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PARTICLE PHYSICS FROM THE NONCOM M UTATIVE  
GEOM ETRY PO IN T OF V IEW *’**

J. S l a d k o w s k i

Institute o f  Physics, University of Silesia 
Uniwersytecka 4, 40-007 Katowice, Poland

(Received M ay 9, 1994)

Recent development in noncommutative geometry generalization of 
gauge theory is reviewed. The mathematical apparatus is reduced to 
minimum in order to allow the non-mathematically oriented physicists to 
follow the development in this interesting field of research.

PACS numbers: 03.65. Fd

1. Introduction

The unification of electromagnetic and weak interactions is one of the 
biggest achievements of theoretical physics (the GWS model). This model 
successfully describes all known experiments involving electroweak interac
tions, although the gauge sector is not yet directly accessible in experiment 
[1]. We believe that the existence of the Higgs particle and the missing 
members of the third family will be soon confirmed. The situation is far 
less satisfactory from the theoretical point of view because the GWS model 
contains too many free parameters and the symmetry breaking mechanism 
is not yet understood. Much research have been made into the structure of 
string theories hoping to find answers to those questions [2]. Recently, new 
ideas that make use of the Connes’ noncommutative geometry have been 
put forward [3]. Connes managed to reformulate the standard objects of dif
ferential geometry in a purely algebraic way. This allows for generalization 
of differential geometry to the cases of sets more exotic than manifolds. This
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new formalism has been immediately applied in gauge theory because it al
lows for generalization of the Kaluza-Klein program to the discrete internal 
space case.

2. M a in  id ea s o f  n o n c o m m u ta tiv e  g e o m e tr y

Mathematicians have proved that a given topological space X  can be 
equivalently described by the (commutative) algebra C ( X )  of real (complex 
in the complex case) valued continuous function on X .  It is also possible to 
describe the standard notions of differential geometry in terms of algebraic 
structures on C ( X ) .  We have the following correspondence (as this review 
is aimed at nonmathematically-oriented readers we will not give the precise 
definitions that we will not need; they can be found in [3, 4]):

topological space = C ( X )
manifold M  =  C ° ° ( M )
vector bundle on M  = projective module over C ° ° ( M )
connection = “universal” connection

The positive answer to the question: can one go further and get rid of  
the adjective commutat ive  in front  o f  the algebra in question? was given by 
Connes [3]. The result of this generalization, referred to as noncommutative 
geometry, allows us to do differential geometry on a more sophisticated 
level. As differential geometry is widely used in theoretical physics, it is 
not surprising that the newly invented noncommutative geometry became 
a very promising tool in physicists’ hands. Here we will restrict ourselves to 
the particle physics. To do “the noncommutative particle physics”, one has 
to specify the fermionie content of the theory and the gauge group. One 
introduces fermions by defining an appropriate Dirac operator. The gauge 
group can be a priori arbitrary but for technical reasons only unitary groups 
of the algebra A  that generalizes C ( X )

Un =  { u e M n (A) : uu^ =  u fu  — 1 } , (1 )
where M n ( A ) is the n X n matrix with entries from A  fit naturally to the 
formalism. The gauge group is defined by giving “an extension” of the 
algebra of function on the (approximate?) spacetime. To be more precise, 
let us define:
D e fin it io n  1

Given an arbitrary algebra A,  we can construct an algebra f l A  as fol
lows. To every element a e A  we associate a new element da. As a vector 
space, 12A  is the linear space of words built out of the “letters” a and da.



M ultiplication of two such words is performed by concatenation and one 
imposes the associativity and distributivity over the action Further,
we will require that

dl =  0 , d (a o a i)  — daoai — aodai =  0 , and d2 =  0 . (2 )

This is a very abstract notion. To make it more mundane, let us represent it 
in a (physical) Hilbert space H by setting (we neglect the very mathematical 
subtleties such as existence, correctness and so on) via

w (aodaj . . .  dan ) =  i na0 [D, a j ] . . .  [D, a„] , (3)
where D  is the free Dirac operator. In the physically motivated cases, H 
is a ^ 2-graded space, equipped with a grading operator F  (7 5 -matrix) such 
that r 2 =  1 , A  acts on H by even operators and D is an odd operator, i.e.:

aT =  r a  for aeA and D T  = - T D

Below, we will ignore the precise structure of the spacetime and focus our 
attention on the appropriate algebraic structures. To simplify our task, 
however, we will loose the geometrical interpretation.

D e fin it io n  2

A gauge field (connection) is any (skew) form a e & A ,  a  =  ̂  aldbl
such that ^2 a%b% — 1- R determines the covariant derivative V =  d +  a.
The curvature (stress tensor) is given by 0  — da +  a 2.

Now, we have [4, 5, 6]

CYM = \ j ^ ^ ( Q f )  , (4)
M

£ f  =  j  W D  +  t  (a) \ip), (5)
M

where Cy m  and Cp  denote the bosonic and fermionic parts of the La
grangian, respectively.

3. M o d e ls

Let S be a Riemannian (spin) 4-manifold, N q denote the number of 
generations, M j j  be the N q X  N q (J, J =  1 ,2 ,3 ,4 )  “mass matrices” and

D -

(  P 0  Id  
75 ® M 2i 
75 ®  M 31

Vi'S ®  M 41

75 ®
p 0  Id  

75 ®  M 32
■Vr f9 ) ]{/[*<%

75 ® -^13 
75 0  M 23 

P 0  Id

75 ® M 1 4 '
75 ®  M 24
75 ® M 34

(6)



Here, the matrices M j j  describe the fermionie mass sector including mixing 
[7, 8]. Let A — C(S)  ® A,  where A is the algebra

A =  M ni © M „ 2 © M „3 © M n4 (7)

of direct stun of complex n, X  n; matrices. An element at A can be written
as

a =  diag(a1,a 2 ,a 3 ,a 4) , (8)

where (C  (5 )) , where the matrices are “built out” of complex func
tion on spacetime. We have to compute the gauge field

( 9 )

Simple calculation leads to

iD >fei] =
/ pb\ 7 5 ® ( M 126‘2 - f c i M 12) y s ® ( M iab i - b [ M 13) . . . \

7s® ( M 2ib\  -  b \ M 21) 7s® p b \

P V J

where

and

Ai 7 5  ®  0 1 2 7 5  ®  0 1 3 7 5  ® <¡>14
75 ®  <¡>21 M 7 5  ® <¡>23 7 5  ® <¡>24
7 5  ® <¿>31 7 5  ®  <t>3 2 Az 7 5  ® <¡>34
7 5  ®  <P4 1 7 5  ®  0 4 2 7 5  ®  0 4 3 A\

^  = E a \n P b%m

<f>mn —  ̂am (jMmnb'n brnM mnSj
i

Further, we have to calculate

ir (da) =  [D, a] =  Y  [D a i] [D i b* 
i

and

(10)

(U )

(12)

(13)

(14)

(15)
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This leads to

* (e )m m  =  b ' M/* ,£ +  E  \KmP\2\<l>mP + M Tnp\2 - Y m - X 'mm, (16)
Pf m

where

*mm =  E < 4 ^ m ,  (17)
i

= E  E a- i ^ i 2iM^ i 26- ’ 18)
t

F™ =  ^  +  [A™, A«] . (19)

Here, we have ’’generalized”, following [8], the matrices Mij

M i j  -* K i j  ® . (20)

Now, K i j  describes the mixing among families and M i j  describes the vac
uum expectation values o f the Higgs sector. The off-diagonal elements are 
given by

* { Q )mn =
TsXmn (P4> m n  T Am (ffimn +  Mmn) — (<f>m n  ■+■ M m n )  A n ) X m n .

"I" )  ( XmpK pn ((<f>mP d" Mmp) (<j>pn T Mpn) — MmpMpn) , (21)
p ^ m , n

where

Xrnn — ^ "*) ^  ) KjnpKpn ^MrrLpMpnbn bTnMrnpMpri  ̂ .
i P^ m ,n

This completes the bosonic sector of the model:

£ y m  =
m = 4  . 2v

-  E  * v - \  £  (|tfmp|2|^mp + M mp I2 -  Ym) ~ X'mp
m = l  V /

+  \  E  \^rnP\2\d,j. (<pmP +  Mmp) +  A™ (<f>mP +  Mmp) — ((¡>mP +  MmP) APp |2
p ^ m

- I E  E  ||I^mp| ((^mp T MmP)(tj)p n -\- Mpn) MmpNfpn) X?nra| ^



To obtain the SU (2)x U ( l)  electroweak unification model we should 
consider the algebra of the form M 2x2 © -Mix i > where M;Xi are the i X  i 
matrices over the ring of complex valued function on spacetime. This aim  
can be also achieved by considering the extension of spacetime of the form 
S x { 1 , 2 }, the product of the ordinary spacetime 5  by a two-point set [5,
6].

We choose the following free Dirac operator [8]

(23)

with the mass matrix o f the form

(24)

By repeating the above calculation we get

(25)

(26)

a1eM 2 x 2 (C °°(M ))  , a2eM ix i  =  C°° (M) . 

In addition, we will demand that

(27)

Tr Ai =  Tr A2 =  A2

in order to reduce the gauge group from U (2 )x U (l)  to SU(2 ) x U (l). 
The auxiliary fields take the form



and can be easily get rid off. Finally, we get [8]

T y m  =

+  i T r K K ^ d f t  ( H 1 +  H i )  +  A f i  ( H J +  t f 0J )  -  ( H 1 +  H i )  A l \ 2

-  \  ( T r  ( K K t ) 2 -  ( T tK K ^  ( ( H 1 +  H i )  ( h }  +  t f j , )  -  p 2) 2 .

(32)

The fermionie sector has the form

£ /  = h  (D +  w (A ) ) lL +  eR (f i  +  A2) e R

+  IL (H +  H0) e RK  +  eR ( t f  t +  t f j )  /Lt f t . (33)

To get a realistic m odel we have to include the strong interaction. “Un
fortunately” the colour gauge group is unbroken. This makes the things 
more complicated because unbroken gauge symmetries are not in the spirit 
of the noncommutative geometry approach. To this end, we have to ex
tend the gauge group by the SU (3)x U ( l)  factor and identify the two U (l)  
factors (sort of charge quantization condition can be deduced from this [4]).

The left-right symmetric model can be also constructed [8 , 9]. The com
plications connected with the SU (3)cojottr factor suggest that grand unified 
models are more natural then the “partial unification” in the noncommuta
tive framework.

3.2. Grand unification

The formalism discussed here formalism can be easily applied to grand 
unification. If one considers the algebra

C ° ° { S ) ® ( M 5x5 {C )(B M 5x5 (C)(&M1x1 (R))  , (34)

where C  and R  denote the complex and real numbers, and demands the 
permutation symmetry between the two M s* 5 terms, one gets

/  A E H \
tt{p ) =  I E  A H  J . (35)

\ H *  H* 0 /

Here, H  is a complex scalar field and E  a 5 X  5 self adjoint scalar field. One 
have to force the condition Tr A — 0 on the gauge field A in order to reduce



the gauge group from U (5 )to S U (5 ). One cam find such values for the mass 
matrices

M \2  M 2j =  So  5 (36)

and
M 13 =  M 23 =  Ho (37)

that interesting although phenomenologically imacceptable SU(5) GUT 
models are “produced” [8]. The more natural choice of M ix  1 (6 ) =  C
instead of M ix  1 (R)  =  R  in (34) leads to noncommutative analogues of the
“flipped unification” models. Such models might result in a phenomenolog
ically acceptable model. In the seminal paper [10], it was shown that the 
SO(IO) GUT is also possible in the noncommutative framework! One have 
to consider the algebra

P+ C liff(SO (10))P +  © R ,  (38)

where
P+ =  | ( 1  + ¿ 11) (39)

as the factor that extent the algebra of function on spacetime.

3.3. Nonlinear Higgs mechanism

Here we would like to point out that the noncommutative generalization 
of gauge theory may predict a nonlinearly realized spontaneous symmetry 
breaking, known under the acronym BESS (breaking electroweak sector 
strongly) [11-13]. Our m ain argument for BESS can be stated as follows. 
The noncommutative version of the standard model predicts the required 
form of the Higgs sector but fermion masses (Yukawa couplings) and the 
number of generation, N q , are free parameters. There must be at least two 
generations but why not, say, 127? It is natural to suppose that N q is big or 
even unlimited and that the fermion masses emerge as a result of interaction 
and the spacetime structure. We see only the lightest fermions because the 
energy at our disposal is not high enough. The Higgs particle has not yet 
been discovered. Does it really exist as a physical particle? We will show
that it can be thought of in the lim it m j j  —* 00 . The main argument
against BESS is that such models are nonrenormalizable. Noncommutative 
geometry says that our notion of spacetime is only an approximation (an 
effective electromagnetic spacetime). The correct description is in terms of 
algebras. Should we not give up the requirement of renormalizability? BESS 
models can certainly lead to physical prediction [14]. General relativity  
provide us with analogous arguments. Following the rules described above, 
we can construct the Lagrangian of the Standard Model [6 , 15]



£ y m  =  J { \ N g ( F ^ F 1^  +  F ^ F 2^  +  F ^ F ^ )

+  |T r ( M M t )  \ 9 H +  A XH - H ^ A 2\2 

-  \  ^Tr (M A ft ) 2 -  (T r M M ^ y ^ j  (HH^ -  l f } d 4x . (40)

The fermionie action is given by 

C f  =  {0I-D +  tt (/>) IV-)

=  J  (0L-Ô0L +  Ï>r D ^ r  +  Ï>l H iPr  +  TpRH îpL  ̂ d4x , (41)

where we have included the diagonal part of r (p)  term into D.
Let us look closer at the full Lagrangian, C =  L y m  +  ¿ / -  It has the 

standard form except for the N q  factor in front of the gauge field kinetic 
terms that comes from the trace over generations. The analogous term in 
C f give the sum over generations. We know that there are only three light 
generations o f fermions but is that all? We should count all generations 
in £! This means that the coefficient in front of the Fp,v F fiV terms should 
depend on N q  and, in fact, give us information about the total numbers of 
generations because it is absent from the fermionie part! This is not true. 
The orthodox normalization is correct. We should normalize the Dixmier 
trace [3, 4] that leads to (4, 5) so that the coefficient N q  disappears. The 
simplest and most natural solution is to normalize Tr so that T r / d ^  =  1
[8]. This ensures also that Tr^ is always finite. There is a natural inner
product on the algebra of complex square matrices given by Tr(,d.i?t). If 
one applies the Cauchy-Schwarz inequality to this inner product, one gets

Tr ( m M ^ 2 < (Tr M M ^ Y  . (42)

We cannot ensure the correct sign of the Higgs mass term without the above 
normalization. The normalization of the trace Tr leads to

Tr (  AT A ftY  < N g ( tt Af Af t )  2 . (43)

This means that for a big N q the coefficient K  =  Tr ( M M t )  — ( i r
may be very large. In fact, it is possible that K  —* oo if the number of
heavy generations is unlimited. This force the condition =  1 in the



Lagrangian and removes the Higgs particle from the spectrum! If we are 
going to interpret the Yukawa coupling in the standard way then we are not 
allowed to rescale arbitrarily the Higgs field and the limiting case leads to

Tr (M M t ) 2 -  (U r M A fty

Tr
oo (44)

as should be expected. The fermionie masses are generated in such a (non
linear) m odel by means of Yukawa couplings in a way analogous to that of 
the standard m odel [11-13]. The fermionie part of the Lagrangian given by 
Eq. (41) has the required form!

4. Final remarks

We have reviewed recent development in the noncommutative particle 
physics. As we wanted to reduce the mathematical apparatus to the mini
mum to make it accessible non-mathematically oriented physicists, we have 
neglected the m athem atical subtleties and the spacetime structure. The 
interested reader is referred to [3, 4].

The complete understanding of the noncommutative particle physics is 
impossible without quantization. Up to know, we are able to get more or 
less interesting classical Lagrangian that can he quantized in the usual way. 
But it may not be the correct way of doing noncommutative physics! Toy 
model considerations suggest that certain relations among physical variables 
predicted by the classical Lagrangians are spoiled by quantum correction. 
To get the Lagrangian, we have to get rid of the “auxiliary fields” using 
equations o f m otion. Is it possible in a quantum theory? If not, we should 
consider the possibility of condensation of the bosonic sector along the lines 
considered in [16]. In general we should expect relation among vev’s of the 
scalar and vector fields because in the noncommutative framework thy are 
related.

There is also the question of possible extra terms that are not allowed 
or vanish in the orthodox approach [17]. Such terms, if  found, may result 
in unexpected physical consequences.

I greatly enjoyed the hospitality extended to me during a stay at the 
Faculty for Physics at the University of Bielefeld, where the final version of 
the talk was discussed and written down.
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