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Abstract: The paper proposes a method of automatic knuckle image acquisition for continuous
verification systems. The developed acquisition method is dedicated for verification systems in
which the person being verified uses a computer keyboard. This manner of acquisition enables
registration of the knuckle image without interrupting the user’s work for the time of acquisition.
This is an important advantage, unprecedented in the currently known methods. The process of
the automatic location of the finger knuckle can be considered as a pattern recognition approach
and is based on the analysis of symmetry and similarity between the reference knuckle patterns
and live camera image. The effectiveness of the aforesaid approach has been tested experimentally.
The test results confirmed its high effectiveness. The effectiveness of the proposed method was also
determined in a case where it is a part of a multi-biometric method.

Keywords: biometrics; finger knuckle recognition; template matching

1. Introduction

One of the most important problems faced every day by both companies and individuals is the
protection of sensitive data stored in computer systems. These data can be very valuable assets for
thieves, who use them in widely understood cybercrime. Cyberattacks can be carried out remotely,
i.e., from outside of the premises of the company being attacked; however, a large percentage of
intrusions is initiated when the criminal stays inside the company [1]. This type of attack occurs,
for example, when users go away from their computers, forgetting to log out, and thus allow the
intruder to access the computer. The aforementioned threat causes the necessity to develop methods
that allow detecting and effectively neutralize the attacks [2,3].

The threats described cause a need to develop methods that enable quick detection of an
attack, thanks to which it will be possible to neutralize it effectively. In most of the security systems
known so far, user verification is carried out once the user starts work. The use of one-time login
causes the detection of an attack, in which the intruder takes over the access to the computer,
is practically impossible. An effective solution to this problem can be the use of continuous verification.
Such verification is carried out repeatedly at certain short time intervals or when there is a suspicion that
an unauthorized person is at the computer. The verification systems known so far are based mainly on
the use of passwords, PIN codes or ID cards. Unfortunately, such solutions do not always guarantee
the compliance with relevant safety standards. This is mainly due to the imperfections of human
nature—passwords or cards can be lost, forgotten or stolen. In addition, there is a nuisance consisting
in the necessity to enter the password many times, which causes such solutions to not be popular in
continuous verification systems.

Biometrics is a tool, the usefulness of which for detection of intruders trying to gain unauthorized
access to computer systems has been demonstrated recently [4,5]. Biometric verification/identification
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methods are based on the analysis of popular physical features (e.g., iris, retina, friction ridges,
fingerprints, blood vessel pattern, ear shape, etc.) [6–10].

The usefulness of a feature in a biometric system depends on the fact, which of the following
assumptions are fulfilled by it [11]:

• versatility—each person should have a given feature;
• uniqueness—no two persons should have the same feature;
• durability—invariability of the feature in time;
• measurability—a possibility of measuring with the use of a practical device;
• storability—features can be registered and stored;
• acceptability and convenience of use along with the adequacy of the size of the device.

Continuous verification requires frequent acquisition of biometric data. That is why it is so
important that the biometric feature to be used, in addition to its uniqueness and versatility,
should also be convenient in acquisition and acceptable. Otherwise, the use of a given biometric
feature will be just as troublesome as the use of a password or an ID card. Unfortunately, in the
case of the vast majority of physical features, the convenience of their acquisition is not satisfactory.
For example, when acquiring fingerprints, the user must stop working and put his/her finger against
the scanner. A similar rule applies when acquiring a vein or retina image. In addition, the acquisition of
retina images is characterized by a low level of acceptability. Despite the lack of physical contact with
the scanner, some users are worried about their health when scanning the eye. Another example of
a physical feature, which is not very convenient in acquisition and thus, in use, is the image of
the knuckle. The use of this feature consists of allowing the analysis of skin furrows visible on the
surface of a knuckle. Examples of methods used for analysing a knuckle can be found in [12–15].
Unfortunately, also in the case of this feature, the acquisition requires putting a hand in a special
scanner. This work was aimed at developing such a method of acquiring a physical feature that
would be convenient and, very importantly, non-absorbing for the user. Such a method has not been
developed so far. The result of the work is a new method of automatic acquisition of knuckle images.
In the new approach, the camera continuously observes the user’s hands during the use of the keyboard.
If there is a need to acquire an image, a method developed especially for this purpose locates the index
finger in the image and a photo of its knuckle is taken. Then, another method evaluates the quality of
the photo taken. Blurred images are not used in further stages of the verification. Such an approach,
in which the image of a knuckle can be registered during the normal course of user’s work, does not
require the user to interrupt the work and put their hand in the scanner. All these factors increase
the possibilities of the practical use of images of the knuckle in biometric systems very significantly.
The effectiveness of the new method of acquisition was determined experimentally. The usefulness of
the proposed method was examined by determining the speed of its operation. The research also
included its implementation as an element of two biometric methods. The first one is a method
of verification based on the image of a knuckle, while the second one is a multi-biometric method,
combining the analysis of the knuckle with the analysis of the dynamics of typing on the keyboard.
The outcomes of the experiments, the results of which are presented in the research part, showed
a high level of usability of the proposed method of acquisition.

To sum up, the scientific contribution of this work includes:

1. developing a method of automatic acquisition of knuckle images that enables continuous
verification of the user without the necessity to interrupt the user’s work,

2. developing a method of evaluating the quality of the image obtained as a result of the acquisition,
3. demonstrating the high effectiveness and speed of operation of the method,
4. proposing the implementation of the method as an element of a biometric or multi-biometric system,
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2. A Method of Automatic Acquisition of Finger Knuckle Images

Person verification based on the knuckle image consists of the analysis of the skin furrows located
on the knuckle between the middle phalanx and the proximal phalanx. The analysis includes the
comparison of the shapes and locations of individual furrows in the reference and verified images.
The sample photo of finger knuckle is shown in Figure 1.

Figure 1. A finger knuckle with visible furrows.

In order to carry out the analysis of furrows, the knuckle image has to be acquired. A significant
disadvantage of the currently known acquisition methods is that the users have to put their hand
inside a special rig where the image recording device is located. An example of such a rig is presented
in Figure 2.

Figure 2. The rig for the acquisition of knuckle images.

Such method of acquisition requires interruption of a user’s work for the time of acquisition.
The average time a user needs to complete the entire acquisition process is about eight seconds.
It should be noted that the acquisition procedure is repeated each time when there is a suspicion
that an unauthorized person is working on the computer. In order to eliminate this inconvenience,
in this study, a method was proposed in which the acquisition is performed automatically, i.e., without
interrupting the user’s work. A new approach assumes that the acquisition will be performed with the
use of a camera located in such a way that the user’s hands can be observed all the time when the user
is using the keyboard. The device takes a photo of the hand. Image processing methods are used to
locate the right hand in the image and then the index finger on the hand itself. The specific character of
the method proposed assumes that the photos are taken when the hands are moving, which may result
in their blurring. For this reason, the method assesses the quality of the image. A detailed description
of the stages of the method is presented in the following subsections.
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2.1. Taking a Photo of the Hand

The aim of the first stage of the method is to take a photo of the hand of the user. The photo is
taken using a camera or a video camera installed in the central part of the keyboard. In this study,
a small tripod was used for this purpose. Such a rig can be used to register images of keyboards both of
desktop computers and laptops. The method requires that the camera is always located at the same
distance from the computer keyboard. As a result, the hands visible in the photo always have a similar
size, thanks to which the image does not have to be scaled. The rig used in the studies is shown in
Figure 3. Number (1) indicates the laptop, while (2) indicates the video camera on the tripod.

Figure 3. Rig for image acquisition. 1—laptop, 2—video camera on a tripod.

Initially, a reference photo without a user’s hands on the keyboard should be taken. Only after
taking the reference photo, the camera takes a photo of the hand typing on the keyboard. Both the
reference keyboard photo and the photo of the hand are saved in grayscale and designated respectively
as Ire f (x, y) and I(x, y), x = 1, ..., M, y = 1, ..., M, where M is the width and height of the images.

2.2. Exposing the Hand on the Keyboard

In the next step, the contour of the user’s hand in the image I should be exposed. This task is
carried out using the foreground detection technique [16,17]. It is a very simple and fast operation, while
its outcome is sufficient to ensure a correct course of further stages of the method. It is possible to
subtract images thanks to taking a reference image Ire f (x, y) of the keyboard itself. The image IS(x, y)
resulting from the subtraction of images is obtained using the operation (1):

IS (x, y) =
∣∣∣Ire f (x, y)− I (x, y)

∣∣∣ , x = 1, ..., M, y = 1, ..., M. (1)

In order to reduce the influence of external factors (e.g., lighting) on the operation, the image IS

is subjected to binarization, where the binarization threshold is selected using the Otsu method [18].
The result of the operations of image subtraction and binarization is shown in Figure 4.
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(a) (b)

(c) (d)

Figure 4. Stages of image subtraction operation: (a) Reference photo of the keyboard Ire f (x, y);
(b) Photo of the keyboard with the hands on it I(x, y); (c) Photo IS(x, y) obtained as a result of
image subtraction Ire f (x, y) and I(x, y), (d) Photo IS(x, y) subjected to binarization.

2.3. Location of Patterns in the Image

After exposing the contour of the hand, the right-hand index finger in the image is searched using
the Template Matching (TM) technique [19–21]. This technique is used to indicate the part of the
image matching the pattern searched for. The input for the Template Matching technique is the image
IS with the size of M×M and the pattern T with the size of N × N, where M > N. Furthermore,
the operation of searching for the pattern T in the image IS using the Template Matching technique will
be designated as τ(IS, T). The result of the operation of the Template Matching technique is the M×M
matrix R. Elements of the matrix R will be designated as R(x, y) and can be determined based on
different metrics of the function of matching of the images being compared [22]. Below, the definitions
of some measures that were used during the experiments are given, the results of which are described
in the section “Experimental verification”. The following methods have been selected because of the
ease of their implementation and a high effectiveness:

- Square Difference (SD)

RSD(x, y) = ∑x′ ,y′ (T(x′, y′)− IS(x + x′, y + y′))
2
, (2)

- Square Difference Normed (SDN)

RSDN(x, y) =
∑x′ ,y′ (T(x′, y′)− IS(x + x′, y + y′))2√
∑x′ ,y′ T(x′, y′)2 ∑x′ ,y′ IS(x + x′, y + y′)2

, (3)

- Correlation (C)
RC(x, y) = ∑x′ ,y′ (T(x′, y′) · IS(x + x′, y + y′))

2
, (4)
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- Correlation Normed (CN)

RCN(x, y) =
∑x′ ,y′ (T(x′, y′) · IS(x + x′, y + y′))2√

∑x′ ,y′ T(x′, y′)2 ∑x′ ,y′ IS(x + x′, y + y′)2
. (5)

Determining the coordinates (row and column) of the maximum value in the matrix R allows for
determining the location of the pattern T searched for in the image IS. Figure 5 shows the image IS,
pattern T and the matrix R created on their base. In the image IS, the location of the pattern T,
determined with the use of TM method, was marked with a square.

(a) (b) (c)

Figure 5. (a) Image IS; (b) Pattern T; (c) Graphical representation of the matching function in the
matrix R.

The operation of locating the user’s finger in the image is performed in two stages. The aim of the
first stage is to limit the area of searching for a finger to the part of the image with the right hand of
the user. Only in the second stage, in the limited fragment of a image, the index finger is searched.
The two-stage localization of a finger gives better effectiveness compared to the methods, where a finger
pattern was determined directly in the entire image. It has been shown in the experimental section.

In the course of work on the method, it appeared that each user put their hands on the keyboard
in a slightly different manner. As a result, the hands, and thus the fingers, are put at a different angle
in a relation to the keyboard. In addition, the distance between fingers may vary between individuals.
This hinders and sometimes simply prevents a correct localization of the index finger. Therefore,
in the proposed method, searching for the hand and the index finger in the analyzed image takes
place by using the n patterns Ti from the set W = {T1, ..., Tn} consisting of hands or index fingers
patterns, respectively. The patterns represent the hands of different people and differ from each other.
Examples of the hand and finger patterns used are shown in Figure 6 where the mentioned differences
in positions of hands and fingers are clearly visible.

(a) (b) (c) (d)

Figure 6. Cont.
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(e) (f) (g) (h)

Figure 6. The patterns searched for in the image: (a–d) Pattern of hand; (e–h) Pattern of finger.

The general way of locating n patterns using the TM method was presented with the use of
Algorithm 1. The input for the algorithm is the image IS and the set W containing the patterns
searched for in the image. The result of the operation of the Algorithm 1 is the set P containing n
points. The coordinates of each of these points indicate the center of a given pattern from the set W in
the image IS.

Algorithm 1: Location of n patterns in the image

Data: W = {T1, ..., Tn} - a set of patterns; IS - the image in which the patterns are searched for;
Result: P = {p1(x, y), ..., pn(x, y)} - a set of n points, the coordinates of which indicate the

location of patterns from the set W in the image IS;
1 for i = 1 to n do
2 R← τ(IS, Ti) . determine matrix R for image IS and i-th pattern Ti, by means of TM;
3 pi(x, y)← arg max

x,y
(R(x, y)) . save coordinates (x, y) of maximum value in matrix R;

In the next stage of the method, the coordinates of all points from the set P are averaged.
As a result of this operation, we obtain the coordinates of one point p(xavg, yavg). It should be
remembered that individual patterns in the set W were selected in such a way so that they differ
from each other. This increases the probability that one of the patterns will be similar to objects
(hand or finger) in the image analyzed. Unfortunately, the diversity of patterns is a reason that some of
them may have a shape very different from the shape of the object currently searched for. In this case,
the technique TM may perform localization incorrectly, i.e., indicate a location of the pattern that
deviates significantly from its actual location. An example of such a situation can be seen in Figure 7,
where two points were incorrectly located. Such indications should be treated as outliers. To eliminate
outliers, a method described in [23] was used. In this method, for each point pi(x, y), its parameter
Di is determined. This allows assessing how far from the other points it is located. Determination of
the measure Di begins with the determination of cumulative distribution functions F̂i

1(λ) and F̂i
2(λ):

F̂i
1 (λ) =

1
n ∑n

j=1 1(dE(pi(x, y), pj(x, y)) ≤ λ),

F̂i
2 (λ) =

1
n2 ∑n

k=1 ∑n
j=1 1(dE(pk(x, y), pj(x, y)) ≤ λ),

λ = 1, 2, ..., δ, i = 1, ..., n,

(6)

where dE(pi(x, y), pj(x, y)) is a Euclidean distance between pi(x, y) and pj(x, y), the value δ is a length
of the diagonal of a image I and 1() is an indicator function:

1(dE(pk(x, y), pj(x, y)) ≤ λ) =

{
1, if dE(pk(x, y), pj(x, y)) ≤ λ,
0, otherwise.

(7)
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Next, for each point pi(x, y), we define the value Di ∈ [0, 1] as the maximum distance between
F̂i

1(λ) and F̂i
2(λ), so:

Di = max
1≤λ≤δ

∣∣∣F̂i
1(λ)− F̂i

2(λ)
∣∣∣ , i = 1, ..., n. (8)

A small value of Di indicates that point pi is located near the other points and should not be
treated as an outlier. Outliers should not be taken into account when determining the average value.
In the proposed method, the point pi(x, y) is removed from the set P, if the value Di determined for
this point is greater than 0.39 [23]. All remaining points are put into set O.

O = {(pi(x, y)) ∈ P : Di < 0.39}, i = 1, ..., n. (9)

Determination of the point p(xavg, yavg), based on the points from the set O, takes place on the
basis of the following formulas:

xavg =
1
m

m

∑
i=1

xi, yavg =
1
m

m

∑
i=1

yi, (10)

where p(xi, yi) ∈ O and m is the number of points in set O.
Then, based on the coordinates xavg and yavg, an image fragment I f with a centre in these

coordinates and dimensions w× h is cut out:

I f = I(x, y), x = (xavg − w), ..., (xavg + w), y = (yavg − h), ..., (yavg + h). (11)

The values w and h parameters should be selected so that the entire hand or the entire knuckle is
visible in the cut out image. As a result of this assumption, the cut out image showing the hand has
the size of the hand pattern searched for, i.e., w = bW/2c , h = bH/2c , where W and H are the width
and the height of the hand pattern, respectively. In the case of the finger pattern, the knuckle covers
only a small part of it. Taking this into consideration, the average size of knuckles was determined
experimentally and compared to the size of the whole finger pattern. Based on the measurements,
it has been assumed that, for finger pattern w = bW/10c , h = bH/10c, where W and H are the width
and the height of the finger pattern, respectively.

Figure 7. Image IS, where squares indicate the location of the right hand, determined with the use of
n = 10 patterns.

2.4. Assessment of Finger Image Quality

The proposed method assumes that the photos of the knuckle will be taken during normal work of
the user. A photo of a moving object can be blurred or noised. It may be not possible to determining
furrows in low quality images. Therefore, in the proposed method, each determined image I f of the
knuckle is subjected to quality assessment. For assessing the quality of the image I f , there was used
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the measure ϑ(I f ), which is based on determination of components of the gradient of the edge in the
horizontal and vertical directions, i.e., along rows and columns, respectively:

ϑ(I f ) =

∑
x,y

S(x, y)

w · h , S =
√
(Gx •Gx + Gy •Gy), (12)

where Gx = ∂I f

∂x is the image gradient matrix in the x direction, Gy = ∂I f

∂y is the image gradient matrix

in the y direction, w and h are height and width of image I f , • is Hadamard product of two matrices.
The values ϑ(I f ), determined for four degrees of image blurring, are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. (a) ϑ(I f ) = 1.35; (b) ϑ(I f ) = 1.16; (c) ϑ(I f ) = 1.00; (d) ϑ(I f ) = 0.90.

If the determined value of the quality measure ϑ(I f ) of the image is lower than the assumed
threshold Q, then the image I f is rejected and the process of localizing the finger image starts from the
beginning, i.e., from the stage of taking a photo of the hand:

image I f =

{
accepted if ϑ(I f ) ≥ Q,
rejected if ϑ(I f ) < Q.

(13)

As already mentioned, the presented method is a two-stage method. The above stages, carried out
in the right order, apply both for hand and finger patterns. In order to illustrate the operation of the
method in a better way, its course was presented in a flowchart form shown in Figure 9.

The final result of the method is an image showing the furrows located on the knuckle.
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Figure 9. All stages of the presented method.

3. A Method for Continuous Verification Based on the Finger Knuckle Image

The proposed method of automatic acquisition of a finger knuckle image can be used as a part of
the continuous verification system. In this study, the continuous verification method based on [12,14]
was developed. The general principle of operation of the method is presented below. The analysis
begins from exposing the furrows visible in the image. For this purpose, there was used, inter alia,
the Frangi filter [24,25] and Otsu binarization. The Shape Contexts (SC) and Thin Plate Spline
(TPS) [12,26–28] methods were used to calculate the similarity between the test images of knuckles
and the reference image registered earlier in the database. A proper use of these methods allows
preliminary matching the furrows present in the two images being compared. The need to preliminary
match the furrows results from the elastic properties of human skin [29]. They cause that the position
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and size of the furrows belonging to the same person may slightly differ in subsequent images coming
from that person. In the proposed method, an adequate selection of the level of matching of furrows in
the images is very important. A too low level of matching will not allow reducing slight differences
between the samples coming from the same person, while a too large level of matching may cause
furrows coming from different people to be too similar to each other. After preliminary matching of two
images, the furrows visible on the knuckles are recorded in the form of chains of points. The resulting
chains are then compared with each other and their similarity is determined. If the similarity is greater
than the assumed threshold, it means that the compared images come from the same person; otherwise,
the image being tested comes from an unauthorized person. In the proposed method, the knuckle
images are captured on the fly and knuckle verification is performed continuously. The principle of
operation of the used continuous verification process has been given in [12,26–28].

4. Experimental Verification

The effectiveness of the proposed method has been verified in a series of experiments. The tests
were carried out in real conditions. A group of 50 users participated in the tests. For the tests, there was
used Logitech c920 Pro Webcam camera, which takes photos in Full HD resolution. This camera is
characterized by high quality of photos and has a built-in AutoFocus function. Its additional advantage
is the integrated function of automatic correction of light intensity.

Initially, the parameter Q in the Formula (13) should be established. Images with quality ϑ(I f )

lower than the threshold Q are considered to be useless and are eliminated from further analysis.
To determine the value Q, a set of images showing a knuckle, obtained with the use of the camera,
was prepared. The set was prepared manually and was composed of 200 images. The images were of
different quality, i.e., they were characterized by a different degree of blurring. The images were
verified using the method described in Section 3. During the experiment, the value of the parameter
was changed in the range of Q = 0, ..., 2, with a step of 0.1. For each value Q, the Accuracy (ACC)
value was determined. The results of computations are shown in Figure 10.

0 0.5 1 1.5 2
0

20

40

60

80

100

Q

A
C
C
 
[
%
]

Figure 10. The influence of the parameter Q on the effectiveness of the method.

Based on Figure 10, the value Q = 1.2 was determined in further tests. After determining the
value of the parameter Q, the evaluation of the effectiveness of the proposed method was started.
This time, finger knuckle images were registered automatically. The scenario of the next experiments
assumed that each user would work with a computer using a computer keyboard. Every 5 min,
the users moved away from their computers. Then, they either returned to their workstations or
switched workstations with other users. The cases when users sat at computers of other users were
treated as attack attempts. In such situations, the method should block access to the computer. In total,
the tests included 400 cases of switching computers and 400 cases where users returned to their own



Symmetry 2018, 10, 624 12 of 18

computers. Such a test scenario enabled determination of popular measures: FAR (False Acceptance
Rate), FRR (False Rejection Rate) and ACC (Accuracy) [30].

FAR =
number of imposters accepted

number of imposters tested
· 100%, (14)

FRR =
number of genuine users rejected
number of genuine users tested

· 100%, (15)

ACC =
number of users correctly recognized

number of users tested
· 100%. (16)

Following this, the average values and standard deviations in each experiment have
been calculated.

The experiment allowed for determining how the effectiveness of the method is affected by the
different metrics of the image matching function which were used in the template matching method:
Square Difference (SD), Square Difference Normed (SDN), Correlation (C), and Correlation Normed (CN).
The impact of sizes of the images registered by the camera was also determined on the effectiveness of
the method. The size of the image was defined by the parameter M, which specifies the height and
width of the image. The experiments were carried out using n = 10 patterns in the set W. The results
are presented in Table 1.

Table 1 shows that the selection of the metrics of the image matching function affects the
effectiveness of the method. The smallest values of FAR and FRR errors were obtained using the
Correlation (C) measure. The resulting values of errors were as follows: FAR = 4.18%, FRR = 7.85%,
and ACC = 94.81%. When analyzing the impact of the size of the image I registered by the camera,
we can see that the minimum resolution that allows for obtaining a high efficiency of recognition is
400× 400 (px). An increase in the resolution does not significantly improve the effectiveness of the
method. The deterioration in the effectiveness was caused by problems with a proper detection of
furrows in the images. Based on the results obtained, in the subsequent experiments, there was used
the Correlation measure, while the resolution of the analyzed images was 400× 400 (px).

An important element of the studies was determination of the impact of the number of the
patterns used to locate both the hand and the index finger in order to assess the effectiveness of the
method. In the previous experiment, the number of patterns was n = 10. In order to check whether
a reduction in the number of patterns will negatively affect the effectiveness of the method, in the next
experiment, the number of patterns was being changed in the range of n = 4, ..., 10. The FAR, FRR and
ACC values obtained for individual values of n are presented in Table 2.

The results presented in Table 2 show that, in order to obtain the highest possible effectiveness of
the method, a set composed of n = 7 patterns is sufficient. The use of a larger number of patterns
does not significantly improve the effectiveness of the method.

In addition, the validity of the approach, in which many patterns are searched for in the image,
was examined in the next experiment. In this experiment, the set W contained only one pattern.
Of course, in such a scenario, the stage of eliminating outliers was omitted because only one point
was determined in the image. The tests were repeated ten times and each time a different pattern
was searched for. The average values obtained were as follows: FAR = 15.84%, FRR = 26.41% and
ACC = 79.50%. The results are significantly worse than those obtained in the method based on
searching for multiple patterns. This unambiguously confirms that the developed method of locating
the object with the use of multiple patterns is effective.
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Table 1. The effectiveness of the method depending on the function’s metrics used.

Image Metrics Used to Analyze the Image

Size SD SDN C CN

(Value of M (px)) FAR [%] FRR [%] ACC [%] FAR [%] FRR [%] ACC [%] FAR [%] FRR [%] ACC [%] FAR [%] FRR [%] ACC [%]

100 17.09 ± 0.22 29.72 ± 0.25 76.05 ± 0.79 20.14 ± 0.53 32.42 ± 0.42 64.10 ± 0.55 15.26 ± 0.21 24.56 ± 0.36 79.15 ± 1.16 20.14 ± 0.20 32.42 ± 0.42 67.38 ± 0.74
200 9.21 ± 0.14 22.09 ± 0.37 86.42 ± 0.93 10.06 ± 0.25 23.47 ± 0.33 75.22 ± 0.89 8.45 ± 0.09 19.72 ± 0.29 84.86 ± 1.07 10.06 ± 0.15 23.47 ± 0.22 83.57 ± 0.72
300 5.18 ± 0.78 11.49 ± 0.09 90.85 ± 1.35 5.67 ± 0.07 13.15 ± 0.20 90.61 ± 0.99 4.89 ± 0.06 11.05 ± 0.11 92.84 ± 1.05 5.67 ± 0.06 13.15 ± 0.17 90.70 ± 1.32
400 4.39 ± 0.08 8.16 ± 0.12 91.66 ± 0.99 4.81 ± 0.06 9.03 ± 0.08 93.19 ± 1.44 4.18 ± 0.05 7.85 ± 0.10 94.81 ± 1.08 4.81 ± 0.06 9.03 ± 0.15 92.69 ± 1.31
500 4.26 ± 0.06 8.15 ± 0.09 94.15 ± 1.13 4.68 ± 0.06 8.86 ± 0.10 93.98 ± 1.20 4.14 ± 0.07 7.84 ± 0.09 94.85 ± 0.99 4.68 ± 0.05 8.86 ± 0.14 94.20 ± 1.11
600 4.56 ± 0.07 8.84 ± 0.08 92.23 ± 1.15 4.97 ± 0.06 9.39 ± 0.13 89.32 ± 1.01 4.18 ± 0.06 7.89 ± 0.12 94.80 ± 0.98 4.97 ± 0.07 9.39 ± 0.11 89.69 ± 1.08
700 4.61 ± 0.07 9.11 ± 0.16 93.01 ± 1.01 4.61 ± 0.06 8.79 ± 0.11 91.23 ± 1.28 4.15 ± 0.06 7.92 ± 0.09 94.85 ± 1.43 4.61 ± 0.07 8.79 ± 0.12 94.29 ± 1.00
800 4.42 ± 0.05 8.43 ± 0.10 94.29 ± 1.07 4.84 ± 0.06 8.98 ± 0.11 93.03 ± 1.22 4.21 ± 0.06 7.81 ± 0.09 94.81 ± 1.12 4.84 ± 0.08 8.98 ± 0.13 93.44 ± 1.12
900 4.53 ± 0.07 8.53 ± 0.11 93.37 ± 1.16 4.99 ± 0.06 9.32 ± 0.13 89.88 ± 0.97 4.19 ± 0.07 7.83 ± 0.10 94.81 ± 1.20 4.99 ± 0.06 9.32 ± 0.14 91.56 ± 1.13

SD - Square Difference, SDN - Square Difference Normed, C - Correlation, CN - Correlation Normed, M is the width and height of the image.
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Table 2. The impact of the number of patterns searched for in the image on the effectiveness of
the method.

Number n of Patterns FAR [%] FRR [%] ACC [%]

4 6.45 ± 0.09 11.26 ± 0.14 94.42 ± 1.25
5 6.18 ± 0.11 10.97 ± 0.13 92.15 ± 1.22
6 4.49 ± 0.10 8.01 ± 0.13 94.71 ± 1.32
7 4.18 ± 0.11 7.85 ± 0.12 94.81 ± 1.28
8 4.17 ± 0.10 7.85 ± 0.12 94.78 ± 1.22
9 4.18 ± 0.10 7.86 ± 0.12 94.79 ± 1.21
10 4.18 ± 0.11 7.85 ± 0.13 94.81 ± 1.22

To confirm the validity of using a two-stage method of searching for patterns in the image
(see Section 2.3), its effectiveness was compared with results obtained using only one stage of searching
for patterns. In this stage, a knuckle was searched for straight away in the entire image, i.e., the search
area had not been previously narrowed down to the area of the right hand. In this case, the effectiveness
obtained was only FAR = 23.46%, FRR = 32.31% and ACC = 71.74% and was definitely worse than that
in the approach with the use of two stages.

An increase in the number of patterns results in a better effectiveness of the method but also results
in extension of the time of the image analysis. In order to fully evaluate the impact of the parameter n,
its influence on the time of execution of Algorithm 1 was also measured. The measurements are
important because the extent of the input data in Algorithm 1 depends directly or indirectly on the
number n of the patterns used. The patterns of hands are larger than those of fingers, so the tests for
Algorithm 1 were carried out separately for each type of pattern. In our experiments, the measurement
time was obtained on a PC class computer equipped with an Intel Xeon E5440 processor running
at 2.83 GHz, with 8 GB of RAM and a Windows 7 x64 operating system. The results are presented
in Table 3.

Table 3. The impact of the number of patterns used on the time of execution of Algorithm 1.

Number n of Patterns Time (ms)
Palm Finger

4 422 296
5 545 373
6 650 450
7 776 519
8 892 592
9 985 661

10 1063 734

When analyzing the results, it can be seen that the dependence between the algorithm’s execution
time and the number n is close to linear. Finding a single pattern using the TM method takes about
110 ms for the hand pattern and about 75 ms for the finger pattern. When determining the optimal
parameter value of n on the basis of results from Tables 2 and 3, achievement of a high effectiveness of
the method was set as a priority. Therefore, in further experiments, the value n was established as
Table 2. The time complexity was also determined for individual stages of the proposed method—from
the stage of image acquisition to the stage of verification of the image by the classifier. The results are
presented in Table 4.
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Table 4. The time of performing particular stages of acquisition and analysis of images.

Stage Time (s)

Taking a photo of the hand 0.048
Exposing the hand on the keyboard 0.032
Location of hand on the keyboard 0.776
Location of finger on the keyboard 0.519
Assessment of finger image quality 0.163

Verification 0.295

Sum 1.833

In the case of the tests carried out by the author, the duration of the entire verification process
based on the image of the knuckle was 1.8 s.

The last stage of the studies was to determine the suitability of the proposed method in single
and multi-biometric person continuous verification systems [31]. The studies included both the
determination of the effectiveness of single method used separately and the assessment of the
effectiveness of the method combining two methods.

For the tests of continuous multi-biometric system, there were selected systems combining
the analysis of dynamics of typing on the keyboard with the analysis of the image of the knuckle.
The methods were developed by the Author and described in detail in [12,13,15]. In the proposed
methods, the verification of user’s identity is performed in two stages. The purpose of the first
stage of the method is verification based on the analysis of the dynamics of typing on the keyboard.
If the verification of the user’s identity is successful, the user can continue the work. If the verification
is unsuccessful, there is a suspicion that the current user is an intruder. In such a situation, the user
is subjected to additional verification—this time based on an analysis of the image of the finger
knuckles. A positive result of the additional verification means that the user can continue the work,
and the verification procedure returns to the stage of analyzing the dynamics of typing on the
keyboard. However, if additional verification is not successful, the user’s access to the computer’s
resources will be blocked. The obtained results are presented in Table 5. Additionally, Table 5 includes
values describing of the effectiveness of the used multi-biometric continuous verification method
when acquisition of knuckles images took place in a traditional way, i.e., by putting the hand in a
special device.

Table 5. The comparison of the performance of various continuous verification methods.

Method Not Automatic Acquisition Automatic Acquisition

FAR [%] FRR [%] ACC [%] FAR [%] FRR [%] ACC [%]

Proposed (only knuckle) 4.03 7.22 95.20 4.18 7.85 94.81
Keystroke + Knuckle [13] 1.07 3.35 98.50 1.17 3.23 97.36
Keystroke + Knuckle [15] - - 98.71 - - 96.97
Keystroke + Knuckle [12] 0.67 2.16 98.96 0.94 2.87 98.61

When analyzing the results from Table 5, it can be seen that the proposed automatic acquisition
method gives comparable results compared to the methods in which acquisition of knuckles images
took place in a traditional way (by putting a hand into the scanner). However, it should be emphasized
that the proposed method has an indisputable advantage—fully automatic acquisition of finger image,
which is not offered by competing methods.
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5. Conclusions

This paper proposes a method of automatic acquisition of knuckle images. The acquisition takes
place while the user is using a computer keyboard. The conclusions concerning the proposed method
can be summarized as follows:

1. The proposed method does not require the user to interrupt the work.
2. The tests indicated a high effectiveness of the proposed method. After determining the optimal

parameters of the method, the following verification errors were obtained: FAR = 4.18%,
FRR = 7.85%.

3. The values obtained are comparable with results of currently known methods; however,
it should be emphasized that the competing methods do not offer automatic image acquisition,
which negatively affects the usability of such methods.

4. The effectiveness of the proposed method has also been tested as a part of the multi-biometric
method in which, apart from the analysis of the knuckle image, the dynamics of typing on the
keyboard is analyzed too. Also in this case, the use of the new manner of acquisition did not
negatively affect the effectiveness of the method.

The tests indicated that the method has some limitations. One of them is the problem with locating
the knuckle image in the case of people typing on the keyboard with the left hand only. There was
only one such person in the test group of 50 people. Another limitation is related to the method used
for exposing the hand in the image of the keyboard. It requires that the color of the keyboard should
contrast with the color of the hand. If, for example, a white keyboard is used, it will be harder to
expose the hand on such a keyboard. The scope of future studies assumes, inter alia, the elimination
of aforementioned limitations of the method and the use of machine learning algorithms for the
recognition of patterns in the image.
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