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Abstract 

A FEM model able to predict the cutting interactions between tool and 

workpiece (cutting forces and cutting edge temperature) for a typical 

aeronautical engine Nickel-alloy Inconel 718, has been used to perform a 

reduced number of FEM calculations indicate by a DOE, to evaluate the design 

space for process parameters. These well-distributed results can be subsequently 

used to create and evaluate the quality in terms of correct responses behaviour 

for the metamodels created through different approximation techniques 

(polynomial and neural network). The metamodels based on the best 

methodology (in terms of effectiveness of process behaviour prediction) has 

been used to optimize, through ASA (Adaptive Simulated Annealing) 

algorithms, the process parameters defined in a CAM part program block. The 

aim of the authors is to modify the Part Program operation parameters according 

to the constraints arising from the physical nature of the cutting process obtained 

by FEA. 
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1 Introduction 

The nickel-alloy Inconel 718 is usually well-used in the aerospace industry for 

the manufacture of components that require: lighter, harder, stronger, tougher, 

stiffer, more corrosion- and erosion-resistant materials capable to maintain the 

mechanical properties at elevated temperatures such as in jet engines. The unique 

and desirable heat-resistant characteristics of superalloys, on the other hand, 

impair their attitude to be worked due to the extremely high temperature 

generated at the cutting edge. These tough working conditions tend to deform the 



cutting tool, leading to accelerated wear during machining, particularly at higher 

speed conditions. The attitude to be worked of aerospace alloys will continue to 

decline as new materials are developed to meet the increasing demand for higher 

temperature-resistant materials and for more efficient aero-engines, Ezugwu [1]. 

Considerable research and development efforts have been directed, worldwide, 

towards an improvement of the machining operations in order to ensure an 

efficient and cost effective machining of these superalloys understanding their 

behaviour when they are machined at higher cutting conditions, Malinov et al 

[2]. A good understanding of the behaviour and of the relationship among: the 

workpiece materials, the cutting tool materials, the cutting conditions and the 

process parameters it is an essential requirement for the optimisation of the 

cutting process. A significant improvement in process efficiency may be 

obtained with a process parameters optimization that identifies and determines 

areas of critical process control factors. The availability of such a kind of 

methodology it allows engineers to chose the desired outputs or responses with 

acceptable variations ensuring a lower cost of manufacturing, Montgomery [3]. 

The selection of optimal machining conditions is a key factor in achieving this 

condition, Tan et al [4]. The first necessary step, for process parameters 

optimization in any metal cutting process, is the ability to understand the 

principles governing the cutting processes by developing an explicit 

mathematical model. The resulting model provides the basic mathematical input 

required for the formulation of the process objective function. An optimization 

technique provides optimal or near-optimal solution to the overall optimization 

problem formulated, and subsequently implemented in actual metal cutting 

process. One of the several optimization modelling techniques proposed and 

implemented is based on response surface design. Many researchers use RSM to 

optimize problems in metal cutting process parameters. Taramen [5] uses a 

contour plot technique to simultaneously optimize tool wear, surface finish, and 

tool force for finished turning operation. Lee at al [6] provide an interactive 

algorithm using both RSM and mathematical modelling to solve a parameters 

optimization problem in turning operation. 

2 Metamodels construction approach 

The RSM is a dynamic and very important tool of design of experiment (DOE) 

in which the relationship between the responses of a process with their input 

decision variables are mapped to achieve the objective of maximization or 

minimization of the response properties. The first necessary step in RSM is to 

map responses, i.e. Y as a function of independent decision variables (X1,.,Xn). 

Normally RSM techniques are based on series of experimentation, and may not 

be feasible or cost effective for manufacturers in many manufacturing situations. 

In this study, for the RSM construction the authors have used data drawn from 

the numerical simulations. In this way, if the simulation code has been 

previously validated through experimental-numerical correlation, it becomes 

possible to avoid costly experimental campaigns for data acquisition. 

 



 
 

Figure 1: Metamodels construction procedure. 

 

 

In order to model the true functions through metamodels based on data obtained 

with FEA, the authors have performed 40 simulations based on design points 

selected within the two-dimensional design space which has the following 

boundaries: feed for tooth (f) [0.04 ; 0.25 mm/rev]; cutting velocity (vt) [100 ; 

230 mm/sec.]; by a version of Latin Hypercube DOE, called Optimal Latin 

Hypercube. In this DOE technique an optimization process is then applied to this 

initial random Latin Hypercube design matrix. By swapping the order of two 

factor levels in a column of the matrix, a new matrix is generated and the new 

overall spacing of points is evaluated. This optimized process designs a matrix in 

which the points are spread as evenly as possible within the design space defined 

by the lower and upper level, iSIGHT user's manual [7]. 

3 Theory of metamodel based on polynomial approximations 

The Response Surface Models used in this work are based on polynomials 

approximation used in model of: second, third and fourth order. The models 

based on approximation of third and fourth order do not have any mixed 

polynomial for terms upper the second order, (in table 1 the comparison) but, 

only pure cubic and quartic terms are included to reduce the amount of data 

required for the model construction eqn. (1). 
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Where: N is the number of model inputs; xi is the set of model inputs; a, b, c, d, 

are the polynomial coefficients, iSIGHT user's manual [7]. 

 

Table 1: Number of coefficients in polynomials, involving 2 inputs parameters. 

 

 Number of Coefficients 

Polynomial Degree Complete Formulation Reduced Formulation 

2 6 6 

3 10 8 

4 15 10 



4 Theory of metamodel based on artificial neural network 

Radial Basis Functions (RBF) are a type of neural network used to approximate 

the behaviour of several types of systems. They adopt a hidden layer of radial 

units and an output layer of linear units and they are characterized by reasonably 

fast training and reasonably compact networks. Weissinger [8], was the first to 

use radial basis function to calculate the flow around wings. This neural network 

utilizes the Gaussian curve to map values. The network has n inputs and k 

outputs. Radial basis network is a very efficient network when function 

approximation is needed because, it has the ability to represent nonlinear 

functions. 

5 Simplified FE 2D model and data extraction methodology 

The analyzed operation is a down cut mill operation. In the climb mode shown in 

fig. 2-A, the feed on each tooth is bigger at the point of initial contact with the 

workpiece and becomes very small at the end of the engagement tooth-

workpiece. 

 

 

 
 

Figure 2: (A) Climb mill operation ; (B) FE simplified 2D model. 

 

 

The maximum force exchanged between the tool and the workpiece occurs when 

the tooth surface impacts on the workpiece. To detect them (components Fx and 

Fy), a simplified 2D model has been chosen, fig. 2-B. Where the real feed per 

tooth is the DOC on the finite element model (az, max) and the cutting speed is 

equal to the tangential velocity of the cutter (Vt). The values of the exchanged 

forces between the tool and the workpiece used in the study were detected when 

the value of the observed forces in the simulation post processing can be 

considered stable. Cutting temperatures data utilized to create metamodels are an 

average of the temperature extracted in five fixed nodes detected on the cutting 



edge and meshed when thermal steady state condition on the tool-workpiece 

interface was reached (after about 2 mm of cutting length). 

6 Finite element model 

FE analysis of the dry milling operations with the circular insert in WC and no 

wear have been carried out. A two-dimensional plane-strain thermo-mechanical 

analysis, based on the update Lagrangian formulation was performed using the 

implicit finite element commercial code properly developed for machining FEA. 

For this purpose, the workpiece (dim 4x1.5 mm) was initially modelled with 

6500 bilinear four-node quadrilateral elements, with dimensions respectively of 

0.007 mm along the cutting edge, 0.01 mm on the first 0.3 mm on machined 

surface and 0.15 mm in the remaining area. The insert in tungsten carbide (WC) 

with 8% in Cobalt has been characterized using the software default material 

library. The tool orthogonal rake angle was γ= -7° and the cutting edge radius 

was rε=0.05 mm and it has been modeled as rigid. It has been meshed and 

subdivided into 1500 elements with the very small dimension of 0.004 mm, in 

the nose zone in order not to lose the small radius of curvature in this area. The 

material properties of cutting insert have been characterized using the software 

default material library. A constant frictional stress law on rake face is assumed 

equal to a fixed percentage of the shear flow stress of the machined material, 

eqn. (2). 

 

km ⋅=τ                                                          (2) 

 

Where k is the shear flow-stress of the workpiece material and m is a friction 

factor, assumed equal to 0.5. A value of 100 kW/m
2
K has been adopted for the 

interface heat transfer coefficient, h. For the workpiece made of Inconel 718, 

proper values were defined for the following characteristics: Young’s module; 

Poisson’s ratio; Thermal expansion; Heat capacity; Emissivity; Thermal 

conductivity. Corresponding values are experimentally defined in the range of 

temperature [20°C; 1200°C] by the industrial partner AVIO S.p.A. For 

workpiece material characterization in plastic field it has been adopted a Johnson 

Cook constitutive model, eqn. (3), Bil et al [9]. 
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where ε  is the plastic strain, ε�  is the strain rate (s
-1

), 
0

ε�  is the reference plastic 

strain rate (s
-1

). T is the temperature of the work material (°C), Tmelt is the 

melting temperature of the work material (1400 °C) and Troom is the room 

temperature (20 °C). Coefficient A is the yield strength (MPa), B is the 

hardening modulus (MPa), C is the strain rate sensitivity coefficient, n is the 

hardening coefficient and m the thermal softening coefficient. For the constants 



present in the J&C equation the authors have used the follow values: ε0=1.001 

[1/sec.], A = 450 [MPa], B = 1700 [MPa], C = 0.017, n = 0.65, m = 1.3  

Uhlmann [10]. 

7 Quality metamodels evaluation 

The approximation error analysis provides a visual representation of the quality 

of an approximation model for each response. The total error is calculated for 

each response using the average error. The differences between the actual 

(workflow execution) and predicted (approximation model execution) values for 

all errors samples are averaged and then normalized by the range of the actual 

values for each response. Normalizing the error value it allows to compare the 

error level of different responses with different magnitudes in respect to 

approximation model predictions. The error is calculated based on a number of 

sample points (19 in this case) specifically allocated for error analysis. From the 

average approximation error analysis, table 3, it is possible to evaluate how the 

metamodels that give the best approximation of the real behavior of the three 

analyzed responses are the ones created with the approximation technique based 

on the neural networks (RFB). The resulting data confirm that for the 

metamodels based on the polynomial approximation, the confidence of 

prediction of the analyzed responses behavior is as much closer to reality as 

bigger is the grade of the polynomial used to create the metamodel itself. 

 

Table 2: Comparison of % average error for analyzed responses for each 

examined approximation technique. 

 

Response 2° Order 3° Order 4° Order RBF 

Tmax 12.2% 11.6% 9.7% 0.9% 

Fx 1.1% 1.0% 0.6% 0.04% 

Fy 3.9% 3.8% 3.0% 0.1% 

 

In fig. 3-A for the response cutting edge temperature It is possible to appreciate 

how, the shape of the response surface varies a lot, ranging from the one created 

starting with second grade polynomials (quasi-linear) to the one created with the 

RBF technique that presents a much less regular surface where there are local 

maxima and minima. The metamodels of the thrust force Fy, fig. 3-B, show a 

more linear performance also in the RS of fourth grade or in the RBF. Similar 

behavior has been found for the cutting force Fx. The highly non-regular behavior 

of the cutting temperature has been highlighted by the detected average error. 

The latter is significant in the metamodels created with a low polynomial grade 

and cannot predict the real values for highly non-linear responses.  

 



 
 

Figure 3: Metamodels shapes comparison for the four adopted techniques. (A) 

for Tmax response; (B) for Fy response. 

 

8 Example of CAE-CAM Optimization procedure based on 

metamodels 

Metamodels created with the most efficient methodology in predicting the three 

responses behavior, namely the response surfaces created with RBF, constitute 

the basis for the optimization phase. This procedure has a considerable 

advantage; in the optimal solution research path, the optimization algorithm 

performs the iteration run  using metamodels and it is for this reason clear from 

the long calculation time typical of the calculation run of FEA, fig. 4. 
 

 

 
 

Figure 4: Flowchart of adopted optimization procedure. 

 

In this study the authors have used, in order to optimize the process parameters, a 

modified version of Simulated Annealing search algorithm (SA), called Adaptive 

Simulated Annealing (ASA). The distinct feature of this method is the 

temperature change mechanism, which is an important part of the transition 

probability equation. In conventional simulated annealing, the search begins with 

high temperature allowing a higher chance of transition to a worse solution. By 

doing so, the search is able to move off from local minima. However, as the 

search continues, the temperature continuously declines resulting in a reduced 

chance of uphill transition. Such an approach could be useful if the local minima 

are near the start point but, it might not lead to a near-optimal solution if some 



local minima are encountered at a relatively low temperature toward the end of 

the search. To overcome this difficulty, the adaptive simulated annealing method 

uses an adaptive cooling schedule that adjusts the temperature dynamically, it is 

based on the profile of the search path. Such adjustments could be in any 

direction including the possibility of reheating in order to push the search out of 

local minima. This optimization activity aims to minimize the execution time 

through the maximization of feed rate in compliance to physical micro-scale 

limits of the cutting process (Max cutting temp., Cutting Forces). Figure 5 shows 

the optimization scheme adopted. 

 

 

 
 

Figure 5: Scheme of optimization problem definition. 

 

 

The problem can be stated as:  

 

Variables: - Vt d 100 ; 2306 @ mm/sec.

- f d 0.04 ; 0.256 @ mm/tooth - rev

Constraints: - Max admissible Cutting Edge Temp. Tmax = 600
°
C

- Max admissible Cutting Force Fx = 1000 N

- Max admissible Thrust Force Fy = 550 N

Objective function:- Maximize feed rate Va mm/min
 

 

The process parameters present in the analyzed block of the part program are: 

feed and speed. They have been taken into consideration with these values: 1) 



feed (F) = 50 [mm / min]; 2) speed (S) = 96 [rpm]. Their respective values have 

been converted into the units of measurement used in the 2D finite element 

model and to define metamodels design space, f = 0.13 mm/tooth-rev and and Vt 

= 209 mm / sec. After the optimization phase the new set of process parameters 

has been converted into the units of measurement used in the part program 

(Vt,opt= 225 mm/sec. to S = 107 rpm and fopt = 0.18 mm/tooth-rev to F = 77 

mm/min). Then, they have been incorporated into the analyzed part program 

block, fig.6. 

 

 

 
 

Figure 6: Flowchart of input-output process parameters optimization. 

 

 

The process parameters indicated by the optimized block present an increase of 

the cutting speed of 11.5% and an increase of the feed rate of 38.4%. In fig. 8, 

the diagrams show the iterations carried out by ASA searching the optimal 

solution. 

 

 

 
 

Figure 7: ASA iterations history. 

 



9 Conclusions and further developments 

In this article the authors have analysed the potentiality of four methods for the 

creation of response surfaces in order to predict thoroughly the behavior of some 

of the typical responses of the physical phenomena of metal cutting processes.  

The response surfaces have been created from data extracted from FEM 

simulations performed on the basis of a DOE. The approximation method that 

has proved to be the most effective was the one based on neural networks (RBF). 

The response surfaces created with this methodology have been later used as a 

basis for the optimization through an ASA algorithm of the process parameters 

of a part program block. In the future, the authors will focus on the search for 

numerical-experimental correlation of the FEM model in order to improve the 

accuracy of metamodels. Another research area will focus on the adjustment of 

CAE-CAM integration procedures in order to obtain an automated process 

parameters optimization compliant to the physical limitations of the process and 

their replacement in the part program that has to be optimized.  
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