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Application of the Dot-Ring Nanostructure to Control

Electrical Transport in the Coulomb Blockade Regime
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and E. Zipper
Department of Theoretical Physics Institute of Physics, University of Silesia,

Uniwersytecka 4, 40-007 Katowice, Poland

Transport properties of a two-dimensional nanostructure composed of a quantum dot surrounded by a quantum
ring (dot-ring nanostructure), are discussed. This complex system is a highly controllable object. Conduction
through dot-ring nanostructure depends crucially on the coupling strength of its states to the electrodes, which
is related to the spatial distribution of the electron's wave functions in dot-ring nanostructure. This distribution
can be strongly modi�ed, e.g., by the electrical gating so that the ground and excited states move between the
inner dot and the outer ring. In this paper we show that this property can be used to control single-electron DC
current through dot-ring nanostructure in the Coulomb blockade regime so that it can be used as a single electron
transistor.
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1. Introduction

Quantum nanostructures (QNs) [1, 2] exhibit new
physics which has no analogue in real atoms. In par-
ticular, the electronic properties of QNs can be �nely
tuned adjusting structural parameters such as size and
shape. The latter parameter is particularly important
as its small variations can cause dramatic changes of the
electronic properties [3]. Thus especially interesting in
this context are complex nanostructures.
The purpose of this study is to demonstrate a highly

controllable transport properties of a two-dimensional
nanostructure in the form of a quantum dot (QD) sur-
rounded by a quantum ring (QR), named afterwords
a dot-ring nanostructure (DRN). Such structures have
been recently fabricated [4]. By changing the con�ne-
ment potential, e.g., by the electrical gating one can
change the shape and distribution of the electron wave
functions which determine many physical, measurable
quantities [5, 6].
Conduction through DRN is strongly related to the

coupling strength of its states to the electrodes which,
in turn, depends on the localization of the electron's
wave function: states localized in QD (QR) are weakly
(strongly) coupled to the electrodes. We show that this
property can be used to control single-electron DC cur-
rent through DRN in the Coulomb blockade regime.
In particular, we show that one can adjust the con�ne-
ment potential of DRN so that it can be used as a single
electron transistor.

2. Model and assumptions

We consider a 2D, circularly symmetric dot-ring nano-
structure de�ned by a con�nement potential V (r) occu-
pied by a single electron. The DRN is composed of a QD

surrounded by a QR and separated from the ring by a po-
tential barrier V0(r) which allows the electron tunneling
between the QD and QR. A cross section of a DRN with
explanation of symbols used throughout the text is pre-
sented in Fig. 1.

Fig. 1. Cross section of the con�ning potential V (r)
of a DRN. The potential is parameterized under the as-
sumption that all values are measured with respect to
the bottom of the QR part of the DRN. Vqd, V0 and V1

denote the bottom the QD part, the height of the poten-
tial barrier between the QD and QR, and the value of
the potential outside the DRN, respectively. Rb and Rqr

denote the radii of the barrier and the QR, respectively.

In our model calculations we take the radius of DRN
r0 = 80 nm, V1 = 90 meV and set the zero potential
energy at the level of Vqr, i.e., the potential well o�set
is equal to Vqd. Such a con�nement potential, which
conserves the circular symmetry [7], can be obtained in
many ways, e.g., using atomic force microscope to locally
oxidize the surface of a sample [8], by self-assembly tech-
niques (in particular by pulsed droplet epitaxy) [4, 9],
by the split gates [10], or by lithography.
We solve numerically the Schrödinger equation assum-

ing the Gaussian form of the con�ning potential [5].
The energy spectrum of the system consists of a set
of discrete states Enl due to radial motion with radial
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quantum numbers n = 0, 1, 2, . . ., and rotational mo-
tion with angular momentum quantum numbers l =
0,±1,±2 . . .. The single particle orbital wave function
is of the form

Ψnlσ = Rnl (r) exp (i lφ) , (1)

with the radial part Rnl(r). We neglect here the spin
degrees of freedom; the spin dependent transport will be
discussed elsewhere.
In the considered case the electron states and their

wave functions are known exactly but they strongly de-
pend on the con�nement V (r) which can be modi�ed,
e.g., by electrical gating. In Fig. 2 we show the distribu-
tion of the wave functions of the ground and exited states
for di�erent values of Vqd.
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Fig. 2. Illustration of the wave function engineering:
for Vqd = −5 meV both the ground and the �rst excited
state wave functions are located in QD, for Vqd = 1 meV
the ground state wave function remains in QD, but the
wave function of the �rst excited states is moved to QR,
and �nally for Vqd = 5 meV both the wave functions are
in QR. In all cases V0 = 15 meV has been assumed.
The dotted and dashed vertical lines indicate Rb and
Rqr, respectively.

We see that the localization of the individual wave
functions of the ground and excited states changes be-
tween the QD and the QR parts of DRN when we change
Vqd from Vqd < 0 to Vqd > 0. Such manipulations can be
done experimentally by the application of a disk-shaped
potential gate below the inner QD.
In this work we calculate the single-electron DC cur-

rent through DRN in the Coulomb blockade regime near
the N = 0 ↔ 1 transition. It means that one can tran-
sit only a single electron at a time through the structure,
while the higher order tunneling events are neglected [11].
The second electron cannot enter because it would have
cost the Coulomb energy EC, |µS − µD| ≤ EC. Since in
our studies both the energy spacing of the DRN states
and the source drain bias are much larger than the ther-
mal energy, we take T = 0.

3. DRN as a single electron transistor

The system we study is the DRN weakly coupled to
the source and drain electrodes. ΓS, ΓD denote the sub-
sequent tunnel rates. In this chapter we focus on the
case of equal tunnel barriers, i.e., ΓS = ΓD = Γ . We also
assume that only the ground state is in the bias window,
µD ≤ EG ≤ µS. The current in the pure QD case ex-
hibits then the current peak [2]. However in the case of

DRN we can manipulate the con�nement so that we ob-
tain the transistor behavior: if the electron is located in
the inner QD the conduction through DRN will be small
due to negligible couplings Γ , whereas when the electron
is located in the outer QR the conduction will be high
due to large Γ 's. We have investigated di�erent sets of
parameters to get proper transistor behavior. The DC
current I is calculated from the formula

I = −e ΓSΓD

ΓS + ΓD
= −e Γ

2
forΓS = ΓD, (2)

where −e is the electron charge.

Many investigations of transport properties make use
of the high tunability of the tunnel barriers of the elec-
trode by voltage pulses [11]. In our analysis we utilize
instead the high tunability of the electron states in DRN
while keeping the barrier parameters constant. The tun-
nel rate Γ depends on the overlap between the DRN wave
function and the wave function of the electrode which
can be strongly modi�ed by changing the potential Vqd
� the bottom of the inner QD and the height of the
barrier V0. The Γ 's have been calculated by us micro-
scopically using the method proposed in [12].
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Fig. 3. Current through a DRN as a function of the po-
sition of bottom of the QD potential Vqd for the barrier
height V0 = 0 (upper part) and V0 = 20 (lower part).
The insets show the radial part of the corresponding
wave functions for di�erent Vqd. The dotted and dashed
vertical lines indicate Rb and Rqr, respectively.
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In Fig. 3 we present the results of the calculations of the
current as a function of Vqd for V0 = 0 and V0 = 20 meV.
The distribution of the ground state wave functions for
di�erent values of the parameters is shown in the insets.
We see that in the absence of the barrier V0 = 0 the in-
crease of the current is rather small. In this case increas-
ing Vqd gradually pushes the ground state wave function
towards the outer parts of the DRN thus increasing the
coupling between the ground state and the electrodes.
However, the steepness of the I�Vqd characteristics is sig-
ni�cantly larger for V0 = 20 meV. In this case the wave
function of the ground state cannot smoothly evolve from
the QD to the QR parts of the DRN. Instead, for some
critical value of Vqd it is suddenly transferred through the
barrier, which results in a sudden increase of the current.
The switching is even faster for larger values of V0.

4. Conclusions

One of the important properties of DRN is the high
controllability of the shapes of the electron wave func-
tions. We have shown that this very feature o�ers the
possibility to build a single electron transistor based
on di�erent physical mechanism than in ordinary QDs.
Namely, by placing the electron ground state in the bias
window one can regulate the current by changing the lo-
cation of the wave function by electrical gating. Such
complex systems with a single or a few electrons trapped
are potentially useful for nanoelectronics as they require
very little energy to supply.
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