
B. Hertzberger et al. (Eds.) : HPCN Europe 2001, LNCS 2110, pp. 133-139, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The GRB Library: Grid Computing with Globus in C

Giovanni Aloisio, Massimo Cafaro, Euro Blasi,

 Lucio De Paolis, and Italo Epicoco

ISUFI / High Performance Computing Centre
University of Lecce, Italy

{giovanni.aloisio,massimo.cafaro}@unile.it
{euro.blasi,lucio.depaolis,italo.epicoco}@unile.it

Abstract. In this paper we describe a library layered on top of basic Globus
services. The library provides high level services, can be used to develop both
web-based and desktop grid applications, it is relatively small and very easy to
use. We show its usefulness in the context of a web-based Grid Resource Bro-
ker developed using the library as a building block, and in the context of a
metacomputing experiment demonstrated at the SuperComputing 2000 con-
ference.

1 Introduction

In the last few years, a number of interesting projects like Globus [1], Legion [2] and
UNICORE [3] developed the software infrastructure needed for grid computing [4].
Several grid applications have been developed since then, using the tools and libraries
available. The “first generation” grid applications were highly successful in demon-
strating grid computing effectiveness, fostering subsequent research in the field, but
the lack of consensus about the kind of services a grid should have been providing,
and about what programming models should have been used, proved to be a large
barrier that hindered grid applications development.

To reach a wider community of grid applications developers and users we need to
make easier the transition from desktop computing to the grid. One way to attract the
users is to provide them with a comfortable access to the grid: indeed, current trends
include the development of computing portals [5], to allow trusted users a seamless
access to the grid through the Web.

With regard to the applications developers, an increasing number of tools develop-
ers is now working toward high-level tools and libraries layered on existing grid ser-
vices. That way application development costs decrease because enhanced services
are available and can be readily incorporated into existing legacy codes or new
applications.

In this paper we shall concentrate on the use of the Globus Toolkit as grid middle-
ware, and describe a library for grid programming layered on top of Globus. The pa-
per is organized as follows. Section 2 introduces the library design and section 3 its
implementation. Section 4 presents the Grid Resource Broker, a web-based grid envi-

 Giovanni Aloisio et al. 134

ronment built using the GRB library. We recall related work in the area and conclude
the paper in section 5.

2 Library Design

In this section we present the main ideas that guided us through the process of design-
ing our library. First of all, we selected as grid middleware the Globus Toolkit, be-
cause it is already deployed at many US academic and supercomputing sites, and is
rapidly becoming the “de facto” standard for grid computing at a growing numbers of
sites all over the world. Moreover, the Globus Toolkit is released under a public li-
cense that allows also commercial use and redistribution of the source code.

Using Globus we can transparently benefit from uniform access to distributed re-
sources controlled by different schedulers and from both white and yellow pages in-
formation services whose aim is information publishing and discovery. A security
infrastructure based on Public Key technologies protects network transactions using
X.509 version three digital certificates.

In the design phase, we were faced with the problem of selecting a number of basic
services among those provided by Globus, to be enhanced in the library. We decided
to concentrate the attention on the most used services, because past experiences with
several groups of Globus users revealed that only a small number of core services are
effectively used by a vast majority of users. These services include:

1. Remote job submission for interactive, batch and parameter sweep jobs;
2. Job status control;
3. Resource discovery and selection through queries to GRIS and GIIS servers;
4. Remote file management using GSI FTP servers (Globus Security Infrastructure

FTP).

Another requirement was to keep small the number of functions composing our li-

brary, in order to reduce the time needed to learn how to use them. Moreover, we also
planned to make the library suitable for the development of web-based and desktop
grid applications. Finally, the primary requirement was to provide users with enhanced
Globus services. Using our library, the users can write code to:

1. Submit interactive jobs on a remote machine staging both the executable and the

input file(s).
2. Submit batch or parameter sweep jobs on a remote machine. Again, we provide

support for automatic staging of executable and input file(s). Moreover, the output
file(s) can also be transferred automatically upon job completion to another ma-
chine. Information related to the job is stored in a request file, to be used when the
users want to enquiry about the job status.

3. Check a batch or parameter sweep job status. A Globus job can be either PEND-
ING, ACTIVE, SUSPENDED, FAILED or DONE. If PENDING, the job is wait-
ing to be executed sitting in a queue; during execution the job is ACTIVE and can

The GRB Library: Grid Computing with Globus in C 135

temporarily become SUSPENDED if managed by a preemptive scheduler. If some-
thing goes wrong the job is marked FAILED, while in case of normal termination
its status becomes DONE. Moreover, we signal to the user when the job was started
and how, including the command line and the arguments given. It’s worth noting
here that Globus provides only a url which uniquely identifies a job.

4. Query a GRIS server to determine the features of a specific computational resource.
Each machine running Globus can be queried about its features because a small
LDAP server called GRIS (Grid Resource Information Service) is up and listens for
connections on the IANA registered port 2135. The GRIS stores static and dynamic
information related to hardware and system software, and can be thought of as a
white pages service.

5. Query a GIIS server to find computational resources matching specified criteria.
An institution or organization may decide to setup a GIIS service (Grid Index In-
formation Service). Like the GRIS, the GIIS is an LDAP server that collects infor-
mation maintained in each GRIS server available in the institution or organization.
Thus, we can exploit the GIIS server like a yellow pages service to allow users to
find, if available, computing resources with specific features, e.g. amount of mem-
memory, number of CPUs, connectivity, operating system, load etc. Although
Globus provides a command line tool called grid-info-search, the tool itself can
only deal with strings, meaning that users can not compare numerical quantities us-
ing standard relational operators, because in this case the lexicographical order will
be used in place of the numerical one. Since numerical quantities are stored in
GRIS and GIIS servers as strings, it is meaningless to search for machines with at
least 256 Mb of memory using the Globus tool. Our functions instead do automati-
cally proper conversions.

3 Implementation

The GRB library is made of a small number of functions; it is based on Globus ver-
sion 1.1.3 or 1.1.4 and requires also the Expect library. The implementation of some
of the functions is a bit tricky, due to our commitment to support web-based grid
computing in the form of CGIs. Some of the functions in our library take as one of
their parameters a pointer to an external, user defined function. This is an output func-
tion that the user can specialize to output data to the console, properly formatted as
HTML for web based applications or even dedicated to insert text in graphical wid-
gets.

We begin the discussion about the implementation considering first how to authen-
ticate to the grid. Computational grids based on the Globus Toolkit require that users
authenticate once to the grid (single sign on) using a X.509v3 digital certificate before
doing anything else. However, the user’s certificate is only used to generate a proxy,
which acts on behalf of the user (implementing a restricted form of delegation) and
lasts for a specified number of hours. The two functions grb_generate_proxy and
grb_destroy_proxy are used to create a valid proxy to start a grid session and to re-
move it later. Since Globus does not provide an API for proxy management, we call

 Giovanni Aloisio et al. 136

the grid-proxy-init and grid-proxy-destroy tools. However, to allow job submission
from the web, two issues need to be solved. We must create a suitable user environ-
ment, switching from the traditional web-server nobody user to the real Globus user
and adding some required Globus environmental variables to the user’s environment.
As a matter of fact, simply switching from nobody to the Globus user ID using the
unix setuid function does not replace the nobody user’s environment with the Globus
user’s one. The function grb_create_env that does the job is thus required for web
based grid applications.

The other issue is related to the use of some Globus tools like grid-proxy-init and
Globusrun from the web. We can not simply fork/exec these Globus commands from
a CGI, it will not work because of the way Globus uses ttys. Instead, we need to drive
it from a pseudo tty. This is why we use the Expect library.

Some of the functions in our library exploits the information stored in a file called
the user’s profile. This file contains information about the computational resources on
the grid that the user can access. For each machine the user supplies the hostname
(required to contact the Globus resource manager and GSI-FTP server), the pathname
to her shell (required to access the user’s environment on the remote machine), and a
float number representing the node cost per hour in her currency (can be used for job
scheduling). We plan to add more information in the future to allow for more complex
scheduling algorithms. A number of functions in the GRB library deals with user’s
profile management (e.g. for adding, removing of updating a grid resource dynami-
cally).

We now come to job submission. The GRB library supports interactive, batch and
parameter sweep jobs. We decided to use the Globusrun tool instead of the GRAM
APIs for interactive job submission in the grb_job_submit function because this tool
supports automatic redirection of job’s output. For batch submission we used the
GRAM APIs to write both a low level blocking (the function returns only when the
job to be submitted is terminated) and non blocking version (the function submits the
job and returns immediately) called respectively grb_batch_wait and
grb_batch_nowait.
The function grb_job_submit_batch provides additional support for automatic staging
of executable and input file(s) using internally grb_gsiftp_copy. We recall here the
possibility to start even a graphical client by setting properly the display_ip_addr
parameter, so that the user just need to authorize the remote host to redirect the dis-
play on her machine using the “xhost” command on Unix machines.

 Finally, parameter sweep jobs can be submitted using grb_job_submit_parameter.
A number of users need to run the same executable with different input to do parame-
ter study. We assume that the user’s input files are called input-1, input-2,...,input-n.
Moreover, we assume that all of the input files are stored on the same machine and
allow output files to be transferred on a machine possibly different from the machines
hosting the executable and input files. GSI-FTP is used if needed for automatic stag-
ing of executable and input/output files.

Two functions are provided to check a batch or parameter sweep job status:
grb_batch_job_status and grb_parameter_job_status. These functions read the infor-
mation about submitted jobs that is stored in requests files at job submission time and
contact remote Globus jobmanagers to inquiry about job status.

The GRB Library: Grid Computing with Globus in C 137

Information about grid resources can be obtained by querying Globus GRIS and
GIIS servers. The functions grb_search_gris and grb_search_giis contact these serv-
ers using the LDAP protocol. Simple resource brokers can be built easily by searching
Globus LDAP servers to acquire the features of grid resources available in the user’s
profile, comparing them to some user’s specified criteria in order to dynamically se-
lect one or more computational resources suitable for a batch or parameter sweep job,
and submitting to the resources with a best match. This is the approach we adopted for
our web based Grid resource Broker.

4 The Grid Resource Broker

As an example of use of the GRB library, we developed a web-based Grid Resource
Broker [6][7]. This is a computing portal that allows trusted users to create and handle
computational grids on the fly exploiting a simple and friendly GUI. The Grid Re-
source Broker provides location-transparent secure access to Globus services. Users
do not need to learn Globus commands, nor to rewrite their existing legacy codes.

The use of the library results in a dramatic decrease of the time needed to develop
these functionalities; the main effort reduces to handling HTML forms, demanding to
the library the issues related to grid programming.

Our portal architecture is a standard three-tier model. The first tier is a client
browser that can securely communicate to a web server on the second tier over an
HTTPS connection. The web server exploits Globus as grid middleware to make
available to its clients a number of grid services on the third tier, the computational
grid. The Globus toolkit provides the mechanisms for submitting jobs to remote re-
sources independently of the resource Schedulers, querying for static and dynamic
information about resources composing the computational grid using the LDAP API,
and a secure PKI infrastructure that uses X.509v3 digital certificates.

There are no restrictions on what systems/sites could be served by GRB, because of
the way user profiles are handled. As a matter of fact, GRB can be accessed regardless
of system/geographical location and Grid Resources can be added/removed dynami-
cally. In order to use GRB, a user must apply to the ISUFI/HPCC (University of
Lecce) to get an account, to the Globus Certification Authority to get a certificate, and
she must properly setup her Globus environment on the machine running the web
server. We assume that Globus v1.1.3 or v1.1.4 and GSI-FTP is installed and listening
on port 2811 on each one of the computing resources the user adds to her profile;
moreover we assume that the GRIS server is up and running on the default port 2135
on each computing resource and that it can be queried starting from the distinguished
name “o=Grid”. The user’s client browser must be configured to accept cookies.

To start using the GRB, a user authenticate herself to the system by means of her
login name on the GRB web site and her PEM pass phrase (Privacy Enhanced Mail)
that protects the globus X.509v3 certificate. The transaction exploits the HTTPS (SSL
on top of HTTP) protocol to avoid transmitting the user’s PEM pass phrase in clear
over an insecure channel. Once authenticated, a user can start a GRB session that will
last for at most twelve hours or until she invalidate her session using the logout tool.

 Giovanni Aloisio et al. 138

A preliminary version of our library was also used in the metacomputing experi-
ment (see Fig. 1) demonstrated at the Supercomputing 2000 conference held in Dallas.
In particular, the functions related to resource discovery and selection in the context of
the Egrid testbed [8] were used to allow Cactus [9] to query the testbed information
service.

Fig. 1. The Egrid Testbed.

5 Related Work and Conclusions

The authors are not aware - as of this writing - of any projects aimed at releasing
source code for enhanced Globus services. Anyway, the following two projects have
provided useful software to help develop computing portals that provide access to the
grid through basic Globus services:

1. SDSC GridPort Toolkit [10];
2. NLANR Grid Portal Development Kit [11].

The Grid Portal Toolkit (GridPort) provides information services that portals can

access and incorporate; it leverages standard, portable technologies. GridPort makes
use of advanced web, security and grid technologies such as Public Key Infrastracture
and Globus to provide secure, interactive services.

Server-side Perl/CGI scripts build HTML pages, and a combination of
HTML/JavaScript is used on the client side. Portals built on top of GridPort allow

The GRB Library: Grid Computing with Globus in C 139

users job execution and data management through a comfortable web interface. Ex-
amples of portals built using GridPort are HotPage, LAPK, NBCR Heart and
GAMESS.

The Grid Portal Development Kit provides access to Grid services exploiting Java
Server Pages (JSP) and Java Beans. Java Server Pages invoke Bean methods to pro-
vide authentication services, management of user profiles, job submission, etc. The
GPDK Java beans build on top of the Globus Java Commodity Grid (CoG) Toolkit
[12].

GPDK Java beans present to web developers an high level interface to the CoG kit.
Moreover, GPDK take advantage of the Myproxy package, so that users can gain
access to remote resources from anywhere without requiring their certificate and pri-
vate key to be located on the web browser machine. The Myproxy server is responsi-
ble for maintaing user’s delegated credentials, proxies, that can be securely retrieved
by a portal for later use.

A library layered on top of basic Globus services was presented in the paper. The
library was designed to provide enhanced grid services and can be used to develop
both web-based and desktop grid applications. Moreover, it is relatively small and
very easy to use. We showed its usefulness in the context of a web-based Grid Re-
source Broker developed using the library as a building block, and in the context of a
metacomputing experiment demonstrated at the SuperComputing 2000 conference.

References

1. I.Foster and K.Kesselman, “GLOBUS: a Metacomputing Infrastructure Toolkit”, Int. J.
Supercomputing Applications (1997), 115-28

2. A.S. Grimshaw, W.A. Wulf, J.C. French, A.C. Weaver and P.F. Reynolds Jr., “The Legion
Vision of a Worldwide Virtual Computer”, CACM 40 (1997)

3. J. Almond, D.Snelling, “UNICORE: uniform access to supercomputing as an element of
electronic commerce”, FGCS Volume 15 (1999), Numbers 5-6, October 1999, pp. 539-
548

4. I.Foster and C.Kesselman (eds.), The Grid: Blueprint for a new Computing Infrastructure,
(Morgan Kaufmann Publishers, 1998) ISBN 1-55860-475-8

5. http://www.computingportals.org
6. http//sara.unile.it/grb
7. G.Aloisio, E.Blasi, M.Cafaro, I.Epicoco, The Grid Resource Broker, a ubiquitous grid

computing framework, submitted to Journal of Scientific Programming
8. G.Aloisio, M.Cafaro, E.Seidel, J.Nabrzyski, A.Reinefeld, T.Kielmann, P.Kacsuk et al.,

Early experiences with the Egrid testbed, to appear in Proceedings of CCGRID2001,
Brisbane, Australia

9. G.Allen,W.Benger,T.Goodale,H.Hege, G.Lanfermann, A.Merzky, T.Radke, and E.Seidel,
The CactusCode: A Problem Solving Environment for the Grid. In Proc.High Performance
Distributed Computing (HPDC-2000), pp 253–260, IEEE Computer Society, 2000

10. SDSC GridPort Toolkit, https://gridport.npaci.edu
11. NLANR Grid Portal Development Kit, http://dast.nlanr.net/Features/GridPortal
12. G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, “CoG Kits: A Bridge

between Commodity Distributed Computing and High-Performance Grids”, accepted to
the ACM 2000 Java Grande Conference, 2000

http://www.computingportals.org/
http://dast.nlanr.net/Features/GridPortal

	1 Introduction
	2 Library Design
	3 Implementation
	4 The Grid Resource Broker
	5 Related Work and Conclusions
	References

