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Ground-State Energy of Biquadratic
Spin Systems (S = 3/2)
in the (1/z)'-Approximation
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Department of Medical Biophysics, Medical University of Silesia
Medykdw 18, 40-752 Katowice, Poland
YInstitute of Physics, Silesian University
Uniwersytecka 4, 40-007 Katowice, Poland

(Received November 12, 2002)

Corrections to the molecular-field ground-state energies of the Heisen-
berg model with isotropic biquadratic interactions (spin S = 3/2) are calcu-
lated in the (1/z)'-approximation using the diagrammatic technique based
on the Wick reduction theorem (z is the number of spins interacting with
any given spin). The present results for the antiferri- and antiferromagnetic
phases complete the previously obtained data for the antiquadrupolar, ferri-
and ferromagnetic phases. From among the boundaries between different
ground states only that between the antiferri- and antiferromagnetic phases
is shifted with respect to its molecular-field value.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.30.Et, 75.50.Ee

1. Introduction

Inclusion of biquadratic terms into the ordinary Heisenberg Hamiltonian
made it possible to describe thermomagnetic properties of many real magnetic sub-
stances. The biquadratic interactions are especially important in transition-metal
and rare-earth compounds with unquenched orbital momentum [1, 2]. In some
cases, such as the Jahn—Teller effect [3] or the quadrupolar ordering of molecules
in solid hydrogen, they prevail over the bilinear ones or may be even the only
interactions (no bilinear coupling) [4, 5].

*corresponding author; e-mail: aksamit@us.edu.pl
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The physical origins of the biquadratic interactions are diverse and range
from the superexchange [6] and magnetoelastic effect [7, 8] to the virtual phonon
exchange between ions [2] and the indirect exchange via the conduction elec-
trons [9]. Also, the description of the lowest multiplet levels of magnetic ions
in terms of the spin Hamiltonian may introduce biquadratic components [1]. Ex-
periments on europium, gadolinium and uranium compounds revealed that the
fourth-order (biquadratic, three- and four-spin) exchange interactions cause anoma-
lous (non-Bloch) low-temperature variation of the spontaneous magnetization in
ferromagnets and of the sublattice magnetization in antiferromagnets. In 3-dimen-
sional magnetic systems the deviation of both quantities from their 7" = 0 value
is given by the T9/2 or T? law for integer or half-integer spin S, whereas in
2-dimensional systems the exponents are 2 or 3/2, respectively [10]. For a more
extensive review and for the recent papers on the Heisenberg-biquadratic systems
the reader is referred to our previous work [11] and the references cited therein.

The exact ground state of a spin system with isotropic bilinear (J) and bi-
quadratic (K) nearest-neighbours interactions can be determined only in a few
special cases, such as the ferromagnetic pure Heisenberg (J/ > 0, K = 0) model or
the linear antiferromagnetic Heisenberg (J < 0, K = 0) chain of spins S = 1/2.
Also, the spin-1 Schrédinger exchange model (J = K) with the Zeeman and
single-ion anisotropy contributions is known to have the exact ferromagnetic or
quadrupolar ground state [12]. In a general case it is possible to establish upper and
lower bounds for the ground-state energy [13]. From the condition of coincidence
of these bounds Nauciel-Bloch et al. [14] and Barma [15] obtained the sufficient
conditions for the ferromagnetic state to be the exact ground state, namely

J >0, —%<K<% (S>1).

For spin one, a more thorough inspection [16] yields the broader region

J >0, K<J (S=1).

When the exact ground state is unknown, an approximate one, given by the
molecular-field approximation, is assumed as a starting point for calculations of el-
ementary excitations. The order parameters at 7' = 0 and the ground-state energy
are afterwards corrected by an appropriate perturbation procedure. The presence
of such corrections is called the zero-point effect. The theory of spin waves in
the Heisenberg antiferromagnet predicts the zero-point effects to be the more pro-
nounced, the lower dimensionality, and the lower spin [17]. The zero-point spin
reduction has been observed experimentally in quasi 2-dimensional antiferromag-
nets [18]. In the Heisenberg model with biquadratic interactions the zero-point
effects come from magnons and quadrons (by quadrons we mean magnetic excita-
tions with AS* = 2).

The zero-point effects in the Heisenberg-biquadratic spin systems have al-
ready been investigated by the diagrammatic technique based on the Wick re-
duction theorem, in the (1/z)!-approximation(z is the number of spins interact-
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ing with any given spin). Skrobi§ and Westwariski [19] determined, for S = 1,
the zero-point deviation of the dipolar and quadrupolar order parameters as well
as the corrections to the ground-state energy in the antiferromagnetic and ferri-
quadrupolar phases. Blaszczak and Westwariski [20] considered the spin S = 3/2.
For Jy > %Ko, Ky < 0 they calculated the zero-point effects in the antiquadrupo-
lar and ferrimagnetic phases. The present paper complements the latter by taking
into account the range of Jy < %Ko, Ky < 0, where the antiferrimagnetic or anti-
ferromagnetic phases are the molecular-field ground states (Jo and Kq are Fourier
transforms of the interaction parameters J¢, and Ky, in Eq. (1) for the wave vec-
tor k= 0). For the sake of completeness we shall collect together the new results
and the previous ones.

The layout of the paper is as follows. In Sec. 2 the two-sublattice Hamilto-
nian, expressed by the Racah operators, 1s split into the molecular-field part and
the interaction. The matrix structure of the interaction and of the Green function is
displayed. In Sec. 3 the molecular-field ground-state diagram is presented. Order
parameters, energies, and phase boundaries are given for the five ground states
(ferromagnetic, ferrimagnetic, antiquadrupolar, antiferrimagnetic, and antiferro-
magnetic), which occur for Ky < 0. Negative branches of magnons and quadrons,
which contribute to the zero-point shift of the ground-state energy, are indicated.
In Sec. 4 corrections to the ground-state energy in the (1/z)!-approximation are
calculated and depicted. Discussion of the results and critical remarks, pointing
out to some deficiencies of the applied approximation, conclude the paper.

2. The basic formalism

2.1. Hamiltonian and order parameters

We shall examine a two-sublattice regular array of 2N magnetic ions, inter-
acting by one of the mechanisms mentioned in Sec. 1, with the effective spin-3/2

Hamiltonian
H==Y [hS;+D(53)"] =Y [hS; + D(5;)’]
f g
- Z [Jfg(sf ’ Sg) + ng(sf ’ 59)2] ) (1)
5.

where h and D are the external magnetic field and the single-ion anisotropy,
whereas J;, and Ky, are the isotropic Heisenberg and biquadratic couplings. The
site indices f and g run over the sublattice A and B, respectively (each spin
from sublattice A interacts only with its nearest neighbours belonging to B, and
vice versa). A similar (Ising-like) spin-3/2 Hamiltonian has been found to describe
qualitatively two successive phase transitions in DyVOy [21].

It is convenient, for diagrammatic calculations [22, 23], to express the Hamil-
tonian (1) in terms of the non-normalized Racah tensor operators I/* (I = 1,2;

m=—[,...,{). For S = 3/2, they read
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— Sz’ Iitl — Si,
I9=(S7)"=5/4, IF' =85St 45587, ¥ =(5%)% (2)
Then, we apply to the operators (2) the transformation
F=a-(a), (3)

where the symbol {...) denotes the thermal average. Since the Hamiltonian (1) is
invariant with respect to the rotations around the z-axis, only four averages in (3)
do not vanish, namely

= (1Y), mh=(3), (j=A4B). (4)
After the transformations (3) the Hamiltonian (1) takes the form

H=NC+Hy-V, (5a)
where
¢= —gD— %8004‘507”1 m{’ + pomy m¥, (5b)
HOIZHf—I—ZHg, (5e)
= —hAIO - DALgf, =—hP1) —DPIY
BB = h 4 6omP A = g~y (3= 1/kT), (5d)
DAB = D+ pgmy = g7y P (be)

1 1
V= Z 5fg Ilfjlg + Ilfjlg) + 630fg(12f12g + IZfIZg) + 5801‘9[72)]‘[?9

+ the same terms with [ < g¢|. (5f)

Here 69 and @o are the Fourier transforms, éx and ¢g, of é¢, = Jp, — %ng and
Py = %ng, respectively, taken for the wave vector k = 0. We also define

] ]
l‘:——o’ "yk E ka

©0 8o o

(6)

2.2. Interactions and Green functions
The interaction term, V', given by (5f), may be rewritten as
2 1
=3 [Z > (vin Ty + Vlz?r;ff;ff;)] ,

=1 m=0

59
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where the coefficients Vl??l,mi, (m=20,1,2; LI =1,2; i,¢' = f,g) form a 10 x 10
symmetric matrix, which is the simple sum of 4 X 4, 4 x 4, and 2 x 2 matrices,
corresponding to m = 0, 1, and 2, respectively. The non-vanishing elements of its
Fourier transform

V(k) = V(b)) @ VY(k) @ V2 (k)

are as follows:

T T 1
Vlo,g,lB(k) = Vlol_g,lA(k) = Vllj,lB(k) = Vllé,m(k) = 550%,
1
Vzo,g,zB(k) = Vzojg,zA(k) = 5800’%,
T T 5 5 1
Vzlj,zB(k) = Vzlé,zA(k) = szj,zB(k) = V22§,2A(k) = 68007k~
We introduce the matrix Green function, G(k,iw,, ), depending upon two external
vertices [23]
G(k,iwy) = GOk, iw,) & G (k,iw,) & G2(k,iwy,) (7)
(iw, =i27n/F is the imaginary Bose frequency). It satisfies the diagrammatic
Larkin equation [24]
G=Y+XYVG,

where X the full irreducible part of the Green function, has the same structure (7)

as G. The expressions for X" (k,iw,) (m = 0, 1, 2), in the zeroth-order approx-
imation with respect to (1/z), are given by Eqgs. (16), (17), and (18) in Ref. [25].

3. Molecular-field approximation
3.1. Ground state

Omitting the interaction term, V', in Eq. (ba), we derive the following ex-
pression for the free energy per ion in the molecular-field approximation (MFA):
FOIC_B_lln(ZAZB), (8)

where
2; =2 |expttd)cosh (31 )+ exp-hycost (5 )| 5= 1jar

and y{ are defined by Eqs. (5d,e) (j = A, B).
The minimum condition for Fy yields the self-consistent equations for the
order parameters (4):
S Y .
mi =Wy, ) =2 —F, 1=1,2 j=A B (9)
dy|

The ground-state energy per ion in the MFA is
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— 1
Eq=0+ N<Ho>0~

Inserting (5b,c) and putting h = D = 0 (this assumption will be kept throughout
the remainder of the present paper) we get
Eo 3 /25

By= 0 =2 (§ _ ebAbE 4 bg\bg) | (10)

Here the order parameters b{ (I=1,2; j = A, B) assume their zero-temperature
values. Below we write down the values of the order parameters, b{, (I =1,2;
J = A, B), the expressions for the ground-state energy, £y, and the region of z,
where a given phase is the ground state.

(i) Ferromagnetic (FE) phase:

11 4
b{‘:b’f‘:%, by = bF = 1; E0:§<7—3x); v (11)
i1) Ferrimagnetic (FI) phase:
(ii) gnetic (FI) p
3 1
bf:? b?:? by = —bf =1,
3 /17 4
EFo=—-| —— : < —
0 8(2 3l‘), 0<l‘_3 (12)
(iii) Antiquadrupolar (AQ) phase:
51
bf:b?: , b’;:—b?:l; EO:E; x=0. (13)
(iv) Antiferrimagnetic (AFT) phase:
3 1
b114:§a blB:_§a b?:_bZB:L
3 /17 4
EFo=-—+43x); —=< 0. 14
0 8<2+x), gsu< (14)
(v) Antiferromagnetic (AFE) phase:
3 9 /11 4

For h = D = 0 the molecular-field equations (8-9) are equivalent to those obtained
by Sivardiére and Blume [21] for the S = 3/2 Ising-like spin system with dipolar
and quadrupolar interactions. Our interaction parameters 8y and ¢ are related
to J and K in [21] as follows:

o
eo K

(= —x).

The ground-state diagram, determined by Eqs. (11-15), corresponds to that in
Fig. 7 in Ref. [21], with the replacements FE — AFE and FI — AFT for « < 0.
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3.2. Negative branches of the spectrum at T =0

The spectrum of elementary excitations is determined by the poles of the an-
alytical continuation iw, — —w —ie (¢ — +0) of the Green functions G™™ (k, iw, )
(m = 1, 2). The spectrum in the (1/z)"-approximation has been calculated in
Refs. [25] and [11] for the FE, FI, AQ, and AFI, AFE phases, respectively. Here
we shall only quote the formulae for the negative energy branches, since only they
contribute to the free energy corrections in the (1/z)!-approximation at 7' = 0.

In the ferromagnetic phase magnon and quadron spectra are positive. On
the other hand, in the antiferromagnetic phase there exists one negative magnon
branch

206 = 3 Gx + 1) (1—~3)H2 (16)

as well as one negative quadron branch

3 9 1/2

(we follow the notation of Eqs. (27) and (28a) in Ref. [11]).
Both in the ferrimagnetic and antiferrimagnetic phases there is one negative
magnon branch. Their energies, w, are obtained from the equation

(—w)? +b(~w)? +e(~w) +d =0, (18a)
where (FI)
21

b: Z$,

3 1
e=9[2a (5-72) + g1 -d) 1= D).

81 3 1
d=—a(l-1}) (Ex2—|—§x— 1), (18b)

or (AFT)

b:6<§x—|—1),

3 1
c=9 [El‘z(l +78) + 5e(d =370 + (1 - 'yi)] :

81 3 1
d= —Zx(l—'y,zg) (Exz— 2%~ 1) : (18¢)
As concerns quadrons, there is no negative branch in the ferrimagnetic phase, while

in the antiferrimagnetic phase the one negative branch is given by (once again we
use the notation of Ref. [11])
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wsk = 3 { 2w —1)? =311} (19)

In the antiquadrupolar phase the magnon spectrum coincides with that of quadr-
ons. The two negative branches are given by (Eq. (21a) in Ref. [25])

eron = —3(LF [y )/*. (20)
The presence of negative elementary excitations in most of the phases considered
(except of FE) indicates that the MFA ground state is not exact and needs to be
improved by the zero-point corrections.

4. Ground state of the system

1. Free energy in the (1/2)'-approzimation
qY pp

The Green functions (7) in the (1/z)%-approximation being known, we may
calculate the first-order corrections to the free energy per ion (in units of |Kgl):

F=Fy+AFy+ AF) + AF>, (21)
where Fy = Fy/|Ko| is the MFA value of the free energy, Eq. (8), and
1 .
AF,, = N3 kzgln T (R iwp), (22)
0_ _
Zp (ki) = det [1 — Tk iwn ) V(R mo=1, 2. (23)

The correction AFy in (21), coming from the diagonal part of the Green func-
tion (7), vanishes at 7' = 0 and therefore does not contribute to the ground-state
energy. The two further corrections, AF; and AFy, correspond to magnons and
quadrons, respectively. Then (23) can be expressed by the collective excitation
spectrum E(kr) and by the corresponding distances between the molecular-field en-
ergy levels H(") as follows:

: (r)
. B lwy + ;' (m) _
Zim, (kyiwy,) = | | —iwn—I—H(’“)(m)’ m=1, 2. (24)

Here m = 1 for magnons and m = 2 for quadrons, whereas the index r numerates
different branches of the excitation spectrum in a given phase (e.g. 7 = 1, 2, 3
for magnons in the FI phase). The energy distances H() are equal to the corre-
sponding spectra E(kr) for the interaction V' = 0 in Eq. (5) and may be obtained by
formally putting v = 0 in Eqgs. (16-20). Their explicit form is given by Eqs. (13)
and (14) in Ref. [11].

Inserting (24) into (22) and performing the summation over n we obtain

_ 1 L—exp[-pe’(m)]
AF,, = N3 Zk:lnl:[ - eXp[—ﬁHﬂz’“)(m)]’ m=1, 2. (25)
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.2. Corrections to the ground-state energy in the (1/2)t-approzimation
) qY pp

The ground-state energy (in units of |Kg|) with accuracy up to (1/2)! reads

E=FEy+ AFE, +AF,, (26)

where Ej is the molecular-field value (10). The first-order corrections, AE; and
AFEs, coming from magnons and quadrons, respectively, are obtained by taking
the limit 7' — 0 in (25)

AE,, = %ZZ [H“)(m) —ePm)|, m=1, 2. (27)

Now 7 runs over the negative branches of the spectrum only. We present underneath

the corrections for the five phases in detail.

(i)

(i)

(iii)

Ferromagnetic (FE) phase:
No negative magnon or quadron branch exists for the FE phase, hence the
correction to the MFA value of the ground-state energy (11) vanishes.

Ferrimagnetic (FT) phase:
The magnon correction AF| is calculated by (27), with H")(1) = 3(%1‘ -1

and 6;:)(1) = ¢41 (the notation follows that of Ref. [25]); €4k is the negative
magnon branch determined by Eq. (18a) with the coefficients (18b). The
correction from quadrons vanishes.

Antiquadrupolar (AQ) phase:
Inserting (20) into (27) we get

— — 3 1/2 1/2
AEl—AEz——N;P—(l—ww —(1+ )| (28)

Antiferrimagnetic (AFT) phase:

The magnon correction AEj is obtained from (27) by putting H()(1) = %x

and E(kr)(l) = wyy (the notation of Ref. [11]); wak is the negative magnon
branch determined by Eq. (18a) with the coefficients 218(:). To get the
quadron correction we put H(")(2) = 3(3z — 1) and Ekr)(Q) = wsk, see
Eq. (19), wherefrom

3
ABy=3(r—1)+ > [ = 1) =AM (29)
E
Antiferromagnetic (AFE) phase:
Similar calculations, applied to negative magnon and quadron branches
(Egs. (16) and (17), respectively), yield the following expressions for the
corrections to the ground-state energy:

_ 3 1 2\1/2
AE1—3<ZJL‘—|—1) 1_NZ(1—%)/ : (30)

k
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1/2
(31)

AEs =3 §gg+1 +32 §x—|—1 2— 2
277\ 3 N2 \2 Tk

The numerical calculations have been performed for the simple cubic (s.c.)
and body-centred cubic (b.c.c.) lattices. Figure 1 shows, in the case of the s.c. lat-
tice, the magnon and quadron corrections separately for the phases corresponding
to different values of # (a similar behaviour holds for the b.c.c. lattice).

-4/3 0 4/3 X
Fig. 1. Corrections (27) to the ground-state energy for the s.c. lattice. The solid and
dashed lines correspond to magnon (AFE;) and quadron (AE>) contributions, respec-
tively. The interaction parameter z is given by Eq. (6) and the energy is in reduced units

(see Egs. (10) and (26)).

0.00
AE AFE
-0.15
4 < '
’ :
v . 7/
-0.30-1 ')
!
-0.451 ! ,‘ ;
43 0 413

X

Fig. 2. The total correction to the ground-state energy, AF = AF; + AF5, given by
Eqgs. (27-31), calculated for the s.c. (solid line) and b.c.c. (dashed line) lattices. The
interaction parameter z is given by Eq. (6) and the energy is in reduced units (see

Egs. (10) and (26)).

The total correction, AE = AE; + AFE,, calculated for the two lattices, is
presented in Fig. 2. Figure 3 compares, for the s.c. lattice, the full ground-state
energy E in the (1/z)!-approximation, Eq. (26), with its MFA value Ey, Eq. (10).
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A4 ; ;
413 0 43 X

Fig. 3. The ground-state energy E versus the interaction parameter z for the s.c. lat-
tice. Dashed line: molecular-field theory, Eqs. (10-15); solid line: (1/)!-approximation,
Egs. (26-31). The point ' = —1.41 is the new border between the AFI and AFE ground
states (see Sec. 4.3 for details).

Figure 3 in this paper is an extension of Fig. 1 in Ref. [20] onto the region of
negative x.

4.3. Remarks

As should be expected, the first-order corrections to the ground-state energy
are small (a few percent of the MFA value Fy) and negative (only in the FE phase
they vanish). Thus the corrected ground state is of lower energy than the MFA one.
Moreover, the departure from the MFA is greater for the s.c. lattice (z = 6) than
for the b.c.c. lattice (z = 8). These results legitimize the use of the high-density
perturbation scheme, with (1/%) being the perturbation parameter.

In Fig. 2 we see that the total correction, AF| is continuous at = 4/3 and
at © = 0 (also the antiquadrupolar correction, Eq. (28), agrees numerically with
the corrections for the FT and AFT ground states at @ = 0). Therefore, the MFA
border between the FE and FI phases (z = 4/3) as well as that between the FI, AQ,
and AFI phases (z = 0) persists in the (1/z)'-approximation. This is not the case
for x = 29 = —4/3 = —1.33 (MFA border between AFI and AFE). The condition
of equal energies of the AFI and AFE ground states in the (1/z)!-approximation
leads to the new borderline value 2’ of the interaction parameter x: «’ assumes
the value of —1.41 and —1.39 for the s.c. and b.c.c. lattices, respectively (notably
in both cases |2/| > |xo]). However, for x € [#/, 2p), the antiferrimagnetic magnon
spectrum, given by Eqgs. (18a) and (18¢), becomes complex for small wave vec-
tors k; specifically, this occurs for 1 < v < 0.94 (s.c. lattice) or 1 < v¢ < 0.96
(b.c.c. lattice). No such problem occurs for quadrons, determined by Eq. (19).
Bearing this in mind, the correction AFE; for # € [#', #) has been calculated by
rejecting the above-mentioned values of k out of the region of integration in (27).

The small interval € [#',2¢), in which the spectrum of non-interacting
spin-waves is complex, is the region of instability of the AFI phase. This circum-
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stance is to be considered as a defect of the applied approximation. Presumably
taking into account non-collinear spin states in the phase diagram would alleviate
this drawback. This approach is presently under our consideration.
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