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Abstract
The morphogenic callus (MC) of Fagopyrum tataricum contains a large amount of flavonoids, especially rutin, and exhib-
its a high level of antioxidant activity. A non-morphogenic callus (NC) may appear on the surface of the MC after two to 
three years of cultivation and is then subjected to a consistently high level of oxidative stress. The elucidation of the molecu-
lar background of this instability is essential for gaining a better understanding of the somaclonal variation mechanisms in 
tissue cultures that have different morphogenic potentials. Thus, in this study we show that continuous oxidative stress in a 
NC might be connected with a rapid senescence process and as a result, in the upregulation of the genes that are connected 
with the telomere complexity, ethylene biosynthesis and the expression of DNA methyltransferases. Moreover, we analysed 
the presence of the hydroxyproline-rich glycoproteins in the calli and demonstrated the differences between the MC and NC. 
The LM2 antibody can be useful as a marker of the cells in the MC that are embryogenically determined, while the MAC207 
antibody seems to be a positive marker of a MC as its signal was absent in the NC. This study also provides the first report 
on the effect of trichostatin A on the DNA methyltransferases and demethylases in a MC.

Key message 
LM2 can be used as a marker of the embryogenically determined cells. Overproduction of ethylene is present in the NC.

Keywords Fagopyrum tataricum · Calli · Morphogenic potential · Hydroxyproline-rich glycoproteins · Ethylene · The 
maintenance of telomere · DNA methyltransferases · Trichostatin A

Introduction

Buckwheat (Fagopyrum) are dicotyledonous plants of the 
Polygonaceae family. The genus consists of 26 annual and 
perennial species that primarily occur in the highlands of 
Eurasia. The two species that are the most cultivated are 
common buckwheat (Fagopyrum esculentum Moench) and 
Tartary buckwheat (Fagopyrum tataricum Gaertn) (Zhou 

2018). F. tataricum contains a large amount of flavonoids, 
especially rutin, which due to its antioxidant activity, is well 
known for its beneficial medicinal effect in the treatment of 
the fragility of blood vessels and hypertension (Kreft 2016). 
Compared to F. esculentum, F. tataricum contains more phe-
nolic compounds in every part of the plant as well as at 
different growth stages (Gupta et al. 2011). The seeds of F. 
tataricum contain higher amounts of rutin, i.e. 0.8–1.7% dry 
weight (d.w.), compared to the 0.01% d.w. in F. esculentum 
(Fabjan et al. 2003). The quantity and quality of protein in 
buckwheat is higher than in wheat, rice, maize and sorghum 
(Fabian and Ju 2011; Khan and Shewry 2009).

Recently, we demonstrated that the morphogenic callus 
(MC) of F. tataricum can retain nuclear genome stability 
during as many as ten years of its cultivation (Betekhtin et al. 
2017). The appearance of a non-morphogenic callus (NC) on 
the surface of an MC seems to be connected with the endore-
duplication cycles. As was demonstrated earlier, an MC con-
sists of proembryogenic cell complexes (PECCs) and a ‘soft’ 
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callus. During the cyclical callus development, the mature 
PECCs disintegrate, thereby giving rise to young PECCs and 
‘soft’ callus cells. The NCs, which are formed exclusively 
from the parenchymous type cells of a callus, differ from 
the MCs due to their friable structure, high growth rate and 
complete loss of the capacity for morphogenesis (Betekhtin 
et al. 2017; Rumyantseva et al. 2003, 2004). The NC is a 
good example of the total instability and fast senescence in a 
plant tissue culture. The tissue culture research demonstrated 
that the MC of F. tataricum contains a large amount of phe-
nolics as well as having a high antioxidant activity compared 
to the NC (Akulov et al. 2018). Moreover, the same authors 
highlighted the use of an F. tataricum tissue culture to study 
the metabolism of phenolic compounds as well as their being 
a promising alternative source of rutin and other biologically 
active phenolic compounds. A better understanding of the 
basis of any tissue culture-induced genetic variation should 
be helpful in developing more stable cell culture systems.

The primary cell wall plays an important role in regu-
lating the morphogenetic processes (Knox 1992) and its 
chemical composition is crucial for establishing and/or 
maintaining the cellular differentiation status of cells (Cor-
ral-Martinez et al. 2016; Ikeuchi et al. 2013; Potocka et al. 
2018). The main cell wall polysaccharides are pectins, and 
hydroxyproline-rich glycoproteins (HRGPs, arabinogalactan 
proteins (AGPs) and extensins), which all participate, though 
to a different extent, in cell expansion, adhesion and as regu-
latory molecules, and therefore, they are key determinants of 
the physical properties of the cell wall (Willats et al. 2001). 
It is well established that somatic embryogenesis (SE) is 
accompanied by modifications of the structure and molec-
ular composition of the cell wall as well as specific gene 
expression (Kikuchi et al. 1995; Smertenko and Bozhkov 
2014; Verdeil et al. 2001). The importance of HRGPs was 
shown for the embryogenic and non-embryogenic callus 
of sugarcane (Suprasanna et al. 2004). The authors dem-
onstrated the HRGPs expression at all of the stages of cal-
lus development except the non-embryogenic one. Analysis 
of HRGPs during banana cultures also suggests that they 
play an important role in the regeneration process during 
SE (Pan et al. 2011). The correlation of changes between 
different HRGPs and reactive oxygen species is well docu-
mented (Cosi et al. 2007). HRGPs play a defensive role in 
host-pathogen interactions as well as changes in their pres-
ence under diverse biotic and abiotic factors (Basavaraju 
et al. 2009; Mareri et al. 2018). Despite the large number 
of reports about changes in the chemical composition of 
cell walls and changes in gene expression during SE, such 
analyses are still very limited for F. tataricum calli.

The aim of this study was to perform a complex analysis 
of the stability/instability in calli of F. tataricum that had dif-
ferent morphogenic potentials. We used immunolocalisation 
techniques against selected cell wall epitopes to compare 

whether they can be markers that are diagnostic for the MC 
and NC. Moreover, because of differences in the growth rate 
(very fast senescence in the NC, we hypothesised that the 
ethylene biosynthesis genes are overexpressed in F. tatari-
cum NC), genome stability/instability and, most importantly, 
in their morphogenic potential. Therefore, RT-qPCR was 
used to assess the expression of the genes that are connected 
with ethylene biosynthesis, telomere function and DNA 
methyltransferases/demethylases in relation to the different 
callus types. Trichostatin A (TSA) was used to demonstrate 
the affect of histone deacetylase (HDAC) inhibition on the 
DNA methyltransferases/demethylases.

Materials and methods

The lines of calli from immature embryos of F. tataricum 
were obtained in the Department of Plant Anatomy and 
Cytology, University of Silesia in Katowice, Poland. Both 
the MC and NC were cultivated in an incubator at 25 °C ± 1 
on an RX medium according to Betekhtin et al. (2017) with 
some minor modifications that are connected with the appli-
cation of a ready-to-use B5 medium that includes vitamins 
(Duchefa, Haarlem, The Netherlands) for callus cultivation 
rather than a homemade medium.

Histological and immunostaining procedures

The MC and NC were fixed in a mixture of 4% paraformal-
dehyde and 1% glutaraldehyde in phosphate buffered saline 
(PBS, pH 7.2) overnight at 4 °C. Next, the samples were 
washed three times in PBS for 15 min each, followed by a 
dehydration series in increasing ethanol concentrations and 
then gradually embedded in London Resin (LR White resin, 
St. Louis, USA). The samples were then cut into 1.5 µm 
thick cross sections using an EM UC6 ultramicrotome (Leica 
Biosystems, Wetzlar, Germany) and the sections were placed 
on glass slides that had been coated with poly-l-lysine. For 
the general histology, the slides were stained with 0.05% 
(aqueous solution) Toluidine Blue O (Sigma-Aldrich, St. 
Louis, MO, USA) for 5 min. For the immunocytochemical 
analyses, the sections were treated with a blocking buffer 
(2% foetal calf serum and 2% bovine serum albumin in PBS) 
for 30 min at room temperature (RT). Next, the samples 
were incubated with primary monoclonal antibodies (Plant 
Probes, Leeds, UK) that had been diluted 1:20 in a blocking 
reagent at 4 °C overnight. The sections were then washed in 
the blocking buffer three times and incubated with the sec-
ondary antibody, labelled with AlexaFluor 488 goat anti-rat 
IgG (Jackson ImmunoResearch Laboratories, Cambridgesh-
ire, UK) and diluted 1:100 in the blocking buffer for 2 h at 
RT. The antibodies that were used are listed in Table 1. Next, 
the samples were washed in the blocking buffer followed by 
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staining with 0.01% (w/v) fluorescent brightener 28 (FB28) 
(Sigma-Aldrich, St. Louis, MO, USA) in PBS, which was 
used to visualise cell walls due to its affinity to cellulose. 
Subsequently, the samples were rinsed in PBS and distilled 
water and dried sections were mounted on the slides with 
Fluoromount (Sigma-Aldrich, St. Louis, MO, USA). As a 
negative control, the primary antibody was omitted and the 
blocking buffer was applied along with all of the other steps 
of the procedure. All of the observations were made and 
the photographs were taken using an AxioImager Z2 epi-
fluorescence microscope equipped with an AxioCam Mrm 
monochromatic camera (Zeiss, Oberkochen, Germany) that 
were equipped with narrow-band filters for AlexaFluor 488 
and DAPI.

Real time PCR

A NucleoSpin® RNA Plant (Macherey-Nagel, Düren, Ger-
many) was used to isolate the total RNA from both types of 
calli. The RNA was isolated on the 11th day of cultivation 
when it was accompanied by the appearance of PECCs on 
the surface of the MC along with the high mitotic activity 
of the NC (Rumyantseva et al. 2004). TSA (Sigma-Aldrich, 
St. Louis, MO, USA) was used in the RX medium at con-
centrations of 2.5 and 5 µM. The concentration and qual-
ity of the isolated RNA was assessed using an ND-1000 
NanoDrop spectrophotometer (Thermo Scientific, Waltham, 
MA, USA). First-strand cDNA was produced using a Max-
ima H Minus First Strand cDNA Synthesis Kit with dsD-
Nase (Thermo Scientific, Waltham, MA, USA). The prod-
uct of the reverse transcription was diluted with water at 
a 4:1 ratio and 2 µL of this solution and was used for the 
Real Time RT-qPCR reactions using a LightCycler® 480 
SYBR Green I Master in a LightCycler® 480 Real-Time 
PCR System (Roche, Mannheim, Germany). The prim-
ers that were relevant to the genes that were studied are 
listed in Table 2. The genomic sequence of F. tataricum 
cv. Pinku1 was downloaded from http://www.mbkba se.org/
Pinku 1/ (online access 4 February 2018) and loaded into 
Geneious 11.1.2 software (http://www.genei ous.com, Kearse 

et al. 2012). The genes of interest were found using a key-
word search in the Buckwheat Genome DataBase (BGDB), 
which contains the draft genome sequence of F. esculentum 
Moench (http://buckw heat.kazus a.or.jp/index .html, online 
access 4 February 2018, Yasui et al. 2016). The identity 
of the targeted genes was additionally confirmed through 
BLAST searches using protein sequences as a query with 
respect to their similarities to Arabidopsis thaliana (Arabi-
dopsis). The coding DNA sequences from the database were 
used as the query to search for the homologous genes in 
the F. tataricum cv. Pinku1 genome using a BLAST search 
in Geneious. The alignments of the gene sequences from 
F. tataricum cv. Pinku1 and F. esculentum Moench were 
performed in Geneious using the Needleman–Wunsch algo-
rithm. The gene-specific primers for the RT-qPCR analysis 
were designed from the identical sites in the genes of both 
species using PrimerQuest Tool software (https ://eu.idtdn 
a.com/Prime rQues t/Home/Index ).

The amplification efficiency of each gene was checked 
according to Taylor et al. (2010). The stability of the actin 
expression in the calli was checked using the BestKeeper 
Excel-based tool (Pfaffl et al. 2004). The relative changes 
in gene expression were calculated using the 2−ΔΔCt method 
(Livak and Schmittgen 2001) and were normalised to the 
expression level of the actin. The calculations and statisti-
cal analysis were performed in the R (v 3.4.3) package pcr 
and the Student’s t-test was used for the statistical analysis.

Results

HRGPs in the MC and NC

To test whether the selected HRGP epitopes were different 
between the types of calli that were studied, immunocyto-
chemical analyses were performed using specific mono-
clonal antibodies: JIM8, JIM13, LM1, LM2 and MAC207 
(Table 1). The representative histological character of the 
calli and cell features that were subjected to the immuno-
cytochemical analyses are presented in Fig. 1a, e, i. The 

Table 1  The antibodies that were used for the immunocytochemistry with the relevant references

Antibodies Epitopes References

Hydroxyproline-rich glycoproteins (HRGPs)
JIM8 Arabinogalactan, AGP glycan Pennell et al. (1991)
JIM13 Arabinogalactan, arabinogalactan protein, β-d-GlcpA-(1→3)-α-

d-GalpA-(1→2)-l-RhA
Knox et al. (1991), Yates and Knox (1994) and Yates et al. (1996)

LM1 Extensin, HRGP, the LM1 epitope most likely includes extensin Smallwood et al. (1995)
LM2 Arabinogalactan protein, recognises a carbohydrate epitope 

containing β-linked glucuronic acid
Smallwood et al. (1996) and Yates et al. (1996)

MAC207 Arabinogalactan protein, (beta)GlcA1→3(alpha)GalA1→2Rha Bradley et al. (1988), Pattathil et al. (2010), Pennell et al. (1989) 
and Yates et al. (1996)

http://www.mbkbase.org/Pinku1/
http://www.mbkbase.org/Pinku1/
http://www.geneious.com
http://buckwheat.kazusa.or.jp/index.html
https://eu.idtdna.com/PrimerQuest/Home/Index
https://eu.idtdna.com/PrimerQuest/Home/Index
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MC consisted of PECCs that had phenolic-containing cells 
(Fig. 1a, arrows) and a ‘soft’ callus (Fig. 1a, asterisks; e) 
compared to the NC, which consisted of only parenchymous-
type cells (Fig. 1i; due to the difficulty in separating the 
fluorescence signals that were present in the cell wall and 
plasma membrane using light microscopy, these two com-
partments are described together. The signals inside the cells 
were localised in the intracellular compartments).

The JIM8 epitope in the embryogenic cells of the MC 
calli was distributed in the cell walls and in the cytoplasm 
in a dotted manner (Fig. 1b–d). The presence and distri-
bution of this epitope in the “soft” callus was similar to 
that described above (Fig. 1f–h). Compared to the MC, the 
epitope labelled with JIM8 antibody in the NC cells was 
abundantly present in the cytoplasm compartments, in the 
cell wall and in the newly formed cell walls in particu-
lar. This signal was uniformly distributed along the entire 
length of the walls (Fig. 1j–l, l arrows demonstrate the newly 
appearing cell walls). The main differences between the MC 

and NC calli rely on the amount of the AGP epitope that are 
recognised by the JIM8 and its cellular localisation, which 
indicated that the occurrence of this epitope in the NC callus 
cells was more abundant in both the cytoplasm and the wall. 
Although the JIM13 signal was present in the cytoplasm 
compartments in both calli, it was more abundantly present 
in the NC cells (Fig. 2). The distribution of this epitope was 
also observed in the cell walls in a dotted manner in the MC 
cells (Fig. 2b, c, e, f) and was uniformly stained in the NC 
cells (the reverse of the case of the JIM8 epitope).

Unlike the two previous epitopes, the LM1 epitope was 
present in the intercellular spaces and on the surface of the 
phenolic-containing cells (Fig. 3b, e, arrows) and embryo-
genic cells in the MC cells (Fig. 3a–f). In the NC, it was 
localised on the surface and in the intercellular spaces 
(Fig. 3g–l). In the MC, the LM2 antibody was localised 
in the intracellular compartments (Fig. 4a–c), and in some 
cases, it was probably also localised in the plasmalemma 
of the embryogenic and the “soft” callus cells but in very 

Table 2  Oligonucleotide primers used for RT-qPCR reaction with the relevant description of the genes

Genes Description of the genes Primer sequence (5′–3′)

FtPinG0002124000.01 Actin pF-GGA AGT ATA GCG TCT GGA TTG 
pR-CTG GAC CGG ATT CAT CAT AC

FtPinG0009372500.01 Ethylene response factor 1 (ERF1) pF-AGA GTT AAG GAG GAA GAG GAG 
pR-ACG TGT CGA ATC TCG TAT CT

FtPinG0004556400.01 1-Amino-cyclopropane-1-carboxylate synthase 6 (ACS6) pF-GGC CAT GGT GAA GAA TCT G
pR-GCA AGA CCC ATC TGG ATA AC

FtPinG0004154200.01 1-Amino-cyclopropane-1-carboxylate synthase 2 (ACS2) pF-GAT CCA CCG GAG CTA ATG A
pR-GCG GTC AAA TGC AGG ATA A

FtPinG0008351200.01 Aminocyclopropanecarboxylate oxidase 1 (ACO1) pF-CGG GAC TTG AGT TCT ACA AA
pR-CTC AGC ACT TCC AGT TGA T

FtPinG0000974100.01 Telomerase activating protein Est1 (EST1) pF-GCT GCA CCA TTA CAA GAG A
pR-CAC TTC CTC TCT CAC CAT TAG 

FtPinG0008479800.01 Telomerase reverse transcriptase (TERT) pF-TCA GCA TGG GAT CTA GTC TTAC 
pR-CTG GTA TTT ACC ACA AGG AATGG 

FtPinG0009136200.01 Protection of telomeres protein 1 (POT1) pF-CGT ACC AGG TTT CTT CAA ACT 
pR-TGT TTG ACA CTG TAC CAA GG

FtPinG0008019600.01 Protection of telomeres protein 2 (POT2) pF-CTG GTT TGT GGT ATG GTA TCT 
pR-GCA CAT TAA AGT CAC TTA GGC 

FtPinG0006631600.01 DNA (cytosine-5)-methyltransferase (CMT3) pF-CCA CTG ATC CCA GAT TAT GC
pR-GGT TCA GCT CTC CCA ATA AC

FtPinG0009406600.01 DNA methyltransferase (MET1) pF-GCT GAA GAG GAA ATA GAA GAGG 
pR-CTG GGT GGA TAT TGA AGG AAG 

FtPinG0006897400.01 DNA methyltransferase (MET2) pF-GTT GAA GAT GAG GCA GAA GAA 
pR-TGA GAG GAT ACT GAT GGA GAC 

FtPinG0009482900.01 DNA glycosylase DEMETER (DME1) pF-CCA CAC CAG AAC AAG ACA TC
pR-GGT GAA CTC TTC AAC ATC CAG 

FtPinG0007109000.01 DNA glycosylase DEMETER (DME2) pF-GGA AGC ATT GAT TTG GAA TGG 
pR-AAA GCC TAA CAC ACT CTA CAC 

FtPinG0003657700.01 DNA glycosylase DEMETER (DME3) pF-CCA CAG ATT CAA CAG TCC TC
pR-GGC CTA TGC TTC TTT CTT CT

FtPinG0007109000.01 DNA glycosylase, repressor of transcriptional gene silencing (ROS1) pF-GAA GTA ACG AGA GCC CTT TAG 
pR-CCT GGG AGT TTG TGA TGT T
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low amounts (Fig. 4f). The signals of this antibody were 
absent or almost absent in the plasmalemma of the phenolic-
containing cells (Fig. 4b, e, asterisks). Compared to the MC, 
in the NC calli, LM2 was detected in the cell wall and in 
the intracellular compartments (Fig. 4g–l). The immunolo-
calisation of MAC207 demonstrated the presence of this 
epitope in the intercellular spaces of the “soft” callus cells 
(Fig. 5a–f) and in the intracellular compartments in some 
cells of the MC (Fig. 5a–c). The NC callus cells were com-
pletely negative for the MAC207 signals (Fig. 5g–i).

RT‑qPCR of selected genes

In order to characterise the differences that are present 
between the MC and NC at the molecular level, the genes 
that are connected with the biosynthesis of ethylene and with 
the metabolism of ethylene precursors as well as with the 
telomere length homeostasis and chromosome end protec-
tion were assessed (the descriptions of the genes are listed in 
Table 2). The similarities of the selected genes on the protein 
level to the proteins encoded by the genes from Arabidop-
sis are shown in Table 3. The expression of the actin gene 
was found to be stable in the buckwheat tissue culture mate-
rial, thus it was used as the reference gene. Moreover, the 
amplification efficiency for each gene was determined to be 
close to 100%, thereby permitting the calculations accord-
ing to the 2−ΔΔCt method (Livak and Schmittgen 2001). The 

relative expression level of ACS2, ACS6 and ERF1 were high 
in the NC. The ACS2 and ACS6 genes were 55- and 30-fold 
more expressed in the NC. The ERF1 demonstrated a five 
times higher expression in the NC (Fig. 6a). The expression 
level of ACO1 was lower in the NC (Fig. 6a). The relative 
expression levels of TERT, EST1 and POT1 were higher in 
the NC (Fig. 6b). The EST1 was characterised by a 20-fold 
time higher expression in the NC compared to the MC. The 
POT2 expression level was slightly higher in the MC than 
in the NC (Fig. 6b).

The expression levels of the DNA methyltransferases such 
as MET1 and MET2 differed to various degrees between the 
MC and NC, with the exception of CMT3, for which no 
statistically significant differences were observed (Fig. 6c). 
The highest level of expression was characteristic for MET1 
and it was six times higher in the NC than in the MC. In 
contrast, the expression of MET2 was only slightly higher 
in the NC compared to the MC. The expression of all of 
the demethylases (DME1, DME2, DME3 and ROS1) that 
were analysed was consistently lower in the NC. In order 
to analyse the influence of the HDAC inhibition on the on 
the DNA methyltransferases and demethylases in the MC, 
we used two different concentrations of TSA (2.5 µM and 
5 µM), which was added to the cultivation medium. The 
results demonstrated an increase in the expression level of 
all of the analysed methyltransferases and demethylases 
compared to the untreated MC and that the use of TSA at 

Fig. 1  Histological sections of the F. tataricum MC (a,  e) and in NC 
(i). Immunolocalisation of JIM8 in the MC (b–d, f–h) and NC (j–l). 
FB fluorescent brightener. a Arrows demonstrate  the phenolic-con-
taining cells, asterisks ‘soft’ callus cells. l Arrows demonstrate newly 

appeared cell walls. The greenish background visible on some photo-
micrographs is due to the autofluorescence. Scale bars 10 µm. (Color 
figure online)
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a lower concentration resulted in a more prominent effect 
(Fig. 6d). However, the dynamics of the gene expression 
clearly decreased at a concentration of 5 µM.

Discussion

In our work, selected AGPs and extensins were investigated 
because of their well-known involvement in different devel-
opmental processes, including plant growth and develop-
ment, plant defence, cell proliferation, cell expansion, cell 
differentiation, cell extension and SE (Pennell 1998; Smith 
2001). AGPs are one of the extracellular matrix surface 
network components that are pivotal for the cell division 

and expansion, programmed cell death, SE and many other 
crucial aspects of the plant cell functions (Betekhtin et al. 
2016; Chapman et al. 2000; Rumyantseva 2005; Samaj et al. 
2008). The studies on F. tataricum suggested the presence of 
this matrix in the MC and its total absence in the NC (Rumy-
antseva et al. 2003). It was shown that the F. tataricum MC 
secreted much more extracellular polymers into the medium 
compared with the NC (Rumyantseva et al. 2004). A sig-
nificant increase in the secretion of extracellular polymers 
was connected with the formation of the PECCs. However, 
these authors did not specify the AGPs or extensins that 
were secreted. The experiments that were performed in the 
present study demonstrated the presence of ‘patchy’ signals 
of LM1 on the surface of a PECC in both the MC and NC. 

Fig. 2  Immunolocalisation of JIM13 in the F. tataricum MC (a–f) and NC (g–l). The greenish background visible on some photomicrographs is 
due to the autofluorescence. Scale bars 10 µm. (Color figure online)
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Thus, this type of extensins may be crucial for some devel-
opmental processes in both types of the callus. MAC207 
seems to be a marker of the MC of F. tataricum as it was 
only present in the intercellular spaces of the “soft” callus 
cells and in the intracellular compartments (very rarely in 
some cells) of the MC and was totally absent in the NC. The 
involvement of this epitope was analysed during in vitro cul-
tures, including microsporogenesis (El-Tantawy et al. 2013; 
Showalter 2001), but most often during zygotic embryogen-
esis (Leszczuk and Szczuka 2018), thus a comparison of our 
studies with the literature data is difficult. Nevertheless, the 
prominent function of these AGPs seems to be the cell–cell 
interactions or cellular signalling during the formation of a 
new PECC. The possibility of mediating signal transduction 

at the cell wall-plasma membrane interface by AGPs was 
demonstrated earlier in several studies (Kohorn 2001, 2016; 
Showalter 2001).

For carrot, maize and Arabidopsis, it was shown that the 
embryogenic callus is marked by its presence in cell walls of 
the AGP epitopes that are recognised by the JIM8 antibody 
(Majewska-Sawka and Nothnagel 2000; Potocka et al. 2018). 
Other studies have shown that this epitope is necessary for 
somatic embryo formation (McCabe et al. 1997). In the 
AGPs in the embryogenic calli of F. tataricum that have been 
analysed to date, the presence of JIM4, LM2, JIM13 and 
JIM16 epitopes has been suggested (Rumyantseva 2005). In 
Arabidopsis explants, LM2 gave either no signal or a very 
weak signal in the cells that displayed typical embryogenic 

Fig. 3  Immunolocalisation of LM1 in the F. tataricum MC (a–f) and NC (g–l). The greenish background visible on some photomicrographs is 
due to the autofluorescence. b and e Arrows: the phenolic-containing cells. Scale bars 10 µm. (Color figure online)
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features, but in all of the neighbouring cells, its presence was 
abundant in different intracellular compartments (Potocka 
et al. 2018). A similar pattern of LM2 epitope distribution 
was reported for the highly embryogenic cell line of a hybrid 
fir (Abies alba x Abies cephalonica) in which the signals 
were weak in the cell walls of the embryogenic cells and 
much stronger in the cytoplasm compartments of the large 
vacuolated compartments of the cells that were not engaged 
in SE (Samaj et al. 2008). Thus, our results for F. tataricum 
are consistent with those that have been obtained for other 
species to date.

Interestingly, for both JIM8 and JIM13, we found a 
visible increase of the signal intensity in the NC. As was 

demonstrated in some earlier studies, the NC is under con-
stant oxidative stress (Kamalova et al. 2009) and AGPs are 
known to be involved in the salt stress response (Lamport 
et al. 2006; Olmos et al. 2017). Thus, it is likely that during 
such stress conditions, they may act as a plasticiser to loosen 
the pectin network or as a cell wall stabiliser. Gong et al. 
(2012) demonstrated that the overexpression of GhAGP31, 
which encodes a nonclassical AGP in cotton, significantly 
improved the freezing tolerance of yeast cells and the cold 
tolerance of Arabidopsis seedlings.

All of the AGP epitopes that were analysed in the present 
study indicate the role of AGPs, as the key constituents of 
the cell wall that are involved in the diverse reactions of a 

Fig. 4  Immunolocalisation of LM2 in the F. tataricum MC (a–f) and NC (g–l). Asterisks: the  phenolic-containing cells. The greenish back-
ground visible on some photomicrographs is due to the autofluorescence. Scale bars 10 µm (d–l), 20 µm (a–c). (Color figure online)
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cell. Observations of the distribution of AGPs in embry-
ogenic tissue of winter oilseed rape suggested that AGPs 
may play a specific role in embryogenic competency or in 
determining the embryogenic cells fate (Namasivayam et al. 
2010). The MAC207 and LM2-binding epitopes are involved 
in plant morphogenesis, which is suggested by the correla-
tion between their presence and the embryogenic potential of 
the callus tissue (Wiśniewska and Majewska-Sawka 2008). 
Extensive studies have revealed that AGPs, including those 
that are recognised by the antibodies that were used in pre-
sent work are specific markers of the cell identity and the 
direction of cell differentiation in in vitro cultures (Koniec-
zny et al. 2007). AGPs that contain JIM13 and LM2 epitopes 
as well as pectins seem to be important for the formation and 
proper assembly of the wall and providing a network for the 
attachment of other cell wall components (Majewska-Sawka 
and Munster 2003). To summarise, AGPs and extensins are 
broadly distributed in tissue and callus cultures, and their 
function in various aspects of plant growth and development, 
including the participation of these wall components in the 
formation of the plant cell surface continuum, has been pos-
tulated (Borassi et al. 2016).

As we demonstrated in this study, the high level of oxida-
tive stress in the NC is connected with a significant increase 
in the expression of the EST1 gene. EST1 is a multifunc-
tional protein that plays a critical role in the maintenance 
of telomeres as well as in the stimulation of the telomerase 
activity in yeasts (Renfrew et al. 2014). Mutations in EST1 
lead to telomere shortening (Lundblad and Szostak 1989). 
Moreover, the analysis of the expression of the F. tataricum 
protection of telomere genes, FtPot1 and FtPot2, in the pre-
sent study revealed a higher expression of FtPot1 in the NC 
compared to the MC. We demonstrated that the upregula-
tion of FtPot1 is correlated with the upregulation of TERT 
in the NC. The downregulation of both of these genes was 
a characteristic feature of the MC. The buckwheat calli did 
not show any strong differences in the expression of FtPot2 
but the exact functions and binding properties of POT1 and 
POT2 are still under debate (Prochazkova Schrumpfova et al. 
2016). The genome of Arabidopsis contains two POT1-like 
proteins, AtPOT1 and AtPOT2 (Shakirov et al. 2005). It 
was demonstrated that AtPOT1 appears to be an important 
positive regulator of telomere length, while AtPOT2 nega-
tively regulates the telomerase activity and participates in 
protecting the chromosome ends. Shakirov et al. (2005) 

Fig. 5  Immunolocalisation of MAC207 in the F. tataricum MC (a–f) and NC (g–i). The greenish background visible on some photomicrographs 
is due to the autofluorescence. Scale bars 10 µm. (Color figure online)
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demonstrated that the overexpression of these proteins in 
Arabidopsis led to telomere dysfunction and serious mor-
phological defects. The constant monitoring of the EST1 and 
cyclin-dependent kinase (CDK) gene expression levels can 
shed more light on the participation of these genes in the cell 
cycle, and as a result, on their contribution to the stability/
instability of the MC and NC. Thus, in the future research, 
it would be interesting to measure the telomere length in the 
MC and NC using the terminal restriction fragments. This 
could help in gaining an understanding of the reason for the 
high expression level of TERT and FtPot1 in the NC.

As was mentioned earlier, the NC has a very fast 
growth rate and, as a result, very fast senescence processes 
compared to the MC. We hypothesise that the ethylene 

biosynthesis genes are overexpressed in the F. tataricum 
NC. Together with other hormones, ethylene plays a key 
role in the senescence processes (Iqbal et al. 2017). To com-
pare the level of the gene expression that is connected with 
the ethylene biosynthesis, we selected the main genes that 
are connected with this process such as 1-aminocyclopro-
pane-1-carboxylic synthase (ACS2 and ACS6), 1-aminocy-
clopropane-1-carboxylic acid-oxidase (ACO) and ethylene 
response factor (ERF). We demonstrated a higher expression 
of both ACS2 and ACS6 in the NC, and an increase in the 
ACO1 level in the MC. Such differences in the ACS2 and 
ACS6 expression can lead to the overproduction of ethylene 
and the induction of fast senescence processes in the NC. 
The higher expression level of the ACO1 in the MC may 

Table 3  The identity between F. tataricum and Arabidopsis genes on the protein level

Genes Description of the 
genes

Amino 
acids length 
(aa)

Arabidopsis best hit Arabidopsis gene 
description

Amino acids 
identity (%)

Query 
cover 
(%)

E-values

FtPinG0009372500.01 Ethylene response fac-
tor 1 (ERF1)

218 AT3G23240.1 Ethylene-responsive 
transcription factor 
1B

52 99 8E−66

FtPinG0004556400.01 1-Amino-cyclopro-
pane-1-carboxylate 
synthase 6 (ACS6)

573 AT4G11280.1 1-Aminocyclopropane-
1-carboxylate 
synthase 6

65 82 0.0

FtPinG0004154200.01 1-Amino-cyclopro-
pane-1-carboxylate 
synthase 2 (ACS2)

491 AT1G01480.1 1-Aminocyclopropane-
1-carboxylate 
synthase 2

63 97 0.0

FtPinG0008351200.01 Aminocyclopropane-
carboxylate oxidase 1 
(ACO1)

308 AT2G19590.1 1-Aminocyclopropane-
1-carboxylate 
oxidase 1

69 95 6E−156

FtPinG0000974100.01 Telomerase activating 
protein Est1 (EST1)

969 AT5G19400.1 Telomerase activating 
protein Est1

50 90 0.0

FtPinG0008479800.01 Telomerase reverse 
transcriptase (TERT)

718 AT5G16850.1 Telomerase reverse 
transcriptase

30 90 3E−71

FtPinG0009136200.01 Protection of telomeres 
protein 1 (POT1)

468 AT2G05210.1 Protection of telom-
eres 1

40 97 1E−96

FtPinG0008019600.01 Protection of telomeres 
protein 2 (POT2)

467 AT5G06310.1 Protection of telom-
eres 2

37 97 1E−88

FtPinG0006631600.01 DNA (cytosine-
5)-methyltransferase 
(CMT3)

829 AT1G69770.1 DNA (cytosine-
5)-methyltransferase 
CMT3

52 96 0.0

FtPinG0009406600.01 DNA methyltransferase 
(MET1)

1553 AT4G08990.1 DNA methyltransferase 
1

56 97 0.0

FtPinG0006897400.01 DNA methyltransferase 
(MET2)

1564 AT5G49160.1 DNA methyltransferase 
2

58 95 0.0

FtPinG0009482900.01 DNA glycosylase 
DEMETER (DME1)

607 AT5G04560.1 DNA glycosylase 
DEMETER

69 93 0.0

FtPinG0007109000.01 DNA glycosylase 
DEMETER (DME2)

1856 AT5G04560.1 DNA glycosylase 
DEMETER

66 46 0.0

FtPinG0003657700.01 DNA glycosylase 
DEMETER (DME3)

1598 AT5G04560.1 DNA glycosylase 
DEMETER

46 44 1E−55

FtPinG0007109000.01 DNA glycosylase, 
repressor of tran-
scriptional gene 
silencing (ROS1)

1856 AT2G36490.1 DNA glycosylase, 
repressor of tran-
scriptional gene 
silencing, ROS1

46 66 0.0
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be associated with the PECCs that appeared on the surface 
of the MC on the 11th day of cultivation. Moreover, in the 
present study we observed an increase in the ERF1 expres-
sion that may be connected with the oxidative stress present 
in the NC. ERF1 is upregulated during the stress response to 
abiotic stressors such as water deficit, cold and salt treatment 
(Lestari et al. 2018; Makhloufi et al. 2014). The ethylene and 
jasmonate pathways converge in the transcriptional activa-
tion of ERF1 in order to prevent the progression of a disease 
in Arabidopsis (Lorenzo et al. 2003). To summarise, the 
reaction to the ethylene production or overproduction can 
differ among the species. It was demonstrated that the addi-
tion of ACC, which is an ethylene precursor that promotes 
ethylene production in the barley genotype Morex, increased 
the green plant regeneration compared to another genotype, 
Golden Promise, which had a reduced regeneration after the 
addition of ACC (Jha et al. 2007). Such differences seem to 
be connected with higher production of ethylene in Golden 
Promise than is required to increase the plant regeneration 
rates. The use of ethylene inhibitors such as aminoethoxy-
vinylglycine, cobalt chloride and silver thiosulphate in Sin-
ningia speciose and Picea glauca significantly improved the 
frequency of regeneration (Chae et al. 2012).

There is no information in the literature about the expres-
sion of the DNA methyltransferase genes in the genus Fag-
opyrum. We demonstrated that the expression of DNA meth-
yltransferase is higher in the NC. On the other hand, DNA 
demethylases had higher expression levels in the MC. Simi-
lar results were reported on the transcriptome-based charac-
terisation of a habituated and non-habituated cell culture of 
Arabidopsis by Pischke et al. (2006). These authors showed 
the upregulation of MET1, CMT1 and CMT3 in habituated 
calli. In their analyses of the global DNA methylation that 
had been isolated from embryogenic and non-embryogenic 
calli of Eleuterococcus senticosus, Chakrabarty et al. (2003) 
demonstrated a significantly lower level of DNA methyla-
tion in the embryogenic calli. It should be noted that ROS1/
DEMETER family gene expression  is lower in the NC 
compared to the MC. It was shown in Arabidopsis that a 
mutation in the ros1 gene leads to DNA hypermethylation 
and enhances transcriptional gene silencing (Agius et al. 
2006; Gong et al. 2002). Moreover, the authors stressed 
that the overexpression of ROS1 in transgenic plants leads 
to a reduced level of cytosine methylation, and to a higher 
target gene expression. Tang et al. (2016) showed that ROS1 
preferentially targets the transposable elements (TEs) and 
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Fig. 6  a Relative expression levels of selected genes connected with 
ethylene biosynthesis and metabolism of ethylene precursors: ACS2, 
ACS6, ACO1, ERF1, b relative expression levels of selected genes 
connected with the telomere maintenance: TERT, EST1, POT1, 
POT2, c relative expression levels of selected genes connected with 
DNA methyltransferases and demethylases in the MC and NC and d 

subjected to treatment with 2.5 and 5 µM TSA. Relative expression 
levels were normalised to an internal control (FtPinG0002124000.01, 
the gene encoding for actin) and calibrated to the control culture (MC 
cultivated on RX medium). *Value is significantly different from the 
control culture (p < 0.05, n = 3 ± SD)
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intergenic regions. Thus, ROS1 may prevent the spread of 
DNA methylation from the TEs to nearby genes.

In order to determine the affect of the HDAC inhibition 
on the DNA methyltransferases/demethylases, we used 
TSA, which is known to be effective in inhibiting HDACs 
by displacing the zinc ion from the active centre of class 1 
and 2 of the family of enzymes, including plant HDACs. 
When optimising doubled haploidy in wheat, Jiang et al. 
(2017) demonstrated that TSA increases the regeneration 
of an embryo and green plant. They indicated that using 
this agent can be useful in the rapid improvement of the 
wheat germplasm as well as in dealing with in vitro recal-
citrance. The experiments on Brassica napus showed that 
HDACs regulate the switch to the haploid embryogenesis, 
and that blocking their activity by TSA in cultured male 
gametophytes leads to an increase in the proportion of 
that switch from pollen to embryogenic growth (Li et al. 
2014). In our experiments, we observed an increase in the 
expression of both DNA methyltransferases and demethy-
lases after the TSA treatment at a concentration of 2.5 µM.

Conclusion

In this study, we investigated the stability vs instability 
processes in the MC and NC of F. tataricum. The immu-
nolocalisation of five antibodies showed differences 
between diverse types of callus. We found that: (1) the 
MAC207 antibody seems to be a marker of the MC, which 
is due to the lack of its signal in the NC, (2) LM2 can be 
used as a marker of the embryogenically determined cells 
in the MC, (3) the constant oxidative stress in NC may be 
connected with the fast senescence process and as a result 
the upregulation of the genes that are connected with tel-
omere complexity, ethylene biosynthesis and DNA meth-
yltransferases expression and (4) TSA at a concentration 
of 2.5 µM leads to a significant increase in the expression 
of both DNA methyltransferases and demethylases.

In a future study, the continuous measurement of the 
EST1 and CDKs expression as well as the telomere length 
should be considered. The measurements of the ethylene 
concentration, treatments with inhibitors of HDAC and 
ethylene biosynthesis should also be considered.
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