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Next-Nearest-Neighbor Hopping

in the Falicov–Kimball Model

K. Czajka and M.M. Maśka
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Results of Monte Carlo simulations for the spinless Falicov–Kimball

model with the next-nearest-neighbor hopping are presented. We find the

critical value of the next-nearest-neighbor hopping integral, below which the

low temperature configuration of the localized particles is the same as in the

presence of only the nearest-neighbor hopping. Beyond this critical value

the localized particles form horizontal or vertical stripes.

PACS numbers: 71.10.–w, 71.10.Fd

1. Introduction

The spinless Falicov–Kimball (FK) model [1] is a simple quantum model that
describes itinerant electrons interacting with classical localized particles. Despite
the simplicity, the FK model exhibits a rich phase diagram [2]. It has been rigor-
ously proved that for dimensions D ≥ 2 the system has a phase transition from a
homogeneous high-temperature phase to a phase, in which the classical particles
form a checkerboard pattern [3, 4]. This property holds for any bipartite lattice
and the FK model has been analyzed mostly on square or (hyper)cubic lattices,
which fulfill this requirement. Much less is known about the properties of the
FK model on non-bipartite lattices. The main question that arises in connection
with non-bipartite lattices concerns the nature of the ground state, whether or
not there is a long range order at low temperatures. The answer to this question
depends, of course, on the topology and geometry of the lattice. In Ref. [5] we
have shown that the FK model on a triangular lattice exhibits a finite-temperature
phase transition, at least apart from the strong interaction limit, where it maps
itself on the triangular Ising antiferromagnet that is known to exhibit a phase
transition at T = 0 [6].

In this paper we analyze the role of the next-nearest-neighbor hopping in the
FK model on the square lattice. In particular, we demonstrate how the checker-
board ground state is modified when the next-nearest-neighbor hopping increases
and how the critical temperature depends on its amplitude.
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2. Model and method

The Hamiltonian of the spinless FK model is given by

H =
∑

ij

tijc
†
i cj + U

∑

i

niwi. (1)

Here, ni = c†i ci, wi is equal to 0 or 1, according to whether the site i is occupied
or unoccupied by a massive particle. The hopping integral tij is equal to −t

when i and j are nearest neighboring lattice sites, −t′ for next nearest neighbors,
and zero otherwise. Without the t′ term this model has been investigated by
means of various methods [7]. However, up to our best knowledge, the influence
of the next-nearest-neighbor hopping has been taken into account only in Ref. [8],
where the FK model has been studied in perturbative regime, where U À t, t′. In
this paper we present results obtained with the help of a variant of Monte Carlo
method that is suitable for a system with both classical and fermionic degrees of
freedom. The details are described in Ref. [9]. The simulations were performed for
20 × 20 clusters with periodic boundary conditions. The concentrations of both
the classical particles (Ni/N) and the electrons (Ne/N) is equal to 0.5.

3. Results

It is known that for Ni/N = Ne/N = 0.5 the classical particles form a
checkerboard pattern in the ground state on a square lattice. This long-range
order survives also up to some finite critical temperature, at which the system
undergoes a phase transition to a homogeneous high-temperature phase. One
may expect that the low-temperature checkerboard order minimize the free energy
also in the presence of small next-nearest-neighbor hopping. The question arises
what would be the actual low-temperature state for relatively large t′? To answer
this question let us take into consideration the limiting case of a very strong
next-nearest-neighbor hopping t′ À t. In this limit the square lattice breaks up
into two interpenetration sublattices with the lattice constant

√
2 times larger

than the original one and with the axes rotated by 45 degrees. Since there is no
intersite interactions neither between electrons nor between massive particles, and
the next-nearest-neighbor hopping does not move electrons between sublattices,
the sublattices are completely independent. As a result at low temperature in
both these sublattices massive particles form the checkerboard pattern. Each of
these subsystems is twofold degenerated (massive particles can be shifted into the
empty sites). As a result of the degeneracy the massive particles in the whole
system can form either horizontal or vertical stripes (see Fig. 1).

In order to investigate the regime of intermediate next-nearest-neighbor hop-
ping let us recall that the FK model in the strong Coulomb interaction limit maps
onto the antiferromagnetic Ising model. The Ising model on the square lattice with
nearest-neighbor (J) and next-nearest-neighbor (J ′) couplings possesses two dif-
ferent ground states, depending on the J ′/J ratio: for J ′/J < 0.5 the ground state
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Fig. 1. Two possible low-temperature configurations of localized particles in the t′ À t

limit. Open circles represent empty sites within a given sublattice, whereas the filled

ones indicate positions of the massive particles.

is the simple antiferromagnet, whereas for J ′/J > 0.5 the system minimizes the
energy by ordering in alternate ferromagnetic rows of opposite spins [10, 11]. Such
spin configurations (“superantiferromagnetic”) correspond to the massive particle
configurations of the FK model presented in Fig. 1. Since the ratio J ′/J of Ising
nearest-neighbor and next-nearest-neighbor interactions is equal to (t′/t)2 in the
corresponding FK model, the threshold value of t′ is given by t′/t ' 0.71. This
result holds in the limit U →∞. For weaker interaction this threshold ratio can be
determined from a comparison of the ground state energy in both the checkerboard
and stripe configurations.

In order to illustrate the transition from the checkerboard low-t′ regime to
the stripe high-t′ one, we have carried out appropriate Monte Carlo simulations.
Figure 2 shows “snapshots” of the system for various ratios t′/t. In accordance with
theoretical predictions for very small t′ localized particles form the checkerboard
pattern, the same as in the absence of the next-nearest-neighbor hopping (Fig. 2A).
With increasing t′ the critical temperature decreases and defects occur in the
checkerboard pattern (Fig. 2B). The next configuration (Fig. 2C) corresponds to
t′ above the critical value, i.e., to the regime, where stripe configurations minimize
the energy. However, due to the fourfold degeneracy of the ground state the overall
configuration consists of segments of stripes. With further increase in the ratio
t′/t (Figs. 2D and 2E) the localized particles arrange themselves into stripes. The
imperfectness of the pattern is connected with two effects. First, the degeneracy
of the ground state allows the system to choose one of them in one region of the
cluster and another one in other region. In such a case phase boundary lines are
inevitable. The second effect is connected with thermal fluctuations. When t′

increases with fixed values of t and U , the effective interaction strength, i.e., the
interaction potential compared to the kinetic energy, decreases. As a result the
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Fig. 2. Examples of low-temperature configurations of localized particles for various

values of the ratio t′/t: (A) 0.1, (B) 0.4, (C) 0.8, (D) 1.1, (E) 1.4. All the configurations

have been obtained for U = t at temperature kBT = 0.02t.

critical temperature decreases as well and thermal fluctuations destroy the stripe
pattern.

The presence of the next-nearest-neighbor hopping obviously modifies the
critical temperature, which is connected with the frustration present in the system.
With increasing t′ the critical temperature decreases, going to zero for some critical
value of t′∗. This value is equal to

√
2/2 in U/t →∞ limit. For finite interaction

(U < ∞) t′∗ always lies between 0.71t and 0.8t. At this point there is no long range
order at any nonzero temperature. For t′ > t′∗ the critical temperature increases
with increasing t′. In this regime the critical temperature is the temperature of
the transition from the stripe configuration to the disordered state. Eventually,
for t′/t À 1 the critical temperature starts to decrease with increasing t′, which is
connected with increasing band width, much larger than the interaction potential.

4. Summary

We have demonstrated how properties of the Falicov–Kimball model
on the square lattice are affected by the presence of the next-nearest-
-neighbor hopping. In particular, we have shown how the low-temperature config-
urations of the localized particles depend on t′/t and have discussed the critical
temperature as a function of the next-nearest-neighbor hopping amplitude.
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[5] K. Czajka, M.M. Maśka, Physica B, in press.

[6] G.H. Wannier, Phys. Rev. 79, 357 (1950).

[7] See e.g., J.K. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
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