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Inhomogeneous Charge Distribution

and Superconductivity

in the Boson–Fermion Model

Ż. Śledź and M. Mierzejewski

Institute of Physics, University of Silesia
Uniwersytecka 4, 40-007 Katowice, Poland

We analyze a boson–fermion model that accounts for the electrostatic

potential of the out-of-plane dopant atoms. We investigate whether this ap-

proach may explain recent experimental results obtained for the Bi-based

high-temperature superconductors. We demonstrate that in contradistinc-

tion to purely fermionic models, even weak electrostatic potential of the

dopant atoms may be responsible for a significant modulation of the super-

conducting order parameter.

PACS numbers: 74.20.–z, 74.62.Dh

1. Introduction

Scanning tunneling spectroscopy has recently revealed a strong spatial mod-
ulation of the superconducting gap in Bi-based cuprates [1, 2]. In the vicinity of
the dopant oxygen atoms the magnitude of the energy gap is enhanced, whereas
the height of coherence peaks is strongly reduced [3]. On the other hand, the root
mean square of the electron density is smaller than expected. Since its discovery,
the inhomogeneity has commonly been attributed to the poorly screened electro-
static potential of the out-of-plane dopant oxygen atoms. We analyze whether
these experimental results can be explained within the phenomenological boson–
fermion model [4, 5], that properly describes many properties of the cuprate su-
perconductors [6, 7]. In particular, we discuss the profiles of the superconducting
order parameters as well as the spatial distribution of fermions and bosons. It has
previously been shown that a shift of the bosonic level may substantially modify
the strength of the effective pairing between fermions [8]. Consequently, we expect
that even weak electrostatic potential of the dopant atoms may be a source of a
significant modulation of the superconducting gap.
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2. Model and details of calculations

We investigate the two-dimensional boson-fermion model

H = −
∑

〈i,j〉σ
[tij + δij (µ− Ui)] c

†
iσcjσ +

∑

〈i,j〉
[ωij + δij (EB + 2Ui)] b

†
i bj

+V
∑

i

(
b†i ci↓ci↑ + bic

†
i↑c

†
i↓

)
, (1)

where c†iσ creates a fermion with spin σ at site i and the bosonic operator b†i creates
a pair of tightly bound fermions. EB = ∆B − 2µ, where ∆B is the bosonic level
and µ is the chemical potential. The charged dopant oxygen atoms, which are
placed in the distance z ' 1.5a above the CuO2 planes, shift the fermionic and
bosonic energy levels by Ui and 2Ui, respectively. A different shift of these levels
originates from the fact that bosons are doubly charged with respect to fermions.
We have assumed that the electrostatic potential is screened by charge carriers,
which move in the CuO2 planes. Therefore, Ui = U0

∑
m exp(−Rmi/λ)/R̃mi,

where the summation is carried out over all dopant atoms. Here, U0 is the impurity
potential, Rmi is a distance between site i and site m (above which the dopant
atom is located) and R̃mi =

√
R2

mi + z2. The boson–fermion interaction has been
considered in the mean-field approximation, when the Hamiltonian of the boson–
fermion model splits into fermionic and bosonic parts

HF = −
∑

〈i,j〉σ
[tij + δij (µ− Ui)] c

†
iσcjσ +

∑

i

V
(
ρ∗i ci↓ci↑ + ρic

†
i↑c

†
i↓

)
,

HB =
∑

〈i,j〉
[ωij + δij (EB + 2Ui)] b

†
i bj +

∑

i

V
(
∆ib

†
i + ∆∗

i bi

)
. (2)

HF and HB are coupled through the chemical potential and the order parameters
ρi = 〈bi〉 and ∆i = 〈ci↓ci↑〉. In the following analysis ρi will be referred to as the
fermionic and ∆i as the bosonic order parameter since ρi and ∆i occur in HF and
HB, respectively.

Fermionic subsystem can be diagonalized with the help of the transformation

ciσ =
∑

n

[
uinγnσ − s(σ)v∗inγ†nσ̄

]
, (3)

where s(↑) = 1, s(↓) = −1 and uin and vin fulfill the Bogoliubov–de Gennes (BdG)
equations

∑

j

( Hij δijV ρi

δijV ρ∗i −H∗ij

)(
ujn

vjn

)
= εn

(
uin

vin

)
, (4)

with Hij = −tij − δij (µ− Ui). Since ρi explicitly enters Eq. (4), the numerical
analysis of the BdG equations should be carried out simultaneously with diago-
nalization of the bosonic part of the Hamiltonian. We have applied two comple-
mentary approaches that allow for a straightforward diagonalization of HB. In the
first case, we have restricted our investigations only to localized bosons (ωij = 0)
but the hard-core effects have been explicitly taken into account. This approach
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will be referred to as a localized boson–fermion (LBF) model. In the second case,
we have analyzed mobile bosons neglecting the hard-core effects. This limiting
case will be referred to as a mobile boson–fermion (MBF) model. The bosonic
subsystem can exactly be diagonalized with the help of a suitable unitary trans-
formation. The details of calculations for LBF and MBF can be found in Ref. [9]
and Ref. [10], respectively.

3. Numerical results and discussion

We have solved the BdG equations together with a suitable transformation
that diagonalize HB. The calculations have been carried out on a 32× 32 cluster
for kBT = 0.05t, and λ = 2.0t. In the LBF approach we have taken µ = −0.4t,
V = 0.5t and EB = 0.1t, whereas for MBF µ = −0.2t, V = 1.0t, EB = 0.7t and
ω〈i,j〉 = −0.1t have been assumed. The model parameters have been chosen in
such a way that the average concentration of bosons is much smaller than unity.

We have started our investigations with a system containing a single impurity
(see Fig. 1). Here, ∆max is the maximal value of ∆i in a system. ∆imp denotes ∆i

at site i just below the impurity and ∆0 represents ∆i away from the impurity. We
have considered both positive and negative values of the impurity potential U0.
Since U0 originates from the presence of negatively charged dopant oxygen atoms,

Fig. 1. Impurity potential dependence of the bosonic order parameter in LBF (left

part) and MBF (right part) approaches calculated for a system with a single impurity.

U0 > 0 implies that fermions and bosons represent electrons and electron pairs,
respectively. On the other hand, for U0 < 0 the boson–fermion model represents
a system of itinerant holes and tightly bound hole pairs. As can be inferred from
Fig. 1, LBF and MBF approaches lead to similar qualitative results for U0 > 0
as well as for small negative U0. In this regime the impurity potential U0 > 0
(U0 < 0) is responsible for a reduction (enhancement) of the local concentration of
bosons that, in turn, leads to a decrease (increase) in ∆imp. The experimentally
observed enhancement of the superconducting gap in the vicinity of impurities
occurs only for U0 < 0, i.e., only for bosons which represent pairs of tightly
bound holes. It would be important to verify whether this observation holds true
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also beyond the mean-field approximation. Importance of the hard-core effects
in the bosonic subsystem becomes visible already for moderate negative U0. In
the MBF approach ∆imp = ∆max and ∆imp increases monotonically when U0

decreases. In the LBF approach ∆imp is maximal for such value of U0 that the
concentration of bosons in the vicinity of impurity is close to 1/2. For stronger
attraction ∆imp decreases, whereas the maximal value of ∆i shifts away from the
impurity. Contrary to MBF ∆max saturates for sufficiently strong negative U0.

Fig. 2. Spatial variation of fermionic (top parts) and bosonic (bottom parts) order

parameters normalized to their average values. Left and right parts represent results

obtained for LBF and MBF, respectively. The impurities are marked as dots.

Fig. 3. Spatial variation of fermionic (top parts) and bosonic (bottom parts) concentra-

tions normalized to their average values. Left and right parts represent results obtained

for LBF and MBF, respectively.
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Next, we have considered a more realistic situation. Namely, we have an-
alyzed the superconducting gap for a system with 170 randomly distributed im-
purities, which gives concentration 16%. Results presented in Figs. 2 and 3 have
been obtained for U0 = −0.025t. One can see that spatial distribution of fermionic
and bosonic order parameters is qualitatively the same. Although, the impurities-
-induced enhancement of ∆i is more significant in MBF, the differences between
LBF and MBF are only of quantitative character. Let us note that already very
weak impurity potential may be responsible for significant modulation of the order
parameters. This modulation is accompanied by a strongly inhomogeneous dis-
tribution of bosons but almost homogeneous distribution of fermions. It strongly
contrasts with our recent results obtained for purely fermionic model [11]. In
this approach, explanation of the experimental results requires much stronger
dopant’s electrostatic potential, that causes stronger inhomogeneity in the dis-
tribution of fermions. It is the most important conclusion following from the
presented analysis.
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[8] T. Domański, K.I. Wysokiński, Phys. Rev. B 66, 064517 (2002).
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