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ABSTRACT

The warming climate of the Arctic affects the mass budget of glaciers, and changes in the distribution of glacier
facies are indicative of their response to climate change. The glacial mass budget over large land ice masses can
be estimated by remote sensing techniques, but selecting an efficient remote sensing method for recognizing and
mapping glacier facies in the Arctic remains a challenge. In this study, we compared several methods of dis-
tinguishing the facies of the Vestfonna ice cap, Svalbard, based upon Synthetic Aperture Radar (SAR) images and
terrestrial high frequency Ground Penetrating Radar (GPR) measurements. Glacier zones as determined using the
backscattering coefficient (sigma0) of SAR images were compared against GPR data, and an alternative appli-
cation of Internal Reflection Energy (IRE) calculated from terrestrial GPR data was also used for differentiating
the extent of glacier facies. The IRE coefficient was found to offer a suitable method for distinguishing glacier
zones and for validating SAR analysis. Furthermore, results of analysis of fully polarimetric Phased Array type L-
band Synthetic Aperture Radar (ALOS PALSAR) and European Remote Sensing Synthetic Aperture Radar (ERS-2
SAR) images were compared with the IRE coefficient classification. Especially promising method is H-a seg-
mentation, where the glacier zone boundaries corresponded very well with both GPR visual interpretation and
IRE classification results. The IRE coefficient's simplicity of calculation makes it a good alternative to the sub-
jective GPR visual interpretation method, where results strongly depend on the operator's level of experience.
We therefore recommend for GPR profiles to be used for additional validation of SAR image analysis in studies of

glacier facies on the High Arctic ice masses.

1. Introduction

Global environmental changes have become especially manifest in
the Arctic in recent decades. Climate warming influences all parts of the
cryosphere, including land ice masses. Glacier mass balance (i.e. glacier
mass change over defined timespan — Cogley et al., 2011) therefore
serves as an indicator of climate change, although its monitoring is
difficult at high latitude, making remote sensing methods important.
The Equilibrium Line Altitude (ELA) and glacier facies can be re-
cognized and their spatial distribution mapped using satellite images in
visible bands as well as using Synthetic Aperture Radar (SAR) techni-
ques (Konig et al., 2001a). Therefore, monitoring of glacier zones with
remote sensing can be a good indicator of glacier evolution under the
influence of climate change.

SAR data offer a particularly suitable method for detecting the ex-
tent of glacier facies. Unlike optical satellite imaging, SAR data can also
be obtained during polar nights or even in bad weather conditions, as
sensors of SAR satellites operate in microwaves range of the
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electromagnetic spectrum. That makes SAR data independent of sun-
light and allows for clouds penetration (Massom and Lubin, 2006).
Furthermore, archive SAR data can provide us with feedback regarding
climate-glacier interactions in the past.

By analysing the spatial distribution of glacier zones it is also pos-
sible to estimate a glacier's mass balance, as an indicator of its current
state (Konig et al., 2004; Jaenicke et al., 2006; Braun et al., 2007). This
is especially important because long-term traditional mass balance data
have been obtained only for a few dozen reference glaciers (Zemp et al.,
2009); thus there is no information on the influence of climate change
on larger areas. The exception is the geodetic mass balance, but this
method is used mostly for multiyear analyses of changes in the mass of
glaciers (Cogley, 2009; Zemp et al., 2009; Nuth et al., 2010). Due to the
high availability of SAR data for polar regions, the approximation of
mass balance based on the extents of glacier facies may offer a good
alternative or complement to geodetic mass balance methods. Never-
theless, selecting an efficient remote sensing method for recognizing
and mapping glacier facies in the Arctic still remains a challenge.
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While glacier zones (facies) were first distinguished by Benson
(1961), the best known study on glacier facies was done by Miiller
(1962), who defined 6 facies: dry snow, percolation A, percolation B,
slush, superimposed ice and ice zone. The zones differ in terms of their
density and percolation properties (Benson, 1961; Miiller, 1962). Based
on information about the spatial distribution of glacier facies, Miiller
(1962) was able to assess the mass balance of the White Glacier, Queen
Elizabeth Islands, Canada. Nowadays, with advanced SAR satellite
sensors, it is possible to provide mass balance information for most
regions, even inaccessible ones. In our study, as in other studies of
glacier facies on Svalbard (e.g. Engeset et al., 2002; Konig et al., 2004;
Brandt et al., 2008; Akbari et al., 2014), three main zones were dis-
tinguished, typical for this area: ice, superimposed ice and firn. The firn
zone was divided into two smaller zones: firn < 4.5m and firn > 4.5m
of thickness, which may correspond to percolation zone B and A defined
by Miiller (1962). An additional class, defined as ‘ice+’, was dis-
tinguished as well. Ice+ is characterised by a clear, unique GPR
backscatter, which is nevertheless difficult to identify as a one of the
well-known glacier facies.

Determination of the superimposed ice (SI) zone is still problematic
in mass balance analysis performed using remote sensing methods. SI
belongs to the accumulation zone and can be found between firn (ac-
cumulation zone) and glacier ice (ablation zones). The main difference
between glacier ice and SI is that the former is created by the meta-
morphism of snow in the accumulation zone of the glacier, while SI is
created by refreezing of melted water from the upper part of the glacier
or rain freezing on contact with ice (Baird, 1952; Obleitner and
Lehning, 2004). Thus, the lower boundary of SI zone can determine
location of ELA. The similar physical properties of SI and glacier ice,
however, may cause their misinterpretation, leading to misestimation
of the accumulation component of the glacier as SI can be an important
element in mass balance assessments (Wakahama et al., 1976; Wright
et al., 2005). Because of this similarity, in analysis of optical imagery it
is very difficult or even impossible to distinguish the SI zone and the
equilibrium line, the most important indicator of a glacier's state. This
limitation seems not to apply to SAR data, as microwaves are, for in-
stance, sensitive to air bubble content, which is relatively high in SI
(Konig et al., 2002). However, the ability to distinguish the SI zone on
SAR images is still open to question. Several studies (Konig et al., 2002;
Langley et al., 2008; Brandt et al., 2008; Akbari et al., 2014) show that
the SI zone detected on SAR data is in good agreement with field
measurements. However, all such successful comparisons of SAR and
ground-truth data concern only the Kongsvegen glacier (Svalbard) in
the years 1999, 2000 (Konig et al., 2002), 2003 (Brandt et al., 2008)
and 2008 (Langley et al., 2008; Akbari et al., 2014). A study of the very
same glacier by (Engeset et al., 2002) for the years 1991-1997 on the
other hand, reported an inability to distinguish the SI zone by back-
scattering coefficient analysis. Also, Konig et al. (2002) provided pro-
mising results of SI detection for Kongsvegen but not for Midre Lové-
nbreen, reporting at the same time an inability to discriminate between
summer and winter formed SI for both glaciers. Finally, Casey and Kelly
(2010) reported uncertainty in distinguishing the SI zone on SAR
images for the Devon Ice Cap, Canada. Details of SAR data used in the
mentioned studies are presented in Table 1. In this paper, we once again
address the question on the possibility of distinguishing the SI zone by
means of remote sensing.

Not only the SI zone in particular, but all types of glacier facies have
been distinguished using SAR data for many years (e.g. Rott and Nagler,
1993; Konig et al., 2004; Huang et al., 2013). However, the precision of
their delineation is very often problematic. Only some of the relevant
projects involve comparison to ground-truth data. If they do, the
Ground Penetrating Radar (GPR) profile, in which an experienced op-
erator can distinguish glacier zones, is usually used to validate the SAR
analysis (Engeset et al., 2002; Langley et al., 2008; Doulgeris et al.,
2009; Akbari et al., 2014). However, this method of validation can be
affected by subjective interpretation or a lack of experience on the part
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of the operator; moreover, the difficulty of visual interpretation of the
GPR profile makes it time-consuming. Therefore, we resolved to explore
the possibility of using the Internal Reflection Energy (IRE) coefficient
to differentiate glacier facies on GPR data. Application of the IRE
coefficient can be expected to reduce both the impact of subjectivism in
the research and time required for analysis of GPR measurements.
Analysis of glacier facies by means of IRE coefficient is therefore sim-
plified, objective and performable by someone inexperienced in GPR
visual interpretation.

The information about extents of glacier facies is especially im-
portant after the end of ablation season. This time is significant for
glaciers monitoring as glacier facies extents are in their extrema, the
ELA in its annual maximum and the glacier's mass is in its annual
minimum (Benn and Evans, 2010). By comparison of those measures in
annual scale it is possible to describe glacier's state and its response to
climate changes. However, the time of the end of the ablation season
differs from glacier to glacier (due to e.g. latitude or local climate) and
from year to year (depending on e.g. temperature and precipitation).
This considerable limits abilities of recognition of glaciers zones at that
time. Nevertheless, the extents of glacier facies in their extrema can be
observed during following accumulation season, when the tempera-
tures below 0°C dominate. This is due to the preservation of glacier
facies in negative temperatures, high penetration of dry snow by SAR
waves and the best efficiency of GPR under dry snow conditions. The
main limitation of the distinguishing glacier facies during the accu-
mulation season could be a presence of water in the snowpack (after
e.g. rain-on-snow event or mid-winter thaw) which reduces the pene-
tration of the snowpack by SAR (Rott and Nagler, 1993; Marshall et al.
1995 as cited in Brown et al., 1999) and strongly attenuates GPR waves
(Melvold, 2008; Gusmeroli et al., 2014). Also a high amount of ice
layers in the snowpack may affect the efficiency of described methods
(Mitzler and Schanda 1984 as cited in Hall et al., 2005, Hall et al.,
2005, Kanagaratnam et al., 2004).

The present study is a next step in distinguishing glacier facies by
robust methods in the future. We examined several methods of distin-
guishing glacier facies, including analysis of the terrestrial GPR data by
visual interpretation and the IRE classification method. Further, back-
scattering coefficient (sigma0) classification of satellite SAR data
(European Remote Sensing Synthetic Aperture Radar — ERS-2 SAR and
Phased Array type L-band Synthetic Aperture Radar — ALOS PALSAR)
was carried out. Finally, the results of distinguishing glacier facies by
IRE coefficient classification, results of k-means classification and po-
larimetric analysis (Pauli decomposition and H-a segmentation) were
compared. Note that both L-band sigma0 analysis and scattering de-
composition and segmentation of fully polarimetric SAR images with
validation by in situ data, has virtually not been applied to glacier facies
detection before. The exception being a study by Doulgeris et al.
(2009), but their results of the GPR visual interpretation were much less
detailed than those of SAR decompositions, making validation im-
possible. Blaszczyk (2012) presented very good results of glacier facies
detection by remote sensing methods based on ERS-2 SAR and ALOS
PALSAR images and visual validation of results with GPR data. The
present study further develops and improves this new approach to fully
polarimetric image decomposition application, using Vestfonna data as
an example.

2. Study area

The presented data focus on the Vestfonna ice cap, located in the
north-west part of Nordaustlandet, an island in the Svalbard archipe-
lago (Fig. 1). Vestfonna is Svalbard's second largest ice cap, covering
over 2400 km? (Nuth et al., 2010). The altitude of this polythermal ice
field varies from O to 630 m above sea level (asl). The geodetic total
mass balance of Vestfonna was estimated as close to Om/yr for
1990-2007 (Nuth et al., 2010), with the annual mean equilibrium line
altitude (ELA) of the ice cap at 383 + 54m asl (Moller et al., 2011a).
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Details of SAR data used in the prior studies of SI detection with comparison to in situ data. Acronyms used in the table: European Remote-Sensing Satellite-1 (ERS-1),

European Remote-Sensing Satellite-2 (ERS-2).

SAR frequency

SAR polarisation Comments

Article Year(s) of SAR acquisition, location SAR data source
Konig et al. (2002) 1999, 2000 ERS-1
Kongsvegen, Midre Lovénbreen ERS-2
(Svalbard) RADARSAT-1
Engeset et al. (2002) 1991-1997 Kongsvegen (Svalbard) ERS-1
ERS-2
Langley et al. (2008) 2005 ENVISAT ASAR
Kongsvegen (Svalbard)
Brandt et al. (2008) 2003 ERS-2
Kongsvegen (Svalbard)
Casey and Kelly (2010) 2004-2006 RADARSAT-1
Devon Ice Cap (Canada)
Akbari et al. (2014) 2005 ENVISAT ASAR

Kongsvegen (Svalbard)

5.3 GHz (C-band) \'%A% SI detected on Kongsvegen, difficulties on Midre
5.3 GHz (C-band) \'A% Lovénbreen
5.3 GHz (C-band) HH
5.3 GHz (C-band) A% Difficulties in SI detection
5.3 GHz (C-band) \%AY%
5.3 GHz (C-band) HH, VV, SI detected
HV, VH
5.3 GHz (C-band) \%AY% SI detected
5.3 GHz (C-band) HH SI not detected

5.3 GHz (C-band)

VV/VH, HH/HV SI detected

The snowpack of Vestfonna is characterised by homogenous density
and low interannual and spatial variability (Moller et al., 2011b). The
monthly average temperatures for Vestfonna range from —15 to -10°C
in winter and do not exceed + 3°C in summer months (Moller et al.,
2011a). Despite Vestfonna's high latitude, short events of temperatures
significantly higher than the monthly average values do occur (Moller
et al., 2011a) due to its maritime climate and due to global changes.
However, based on meteorological data (Méller et al., 2011a), no such
event occurred within the time frame of this study.

3. Data
3.1. Synthetic Aperture Radar (SAR)

In this study, both ERS-2 SAR and ALOS PALSAR products were
analysed (Table 2). The former sensor operated in C-band with a fre-
quency of 5.3 GHz, the latter in L-band with a frequency of 1270 MHz.
L-band ALOS PALSAR images are characterised by longer wavelengths

20°0'0"E
|

(~23.5cm) than ERS-2 SAR (5.7 cm). ALOS PALSAR measured ampli-
tude and phase in all polarisations (HH, HV, VH, VV), enhancing the
detection and monitoring capabilities of glacier facies, as the polari-
metric phase contains more information on structural characteristics of
the scatterer. Cross-polarisation (VH or HV) gives information based
largely on volume scattering, whereas co-polarised signals (HH or VV)
are largely contributions from surface scattering (Massom and Lubin,
2006). To reduce the randomness of the results of analysis based only
on one image (due to e.g. high speckle noise or differences in acquisi-
tion geometry), we analysed all ERS-2 SAR images acquired in May
2009 which fully cover the area of interest (Table 2).

All data were provided in the form of Single Look Complex (SLC)
products, and only minimum number of corrections were applied.
Based on an algorithm provided by Laur et al. (2004) all ERS-2 SAR
images were fully calibrated by application of: Analogue to Digital
Convertor (ADC) power loss correction, removing replica pulse power,
incidence angle correction, calibration constant, antenna elevation
pattern gain and range spreading loss correction. In the next step the

Longitude

Arctic Ocean

1°0'0"N
Latitude

A Ahlmann Summit
* GPR
ALOS PALSAR
[JERs-2
[ | Glaciers, ice caps
Land

P=30°0"0"N

Austfonna

km
20 40 60 80
Map data © Norwkgian Polar Institute

Fig. 1. Study area, showing the extent of ALOS PALSAR (yellow), the extent of ERS-2 SAR (purple) and the track of GPR measurements (red). Black triangle marks the
location of Ahlmann Summit and the red box on the overview map in the lower right corner the extent of the main map of the Figure above. Basemaps provided by
the Norwegian Polar Institute (npolar.no). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

375



B. Barzycka et al.

Remote Sensing of Environment 221 (2019) 373-385

Table 2
SAR data used in the project with information about sensor, acquisition date, polarisation, reference incidence angle, orbit number and pass.
Sensor Acquisition date Polarisation Incidence angle Orbit Pass
ERS-2 SAR 04.05.2009 vV 23° 73395 Descending
07.05.2009 A% 23° 73438 Descending
20.05.2009 A% 23° 73624 Descending
23.05.2009 vV 23° 73667 Descending
26.05.2009 A% 23° 73710 Descending
ALOS PALSAR 22.05.2009 VV, HH, VH, HV 25.706° 17719 Ascending

images were geometrically corrected and geocoded by applying Range-
Doppler Terrain Correction algorithm (Small and Schubert, 2008). The
images were resampled into the geographical location of the image
acquired on 20 May 2009. The final geolocation of all ERS-2 SAR
products was checked based on terrain features and coastline with
comparison to Landsat 7 images. Finally, following successful study of
Langley et al. (2008) all ERS-2 SAR data were averaged into one image
with pixel spacing of 12.5 m. Neither multilooking nor speckle filtering
processes were applied at this stage as the applied averaging of the
images reduced most of the speckle.

ALOS PALSAR SLC 1.1 level products are characterised by non-zero-
Doppler times annotations so the geometry of the data is distorted.
Therefore, the image was a subject of deskewing process in order to
transform the image into a zero Doppler like geometry. For radiometric
calibration an absolute calibration constant was applied (Lavalle and
Wright, 2009). The speckle effect was reduced by a Lee Speckle Filter
(5 x 5 window size). For geometric correction and geolocation of the
final product (21.5 m pixel spacing) Range-Doppler Terrain Correction
algorithm was used.

3.2. Ground Penetrating Radar (GPR)

The shallow ground-based radio-echo soundings used for the vali-
dation of SAR data were carried out on Vestfonna in 18 May 2009
(Grabiec et al., 2011; Sauter et al., 2013). The GPR set, equipped with
an 800-MHz shielded antenna, was pulled on a sledge behind a snow-
mobile. A total of 90 km of profiles were investigated on both the ice
cap slopes and the upper part of the dome. Measurements were posi-
tioned using a dual-frequency GPS receiver fixed on the snowmobile.
GPS positions obtained by the rover were processed based on data from
the reference GPS module working simultaneously at a fixed point in
the Vestfonna forefield. Positions were collected at intervals of 1s,
whereas the GPR signal was collected every 0.5s. Taking into account
the trace interval and the mean movement speed of the GPR set, every
trace was attributed to an average distance of 2.1 m. The GPR trace
consists of 710 samples in a 70.2-ns time window, which — with regard
to the radio wave velocity in the materials forming the surficial ice cap
layer — enables penetration of the snow cover as well as the underlying
structures of glacier ice, superimposed ice, or firn down to 6.9 m. The
processing of GPR data, as a preparatory phase to IRE calculation, in-
cludes a DC-removing filter only. This enables maximal preservation of
the original signal.

4. Methods
4.1. Visual interpretation of GPR

Over 12 km of total 90 km of GPR profiles obtained along the ice cap
was interpreted visually for further validation of SAR and IRE classifi-
cation. The chosen profile (Fig. 1) starts at the terminus of the ice cap,
reaching central ridge and ending close to Ahlmann Summit (622 m
n.p.m.) on the top of the ice cap, ensuring that all glaciers facies were
crossed by the GPR track. After appropriate processing, the GPR profile
was examined to define sub-snow characteristics within the specified
time window. The basis for the analysis consisted of the location of the

individual section of the profile and the GPR image structure, as
properly interpreted by an experienced operator. Five zones were dis-
tinguished. In the lowest part of the ice cap the ‘ice’ zone was identified.
In this section, a highly homogenous structure was noted, without
layering and with limited diffractions, characteristics typical of glacier
ice. Next, the ‘ice+’ zone was distinguished, where a thin layer of
undefined properties was located between the glacier ice and the snow.
Probably this stratum is of accumulation origin or forms a very rough
ice surface filled by the snowpack. The ice + layer is transformed into
the following zone, characterised by thicker, unstratified structure de-
rived from secondary accumulation, hereinafter referred to as “SI”.
However, due to lack of ground-truth validation data from this zone, it
cannot be ruled out that this form may be superimposed ice or thin firn
from previous seasons. Up-glacier, stratified structures were noted un-
derneath the snow cover, increasing in number and thickness towards
the top of the ice cap. This pattern is typical for firn layers. This zone
was divided into 2 parts depending on the depth of the firn sole:
‘firn < 4.5m’ and ‘firn > 4.5 m’, respectively.

4.2. Internal Reflection Energy (IRE)

Gades et al. (2000) defined Internal Reflection Power (IRP) as the
mean value of the amount of reflected energy for the sample in each
trace within a defined time window of GPR measurements. IRP is cal-
culated as one-half of the sum of the squared amplitudes divided by the
number of samples in the time window. This index was modified by
Jania et al. (2005) in a study of temporal changes in the radiophysical
properties of Hansbreen (Svalbard), where IRP was not suitable because
of the strong variations in glacier layers along the GPR profile occurring
in polythermal glaciers. Accordingly, Jania et al. (2005) decided to use
a variable-width time window and calculate Internal Reflection Energy
(IRE) using the IRP equation without dividing by the number of samples
in the time window. Thanks to this modification, it is possible to receive
information about total reflected energy, instead of the average power
calculated by IRP.

Although both IRP and IRE have been applied mostly to investiga-
tions of ice and bedrock properties and water presence (Gades et al.,
2000; Jania et al., 2005; Navarro et al., 2005), IRE was adopted by
Grabiec (2017) to distinguish glacier facies on Hansbreen (Svalbard). In
our study IRE was calculated only for a GPR time window from 20 to
70 ns, i.e. a period during which all layers should be registered, except
for dry snow. In May 2009 snowpack depth in the studied area ranged
between Om (on wind erosion areas) and 2.24m, with an average
thickness 1.12m (Grabiec et al., 2011). Snow pits in the accumulation
area revealed an absence of ice lenses in the snowpack (Mdller et al.,
2011b). Applying the mentioned time window, IRE should represent
similar volume as SAR data, where dry snow is penetrated by micro-
waves, thus is invisible on the images. The exception is snowpack with
ice layers after rain-on-snow or thaw events or snow grain size at least
as large as the SAR wavelength (Métzler and Schanda 1984 as cited in
Hall et al., 2005, Hall et al., 2005), what may contribute to the total
value of sigma0O and influence further classification. In this study
however it should not be the case as both C- and L-band wavelengths
are larger than the grain size and Vestfonna's snowpack is characterised
by lack or low amount of ice lenses (Moller et al., 2011b).
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In addition, noise power (NP) for all investigated traces was cal-
culated using the IRP formula with a time window of 2 ns prior to re-
cording of the direct wave. This was done in order to estimate the
background noise (Jania et al., 2005) caused mainly by the GPR set. IRE
values were averaged in each pixel of the ALOS PALSAR image based on
the geolocation of each sample.

The IRE values were presented in the form of a scatter plot and a
boxplot. For the purposes of the boxplot, each IRE value was assigned to
one of the classes (ice, ice +, SI, firn < 4.5m, firn > 4.5 m) according to
visual interpretation results. This allowed the distribution of IRE values
to be analysed in each class.

4.3. Backscattering coefficient (sigma0) of SAR data

The main parameter related to SAR techniques is the backscattering
coefficient (sigma0). This factor represents the quantity corresponding
to microwave reflectance from the scatterers in each resolution cell
recorded by the sensor (Rees, 2005). The value of the backscattering
coefficient depends more on physical than chemical properties (Ferretti
et al., 2007); thus, SAR data can be used effectively to distinguish
glacier facies. Among the factors influencing backscattering, two groups
can be distinguished: scattering characteristics and satellite parameters.
The former depend, for instance, on the roughness and geometry of the
scatterer and its dielectric properties, the latter for instance on the
polarisation, wavelength, and incidence angle of the microwave (Rott
and Mitzler, 1987; Lillesand et al., 2008). An especially important role
in analysing the extent of glacier facies is played by the dielectric
properties of the volume and hence the presence of liquid water. Sev-
eral studies (e.g. Rott and Nagler, 1993; Marshall et al. 1995 as cited in
Brown et al., 1999) have revealed that even a small amount of liquid
water (~3-5% of liquid water content) in a snow layer can dramatically
affect penetration of the layer by microwaves. Thus, in order to dis-
tinguish glacier zones, it is necessary to analyse only imagery obtained
during winter or early spring, when the absence of liquid water enables
analysis of backscattering of volume, not of a surface (Konig et al.,
2001a). As opposed to remote sensing techniques operating in the op-
tical spectrum, the presence of dry snow cover during winter is not
problematic due to the high degree of penetration of this layer by mi-
crowaves, which is related to the absence of water and small grain size
(Hall, 1996; Rees, 2005).

Backscattering value analysis is commonly used in distinguishing
glacier facies (e.g. Partington, 1998; Langley et al., 2008) as sigma0
varies along glaciers profiles. Upper parts of glaciers with a lack of dry-
snow zone, are characterised by high backscattering values due to vo-
lume scattering typical for firn areas or presence of ice lenses
(Fahnestock et al., 1993). In the contrary, low values of sigma0 re-
present the ablation area, were SAR signal is reflected from glacier ice,
which acts as a specular reflector (Konig et al., 2000). However, among
the low backscattering values of glacier ice, high sigma0 can occur due
to presence of crevasses resulting in strong reflection of the signal.
Moreover, backscattering coefficient values can be influenced by a
character not only of a surface but also a subsurface of a glacier. This
highly depends on the wavelength of the SAR sensor. The dependence
was described in the study of Konig et al. (2001b) where airborne L-
band microwave revealed crevasses in the accumulation area, invisible
for a shorter C-band airborne sensor. Another study (Rignot et al.,
2001) shows, that airborne C-band can penetrate 1-2 m on bare ice and
up to 10m in dry firn, whereas penetration of airborne L-band is
~5-10m greater, influencing the final value of the backscatter. The
property of L-band penetration was applied in a research of Alpine
glaciers based on airborne three-dimensional SAR tomography method
(Tebaldini et al., 2016) where the scattering patterns of L-band in dif-
ferent areas of the glacier was described. Analysis of SAR data and in
situ data measurements revealed that the scattering of L-band is
dominated mainly by subsurface scattering with a contribution from
volume scattering of firn, crevasses or even bedrock. The domination of
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L-band subsurface scattering and pervious applications of C-band ima-
geries (see Table 1) imply that both wavelengths should be suitable for
distinguishing glaciers facies.

Based on the encouraging results of the aforementioned studies, in
this research sigma0 values are extracted from both ALOS and averaged
ERS-2 images along the GPR profile (Fig. 1) and compared to GPR
measurements represented by the IRE coefficient. Since HH/VV and
HV/VH polarisation modes yield similar results (Massom and Lubin,
2006), only sigma0 values extracted from VV and VH imaging were
analysed. As in case of IRE, boxplots for sigma0 values for each of the
images were done, presenting the distribution of the coefficient in each
class.

4.4. Natural breaks (Jenks) classification

Both sigma0 and IRE values were also classified into 5 classes using
the natural breaks (Jenks) method. The natural breaks classification
groups values of a dataset into classes in order to achieve the lowest
variations within the each class and — at the same time — the highest
variations between the classes (Jenks and Caspall, 1971; De Smith
et al., 2007). The results of the classification are presented in the form
of maps.

4.5. Polarimetry and SAR image classification

In addition to simple analysis of backscatter coefficient values of
SAR data, scattering decomposition is widely applied to the inter-
pretation, classification, and segmentation of SAR polarimetric images
(Cloude and Pottier, 1996; Lee et al., 1999). However, fully polari-
metric data and their decomposition are still not commonly used in
glaciology. Singh et al. (2010, 2014) studied the capability of fully
polarimetric L-band data concerning snow and non-snow areas whereas
Venkataraman et al. (2007) discussed the capability of fully polari-
metric L-band ALOS PALSAR data for snow classification. Brown (2013)
focused on changes in backscatter over time by polarimetric decom-
position studies. Huang et al. (2011) analysed fully polarimetric SAR
images obtained in August, thus the high water content in the snowpack
allowed only ice and wet snow zones to be detected. The only study of
glacial zone discrimination on Svalbard using fully polarimetric L-band
SAR image with validation by GPR visual interpretation was made for
Vestfonna (Btaszczyk, 2012). Author applied Pauli RGB decomposition
and H/a segmentation to ALOS images with the use of the ESA open-
source software PolsarPro (Lopez-Martinez et al., 2005). Pauli colour
coding is based on a vector representation of linear combinations of
scattering matrix elements. Matrix parameters are related to the target
itself, i.e. the geometrical structure and dielectrical properties of the
object. The resulting polarimetric channels HH + VV, HH-VV, and HV
are then associated with the colours blue, red, and green, respectively
(Lopez-Martinez et al., 2005). Based on the characteristics of each
combination, different types of scattering mechanisms are represented
by RGB colours. For example, blue indicates targets characterised by
single- or odd-bounce, red double- or even-bounce mechanisms (e.g.
built-up areas), green a dominant HV component, generally char-
acteristic of vegetated zones (volume scattering) (Lopez-Martinez et al.,
2005).

In polarimetric decomposition H/A/a, three parameters are de-
fined: entropy — H; anisotropy — A; and mean alpha angle — a. A study of
the scattering mechanism is performed mainly through the interpreta-
tion of the mean alpha angle, whereas entropy H determines the degree
of randomness of the scattering process (Lopez-Martinez et al., 2005).
Cloude and Pottier (1997) proposed an algorithm to identify, in an
unsupervised way, polarimetric scattering mechanisms in the H-a
plane. The H-a classification plane is subdivided into 8 basic zones
characteristic of different scattering behaviours and one zone of non-
feasible region, where the differentiation of the scattering mechanism is
not possible (Cloude and Pottier, 1997; SNAP ESA, 2018).
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Segmentation in the H-a plane enables identification of the type of
scattering mechanism: surface reflection, volume diffusion, and double
bounce reflection along the a axis, and low, medium, and high degrees
of randomness along the entropy axis (Cloude and Pottier, 1997, SNAP
ESA, 2018). The algorithm was improved by Lee et al. (1999) by im-
plementation of an iteration process of pixels reclassification based on
their Wishart distances (Lee et al., 1994) to centres of clusters (H-a
Wishart classification). Although Btaszczyk (2012) carried out ex-
clusively visual validation of results with glacier zones determined from
GPR visual interpretation, these initial studies show the usefulness of
fully polarimetric data in the determination of glacier facies. In this
study, we sought to improve upon the interpretation of Pauli RGB de-
composition and H/a segmentation of fully polarimetric ALOS PALSAR
imaging, as made by Blaszczyk (2012), by adding the objective method
of IRE classification.

Additionally, for comparison of results of analysis of fully polari-
metric L-band data with C-band data, the averaged ERS-2 SAR images
classified with the use of standard pixel unsupervised classification (k-
means) was compared to the IRE coefficient classification. In the k-
means classification method, classes are created by automatic choice of
values of pixels as centres of the classes to which all the other pixels are
assigned based on the distance to the closest class centre. After the
classification processing of the first iteration the centres of the classes
are set anew as values corresponding to centroids of the classes re-
sulting from the previous step. The process is repeated till there is no
difference between the iterations or if the maximum number of itera-
tions was reached (MacQueen, 1967). Before the k-means classification,
the averaged ERS-2 SAR image was limited to the area covered by all
five images and the GPR measurements, to ensure the average value of
each pixel was calculated based on the same amount of images. To
remove still noticeable speckle noise, Lee Speckle filter (5 X 5 window
size) was applied. This resulted in reduction of speckle noise with
preservation of changes in sigma0 values along the distinguished gla-
ciers facies. The number of 16 clusters of the classification was chosen
based on elbow method (Thorndike, 1953) and Bayesian information
criterion (Schwarz, 1978) which are statistical approaches in de-
termining the number of classes in k-means algorithms.

5. Results
5.1. Visual interpretation of GPR

As a result of the visual interpretation of GPR data, 5 classes were
distinguished: ice, ice+, SI, firn < 4.5m thick (firn < 4.5m), and
firn > 4.5m thick (firn > 4.5 m) (Fig. 2).

5.2. Internal Reflection Energy

The results of IRE and NP calculations compared to the visual in-
terpretation of GPR are presented in Fig. 3. NP values remained stable
for the entire GPR profile, which means that noise was at a constant
level throughout the measurements. Thus, it can be assumed that IRE
values are consistent, since the noise influenced GPR measurements
constantly throughout the profile.

The IRE varied between 45 and 65 dB. There is a distinct difference
in variations between classes with the presence of ice, such as ice or ice
+, and the remaining classes, in which variations in IRE values are by
one order of magnitude higher (Table 3). This is due to the consistent
structure of ice facies and their uniformly high density, thus the var-
iations in this zones are low. The increase in value of IRE between ice +
and SI facies is shifted in favour of the ice+ zone, probably due to the
fixed time window of IRE calculation. Because of the simplification of
the IRE calculation caused by applying a constant time window through
the whole GPR profile, that part of the significant SI volume was not
taken into account in the calculation process. As a result, the values of
IRE of the lower part of the SI zone are on the same level as ice +. Note
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that the choice of the time window was made in order to ensure that the
snow cover would not exert an influence on IRE calculation. Another
possible reason is subjectivity of the GPR visual interpretation of both
ice+ and SI classes, which cannot be resolved due to the lack of
ground-truth validation data.

Absolute values and variations of IRE for features classified as firn
are higher (Table 3, Fig. 3); this is caused by higher spatial variation of
density (both horizontally and vertically) and by the character of the
scatterers. Ice, on the other hand, with its consistency and significantly
lesser amount of air, causes poorer conditions for the reflection of radar
waves but greater homogeneity of IRE values.

5.3. Backscattering coefficient (sigma0) of SAR data

Values of sigma0 vary between — 23 and 5 dB for ALOS PALSAR VH
image, —15 and 6dB for ALOS PALSAR VV and —13 and 5dB for
averaged ERS-2 SAR data (Fig. 4). The backscattering coefficient values
rise throughout the profile, with a difference of ~10 dB between ice in
the lowest part of Vestfonna and firn in the most upper part. In addi-
tion, sigma0 values extracted from ALOS PALSAR VH are ~10 dB lower
throughout the profile than ALOS PALSAR VV. This difference was also
reported by Konig et al. (2001b) and it is related to the physics of
surface and subsurface scattering and change of polarisation by the
scatterer. The influence of the polarisation is in the good agreement of
ALOS PALSAR VV and averaged ERS-2 SAR VV sigma0 values. In ad-
dition, standard deviations of ALOS PALSAR VH values are higher by
minimum one order of magnitude comparing to standard deviations of
analysed co-polarised images (Table 4). Due to high consistency of the
internal structure of Vestfonna only small differences between sigma0
of C- and L-band VV images can be observed. Only one marked decline
of ALOS PALSAR sigma0 values at the 6.7 km distance from the front of
the ice cap indicates a presence of a buried feature or lower value of
reflectance from ice under firn which was not penetrated by a shorter
wave of ERS-2 SAR. On the other hand, at the distance of 0.4 km of the
GPR profile, the averaged ERS-2 SAR sigma0 values increase in the
contrary to the ALOS PALSAR sigma0. The difference in the penetration
depth of C- and L-band explains also higher values of backscattering
coefficient of ALOS PALSAR VV comparing to ERS-2 SAR in firn zones,
where volume scattering is dominant thus stronger for longer wave-
lengths.

Incidence angles of both ERS-2 SAR products and ALOS PALSAR
were similar (Table 2), so this parameter should not have a big influ-
ence on the differences in sigma0 values. In addition, as all changes in
the glaciers facies are along west-east part of the profile and the slope of
the ice cap is rather gentle (Fig. 2), the difference between ascending
and descending orbits of the SAR satellites also should have a small
impact on backscattering coefficient values.

5.4. Sigma0 and IRE comparison

Based on backscatter coefficient values limited to the 1st and 3rd
quantiles (top and bottom of a box, Fig. 5, left panel) for the ALOS
PALSAR VH, it is possible to differentiate all classes except ice and ice
+. In the case of the ALOS PALSAR VV (Fig. 5, left panel) all classes are
distinguishable, with a small overlap of the ice+ and SI classes. The
difference is caused by the character of polarisation: co-polarised waves
are better suited for surface roughness, cross-polarised for volume
scattering (Massom and Lubin, 2006). Backscatter coefficient values
extracted from the averaged ERS-2 SAR image (Fig. 5, central panel)
differentiate between each class except SI and firn < 4.5m. The dif-
ferences related to the wavelengths of C-band ERS-2 SAR and L-band
ALOS PALSAR are visible in the total range of values for classes re-
presenting ice and firn facies. As the L-band penetrates deeper, boxes of
classes such as SI, firn < 4.5m, and firn > 4.5m are wider distributed
than for the averaged ERS-2 SAR image and are more easily dis-
tinguished. Similarly, backscatter coefficient values for ice, ice+, and
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Elevation [m abl]

Distance [km]

8 10 12
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Visual interpretation

Fig. 2. Results of GPR visual interpretation with elevation profile in the upper panel. Symbols of classes: blue - ice, orange — ice +, yellow — SI, green - firn < 4.5m,
purple — firn > 4.5 m (location of GPR measurements in Fig. 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

SI on the ERS-2 SAR image are clearly separated and thus more easily
identified.

A boxplot was also generated for IRE values and compared with the
boxplots for sigma0 values (Fig. 5, right panel). It can be seen that the
boxes for ice and ice + are on a similar level. This is probably due to the
fixed time window selected for IRE calculation, as described above. The
classes firn < 4.5m and firn > 4.5 m are difficult to distinguish. This is
caused by the natural continuity of the two classes, the character of
whose scatterers are very similar in the total measured volume. The
clearly different class of SI visible in the IRE boxplot is very promising
for further studies, since the SI zone as far as identified with super-
imposed ice, though difficult to differentiate, may be very important in
mass balance estimation.

5.5. Natural breaks (Jenks) classification of sigmaO and IRE

Both IRE and sigma0 coefficients were divided into 5 classes using
the natural breaks method (Fig. 6). Additionally, boundaries between
glacier zones obtained from visual interpretation of GPR were marked

by red lines in Fig. 6a—e. Although in the case of IRE values (Fig. 6b) the
boundaries between such classes as ice and ice+, firn < 4.5m and
firn > 4.5m are not clear, the SI zone is possible to differentiate, with
shifted ice+ /SI boundary due to the fixed time window of IRE calcu-
lation. This indicates it is possible to distinguish ablation (ice) and
accumulation zones (SI and firn), which is important in mass balance
assessment.

Both ALOS PALSAR and ERS-2 SAR images yield very promising
results. For the cross-polarised ALOS PALSAR image (Fig. 6¢), all classes
except ice and ice+ can be distinguished via simple classification of
sigma0 value. The slightly shifted boundary between firn < 4.5m and
firn > 4.5 m may be caused by the natural continuity of the two facies,
resulting in similarity in scattering in volume. In the case of ALOS
PALSAR with VV polarisation (Fig. 6d), only ice+ and SI have no clear
boundary. The results of the classification of sigma0 values extracted
from averaged ERS-2 SAR images (Fig. 6e) show that it is possible to
differentiate glacier facies which differ more on the surface (ice, ice+)
than on the subsurface level. Although the penetration of the ERS-2 SAR
C-band is shallower than of the ALOS PALSAR L-band, due to cold, dry
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Fig. 3. IRE and NP values compared to visual interpretation of GPR measurements (bottom panel). Left Y axis is presented in linear units (logarithmic scale), right Y
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Fig. 4. Backscattering coefficient values
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conditions and snow depth up to 2.24 m along the GPR profile (Grabiec
et al., 2011) it was possible to distinguish the firn > 4.5m class.

5.6. Polarimetric decomposition and k-means classification vs. in situ data

Here we compare Blaszczyk's (2012) results and k-means classifi-
cation of averaged ERS-2 SAR image with visual interpretation of GPR
and IRE classification (Fig. 7). Fig. 7a, b present the Pauli decomposi-
tion product, where the combination of RGB colours is associated with
scattering properties of different features. Comparison of Pauli de-
composition with GPR visual interpretation and IRE classification
shows that the green colour in Fig. 7a indicates well the ice and ice + in
the ablation zone. White corresponds to equal amplitude over all po-
larimetric channels and offers a good presentation of the firn > 4.5m
zone. Due to the lack of GPR data we cannot characterise the violet
colour properly, but it probably indicates firn < 4.5 m.

The results of the H-a Wishart classification (Fig. 7c) offer a very
good example of discrimination between glacial zones. The only pro-
blem is a lack of differentiation between the ice and ice + zones. On the
other hand, one additional class on the top of the ice cap (marked in
yellow), not visible in the GPR interpretation, was identified. The extent
of the additional zone is comparable to that of the shifted boundary
between firn < 4.5m and firn 4.5 > m of Fig. 6¢. This indicates that
this zone is firn with slightly different scattering properties in the vo-
lume, related to the natural continuity of the facies. It is worth
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mentioning that the IRE classification corresponds closely with the
extent of the groups of ice (ice and ice+) and firn (< 4.5m and >
4.5 m) zones obtained via H-a segmentation (Fig. 7d). Only some of the
IRE values defined as SI are not as clear as in the product of ALOS
PALSAR segmentation; however, as in the previous analysis, this may
be caused by the time window being fixed for the IRE calculations. H-a
classification method, developed by Cloude and Pottier (1997), de-
scribes the scattering mechanism of each of the class, based on H-a
plane. The description of each of the distinguished class proposed by
Cloude and Pottier (1997) is provided in legends of Fig. 7c and d,
however detailed analysis of this scheme are difficult to be obtained in
this research, due to not sufficient amount of terrestrial data or com-
parable analysis from other glaciers on one hand, and high penetration
of L-band and internal structures of the glacier on the other.

The results of k-means classification for the averaged ERS-2 SAR
image (Fig. 7e) show, that as opposed to advanced polarimetric pro-
cessing, it is possible to differentiate all glaciers facies, including the ice
and the ice+ zone. In contrast to the natural breaks classification of
ERS-2 SAR sigma0, the SI zone was separated from that of firn < 4.5m.
Nevertheless, due to high amount of classes and remained noise, the
results of k-means classification method are more difficult for their
interpretation. Similarly, comparing IRE values and the results of the
classification (Fig. 7f) is not as simple as in the case of H-a segmenta-
tion due to the high level of noise of IRE classification and high amount
of classes at the k-means classification image. Nevertheless, the

Fig. 5. Boxplots for distinguishing glacier facies

based on ALOS PALSAR (left panel), averaged ERS-2

SAR (central panel) and IRE calculations (right panel)

with classification based on visual interpretation. The

solid horizontal lines represent median, the hor-
® izontal lines of boxes — first and third quartiles, the
vertical lines (whiskers) - 1.5 interquartile range
below the lower and above the upper quartiles, black
dots — outliers. Note the y axes are in logarithmic
scale.

IRE



B. Barzycka et al. Remote Sensing of Environment 221 (2019) 373-385

EB:

IRE [dB]

GPR Visual Interpr.
‘ ice
ice+
Sl

firn<4.5m

firn>4.5m .

«

i .~
ERS-2 WV [dB] s ERS-2 VV [dB]
21.87 21.87

2800 4200

0 7001400 2800 . 4200 5600 37,10 -37.10
O e s\ eters
(a) (b)
i ALOS VH Sigma0 [dB] ALOS VV Sigma0 [dB]
-22.64 --18.82 -14.47 --9.41
-18.82 --15.52 -9.41 - -5.66
-15.52 --11.23 5.66--1.15  *
-11.23--7.81 . 2 -1.15-2.98 s
-7.81--4.55 ’ 2.98-6.14

ALOS VV [dB]
18.40

—

-26.08 -

[ ALOS VH [dB]
3.89

-
<3179 - =

2800 4200 5600
Meters

bR A o 1 A

ERS-2 WV Sigmao [dB] |

=13.68 =:7.30
-7.30--3.80 :
-3.80--0.86
-0.86-1.46 s

1.46-461 * :

| ERS-2 WV [dB] |
{ 21.87 I

5600 -37.10 }

Meters |

2800 4200

(e)

Fig. 6. Spatial distribution of: (a) results of GPR visual interpretation; (b) IRE; (c) sigma0 extraction for ALOS PALSAR VH polarisation; (d) sigma0 extraction for
ALOS PALSAR VYV polarisation; (e) sigma0 extraction for the averaged ERS-2 SAR image. For Figure a, b and e ERS-2 was used as a background; for ¢ and d, ALOS
PALSAR was used with VV and VH polarisation, respectively. Figures b, ¢, d and e present values classified by natural breaks (Jenks) classification method. Red lines
represent boundaries between glaciers zones obtained from visual interpretation. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. Results of polarimetric analysis: Pauli RGB decomposition (a, b), H-a Wishart classification (c, d) (from Btaszczyk (2012), modified) and K-means classifi-
cation of averaged ERS-2 SAR image (e, f) with GPR visual interpretation and IRE, respectively. The legends of H-a Wishart classification (c, d) is based on Cloude and

Pottier (1997), classes of k-means classification (e, f) are described by the centres o

f each of the class and frequency of pixels (in brackets).

Table 3
Values of mean and standard deviation of IRE in each class (linear scale).

Mean Standard deviation
Ice 14.8 x 10* 72.9 x 10°
Ice+ 16.3 x 10* 71.0 x 10°
SI 50.6 x 10* 29.1 x 10*
Firn < 4.5m 12.5 x 10° 33.8 x 10*
Firn > 4.5m 10.6 x 10° 23.7 x 10*

agreement between ice classes from both IRE and ERS-2 SAR image
classification is noticeable.

6. Discussion

Due to the very remote location of Vestfonna and limitation of SAR
satellites in this area at the end of accumulation season in 2008, when
the in situ measurements were obtained, the study is limited to only
several SAR images. Nevertheless, this is a next — important — step in the
glaciers facies monitoring and the results present a high potential of
applied methods in distinguishing glaciers facies.

The combination of GPR and SAR analysis for discrimination of
glacier facies yields very promising results. Both sensors are sensitive to
the character of the scatterers and thus are able to record the extent of
glacier facies. Table 5 contains information about the potential for
distinguishing glacier facies using the sensors differentiated according
to the methods used in this study.

For natural breaks classification it is worth noting that ALOS
PALSAR images, unlike averaged ERS-2 SAR, do not provide informa-
tion about differences between the ice and ice+ zones (VH polarisa-
tion) or between the ice+ and SI (VV polarisation) zones. This is due to
the difference in the wavelengths of the L- and C-bands, whereby the
former penetrates more deeply. Therefore, such zones as firn < 4.5m
and firn > 4.5m can be more easily distinguished.

The polarisation of the wave results in different capacities for dis-
tinguishing glacier facies. As the SAR images were obtained during dry,
cold conditions, the C-band of the ERS-2 SAR sensor was capable of
penetrating through a dry snow layer of at least 5m depth (Rott et al.,
1993; Hamran et al., 1997). This is in agreement with the results of the
natural breaks classification of ERS-2 SAR sigma0, where firn > 4.5m
was correctly classified. However, the boundary between SI and
firn < 4.5m was not distinguished probably due to the limitations of
the VV polarisation. The results of averaged ERS-2 SAR k-means clas-
sification indicate the possibility of distinguishing all zones. However,
the high amount of classes makes the classification results difficult to
interpret, therefore in situ data are especially needed. It is not re-
commended to perform glaciers facies analysis based only on one ERS-2
SAR image as the backscatter coefficient differs on separate images
obtained during one month, even though dry snow conditions were
preserved. Therefore, approach proposed by Langley et al. (2008) -

combining and averaging the SAR images is highly recommended, with
at least five images in stock and a careful validation with in situ data
analysis results. The lack of cross-polarised ERS-2 SAR imagery pre-
cludes performing further investigations, such as the segmentation al-
gorithm proposed by Akbari et al. (2014). Natural breaks classification
of the co-polarised ALOS PALSAR image does not provide information
about the boundary between the ice+ and SI zones, which is also the
boundary between the ablation and accumulation zones. Thus, for
differentiation of these two zones, processing of either an averaged
ERS-2 SAR or a cross-polarised ALOS PALSAR image is recommended.

As an alternative to time-consuming and subjective visual inter-
pretation of GPR data for the purposes of validation of SAR data clas-
sification, we found that the IRE coefficient yields very promising re-
sults. Although not all glacier facies can be distinguished by IRE
analysis, the most important ones, i.e. ice with ice+, SI, and firn, are
indeed distinguishable. The only problem is that the extent of the SI
zone for IRE classifications is smaller than that resulting from visual
interpretation. This is likely due either to a fixed time window in the
IRE calculations, so that part of the SI zone is not taken into account by
IRE, or to the uncertainty of visual interpretation. The former can be
eliminated in the future by applying a moving time window depending
on the thickness of snow. The latter can be eliminated by using ground-
truth data such as ice cores or snow pits along the GPR profile, as was
done near Ahlmann Summit in 2009 (Beaudon et al., 2011; Mdoller
et al., 2011a), but not along the GPR measurements. These data confirm
the correct identification of the firn > 4.5m class.

Values of the IRE coefficient are also comparable to the results of H-
a segmentation, in which all classes except ice and ice+ were dis-
tinguished. As in all analysis concerning IRE, a small part of the SI zone
from IRE did not overlap with the segmentation results, again probably
due to the fixed time window used in the IRE calculations. However,
this polarimetric method yields very good results, with homogeneous
classes, which correspond very well to the results of visual interpreta-
tion and IRE classification. If information about the extent of glacier ice
is needed, k-means classification of ERS-2 SAR images offers a good
solution. Despite the high noise level of the classified image, it is pos-
sible to distinguish all classes. However, validation of the k-means
classification should be based on the visual interpretation method ra-
ther than on the IRE coefficient, due to the high noise of IRE and high
amount of classes on processed SAR image.

7. Conclusions

In this study, several methods of classifying glacier zones were
presented, using data from both SAR and GPR measurements. A novel
approach — the Internal Reflection Energy (IRE) coefficient calculated
from GPR data — was applied as a validation method for remote sensing
analysis. The main findings from this study are as follows:

e The simplicity of the IRE calculation and its independence from the

Table 4
Mean and standard deviation of backscattering coefficients of ALOS PALSAR (VV and VH polarisation) and averaged ERS-2 SAR (VV) data in each class (linear scale).
ALOS PALSAR (VH) ALOS PALSAR (VV) ERS-2 (VV)
Mean Standard deviation Mean Standard deviation Mean Standard deviation
Ice 1.09 x 102 3.02 x 10° 8.46 x 10% 3.33 x 10% 1.62 x 10! 8.64 x 102
Ice+ 9.56 x 10° 1.58 x 10° 1.46 x 10! 3.74 x 10? 3.20 x 10 1.18 x 10!
SI 1.67 x 10> 5.76 x 10° 2.12 x 10* 5.67 x 10% 5.79 x 10* 1.90 x 10!
Firn < 4.5m 3.22 x 10? 1.14 x 10? 4,94 x 10 1.35 x 10! 8.01 x 10* 2.83 x 10
Firn > 4.5m 1.66 x 10! 6.01 x 102 2.08 5.66 x 10 1.32 4.57 x 10
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Table 5
Capacities of different sensors for distinguishing boundaries between glacier facies with differentiation of the methods used in this study.
Method Data source Ice/ice + Ice+/SI SI/firn < 4.5m Firn < 4.5m/
firn > 4.5m
Natural breaks classification IRE (GPR) v v
ALOS VH v v v
ALOS VV v v v
ERS-2 VV v v v
H-a Wishart classification ALOS PALSAR v v v
K-means classification ERS-2 v v v v

operator's degree of experience makes the coefficient a good tool for
validation of SAR glacier facies analysis. IRE corresponds very clo-
sely to the ice (ice and ice+), SI and firn (< 4.5m and > 4.5m),
albeit with a shifted boundary between ice+ and SI. This is prob-
ably due to the fixed time window of IRE calculation.
Fully polarimetric ALOS PALSAR images enable more advanced
processing methods to be performed, such as Pauli decomposition
and H-a segmentation. In particular, the latter, yields very good
results, corresponding very well to both visual interpretation and
IRE classifications.
e The simple k-means classification of averaged ERS-2 SAR data
provides information about the extent of all glacier facies. However,
in situ data are especially needed for its interpretation and analysis
based on several ERS-2 SAR images is recommended.
ERS-2 SAR (C-band) is suited for distinguishing glacier facies in the
lower part of the glacier, whereas ALOS PALSAR (L-band) imaging is
recommended for the differentiation of SI and firn classes.
® Cross-polarised images (VH, HV) are more applicable for analysing
glacier facies than co-polarised images (VV, HH).

In conclusion, the results of the study show that glacier facies —
among them SI - can be distinguished by SAR analysis, including the
simple k-means classification. However, especially good results were
yielded by H-a Wishart classification, therefore, we would like to re-
commend this method for future glaciers facies detection. In addition,
the IRE coefficient is recommended to be applied instead of the GPR
visual interpretation method for the validation of remote sensing ana-
lysis. In the future - to avoid errors due to the fixed time window of the
IRE calculation - the variation in the spatial distribution of snow cover
should be taken into account. Ground-truth data such as shallow ice
cores would be also valuable to add. All presented methods are re-
commended for accumulation season when dry snow conditions pre-
serve extend of glacier facies from the end of the antecedent ablation
season.
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