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The paper refers to phase stability of the (Fe80Nb6B14)0.9Tb0.1 bulk nanocrystalline alloys prepared using
the vacuum suction casting technique. The samples were in the form of rods with diameters d = 2, 1.5, 1 and
0.5 mm. Heating up to 900 K reveals structural changes that occur at temperatures above 680 K (DSC and M(T )
measurements). The phase analysis, using Mössbauer spectra, indicates the decrease of Tb2Fe14B and increase
of Fe content in the samples after the heat treatment. The most stable is the alloy with d = 1 mm, where the
formation of α-Fe phase was not observed. The decrease of d causes signi�cant hardening i.e. coercive �eld increases
from 0.57 T to 2.66 T for d = 2 mm and d = 0.5 mm, respectively.
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PACS: 81.07.Bc, 75.50.Tt, 75.60.d, 76.80.+y

1. Introduction

Progress in modern technologies requires new materi-
als with speci�c properties for di�erent kind of applica-
tions [1, 2]. In the �eld of magnetism very interesting
are Fe-Nb-B type of nanocrystalline alloys [3, 4]. Re-
cently we have reported that the (Fe80Nb6B14)1−xTbx
bulk nanocrystalline series of alloys can be considered
as highly coercive materials [5, 6]. It was shown (57Fe
Mossbauer spectrometry and XRD) that the examined
samples contain magnetically hard Tb2Fe14B and other
TbFe2, α-Fe soft phases, high Tb content the high con-
tribution of TbFe2. The samples with x = 0.1 (69%
of Tb2Fe14B) and x = 0.12 (76% of Tb2Fe14B) are in-
teresting. For these samples the magnetic hardening is
signi�cant, i.e. at T = 300 K, Hc = 1.46 T and 1.16 T,
respectively. It is a characteristic feature that nanocrys-
talline alloys are not thermodynamically stable and, dur-
ing annealing, some phase transitions (or separations) are
expected to be present [7]. Therefore, in this case phase
stability studies are important from application as well
as scienti�c point of view. In this work we present struc-
tural and magnetic properties of (Fe80Nb6B14)0.9Tb0.1
bulk nanocrystalline alloy in the as-cast state and after
heating up to 900 K.

2. Experimental procedure

Samples of the (Fe80Nb6B14)0.9Tb0.1 alloy were pre-
pared by means of the vacuum suction casting technique
in the form of rods with diameters d = 2, 1.5, 1 and
0.5 mm (described in [8]). In the technology the vari-
ation of d causes a change of cooling. The alloys were
examined before and after heating up to 900 K. Phase
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changes were studied using NETZSCH scanning di�er-
ential calorimetry (heating rate 20 K/min), 57Fe Möss-
bauer spectrometry (in transmission geometry with con-
stant acceleration spectrometer, using a 57Co source dif-
fused in a rhodium matrix) and magnetic measurements
(SQUID magnetometer Quantum Design XL-7 and Fara-
day type magnetic balance).

3. Results and discussion

Figure 1 shows an example of the DSC and
thermomagnetic M(T ) measurements for the
(Fe80Nb6B14)0.9Tb0.1 alloy with d = 1.5 mm. The
magnetization curve clearly indicates the Curie temper-
ature Tc (related to the Tb2Fe14B phase) and structural
changes (the increase of M above 680 K). The observed
magnetization increase is attributed to formation of a
magnetic phase with higher Tc.

Fig. 1. DSC and M(T ) curves for the
(Fe80Nb6B14)0.9Tb0.1 alloy with d = 1.5 mm.

The DSC curve reveals two exothermal peaks as-
cribed to the magnetic transition and phase transition
(or changes). Similar results were obtained for the other

(176)

http://dx.doi.org/10.12693/APhysPolA.126.176
mailto:artur.chrobak@us.edu.pl


Phase Stability of (Fe80Nb6B14)0.9Tb0.1 Bulk Nanocrystalline Magnet 177

Fig. 2. Magnetic hysteresis loops measured at T =
300 K for the (Fe80Nb6B14)0.9Tb0.1 alloy with di�erent
d (before and after annealing).

examined samples with di�erent d. Phase detection was
performed based on 57Fe Mössbauer spectrometry (not
shown here) recorded at room temperature. For all stud-
ied cases the spectra were deconvoluted into a set of ele-
mentary Zeeman sextets (attributed to di�erent phases)
by a least-square �t procedure. The results are presented
in Table.
Let's note that, except the sample with d = 1 mm, a

decrease of Tb2Fe14B and increase of α-Fe content after
annealing were observed.
Figure 2 shows magnetic hysteresis loops measured at

T = 300 K for all studied alloys before and after anneal-
ing.

TABLE

Phase content analysis (percentage), determined from Möss-
bauer spectra for the (Fe80Nb6B14)0.9Tb0.1 alloy. (A � as
cast, B � after annealing).

d Tb2Fe14B TbFe α−Fe Paramagn.

(mm) A B A B A B A B

0.5 75 17 9 14 - 53 16 16

1 65 69.5 15 15.5 - - 14 15

1.5 62 56 15 11 6 17 17 16

2 64 56 18 11 - 17 18 16

As it is shown, the annealing causes a deterioration of
hard magnetic properties (decrease of the coercive �eld).
Apart from the main subject, for the as-cast alloys one
can observe a signi�cant magnetic hardening as a func-
tion of d (or cooling rate during sample fabrication) i.e.
Hc increases from 0.57 T to 2.66 T for d = 2 mm and
d = 0.5 mm, respectively. This e�ect was studied in

details in a separate work [9]. Generally, the change of
magnetic properties is related to the phases variation.
The less stable is the alloy with d = 0.5 mm, where the
signi�cant decrease of Tb2Fe14B and separation of α-Fe
was observed. In contrast to this, the most stable is the
alloy with d = 1 mm, where in the as-cast state, as well
as after heating, the formation of α-Fe was not observed.
This fact has a practical meaning i.e. the annealed alloy
is thermodynamically stable and possesses a good poten-
tial as permanent magnet for high temperature applica-
tions (PM motors, actuators, sensors etc.).

4. Conclusions

Referring to the (Fe80Nb6B14)0.9Tb0.1 bulk alloys the
main conclusions can be summarized as follows.
Heating up to 900 K reveals some structural changes

that occur at temperatures above 680 K (DSC and
M(T ) measurements). The performed phase analysis,
using 57Fe Mössbauer spectrometry, indicates the de-
crease of Tb2Fe14B and increase of α-Fe content for the
heat treated samples. The most stable is the alloy with
d = 1 mm, where the formation of α-Fe phase was not
observed.
Regarding magnetic properties, the decrease of d

causes signi�cant hardening, i.e. the coercive �eld in-
creases from 0.57 T to 2.66 T for d = 2 mm and
d = 0.5 mm, respectively. The heating leads to the
observed deterioration of hard magnetic properties, es-
pecially for the alloy with d = 0.5 mm. However for
d = 1 mm, the alloy after annealing is quite stable and
can be use in some high temperature applications.
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