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Correlations in Hexagonal Lattice

Systems — Application to Carbon

Nanotubes

K. Czajka and M.M. Maśka∗

Institute of Physics, University of Silesia
Uniwersytecka 4, 40–007 Katowice, Poland

We present exact diagonalization studies of two-dimensional electron

gas on hexagonal lattice. Using Lanczös method we analyze the influence

of the Coulomb correlations on the density of states and spectral functions.

Choosing appropriate boundary conditions we simulate the geometry of a

single wall carbon nanotube. In particular, integration over the boundary

condition in one direction and summation in the other one allows us to

perform cluster calculations for a tube-like system with a finite diameter

and infinite length.

PACS numbers: 73.22.–f, 71.15.Dx

1. Introduction

Since the discovery of carbon nanotubes, their electronic properties attract
much attention. However, most of the band structure calculations neglects the
influence of the Coulomb interaction. Generally, the Coulomb interaction can
be treated exactly for small systems (exact diagonalization techniques using the
Lanczös algorithm [1]), or analytically for large (infinite) systems. Unfortunately,
approximations which have to be used in analytical approaches to a strongly cor-
related system are often uncontrolled. The Lanczös algorithm is one of the most
effective computational tools for searching the ground state and some low laying
excited states for finite systems. From the ground state, one can compute all static
and dynamic properties, and in this sense, one obtains a complete characterization
of a model at zero temperature except for finite size effects. Unfortunately, this
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drawback is a very serious one, since the memory requirements strongly restrict
the maximum size of the system. Some approaches are known to reduce the finite
size corrections. In the present paper we make use of one of them in order to
investigate the role the correlations play in carbon nanotubes.

2. Averaging over boundary conditions

To analyze influence of Coulomb interaction in hexagonal lattice we use the
Hubbard Hamiltonian

H = −
∑

〈ij〉,σ
tij(c

†
iσcjσ + c†jσciσ) + U

∑

i

ni↑ni↓, (1)

c†iσ (ciσ) creates (annihilates) an electron at site i with spin σ =↑, ↓, ni,σ = c†iσciσ

represents a number of electrons at site i, tij is the hopping integral between
nearest neighbors 〈ij〉, and U is the Coulomb interaction.

Since the analytical solution of two-dimensional (2D) Hubbard model is un-
known, we make use of the exact diagonalization method. In this case we have
to apply appropriate boundary conditions (BC). Unfortunately, commonly used
open or (anti)periodic BC gives only a few points in the Brillouin zone (BZ) —
the number of points in BZ is equal to the number of cluster sites. This feature
makes difficult to analyze the momentum dependence of physical quantities. As
a partial solution of this problem we propose averaging over boundary conditions
(ABC) [2]. The idea is the following: each time the hopping term makes a par-
ticular electron jump out of the cluster, it is mapped back into the cluster with
the wave function multiplied by exp (iϕx) or exp (iϕy), for jumps along the x or y

axis, respectively. ϕx = ϕy = 0 corresponds to periodic BC, whereas ϕx = ϕy = π

to antiperiodic BC (Fig. 1).

Fig. 1. Explanation of the meaning of the parameters ϕx and ϕy.

The whole reciprocal space can be swept, when ϕx and ϕy are allowed to
vary continuously. The density of states or spectral functions, calculated as a sum
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of delta functions for each ϕx and ϕy, integrated over ϕx and ϕy from continuous
functions, e.g.:

%(ω) =
1

4π2

∫ π

−π

dϕx

∫ π

−π

dϕy%(ω, ϕx, ϕy), (2)

where %(ω, ϕx, ϕy) is the density of states determined for a particular boundary
conditions specified by ϕx and ϕy. In practice, the integrals are replaced by an
average over a rectangular mesh.

3. Hexagonal lattice and nanotubes

Carbon nanotubes are rolled up graphite planes. There are three basic kinds
of nanotubes: armchair, zig-zag, and chiral. The type of nanotube determines their
electron properties and they can be semimetallic (like graphite), semiconducting
or metallic.

In carbon nanotubes hopping between nearest neighbors is in three directions
and within the framework of the ABC approach we have three different hopping
integrals (see Fig. 2):

t1 = −t exp
[

i
2
(ϕx +

√
3ϕy)

]
, t2 = −t exp

[
i
2
(ϕx −

√
3ϕy)

]
,

t3 = −t exp(−iϕx). (3)

Fig. 2. Hopping integrals in hexagonal lattice.

Since carbon nanotubes are seamless objects, the wave functions have to obey
periodic boundary conditions around the circumference, and the component of the
wavevector perpendicular to the nanotube axis is quantized. This feature makes
carbon nanotubes well suited for the ABC approach. In this case the averaging
over BC along the nanotube circumference reduces itself to a summation over
only a few distinct values, to reproduce the quantized values of the component
of the wavevector (ky). On the other hand, a particular BC along the nanotube
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corresponds to a specific one (or several, depending on the cluster size and shape)
value(s) of the component of the wavevector along the nanotube axis (kx).

4. Results and conclusions

In order to demonstrate the proposed approach we have performed numerical
calculations for 8–site clusters cut out of zig–zag and armchair nanotubes. Both
these clusters, presented in Fig. 3, have the same shape, but different orientations.

Fig. 3. Clusters used in numerical calculations. The nanotube is along the x-axis.

Fig. 4. Band structures and densities of states for zig-zag (left panel) and armchair

(right panel) nanotubes in the presence of the Coulomb interactions with U = t.

The summation over a finite set of ϕy’s mimics the quantized values of ky.
On the other hand, continuous values of ϕx correspond to a dense set of kx. This
allows us to determine, using the Lanczös method, the spectral functions for a
given kx. Summation over kx gives the density of states. In the case of U = 0,
the proposed approach exactly reproduces the tight-binding band structure of
nanotubes. Examples of the band structure and the density of states for zig-zag
and armchair nanotubes determined in the presence of the Coulomb interaction
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are presented in Fig. 4. Note that the gap at the Fermi level in the armchair
nanotube (semimetallic in the noninteracting case), opens due to the Coulomb
interactions.
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