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Nanoparticles of chalcopyrites copper indium gallium sul�de (CuInxGa1−xS2 or CIGS) and copper indium
gallium selenide (CuInxGa1−xSe2 or CIGSe) were fabricated sonochemically. They were characterized by X-
ray di�raction, scanning electron microscopy, energy dispersive X-ray spectroscopy, high resolution transmission
electron microscopy, selected area electron di�raction, and di�use re�ectance spectroscopy. The electrical and
photoelectrical properties of the fabricated nanomaterials were investigated.
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1. Introduction

Nanoscale chalcopyrites copper indium gallium sul�de
(CuInxGa1−xS2 or CIGS) and copper indium gallium se-
lenide (CuInxGa1−xSe2 or CIGSe) are semiconductors
useful for the manufacture of solar cells, because of the
possibilities of large-area production and the signi�cant
cost-reduction in device fabrication [1, 2]. Recently [3],
these nanomaterials have been surfactant-free synthe-
sized sonochemically at 373 K. This synthetic approach
eliminates the need for organic stabilizers, which may
act as insulators in the �nal photovoltaic device, and re-
duces the number of reaction steps for synthesis of high-
quality Cu(In,Ga)(S,Se)2 nanocrystals. With regard to
the nanocrystal ink, a simple process for solar cell fab-
rication by using a non-vacuum technique based on the
CIGSe absorber layer was presented [3].
The aim of this paper was to synthesize the CIGSe and

CIGS nanomaterials using ultrasound radiation at lower
temperature than it was done in [3]. The other goal of
this paper was to use the frequency-dependence method
of photoconductivity investigations [4, 5] to determine
carrier lifetimes in the CIGSe nanomaterials.

2. Experiment

CIGSe and CIGS were synthesized sonochemically at
the temperature of 323 K using autotune high inten-
sity ultrasonic processor VCX750 Sonics & Materials
equipped with cup horn (f = 20 kHz, P = 300 W). In
a typical procedure, CuCl (0.113 g), In(OAc)3 (0.233 g),
Ga(NO3)3 · xH2O (0.094 g), and Se powder (0.180 g)
were mixed with 12 cm3 ethylene glycol and 4 cm3 hy-
drazine monohydrate (98%). To eliminate the eventual
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remaining substrates CIGSe sol was �ve times rinsed with
deionized water and centrifuged. Product of this proce-
dure was dried in vacuum (p = 1 mbar) at room temper-
ature (Fig. 1a).
The powder X-ray di�raction (XRD) of the synthe-

sized CIGSe and CIGS was performed on JEOL JDX-7S
di�ractometer with Cu Kα radiation. Scanning electron
investigations and energy dispersive X-ray (EDS) analy-
sis were taken on Hitachi S-4200 microscope with Noran
Instruments EDS Voyager 3500 spectrometer. The high-
resolution transmission electron microscopy (HRTEM)
and selected area electron di�raction (SAED) were per-
formed on JEOL - JEM 3010 microscope.
The optical di�use re�ection spectroscopy (DRS) was

carried out on spectrophotometer PC-2000 (Ocean Op-
tics Inc.) equipped with integrating sphere ISP-REF
(Ocean Optics Inc.) [6]. The DC electric characteristics
were registered in darkness using Keithley 6517A elec-
trometer. The frequency-dependent photoconductivity
current was measured using EG&G 5110 lock-in ampli�er
and acousto-optically modulated Ar laser (λ = 488 nm).
Thick �lms of CIGSe were prepared for these investi-
gations on alumina #103 substrates (Electronics Design
Center, Case Western Reserve University) with interdig-
itated electrodes (preparation details are the same as the
presented in [7]). The ohmic behavior of electric current
in the investigated samples was evaluated with applied
�eld from �4 kV/m to +4 kV/m. All electric measure-
ments were performed in air conditions at 298 K using
LabView programs.

3. Results and discussion

The powder XRD pattern of the sonochemically pre-
pared CIGSe (Fig. 1b) shows well de�ned, sharp peaks.
So, it indicates that the product can be well crystallized.
The highest di�raction peaks correspond to the (112)
and (220) or (104) as well as (312) or (116) planes of
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CuIn0.85Ga0.15Se2. The identi�cation was done using the
PCSIWIN computer program and the data from JCPDS-
International Centre for Di�raction Data 2007. However,
the additional di�raction peaks show the existence of an-
other crystalline material in the sample. The di�raction
peaks a, b, c, and d correspond to CuSe. Therefore, the
elemental atomic ratio of 0.24:0.27:0.04:0.45 for Cu, In,
Ga and Se determined by EDS investigations cannot be
used for determining the molar composition of the syn-
thesized CuInxGa1−xSe2.

Fig. 1. Typical SEM micrograph (a) and the powder
XRD pattern (b) of CIGSe xerogel.

The HRTEM image reveals that the product consists of
nanoparticles with average size of 10�15 nm (Fig. 2). The
indicated fringe spacings of d = 0.306(6) nm correspond
to the interplanar distances between the (112) planes of
CuIn0.85Ga0.15Se2 crystal.

Fig. 2. Typical HRTEM image of CIGSe nanoparti-
cles. The fringe spacings of d = 0.306(6) nm correspond
to the interplanar distances between the (112) planes of
CIGSe crystal.

Figure 3 presents the di�use re�ectance (Rd) spectrum
of prepared CIGSe. Unfortunately, the well-known [8]
value (≈ 1.04 eV) of energy gap of CIGSe is behind
the spectral range of used experimental setup. The
abrupt decrease in Rd when radiation becomes more
intensively absorbed with decreasing wavelength corre-
sponds to some optical absorption edge [6] of another
component of the sample. The values of Rd were

converted to the Kubelka�Munk function (known to be
proportional to the absorption coe�cient of light in the
investigated material (α)) [6]:

FK−M(Rd) =
(1−Rd)

2

2Rd
∼ α. (1)

In the case of direct allowed absorption one expects

FK−M =
A1

√
h ν − Eg

h ν
, (2)

where Eg represents the direct allowed energy gap, A1

is a constant parameter. Therefore Fig. 3 presents the
spectrum of FK−M transformed into form of (FK−Mhν)

2.
The value of energy gap Eg2 = 1.94(1) eV was deter-
mined by the intersection of the straight-line extrapo-
lations below and above the small photon energy knee
of the (FK−Mhν)

2 line. The determined value of Eg2 is
close to the value 2.03 eV known [9] for CuSe thin �lms.
Such interpretation of the observed energy gap Eg2 is in
agreement with the results of XRD investigations.

Fig. 3. Spectra of the di�use re�ectance coe�cient
(black data) and the Kubelka�Munk function (red data)
calculated for the DRS data of CIGSe xerogel (dash
black line represents the least squares �tted theoretical
dependence (2) for direct allowed absorption; solid black
line �ts the slope of spectral dependence of transformed
values of FK−M in small hν range; vertical line shows the
determined energy gap Eg2 = 1.94(1) eV (description in
the text).

Fig. 4. Photoconductivity current responses on
switching on (↑) and switching o� (↓) illumination of
CIGSe in air (λ = 488 nm; P = 50 mW; E = 400 V/m;
T = 298 K).
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Figure 4 presents typical responses of DC photocon-
ductivity current on switching on and switching o� illu-
mination of prepared CIGSe thick �lm. After switching
on illumination the electric conductivity current mono-
tonically increases due to photogeneration of excess car-
riers. When illumination is switched o� the current de-
creases due to recombination of excess carriers (Fig. 4).
This is the well-known kinetics of photoconductivity in
semiconductors.
Figure 5 shows photoconductivity current in CIGSe

as a function of frequency (f) of illumination chopping.
The results were least-squares �tted with the follow-
ing dependence:

IPC =
A√

1 + (2πfτ)
2
+
B

f
, (3)

where the �rst term describes in�uence of carrier life-
time (τ) on photoconductivity response [4] and the sec-
ond term presents so-called 1/f noises in photoconduc-
tivity current [10]. The origin of the 1/f noises is not
well-known. It is assumed that metastable electron traps
and crystal defects in photodetectors and in their inter-
faces are responsible for these noises [5].

Fig. 5. Frequency dependence of photoconductivity
current �owing through the fabricated CIGSe sample.
Solid curve represents relation (3) calculated for the
least-squared �tted values of A = 6.71(4) × 10−11 A,
B = 1.55(8)× 10−8 A/s, and τ = 3.85(7)× 10−6 s.

The �tting of the photoconductivity data with Eq. (3)
is rather good. However, the determined carrier lifetime
τ = 3.85(7) × 10−6 s is relatively large (in comparison
with literature data on CIGSe). Time-resolved photolu-
minescence measurements on polycrystalline CIGSe thin
�lms corresponding to high-e�ciency solar cells indicated
recombination lifetimes as long as 250 ns [11]. Hence, the
appropriate investigations are necessary in the future.

4. Conclusions

In summary, very simple, sonochemical synthesis of
CIGSe and CIGS nanophases can be performed in rela-
tively low temperature. It is a convenient, fast, mild and
e�cient route for producing CIGSe and CIGS nanopow-
ders. The XRD, HRTEM and SAED patterns show that
the as-prepared nanoparticles are well crystallized. How-
ever, the product of the performed sonochemical synthe-
sis contains CuSe as an additional component. It should
be noted that all CIGSe, CIGS and CuSe are promising
nanomaterials for applications in printed photovoltaics.
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