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Backward chaining inference as a database stored procedure –
the experiments on real-world knowledge bases
Tomasz Xiȩski and Roman Simiński

Institute of Computer Science, University of Silesia, Sosnowiec, Poland

ABSTRACT
In this work, two approaches of backward chaining inference
implementation were compared. The first approach uses a
classical, goal-driven inference running on the client device – the
algorithm implemented within the KBExpertLib library was
used. Inference was performed on a rule base buffered in memory
structures. The second approach involves implementing inference
as a stored procedure, run in the environment of the database
server – an original, previously not published algorithm was
introduced. Experiments were conducted on real-world
knowledge bases with a relatively large number of rules.
Experiments were prepared so that one could evaluate the
pessimistic complexity of the inference algorithm. This work also
includes a detailed description of the classical backward inference
algorithm – the outline of the algorithm is presented as a block
diagram and in the form of pseudo-code. Moreover, a recursive
version of backward chaining is discussed.
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1. Introduction

Knowledge-based systems are still popular and practically used tools for solving ill-struc-
tured problems. Rules are among the most popular forms of representing knowledge in
the field of intelligent information systems, regardless of the development of different
knowledge representations. Forward and backward chaining inference algorithms are
also popular in the real-world applications (Akerkar & Sajja, 2010). The number of appli-
cations which utilize rule bases and methods of inference grows, but unfortunately the
number of tools for building knowledge-based systems increases much more slowly
(Sajja & Akerkar, 2010). The well-known systems, such as JESS (2016), CLIPS (2016),
DROOLS (2016) or EXSYS (2016), are usually described as the tools for implementing
domain knowledge-based systems. What is more, commercial expert system development
tools have been extended to offer web-based development capabilities.

A selected part of our research focused on the development of new methods and tools
for building knowledge-based systems is presented in this work. In our previous work
(Simiński & Nowak-Brzezińska, 2016), we introduced the KBExplorer system – a
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WWW application which allows the user to create, edit and share rule-based knowledge
bases. We also introduced (in a separate paper) the inference engine, which is provided
by the KBExpertLib – a software library which allows programmers to implement
domain knowledge-based systems using the Java programming language (Simiński,
2016). Next part of the realized project is the KBExploratorDesktop (Nowak-Brze-
zińska & Simiński, 2015) – a desktop application which allows to analyse knowledge
bases created by the KBExplorer.KBExploratorDesktop internally uses the KBEx-
pertLib library and is implemented as a standard JavaFX GUI program. The prototype
version of KBExplorer and the demo version of KBExploratorDesktop are avail-
able online at http://kbexplorer.ii.us.edu.pl. Figure 1 presents the main software
modules of the proposed distributed expert system shell. The system is still under devel-
opment – enhanced versions of the software are in the test phase.

The migration of information systems from the classic desktop software to the web
application can be observed as a permanent trend. This trend also applies to the knowl-
edge-based systems. The ‘webalization’ of information systems causes many practical
and implementation problems and challenges, but we can also identify in this field a
number of interesting research problems. In this paper, we present a modified goal-
driven inference algorithm for web knowledge-based systems.

The motives behind this article are research and implementation works concerning the
application of proposed tools for a weak hardware configuration – like in mobile and
embedded devices or obsolete (but still frequently used) computers. The KBExpertLib
library provides inference algorithms implemented in Java and working on the internal
device’s resources. The inference performed on such devices may be ineffective from
the user’s point of view, and for the large rule bases may be totally impossible. We
propose a different approach: a client device sends the initial inference information to
the server side over the internet and receives inference results. The comparison of time
efficiency of these two approaches is the main goal of the article. This article presents
new (and not published before) implementation issues, focused on the backward chaining
inference. Presented considerations are the continuation of the previous, forward infer-
ence dedicated studies (Xiȩski & Simiński, 2017). This article is a part of a wider project

Figure 1. Main components of the distributed expert system shell.
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involving both research and implementation works – in this work we analyse two different
approaches mentioned earlier.

The first approach uses a classical, goal-driven inference running on the client device.
An algorithm implemented within the KBExpertLib is used. The content of a particular
knowledge base is retrieved from a local XML file or a relational database and is stored in
the device’s RAM – Figure 2 illustrates the discussed solution. Inference is performed on a
rule base (buffered in memory structures), and the effectiveness of this process depends
on the hardware configuration of the local machine and will vary due to the size of the
knowledge base. This type of inference uses local resources (memory, processor) of the
client’s device and may consume a significant amount of energy (possibly supplied with
a battery).

The second approach assumes that the inference process is being realized fully on
the server side. A dedicated PHP implementation was previously analysed (Simiński &
Manaj, 2015). In this work, utilization of stored procedures (within the database
server) is considered. A client device uses Rest API services, sends the goal and facts
to the server and receives information about the goal confirmation (and optional
details) – Figure 3 illustrates the presented approach. The utilization of a server-side
implementation minimizes the network traffic, as only a single request is necessary.
The usage of database server’s stored procedures ensures independence from the
used programming tools – only a connection to the database server and a simple
API is required. The main research goal of this paper was the experimental evaluation
of the backward chaining inference algorithm implementation as a stored procedure
and a comparison (of such implementation) with inference performed on preloaded
knowledge bases (on local devices). Considered approaches are quite different from
the implementation point of view.

Note that this is an extended version of our (Simiński & Xiȩski, 2017) INISTA 2017 paper.
Additions and changes include:

Figure 2. First approach: inference as a local process.
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. a much more detailed description of the classical backward inference algorithm (see
Section 2.2) with a newly created block diagram and revised pseudo-code, which is
hard to find in the domain literature,

. an extended description of the KBExpertLib (see Section 3.1),

. new experiment number 3 (in Section 4) focused on the available database storage
engines with a detailed analysis,

. a revised and extended version of the abstract, introduction and conclusions.

The organization of this paper is as follows. The next section presents background infor-
mation – the formal knowledge basemodel, classical backward chaining inference algorithm
and relatedworks. Section 3 outlines the proposedmethods and tools – the backward chain-
ing inference algorithm as a stored procedure is introduced. Section 4 presents the exper-
iments and their results. Finally, the conclusions section summarizes the paper.

2. Background information and related works

This section presents the formal description of a knowledge base, the backward chaining
inference algorithm, a brief review of software tools related to this work and a short
description of our own software implementation.

2.1. Knowledge base

The following formal description of a knowledge base is assumed in this work: a knowl-
edge base is a pair KB = (R,F) where R is a non-empty finite set of rules and F is a finite
set of facts. R = {r1,r2, . . . ,rn}, each rule r [ R will have a form of Horn’s clause:
r : p1 ^ p2 ^ · · · ^ pm � c, where m is the number of literals in the conditional part of
rule r, m ≥ 0, pi the ith literal in the conditional part of rule r, i = 1m, and c the literal of
the decisional part of rule r.

Figure 3. Second approach: inference as a remote process.
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For each rule r [ R we define the following functions: concl(r) – the value of this func-
tion is the conclusion literal of rule r: concl(r) = c; cond(r) – the value of this function is the
set of conditional literals of rule r: cond(r) = {p1, p2, . . . pm}, literals(r) – the value of this
function is the set of all literals of rule r: literals(r) = cond(r)< {concl(r)}. We will also con-
sider the facts as clauses without any conditional literals. The set of all such clauses fwill be
called set of facts and will be denoted by F: F = {f : ∀ f[Fcond(f ) = ∅ ^ f = concl( f )}. The
rule r [ R is fireable if each condition appearing in the premise of rule r is a fact:
fireable(r) iff ∀c[cond(r) : c [ F. Each fireable rule can be activated, the conclusion of acti-
vated rule is added to facts set F –activate(r) : F = F < {concl(r)}.

In this work, rule’s literals will be denoted as pairs of attributes and their values. Let A be
a non-empty finite set of conditional and decision attributes.1 For every symbolic attribute
a [ A the set Va will be denoted as the set of values of attribute a. Attribute a [ Amay be
simultaneously a conditional and decision attribute. Also a conclusion of a particular rule ri
can be a condition in another rule rj . It means that rules ri and rj are connected, and it is
possible that inference chains may occur. The literals of the rules from R are considered as
attribute-value pair (a, v), where a [ A andv [ Va.

2.2. Backward chaining inference

The inference algorithm selects some applicable rules to infer new facts and/or confirm
established goals. When rules are examined by the inference engine, new facts are
added to the fact base if its current content satisfies the conditions in the rules. The strat-
egy of backward chaining is started from a goal and ends with a set of facts that leads to
the given goal, and therefore, it is also known as a goal-driven strategy of the inference
engine.

Backward chaining inference can be considered as a bottom-up procedure which starts
with a main goal and queries the fact base about information which may satisfy the con-
ditions contained in the rules. We basically go through the rules in the knowledge base
looking for conclusions which match the query and if we find them, we can create new
queries (adding new facts if necessary). Its complexity can be linear or less (taking into
account the size of the knowledge base), depending on the implementation. The main
idea and general description of a classical backward chaining inference algorithm have
been repeatedly published, for example, in Grzymala-Busse (2012) and Ligeza (2006).
But it is hard to find a detailed, step-by-step algorithm and for this reason we present a
more detailed description in the form of a block diagram and pseudo-code.

Figure 4 illustrates a general approach to the backward inference method. Initially the
algorithm checks whether the goal g is in the fact set (g [ F). If our goal is a fact, the infer-
ence is completed and its goal g is confirmed. Otherwise,2 the rules matching the goal
literal g are selected from whole rule base (later in this work these rules will be called appli-
cable rules). Thus the rule set R is examined. If the selected rule set R is not empty, the
algorithm looks for a fireable rule r. The first applicable rule can be selected or a more
sophisticated rule selection strategy can be used.

If a fireable rule r was found, the conclusion of this rule is added to the fact set F. The
algorithm considered in this work terminates when a fireable rule was found – the infor-
mation about goal confirmation is stored in the RAM. In a more general case, the algorithm
can consider other applicable rules using the backtracking strategy. Applicable rules are a
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set of partial candidates for a goal confirmation, thus all the possible solutions for a deter-
mined goal can be obtained.

As mentioned earlier, the rule is fireable if each condition appearing in the premise of
rule r is a fact. However, in the case of the backward inference very often the fact set is
empty and only the inference goal must be specified. Therefore, backward inference
engines pose the ability to determine facts during the inference process. Generally,
there are two sources of facts:

. The knowledge base itself – the missing facts can be determined by reasoning.

. The environment of the knowledge base system – the missing facts can be acquired
from human users, sensors, networks, databases or external systems.

The backward inference algorithm is a natural way of confirming the truth about the con-
dition appearing in the rule’s premise. The considered condition can be treated as a
subgoal and the inference engine is able to confirm or reject this subgoal using the back-
ward chaining algorithm. The process of subgoal confirmation may be realized iteratively
or recursively. The recursive algorithm is a natural, clear and understandable way of pre-
senting the backward chaining method, but unfortunately is hard to illustrate recursion in
detail on block diagrams. For example, in Figure 4 a grey arrow indicates the process of
subgoals confirmation. A more detailed description of the analysed inference method is
presented in the form of pseudo-code in Algorithm 1. The line marked with {*} performs
the recursive call of inference for a particular subgoal w.

Figure 4. Backward inference – the general algorithm.
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When the recursive call of the backward inference rejects the subgoal, the second men-
tioned method of missing facts gathering is performed – the environment of the knowl-
edge-based system is asked about the truth of the currently considered condition. If on the
basis of the environment response, the truth about the condition cannot be determined,
the algorithm terminates.

Later in this work we will consider recursive Algorithm 1 implemented in the Java pro-
gramming language and an iterative version of the backward inference implemented as a
stored procedure.

2.3. Related works

The knowledge-based systems were typically developed as desktop applications. Mean-
while, web applications have grown rapidly and have had a significant impact on the
application of a traditional expert system. The detailed discussion and comparison of
modern knowledge-based systems building tools go beyond the scope of this study.
Selected aspects of such review can be found in Ruiz-Mezcua et al. (2011) and Mathkour
et al. (2009) and also in Grove (2000), Duan et al. (2005) and Huntington (2000). In this work
only a basic overview is presented. The JESS is a well-known and popular tool. It is the skel-
eton of expert systems developed by Sandia National Laboratories. JESS is written in Java
and it is possible to run code in this language using JESS. It uses a syntax similar to Lisp
(JESS, 2016). It is compatible with both Windows and Unix systems. Rules written using
JESS are saved in the form of an XML file which must contain a rule-execution-set
element (Canadas et al., 2010). JESS is a rule engine as well as a scripting language,
which provides a console for programming and enables basic input/output operations.
JESS is a forward chaining inference engine, it provides mechanisms that ‘simulate’ back-
ward chaining.

EXSYS Corvid (EXSYS, 2016) is a software tool for building and fielding knowledge auto-
mation expert system applications. It is designed to be easy to learn and aimed at non-pro-
grammers. The Java-based EXSYS Inference Engine makes it simple to deploy systems on
different platforms and to integrate them with external programs. The rules (in the knowl-
edge base) are described simply in English and Algebra. Tree-structured logic diagrams are
used to describe individual sections of the process. It’s a combination of ‘Logic Block’ struc-
tures (which describe rules) and ‘Command Blocks’ that provide procedural control on
system execution. Corvid’s Inference Engine uses both backward and forward chaining
algorithms.

Another commercial expert system building tool is XpertRule (XpertRule, 2016), which
offers a Knowledge Builder Rules Authoring Studio. The XpertRule KBS interfaces over the
Web with a thin client using Microsoft’s Active Server Page technology. Applications devel-
oped using the Knowledge Builder Rules Authoring Studio can be generated as Java
Script/HTML files for deployment as Web applications. The Web Deployment Engine is a
JavaScript rules runtime engine which runs within a browser.

Similar concepts share the eXpertise2Go’s Rule-Based Expert System, which provides
free building and delivery tools that implement expert systems as Java applets, Java appli-
cations and Android apps (eXpertise2Go, 2016). Next interesting system is Drools – a
Business Rules Management System solution. It provides a core Business Rules Engine, a
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web authoring and rules management application (Drools Workbench) and an Eclipse IDE
plugin for core development (DROOLS, 2016).

This work introduces another decision support system building tool – the KBEx-
plorator system (Simiński & Nowak-Brzezińska, 2016). It is a web application and
allows the user to create, edit and share rule knowledge bases. It is also connected with
the KBExpertLib – a software library, which allows programmers to use different
kinds of inference within any software projects implemented in the Java programming
language. The KBExplorer works on the client side and requires only the usage of a
typical modern web browser. Knowledge bases created by the user are stored in a rela-
tional database, and may be shared between the registered system’s users (Simiński &
Xiȩski, 2015). Moreover, it is also possible to download the knowledge base as an XML
file (for further analysis). The KBExpertLib is a software library, which allows program-
mers to implement domain knowledge-based systems using the Java programming
language. This library makes it possible to run different kinds of inference (classical and
modified forward and backward chaining algorithms) on rule-based knowledge bases
stored in the KBExplorer database or saved locally in the form of XML files (Xiȩski &
Simiński, 2017) (see Figure 1); the KBExpertLib is also considered as a tool for the
implementation of systems described in Przybyła-Kasperek & Wakulicz-Deja (2014) and
Nowak-Brzezińska (2016).

3. Methods and tools

This section presents two approaches for backward chaining inference (illustrated in
Figures 1 and 2) described earlier in the introduction.

3.1. Backward chaining inference as Java code

The package KBExpertLib is implemented in the Java programming language. It may
be used on the server side of WWW application or embedded in the desktop Java appli-
cations, also on mobile devices. The KBExpertLib is object-oriented library, library’s
classes are divided into the packages: kbcore – the main, essential classes,kbinfer –
classes providing classical and modified inference algorithms, kbpartition – classes
allowing decomposition of rule bases, and kbtools – additional tool classes.

The KBExpertLib provides a backward inference presented by Algorithm 1, the
algorithm is implemented as a member function of the KBBackwardConsoleInferer
class. In this work, we consider inference without interaction with the system’s environ-
ment and want to analyse the worst possible case in terms of inference time. TheKBBack-
wardConsoleInferer is a base class for a specialized derived class, which has to
provide a fact confirmation function (Algorithm 1: environmentConfirmsFact).
Implementation of this function depends on a particular fact confirmation process. In
research described later in the article, the implementation of this function is trivial – it
always returns a false value, because we want to obtain the pessimistic inference algorithm
complexity. Implementation of a backward chaining inference algorithm is typical and
obvious – much more interesting is the implementation as a stored procedure, described
in the next section.
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3.2. Backward chaining inference as the stored procedure

This section presents the second of the earlier mentioned approaches of inference realiz-
ation. This approach works in the database server layer as a stored procedure, which uses
native properties of the MySQL engine.

The presented inference algorithm assumes that any selected goal will be confirmed
after testing enough subgoals, because we are interested only in the worst-case scenario.
What is more, the algorithm was repeated in the experiments sections, for all possible
inference goals (distinct rule’s conclusions). The pseudo-code of the described approach
is presented in Algorithm 2 and the exemplary implementation of the stored procedure
is as follows:

main_infer:BEGIN
DECLARE rId INT;
DECLARE FK_subgoalAttributeID INT;
DECLARE FK_subgoalValueID INT;
DECLARE subgoalOperator CHAR(3);
DECLARE subgoalRowID BIGINT;
DECLARE subgoalContinousValue VARCHAR(45);
DECLARE exitLoop BIT(1);
DECLARE CONTINUE HANDLER FOR 1329 SET exitLoop = 1;
SET exitLoop = 0; SET kbID = 1;
#Clear temporary tables
TRUNCATE TABLE subgoals;
TRUNCATE TABLE tempfacts;
#Insert the main inference goal to the subgoals table
INSERT INTO subgoals(FK_attributeID, operator, FK_valueID,
continousValue, FK_knowledgeBase) VALUES (3, ’==’, 3, NULL,
kbID);
read_loop: LOOP
#Select first subgoal
SELECT subgoalID, FK_attributeID, operator, FK_valueID,
continousValue INTO subgoalRowID, FK_subgoalAttributeID,
subgoalOperator, FK_subgoalValueID, subgoalContinousValue
FROM subgoals ORDER BY subgoalID DESC LIMIT 1;
IF exitLoop = 1 THEN
LEAVE read_loop;
END IF;
#Insert the current subgoal to the temporary facts table
INSERT INTO tempfacts SELECT NULL, FK_attributeID, operator,
FK_valueID, continousValue, kbID FROM subgoals WHERE
subgoalID = subgoalRowID;
#Delete the current subgoal
DELETE FROM subgoals WHERE subgoalID = subgoalRowID;
#Check if the current subgoal is a fact
IF NOT EXISTS (SELECT * FROM facts WHERE FK_attributeID =
FK_subgoalAttributeID AND operator = subgoalOperator AND
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FK_valueID = FK_subgoalValueID AND continousValue <=>
subgoalContinousValue) THEN
#Get the ID and later on all premises of the rule which
#conclusion in the selected subgoal
SET rId = (SELECT FK_ruleId FROM attributeValue WHERE
FK_attributeID = FK_subgoalAttributeID AND
operator = subgoalOperator AND FK_valueID = FK_subgoalValueID
AND continousValue <=> subgoalContinousValue AND
isConclusion = 1 LIMIT 1);
#If there is no such rule, inference cannot complete
IF rId IS NULL THEN
SELECT ”INFERENCE FAILURE”;
LEAVE read_loop;
END IF;
#Insert selected premises to the subgoals table,
#excluding those which are facts or were already processed
INSERT INTO subgoals
(FK_attributeID, operator, FK_valueID, continousValue)
SELECT FK_attributeID, operator, FK_valueID, continousValue
FROM attributeValue t1 WHERE FK_ruleId = rId AND
isConclusion IS NULL AND NOT EXISTS
(SELECT 1 FROM tempfacts t2 WHERE t2.FK_attributeID =
t1.FK_attributeID AND t2.operator = t1.operator AND
t2.FK_valueID = t1.FK_valueID AND t2.continousValue <=>
t1.continousValue)AND NOT EXISTS
(SELECT 1 FROM subgoals t3 WHERE t3.FK_attributeID =
t1.FK_attributeID AND t3.operator = t1.operator AND
t3.FK_valueID = t1.FK_valueID AND t3.continousValue <=>
t1.continousValue );
END IF;
END LOOP;
#If all subgoals were confirmed inference is a success
IF exitLoop = 1 THEN
SELECT ”INFERENCE SUCCESS”;
END IF;
END

The above-mentioned implementation assumes that the initial set of facts is already
known and the user has set the inference goal to a descriptor expressed internally as a
pair of attributeID=3 and valueID=3 (which is also the conclusion of the first rule in the
knowledge base). What is more, two temporary tables (subgoals and tempfacts storing,
respectively, the current set of inference subgoals and a temporary set of facts, which
will be valid if the inference succeeds) use internally the MEMORY Storage Engine. The
MEMORY Storage Engine which is a part of the MySQL DBMS ensures that data in such
tables will be kept in the server’s RAM memory – this may be required due to many
insert and delete operations.3
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The main loop starts by selecting the first subgoal from the subgoals table – currently
there is only the main inference goal (line 3.2 of Algorithm 2). The subgoal is inserted into
the temporary set of facts (represented by the tempfacts table) and removed from the sub-
goals table (lines 3.2 and 3.2). If the current subgoal of the inference does not belong to the
set of initial facts, the procedure selects the ID of the first (not analysed) rule from the
knowledge base whose conclusion corresponds to the subgoal (line 3.2). If such a rule
does not exist, the inference ends with failure. This is not the case, and so premises of
the selected rule are added to the subgoals table (line ??), excluding those which are in
the set of temporary facts (tempfacts) or were already processed (are included in the sub-
goals table). If all subgoals are confirmed, the main loop ends and inference is considered
as a success. Entries from the tempfacts table can now be treated as new facts.

4. Experiments

This section presents the experiments performed on four real-world knowledge bases. The
first used knowledge base (bud4438) is used by a builder company in Poland and cur-
rently consists of 4438 rules. There are 2802 symbolic attributes and 51 numeric. The
formed (by domain experts) rules were generally very short and the structure of the knowl-
edge base was flat. The second base (bud22190) was generated by duplicating the first
one five times with random modifications (because gaining access to large, real-world
knowledge bases is very difficult). The third (eval416) and fourth (eval1199) knowl-
edge bases regarded the topic of effectiveness evaluation of sales representatives and
consisted of 416 and 1119 rules. More information about the structure and experimental
evaluation of rules partitioning concerning these knowledge bases can be found in
Simiński (2017).

The aim of the first experiment was to evaluate the data loading times from a relational
database. The results of this experiment (shown in Table 1) were needed to confirm the
usefulness of the proposed backward chaining inference algorithm implemented directly
on the database and should be interpreted in the context of the second experiment.

Results presented in Table 1 clearly indicate that loading times from the database can
be regarded as significant. It is especially visible for the bud4438 and bud22190 knowl-
edge bases, because they have a lot of attributes whose definitions (and a list of possible
values) are also stored beside the rule set. That is why the authors wanted to check if per-
forming operations directly on the database server can be an alternative to having to wait
for the data loading phase to finish in order to perform, for example, inference in the
client’s application. The memory usage for data structures which hold the rules seems
to be reasonable. For 22190 rules the data structures occupy less than 5 MB of memory.

The goal of the second experiment was to compare two (previously described in this
work) methods of backward chaining inference – a classical version implemented in the

Table 1. Knowledge base average loading times.
Knowledge base Rules count Loading time from database (s) Memory occupation (KB)

eval416 416 2.092 96
eval1199 1199 5.185 285
bud4438 4438 29.238 1197
bud22190 22190 188.195 4646
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Java programming language and one that operates directly on the database server. The
results of this experiment are presented in Table 2.

It is obvious that inference realized on objects stored in the RAM of a client’s computer
will be faster than performing the same process directly in the database layer (even when
using proper column indexes). But the results in Table 2 should be interpreted in the
context of knowledge base loading times (see Table 1). Then one can observe an advan-
tage of the stored procedure method (in the case of knowledge bases bud4438 and
bud22190) compared to running inference on the desktop application. In the case of
the Java program, the user has to wait a time period of about 29 (in the case of
bud4438) or 188 s (in the case of bud22190) for the database to load and additionally
0.2 or 2.5 s for the inference process to finish.

When performing inference directly on the database this time is reduced to a bit over
13 or 136 s, respectively. This means that the user will be able to perform inference at
least one to two times (directly on the database), whereas the data would still be
loading in the desktop application. Of course when the user plans to perform inference
multiple times, it is still better to load the data into the desktop application, because it’s a
one-time operation only. As far as the eval416 and eval1119 knowledge bases are
concerned, the direct database approach performs worse than the traditional one. This
is caused by the structure of these knowledge bases. Although they store less rules,
they form a hierarchical structure, and a chain of rules is activated and analysed
instead of only a single rule like in the case of the bud4438 and bud22190 bases
which have a flat structure.

The results from the second experiment can also have practical impacts – a ‘smart’ soft-
ware dispatcher, which can choose the best inference scenario according to the current
user’s device properties – hardware configuration, internet availability, type of power
supply – can be made. We are going to include this solution into the KBExplorer
system and the KBExpertLib library in the future.

The aim of the last experiment was to determine the impact of the chosen storage
engine (to handle CRUD operations on the data) on the rules’ retrieval time (when consid-
ering the storage procedure approach). Three most commonly used MySQL storage
engines were selected for further research: the Memory, MyISAM and InnoDB approaches
(Bell, 2012). This analysis should be considered particularly useful when dealing with a
large and hierarchical knowledge base which generates many subgoals in the backward
chaining inference process. The results of this experiment are presented in Table 3.

The obtained results clearly indicate that the Memory storage engine is the fastest one
in all tested cases (regardless of the used knowledge base). It is an obvious conclusion,

Table 2. Analysis of rules’ retrieval time (in seconds).
Knowledge base Data source Min. Max. Mean Median

eval416 Database 16.890 17.234 17.016 16.946
eval416 RAM 0.002 0.267 0.079 0.075
eval1119 Database 52.172 53.781 52.844 52.828
eval1119 RAM 0.002 1.377 0.383 0.367
bud4438 Database 13.063 14.969 13.961 13.899
bud4438 RAM 0.001 0.753 0.543 0.478
bud22190 Database 136.000 137.000 136.333 136.000
bud22190 RAM 0.001 2.462 1.567 1.342
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because it uses only RAM as a main storage point, and it is the fastest memory type avail-
able. But what if the RAM resources were limited, so that the whole subgoals and facts
tables could not be stored in it? This is a valid scenario, especially when taking into
account the fact, that multiple users can carry out inference at the same time on the
server. In such case, one has to consider using the remaining storage engines such as
MyISAM or InnoDB. The most distinguishing feature of the InnoDB engine is its support
for database transactions. MyISAM tables have generally a smaller footprint than InnoDB
ones, but this storage engine does not support transactions and table-level locking oper-
ations may slow down write operations.

When comparing the results for the MyISAM and Memory storage engines, the first
approach naturally performs worse, but the differences are not that noticeable. One
could also observe that the bigger and more complex the knowledge base is, the more
time it takes for theMyISAM approach to perform CRUD operations. But still the differences
compared to the Memory engine are from 0.21 to 3.667 s (based on the mean column). So
generally the MyISAM storage engine may be considered as a valid replacement for the
Memory one if for some reason the latter cannot be used.

If data safety is the biggest concern, the InnoDB storage engine should be taken into
account because it has commit, rollback and crash-recovery capabilities. Unfortunately,
as the results presented in Table 3 indicate, it also performs worst in the backward chain-
ing inference task. The differences between the previously analysed storage engines for
the smaller knowledge bases (eval416, eval1119 and bud4438) may be still con-
sidered as acceptable (as they are in the range of 4–9 s). However, results for the
bud22190 knowledge base indicate a noticeable difference. The InnoDB engine needs
36 more seconds on average to return the outcome of inference. Therefore, for larger
and more complex knowledge bases the usage of the InnoDB storage engine may not
be even applicable.

5. Conclusions

In this work, two approaches for inference implementation, which uses knowledge bases
stored in the form of a relational database, were introduced. The first approach requires a
priori loading of the knowledge base contents to the RAM of the client’s computer. The
inference process is performed later on using only data stored in the RAM. The second

Table 3. Analysis of rules’ retrieval time based on the selected MySQL storage engine (in seconds).
Knowledge base MySQL storage engine Min. Max. Mean Median

eval416 Memory 16.890 17.234 17.016 16.946
MyISAM 16.943 17.701 17.226 17.172
InnoDB 19.223 23.469 21.108 20.930

eval1119 Memory 52.172 53.781 52.844 52.828
MyISAM 53.063 55.219 54.151 54.258
InnoDB 60.000 64.000 61.667 61.500

bud4438 Memory 13.063 14.969 13.961 13.899
MyISAM 14.500 16.201 15.511 15.572
InnoDB 19.591 23.031 21.474 21.469

bud22190 Memory 136.000 137.000 136.333 136.000
MyISAM 139.000 141.000 140.000 140.000
InnoDB 172.000 177.000 174.500 174.500

JOURNAL OF INFORMATION AND TELECOMMUNICATION 461



approach involves implementing inference as a stored procedure, run in the environment
of the database server.

Experiments were conducted on real-world knowledge bases with a relatively large
number of rules. Experiments were prepared so that one could evaluate the pessimistic com-
plexity of the inference algorithm. The results confirmed that the inference implemented in
object-oriented data structures loaded into memory is effective. The times of inference in
theworst-case scenario did not exceed 2.5 s. However, loading the contents of the knowledge
base proved to be time-consuming. For small bases these times were about a couple of
seconds, but for the largest one they reached over 3min. Such a case is acceptable in
systems where the knowledge base is reloaded rarely, and the waiting time (for data
loading) is tolerable from the user’s point of view. For applications where there is need for fre-
quent reloadingof theknowledgebase, this solution is inconvenient andmaybecumbersome
for the user. This may be the case for knowledge bases which are frequently updated, for
example, by programs that use specific algorithms to automatically generate rules.

The inference implemented in the form of a stored procedure runs significantly slower
than the solution described previously, which is not a surprising result. However, when
comparing the inference times and adding the time of loading data from the knowledge
base, the solution using a stored procedure turns out to be faster (in specific conditions).
This solution is especially convenient when the knowledge base is updated frequently.
Unfortunately, the used storage engine has a significant impact on the rules’ retrieval
time and should be selected very carefully, taking into account the requirements and pos-
sibilities of the owned hardware. If free RAM amount is not an issue, the authors rec-
ommend to use the Memory storage engine as it is the fastest of the analysed
approaches for every tested knowledge base. If RAM resources are limited (in a multi-
user scenario, for example) theMyISAM storage engine may be considered as a valid repla-
cement for the memory one.

Implementation of the inference in the form of a stored procedure is an interesting sol-
ution and will be permanently included in the described KBExplorer system and theK-
BExpertLib library. This will allow the programmer implementing a domain expert
system to select the desired mode of inference. We consider the implementation of an
‘intelligent’ inference dispatcher, which will be able to select the inference method,
according to the device resources (processor speed, free memory) as well as taking into
account the speed of the used internet connection. This solution will be analysed as the
next stage of research.

Notes

1. Decision attributes are attributes that are at least once included in a conclusion of any rule
from R.

2. When the employed rules representation language allows to use the negation in literals, it is
possible to check whether the ¬g is a fact. If ¬g is true, the goal g should be rejected.

3. For a detailed motivation why this storage engine was chosen have a look at the results of the
last experiment.
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