

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Effect of cation substitution on critical fields in the n-type Zn xSnyCrzSe4 spinel semiconductors

Author: Tadeusz Groń, Izabela Jendrzejewska, Ewa Maciążek, A.W. Pacyna, Henryk Duda, Piotr Zajdel, Józef Krok-Kowalski

Citation style: Groń Tadeusz, Jendrzejewska Izabela, Maciążek Ewa, Pacyna A.W., Duda Henryk, Zajdel Piotr, Krok-Kowalski Józef. (2009). Effect of cation substitution on critical fields in the n-type Zn xSnyCrzSe4 spinel semiconductors. "Acta Physica Polonica A" (Vol. 116, nr 5 (2009), s. 971-973).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Proceedings of the XXXVIII International School and Conference on the Physics of Semiconductors "Jaszowiec" 2009

Effect of Cation Substitution on Critical Fields in the *n*-type $Zn_xSn_yCr_zSe_4$ Spinel Semiconductors

T. GROŃ^a, I. JENDRZEJEWSKA^b, E. MACIĄŻEK^b, A.W. PACYNA^c, H. DUDA^a, P. ZAJDEL^a AND J. KROK-KOWALSKI^a

^aInstitute of Physics, University of Silesia, Universytecka 40-007 Katowice, Poland

^bInstitute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

^cThe Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences

E. Radzikowskiego 152, 31-342 Kraków, Poland

The ac dynamic magnetic susceptibility was used to study a cation substitution on critical fields in polycrystalline $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$ and $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4$ spinels with tetra- and octahedral coordination of Sn ions, respectively. An increasing static magnetic field shifts the Néel temperature T_N to lower temperatures while a susceptibility peak at T_m in the paramagnetic region — to higher temperatures. Below T_N the magnetic field dependence of susceptibility, $\chi_{ac}(H)$, shows two peaks at critical fields H_{c1} and H_{c2} . The values of H_{c1} decrease slightly with temperature while the values of H_{c2} decrease strongly with temperature, especially for spinel with octahedral coordination of Sn ions, suggesting a weakness of the ferromagnetic component.

PACS numbers: 75.50.Pp, 75.30.Kz, 75.30.Et

1. Introduction

Previous structural, electrical and magnetic investigations [1] carried out on the $ZnCr_2Se_4$ spinel doped with low content of the Sn ions ($y \leq 0.05$) located both in tetra- and octahedral sites of the spinel structure revealed the *n*-type semiconducting properties and antiferromagnetic order. In particular, the $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$ spinel has higher both effective magnetic moment and electrical conductivity, and lower activation energy in comparison with the $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4$ one (see Table I). Higher electrical conduction of $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$ spinel was explained by the fact that the Sn^{3+} ions located in the tetrahedral sites may induce the Cr^{2+} ions, leading to the hopping process involving a transfer of electrons from Cr^{2+} to Cr^{3+} in the extremely mixed valence narrow band. On the other hand, lower electrical conduction of $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4$ spinel was considered in the framework of the quantum band model which predicts a lowering of the Fermi level in the lowest Cr³⁺ Mott-Hubbard sub-band of $3d^3t_{2g}$ narrowed band giving a larger energy activation (see Table I) and consequently a larger value of the forbidden band, when the Sn^{3+} ions (spin defects) occupy the octahedral sites instead of Cr^{3+} ones [1].

Pure ZnCr₂Se₄ as a matrix combines a *p*-type semiconducting behaviour of the Arrhenius type and antiferromagnetic order with the Néel temperature $T_{\rm N} = 20$ K and the Curie–Weiss temperature $\theta_{\rm CW} = 115$ K [2, 3].

magnetic parame-Structural, electrical and ters of the spinels $Zn_x Sn_y Cr_z Se_4$ with tetra- $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$ Aand octahedral $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4 - B$ coordination of Sn ions [1]. a and u are the lattice and anion positional parameters, respectively, μ_{eff} is the effective magnetic moment, T_{N} and $\theta_{\rm CW}$ are the Néel and Curie–Weiss temperatures, respectively, σ is the electrical conductivity, $E_{\rm A}$ is the activation energy and S is the thermopower at 300 K.

Parameters	A	В	
<i>a</i> [pm]	1050.42(1)	1050.67(3)	
u	0.25932(16)	0.25944(16)	
$\mu_{\rm eff}~[\mu_{\rm B}/{\rm f.u.}]$	5.92	5.77	
$T_{\rm N}$ [K]	19.8	18.6	
$\theta_{\rm CW}$ [K]	58	61	
$\sigma~[\Omega^{-1}~{\rm m}^{-1}]$	6.56×10^{-5}	1.0×10^{-5}	
$E_{\rm A} [{\rm eV}]$	0.29	0.34	
$S~[\mu { m V/K}]$	-227	-69	

2. Experimental details

The ac susceptibility (i.e., a modulus of its real and imaginary part) vs. external magnetic field up to 60 kOe was measured at three different temperatures in the range of magnetic ordering and at internal oscillating magnetic field $H_{\rm ac} = 1$ Oe with internal frequency f = 120 Hz using a Lake Shore 7225 ac susceptometer. The ac susceptibility vs. temperature was recorded at $H_{\rm ac} = 1$ Oe with f = 120 Hz for external magnetic fields H = 0 and 50 kOe.

3. Results and discussion

The magnetic field dependence of susceptibility, $\chi_{ac}(H)$, shows two peaks below the Néel temperature $T_{\rm N}$ (see Figs. 1 and 2 and Table II).

Fig. 1. Ac mass susceptibility χ_{ac} vs. external magnetic field H for $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4$. The critical fields H_{c1} and H_{c2} and a run of magnetic field are indicated by arrows.

Fig. 2. As in Fig. 1 but for $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$.

First, at the critical field H_{c1} , connected with a metamagnetic transition and the breakdown of the helical spin structure, which slightly decreases with temperature. Second, at the critical field H_{c2} , connected with

Fig. 3. Ac mass susceptibility χ_{ac} vs. temperature T for Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se₄ and (Zn_{0.87}Sn_{0.048})Cr_{2.02}Se₄ spinels. Inset: ZFC and FC dc mass susceptibility χ_{σ} vs. temperature T for Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se₄. The T_N, T_m and T_{rsg} temperatures are indicated by arrows.

TABLE II

Critical fields H_{c1} and H_{c2} at 4.3 and 10 K of the $Zn_xSn_yCr_zSe_4$ spinels. T_{rsg} is the re-entrant spin-glass temperature and T_m corresponds to the maximum of ac susceptibility in the paramagnetic region. Experimental data for $ZnCr_2Se_4$ were taken from Ref. [5] for comparison. A and B are defined as in Table I.

Spinel	$\mathrm{ZnCr}_2\mathrm{Se}_4$	A	В	
$T_{\rm rsg}$ [K]	12	12	12	
$T_{\rm m}$ [K]	43.5	42.9	43.1	
T = 4.3 K				
H_{c1} [kOe]	10	12	12	
H_{c2} [kOe]	48	32	25	
T = 10 K				
H_{c1} [kOe]	8.6	10	10	
H_{c2} [kOe]	35	25	21	

the breakdown of the conical spin structure, which drops strongly with temperature. The latter is mainly responsible for a spin frustration of the re-entrant type confirmed by the experimentally observed splitting of the zero-field-cooled (ZFC) and field-cooled (FC) susceptibilities at a re-entrant spin-glass temperature, $T_{\rm rsg}$, well below the

ordering temperature, $T_{\rm N}$ (see the inset of Fig. 3). At $T_{\rm N}$ both critical fields disappear.

A change of Sn position from tetra- to octahedral site leads to the lowering of the H_{c2} , while the H_{c1} remains almost unchanged (see Table II). It means that the non--magnetic Sn ions weaken the ferromagnetic short-range interactions in the (001) planes, while the long-range antiferromagnetic exchange interactions between the spins in adjacent (001) planes [3] remain still strong. Additionally, at magnetic field of 50 kOe a shift of $T_{\rm N}$ below 4.3 K and an appearance of the maximum of ac susceptibility at $T_{\rm m}$ in the paramagnetic region were observed (see Fig. 3 and Table II), suggesting that the short-range magnetic interactions exist in the ferromagnetic clusters above ordering temperature. Similar behaviour has been observed in the Zn_xCr_yAl_zSe₄ spinel series [4].

Comparing the values of the critical fields of the spinels under study with the relevant ones of ZnCr₂Se₄ matrix [5] one can conclude that the values of H_{c1} are of the same order, while the values of H_{c2} rapidly decrease with Sn-substitution, especially, when the Sn-ions occupy the octahedral sites in the spinel structure (see Table II). A such drastical lowering of the second critical field may be connected with the cation deficiencies (x + y + z < 3) observed in both compounds, and the sum of x + y + z is: 2.938 for $(Zn_{0.87}Sn_{0.048})Cr_{2.02}Se_4$ and 2.93 for $Zn_{0.93}[Cr_{1.95}Sn_{0.05}]Se_4$.

Acknowledgments

This work is funded from science resources for years 2008–2010 as research project (project No. N204289134).

References

- I. Jendrzejewska, J. Mroziński, T. Groń, H. Duda, P. Zajdel, A.W. Pacyna, E. Maciążek, A. Hanc, J. Alloys Comp. 480, 63 (2009).
- [2] F.K. Lotgering, in: Proc. Int. Conf. on Magnetism, Nottingham, Institute of Physics, London 1965, p. 533.
- [3] R. Plumier, J. Phys. (France) 27, 213 (1966).
- [4] T. Groń, E. Malicka, H. Duda, A.W. Pacyna, T. Mydlarz, R. Sitko, M. Pawełczyk, J. Phys. Chem. Solids 70, 1175 (2009).
- [5] T. Groń, E. Malicka, A.W. Pacyna, *Physica B* 404, 3554 (2009).