model (see
e.g. Ref. [3]) resulting from the extended Hubbard model (see (28) in Ref. [12]). Tt
is iImportant to stress that we have obtained this result in a nonperturbative way
using only the reduction of the full dimer space (16 eigenvectors) to the subspace
of 9 states, occupied by electrons in the large U limit. We have also shown that
exactly the same result (see Sec. 4 in Ref. [12]) can also be derived with the use
of the projection technique (projection onto the occupied dimer states). A further
generalization of this technique for the case of a crystal is given in the present pa-
per. The resulting extended Hubbard Hamiltonian in the large U limit, obtained
in the nonperturbative way, is very complicated. It shows, however, in an explicit
way a structure of many multiple magnetic, “quasi-magnetic” and nonmagnetic,
competitive interactions, deeply hidden in the original version of the model.
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2. Extended Hubbard model in the large U limit

In the preceding paper [12] we exactly solved the eigenvalue problem of the
Hubbard dimer which allowed to express the dimer Hamiltonian in the form

HP = 3" Bo| EL)(Bal, (1)

where B, and |E,) were given by the expressions (12) in Ref. [12]. After excluding
from the considerations unoccupied dimer energy levels (Faa, FEaz, Fsi1, Fasa,
Fas, Fza, F4) we derived the second quantization form of the dimer Hamiltonian
(denoted by FD) in the large U limit (see (28) in Ref. [12]). We obtained exactly
the same result with the use of the projection technique (see Sec. 4 in Ref. [12]).
A similar approach, after several modifications, can be applied in the case of a
crystal (sc lattice). The extended Hubbard Hamiltonian (see (2) in Ref. [12]) can
also be written in a similar form to (1). We can write

= ZEW|E7><EW|’ (2)

where, in contrary to (1), the energies £, and |E,) are unknown. We can, however,
expand the eigenvectors |E,) into the series of the dimer eigenvectors (cf. (12) in

Ref. [12])

B = D e ) o [ E), (3)

Y1y Y M

assuming that the crystal consists of M dimers. Inserting (3) into (2) we get

H = ZEW Z C%,...,WMC:?...,W |Ey.) - |E7M><EW{| e <E7§W| (4)
p

It is clear that to obtain the extended Hubbard Hamiltonian for large U we
have to project (4) onto the subspace of the lower lying dimer states with the use
of the projection operator

P=PPs... Py, (5)

where Py is given by (32) or (33) in Ref. [12] (the omitted in Ref. [12] dimer index
I =1, 2,..., M should actually be added). Similarly to (34) in [12] we denote
the extended Hubbard Hamiltonian in the large U limit by H. Thus, we define

H=PHP (6)

and we use H in the form given by the expression (2) in Ref. [12]. Taking into
account that P? = P (P} = Py, [Pr, Ps] = 0) we obtain
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— ——D _ _ —_ —
H=P| S T, 3 (e, o0 + 40,7120 )
I I

— — — — 1 = =
— Z (C;—ylygcJ,la + C}—yzygcJ,Z,a) + J( )Zn1,2,0n1+1,1,0

I#d,0 1o
+& Z (ﬁIla%Jla+ﬁI2aﬁJ2U)+J(2)Zﬁ120%1+11—0
21,J,a o o i -
J(2) _ — _ — =
+T 1%,:0 (M11,000,1,~0 4+ R1,2,0102,—0) ] =PH. (7)

The operators ¢7,q,0 (E}—,a,a) have the same meaning as (36) in Ref. [12] and
the corresponding expressions for them (after adding the dimer index I) are given
by (37), (38) therein. The operators i1 - in (7) are defined by the relation

%I,oz,a = PInI,oz,UPL (8)

Introducing Hubbard operators and spin operators (see (23) and (24) in
Ref. [12]) we can find

b a b
= ny2 i1 ny2
— g% 1_ ) ) 1_ )
nri,1 = St ( 5 ) + 5 ( - ) + 4

+ — — + a Z a Z 77,?1 a n?z a
+57 1510+ 51157 = 172511 + 17 157 + T(l —nis)+ T(l —nj,)

a a
Nyt 2

S 1870 =

1
b b
—qn1ant e+ 5000l an20bn20 + 5 1075 jar,1br)

1
+§(af1,Ta}’,z,laI,1,laI,z,T + afz,Tafl,laI,z,iaI,l,T)]

+8(af ) ybrag + afy b1y 4 b o parg 4+ bF ) jars,), (9)
= . ”?2 nf ”?2 5 nfng,
nra| = =5t | 1- -t 1- - )t B|511572 — —

+ - - + a Z a Z 77,?1 a 77,?2 a
+S7 157 0+ 51157 2+ 1y 2571 —nf ST+ T(l —nf,)+ T(l —njy)

1
b b
—3Mane 5(5}’,1,Ta}’,1,laf,z,ib1,zn +bf 50ty ar, b )

1
+§(af1,Ta}’,z,laI,1,laI,z,T + afz,Tafl,laI,z,iaI,l,T)]

+6(afy (broy+afy by +bF, jary ) +bF, jar2y). (10)
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The expression for iy 2 » (¢ =1, |) can easily be obtained by replacing 1 — 2

in (9) and (10). The coefficients 5 and é are given by (42) in Ref. [12]. To obtain

the second quantization form of H (see (7)) we should insert (37) and (38) from
Ref. [12], as well as (9) and (10) into (7). In this way we obtain the second quanti-

zation form of H in the large U limit. It is, in principle, possible to write down the
explicit, final form for the Hamiltonian H. The formula, however, is unfortunately
too long to present it here (too many terms resulting from many multiplications in
(7)). Therefore we restrict ourselves only to indicate the existence of a variety of

different interactions, contributing to H and to present a simplified version of this
Hamiltonian in the next section. It is easy to see that, generally, H contains the
terms independent of 3 and &, however, the terms proportional to 8, é, 5%, §2 and
(36 appear also in the final form for H. Because the operators [ (E}_,oz,a) and
a0 (@ =1,2; ¢ =1,]) contain spin operators (see (37), (38) in Ref. [12] and
(9), (10) (present paper)) the resulting Hamiltonian H consists of many magnetic
(ferromagnetic, antiferromagnetic) and more complex interactions competing one
with another. The structure of the total Hamiltonian H in the large U limit that
we are interested in (see (6) and (7)) is much more complicated due to the presence
of the projector P (see (5)) on the left hand side of (7). The operator P itself is
a product of all Pr projectors (see (33) in Ref. [12]). It makes the structure of the
total Hamiltonian H much more complex, resulting in sums of products of many
multiple magnetic and nonmagnetic, competitive interactions, deeply hidden in
the original version of the extended Hubbard model, written in the Wannier rep-
resentation (see (1) in Ref. [12]). We have obtained this result using the exact
dimer representation of the construction operators (see (37), (38) in Ref. [12]) and
(9), (10) (present paper) in the large U limit. The presence of a variety of many
multiple magnetic and nonmagnetic interactions in the resulting Hamiltonian H
(see (7)) has very strong, final consequences. It entirely explains how difficult and
delicate is the problem to find the thermodynamical properties of the model in the
approximate way (the exact solution of the model does not exist till now). The
use of the most sophisticated methods does not remove a danger to overestimate
the role of some important interactions and to underestimate the other, producing
in this way artifacts. It is the reason why the resulting thermodynamical proper-
ties of the extended Hubbard model so strongly depend on the quality of applied
approximations.

3. Simplified version of the model in the large U limit

The enormously high complexity of the model (7), presented in Sec. 2, can
easily be demonstrated in a more explicit way. To do it, we perform simplifications,
described beneath. We can e.g. apply the Taylor expansion with respect to two
small parameters © = ¢/U and z*) = J) /U in the expressions (37) and (38)
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from Ref. [12], as well as in (9) and (10) (present paper). It seems to be, however,
more reasonable to choose another way. Starting with typical values for the band
width W = 1 eV and U = 5 eV we can see that z = % (W = 12¢ for the sc
lattice). Assuming that J(2) = 0.1 eV we obtain z(?) = 51—0. Thus, introducing
x = & and r(?) = = into the expressions for 8 and & (see (42) in Ref. [12]) we can
find g ~ 0.00058 and é ~ 0.017 & 303. In other words we can neglect the terms
proportional to 4 in (37) and (38) of Ref. [12] and also in (9) and (10) excluding also
double occupations (n?l(z) /2 0) in the large U limit (see (30a) in Ref. [12]). The
and aj 1(9),, in (41a,b) of Ref. [12]

same can be said about the operators 4t 1020
where we neglect the terms proportional to 3, and we put again n? 12y 0 1n
(41Db) of Ref. [12]. Taking into account that 6 < & we can consequently perform

all the calculations, concerning H and H (see (7)) to obtain the final result as a
linear form in é (neglecting all the terms proportional to 3, 3%, 4% and 36). Using

this approach we first find the simplified form for FID (see (28) in Ref. [12]) and
Pr (see (33) in Ref. [12]). We obtain

Hy =7 (0) + 677 (1), (11)

where

—D nt no
Hi(0)=~t) (af; jar a0 +af, jar1,0) +27Y) (Sfysz + 12 “)

4
2 <S§,1~S§,z : "”14”“) , (12)
_ 4t ng n¢
7(1) = ) (51,1 Sr» M) +J2Qr, (13)

Qr = Z Z(a;—yaygbI,E,a + bfayaal,a,a), (14)

a=1,2 o
and
Pr=1446Qr. (15)

Similarly to (11) we can decompose " (see (7)) when neglecting the terms pro-
portional to 2 in (37) and (38) of Ref. [12], as well as in (9) and (10). Applying

this procedure we get

T =T(0) + 6H(1) (16)

where
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= —D
H(O) = ZHI (0) _tZ(a}—,Z,UaI‘FLLU + a}—+1,1,0a17270) -1 Z Z a;—,a,aa-]yaya
I I

I#J,0 a=1,2

" " n?,z”ﬁm " " n?,z”?ﬂ,l
+2J) Z (SI,2'51+1,1 + ?) — 27 Z (SI,2'51+1,1 - ?)
I I

+J(1)Z Z (SIQSJQ Ioz Joz)

I#£J,0 a=1,2

BOBYDY <s,a S - ’“””), (17)

I#£J,0 a=1,2

— —D _ _ _
H() =Y Hr(1)—tY (afy @r411,0 + @ g p0r41,1,0 + Afp1 1 40120
I I

+a?—+1,1,0a1727‘7) -t § : § : (a?ayaa‘],a,a +E;—,ayaa-]7aya)
I#J,0 a=1,2

+t Z ST '[(a;—,z,TaIH,ZT - a;—,z,laIH,Z,l) + (a?+1,2,TaI,2,T - a;—+1,z,1a1727l)]
I

+ Z sz'[(aal,maklﬁ - a;—+1,1,1a171,l) + (afLTaIH,l,T - a?,1,la1+1,1,l)]
I

+t Z[SI_+1,1 '(a;—,z,TaIH,ZJ + a;—+1,2,TaI,2,l) + Sl_,z'(a}—,malﬂ,l,l + a}—+1,1,Ta1717l)]
I

+ Z[S}I—H,l '(a;—+1,2,1a172,T + afz,laHl,Z,T) + S}I—,z'(a}—+1,1,la171ﬁ + a}—,1,lal+1,1,T)]

> ASial(af 510001 —af 5 ana)) + (0, a1y —af, jarz)]}
I£J a=1,2

HY D At afzaran+ af parm)) + ST, (af 5 arar +ad, jarzg)}
I£J a=12

(](1) 4 ](2))
T S Infolafyy asbrrime + by 50001100
Io a=1,2
411 (af 2 0100 + 07 4 parma)] + 200 = TP 87 5 (574110 — S741,2
I

_ _ _ _ (](1) 4 ](2))
4574101 = 51411,2) T ST411-(8T210 =87 12+ 57 12— 51,21)] + e

§ § a + + + +
X nI,oz(aJ,oz,ab-IyayU + bJ,E,anVO‘VU + aJ,a,O-bJVOzVU + bJ,oz,aa-IyayU)
I#J,0 a=1,2

+2(‘](1) - J(z)) Z Z S;,Q(SZJ,Q,E - SZJ,E,Q + ng,E,oz - ng,oz,E)a (18)
I#£J a=1,2

where
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1
)t =50 aqermt = b a arm),

a .y + b ate) 19
11(2),0 = bra(1),0 F 47 501) 0 011(2), =01 0(2),0 + L2000 5 (19)

and by 1(2),, is given by (41b) in Ref. [12] where we put nli(z) ~~ 0 in the large U
limit and @ = 1 (2) if & = 2 (1). We see that in spite of applying approximate
procedure the formula for the Hamiltonian I, given by (16), (17) and (18) is very
complicated and very long. It contains, however, all terms independent of é and
proportional to §. The simplified form of the extended Hubbard model in the large
U limit (7) that we are interested in is given by

H=PH=~ [[(1+6Qu)H ~H(0)+6 > QrH(0) +?(1)1 : (20)

where we have again retained only the terms independent of § and proportional
to 6. The formulae for Qr, H(0), and H(1) are given by (14), (17), and (18),
respectively. The simplified form of the extended Hubbard model in the large
U limit (20) shows a variety of different magnetic and nonmagnetic interactions
appearing in H(0), Zﬁil QrH(0) and H(1) when looking at (17), (14) and (18).
We can find Ising-type interactions, Heisenberg-type interactions and also more
complex Heisenberg interactions (see (17), (18)) where the localized spin operator
is multiplied by a term similar to spin operator which “transports” electron spin
from one lattice site to the other (as e.g. the fourth and next few terms in (18)),
producing in this way “quasi-magnetic” interactions. All of these interactions,
present in the simplified form of the Hamiltonian (20) will be of a much more

complex nature when one includes to H (see (16)) all terms proportional to 3, 62,
and (6, as mentioned in Sec. 2. The projection operator P in this case (see (5))
cannot be generally written in such a simple form as (15) because each Pr (see
(33) in Ref. [12]) contains also magnetic interactions. It produces in the total

expression for H = PH (see (7)) sums of products of many multiple (magnetic,
“quasi-magnetic”, etc.) interactions of enormously high complexity.

4. Conclusions

We have shown a new and straightforward way how to derive the extended
Hubbard Hamiltonian for the sc lattice in the strong correlations limit based on
the dimer decomposition of the original lattice into a set of interacting dimers us-
ing the exact solution of each dimer problem. The strong correlation limit is taken
into account by the reduction of the space of the dimer states to the subspace cor-
responding to the occupied energy levels. The method can be, in principle, applied
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to another models to derive the resulting Hamiltonian in the strong correlation
limit. The only restriction for a further popularization of the method can be the
complexity of laborious calculations exponentially growing up in the case when
instead of dimers we will use more complex clusters (trimers, etc.).
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