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Future generation of interferometric gravitational wave detectors is
hoped to provide accurate measurements of the final stages of binary in-
spirals. The sources probed by such experiments are of extragalactic origin
and the observed chirp mass distribution carries information about their
redshifts. Moreover the luminosity distance is directly observable is such
experiments. This creates the possibility to establish a new kind of cosmo-
logical tests, supplementary to more standard ones. The paper discusses
the utility of gravity wave experiments for testing the dark energy in the
Universe, which is one of the most important issues in modern cosmology.

PACS numbers: 04.80.Nn, 04.30.Db, 97.80.–d, 98.80.Es

1. Introduction

Currently two independent observational programs — high redshift su-
pernovae surveys [1] and CMBR small scale anisotropy measurements [2, 3]
have brought a new picture of the Universe in the large. The results of these
programs interpreted within the FRW models suggest that our Universe is
flat (as inferred from the location of acoustic peaks in CMBR power spec-
trum) and presently accelerates its expansion (as inferred from the SNIa
Hubble diagram). Combined with the independent knowledge about the
amount of baryons and CDM estimated to be Ωm = 0.3 [4] it follows that
about ΩX = 0.7 fraction of critical density should be contained in a myste-
rious component called “dark energy”. The most obvious candidate for this
smooth component permeating the Universe is the cosmological constant Λ
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representing the energy of the vacuum. Well known fine tuning problems
led many people to seek beyond the Λ framework, and the concept of the
quintessence had been conceived. Usually the quintessence is described in a
phenomenological manner, as a scalar field with an appropriate potential [5].
It turns out, however, that quintessence program also suffers from its own
fine tuning problems [6].

Recently the so called Chaplygin gas [7] — a hypothetical component
with the equation of state p = − A

ρCh
was proposed as a challenge to the

above mentioned candidates for dark energy. This, also purely phenomeno-
logical, entity has interesting connections with string theory [8]. Currently
its generalisations admitting the equation of state p = − A

ρα

Ch
where 0 ≤ α ≤ 1

have been proposed [9].

Another popular line of investigation invokes physical theories with extra
spatial dimensions. In these theories our four dimensional Universe is a brane
embedded into a higher dimensional space-time and the General Relativity is
obtained as an effective theory from a more fundamental one. The standard
model matter fields are confined to the brane while gravity propagates in
all dimensions. Various cosmological consequences of brane-world scenarios
have been discussed in the literature. In the most popular class of such
models [10, 11] there exists a certain crossover distance scale rc such that
below that scale an observer would measure the usual gravitational force but
above the crossover scale the gravity follows 5-dimensional behaviour. Such
large scale behaviour would have profound cosmological consequences and
some of them have already been discussed in the literature [12–14].

Laser interferometric gravitational wave detectors developed under the
projects LIGO, VIRGO and GEO600 are expected to perform a success-
ful direct detection of the gravitational waves. Inspiralling neutron star
(NS–NS) binaries are among the most promising astrophysical sources for
this class of experiments [15]. They have a remarkable feature that the lu-
minosity distance to a merging binary is a directly observable quantity easy
to obtain from the waveforms. This circumstance made it possible to con-
template a possibility of measuring cosmological parameters such like the
Hubble constant, or deceleration parameter [16–18]. In particular it was
pointed out by Chernoff and Finn [16] how the catalogues of inspiral events
can be utilised to make statistical inferences about the Universe. In a similar
spirit the possibility to constrain cosmic equation of state from the statistics
of inspiral gravitational wave events has been discussed in [19, 20].

In this paper, developing the approach of [19] we shall contemplate the
feasibility of constraining the different classes of dark energy scenarios such
like Chaplygin gas, brane world and quintessence from the gravitational wave
experiments.
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2. Cosmological models

2.1. Generalized Chaplygin gas cosmology

Einstein equations for the Friedman–Robertson–Walker model with hy-
drodynamical energy-momentum tensor Tµν = (ρ + p)uµuν − pgµν read:

(

ȧ

a

)2

=
8πGρ

3
−

k

a2(t)
, (1)

ä(t)

a
= −

4πG

3
(ρ + 3p) . (2)

Let us assume that matter content of the Universe consists of pressure-less
gas with energy density ρm representing baryonic plus cold dark matter
(CDM) and of the generalized Chaplygin gas with the equation of state

pCh = −
A

ρCh
α

, (3)

where 0 ≤ α ≤ 1, representing the dark energy responsible for the accel-
eration of the Universe. If one further makes an assumption that these
two components do not interact, then the energy conservation equation
ρ̇ + 3H(p + ρ) = 0, where H = ȧ/a is the Hubble function, can be inte-
grated separately for matter and Chaplygin gas leading to well known result

ρm = ρm,0a
−3 and ρCh =

(

A + B
a3(1+α)

) 1
1+α

(see also [9]).

The Friedman equation (1) can be rearranged to the form giving explic-
itly the Hubble function H(z) = ȧ/a

H(z)2 =H2
0

[

Ωm(1+z)3+ΩCh

(

A0+(1−A0)(1+z)3(1+α)
)

1
1+α

+Ωk(1 + z)2
]

,

(4)
where the quantities Ωi, i = m,Ch, k represent fractions of critical density
currently contained in energy densities of respective components. For the
transparency of formulae we have denoted Ωk = − k

H2
0

and A0 = A/(A+B).

Generalised Chaplygin gas models have been intensively studied in the
literature [21] and in particular they have been tested against supernovae
data. In general there are two approaches to generalised Chaplygin gas mod-
els. In the first one Chaplygin gas is invoked as a candidate of dark energy
component (alternative to the quintessence) hence one assumes Ωm = 0.3
and ΩCh = 0.7. The second approach is more ambitious: one hopes that
Chaplygin gas could account both for dark energy and cold dark matter,
hence the respective cosmological model assumes Ωm ≈ 0.05 (baryonic con-
tent of the Universe) and ΩCh ≈ 0.95.
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Using available data [2,3] on the position of CMBR peaks Bento et al. [22]
obtained the following constraints: 0.81 ≤ A0 ≤ 0.85 and 0.2 ≤ α ≤ 0.6 at
68% CL in the model with Ωm = 0.05 and ΩCh = 0.95 assumed. Using the
angular size statistics for extragalactic sources combined with SNIa data it
was found in [23] that in the Ωm = 0.3 and ΩCh = 0.7 scenario best fitted
values of model parameters are A0 = 0.83 and α = 1. respectively.

2.2. Brane-world cosmological model

Brane-world scenarios assume that our four-dimensional spacetime is a
brane embedded into 5-dimensional bulk and gravity in 5-dimensions is gov-
erned by the 5-dimensional Einstein–Hilbert action. The bulk metric 5gAB

induces a 4-dimensional metric gµν on the brane [10, 11]. According to this
picture, our 4-dimensional Universe is a surface (a brane) embedded into a
higher dimensional bulk space-time in which gravity propagates. As a con-
sequence there exists a certain cross-over scale rc above which an observer
will detect higher dimensional effects.

Cosmological models in brane-world scenarios have been widely discussed
in the literature [12–14]. In particular the Friedman’s equation takes here
the following form:

H(z)2 = H2
0

[

(

√

Ωm(1 + z)3 + Ωrc +
√

Ωrc

)2
+ Ωk(1 + z)2

]

, (5)

where Ωrc = 1
4r2

cH2
0

and Ωk = − k
H2

0
. It has been shown in [14] that flat

brane-world Universe with Ωm = 0.3 and rc = 1.4 H−1
0 is consistent with

current SNIa and CMBR data.

2.3. Quintessence model

For a couple of years the most popular explanation of the accelerating
Universe (i.e. ä > 0 and hence ρ + 3p < 0) was to assume the existence
of a negative pressure p < −1/3ρ component called dark energy. One can
heuristically assume that this component, called “quintessence”, is described
by hydrodynamical energy-momentum tensor with p = wρ where −1 < w <
−1/3 [24, 25]. There are many theoretical realisations of the “quintessence”
from the oldest idea of dynamical scalar field of Ratra and Peebles [5], its
modern versions of slowly rolling down scalar fields tracking the evolution
of the scale factor in an appropriate way [26], supersymmetric models [27]
up to the ideas associated with large extra dimensions [11].

In quintessential cosmology the Friedman equation reads:

H2(z) = H2
0 (Ωm (1 + z)3 + ΩQ (1 + z)3(1+w) + Ωk(1 + z)2) , (6)
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where by Ωm and ΩQ we have denoted present values of relative contribu-
tions of clumped matter and quintessence to the critical density.

Confrontation with supernovae and CMBR data led to the constraint
w ≤ −0.8 hence we assume this value of w (with Ωm = 0.3 and ΩQ = 0.7)
as representative for the class of quintessential cosmological models.

In any case of a cosmological test aimed at determining the geometry of
the Universe in the large, one has to calculate some distance measure as a
function of redshift. As it is well known (see e.g. [28]), one can distinguish
three types of distances in cosmology:

(i) proper distance:

dM (z) =
c

H0 |Ωk|1/2
S



H0|Ωk|
1/2

z
∫

0

dz′

H(z′)



 =:
dH

h |Ωk|1/2
d̄M (z) ,

(7)

(ii) angular diameter distance: dA(z) = 1
1+z dM (z) ,

(iii) luminosity distance: dL(z) = (1 + z)dM (z) .

The S(u) function is defined as S(u) = sin u for k = +1, S(u) = u for
k = 0 and S(u) = sinhu for k = −1. As usually z denotes the redshift, h
denotes the dimensionless Hubble constant i.e. H0 = h× 100 km/s Mpc and
dH = 3. × h−1 Gpc is the Hubble distance (radius of the Hubble horizon).
The quantities with an over-bar have been defined by factoring out the de-
pendence on the Hubble constant. For the purpose of concrete calculations
we have assumed the dimensionless Hubble constant equal to h = 0.65 as
suggested by independent observational evidence (e.g. the HST project or
multiple image quasar systems [29]). The formulae above are the most gen-
eral ones in the framework of Friedman–Robertson–Walker type cosmology.
Further in this paper we will use their versions restricted to flat model k = 0
because the flat FRW geometry is strongly supported by CMBR data [2,3].

3. Redshift distribution of observed events

The gravity wave detector would register only those inspiral events for
which the signal-to-noise ratio exceeded certain threshold value ρ0 [16] which
is assumed as ρ0 = 8. for LIGO-type detectors. An intrinsic chirp mass
M0 = µ3/5M2/5, with µ and M denoting the reduced and total mass, is
the crucial observable quantity describing the inspiralling binary system.
The observed chirp mass scales with the redshift M(z) = (1 + z)M0 and
therefore can be used to determine the redshift to the source. Observations
of binary pulsars 1913+16 and 1534+12 as well as X-ray observations have
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strongly indicated that the mass distribution of NS in binaries is sharply
peaked around 1.4 M⊙ [16, 17]. Assuming equal mass binary this would
mean that one can (in first approximation) take the distribution of intrinsic
chirp mass as peaked around 1.2 M⊙. It is a very fortunate circumstance in
the context of potential utility of gravitational wave observations. Namely, if
one detects an event with a chirp mass significantly exceeding the “canonical”
value of 1.2 M⊙ then this excess can be translated into redshift of the source
z = Mobs

1.2 M⊙
− 1. In fact the sharp mass distribution of NS makes NS-NS

binaries the “standard candles” of gravitational wave astronomy. Because
the luminosity distance of a merging binary is a direct observable easily
read off from the waveforms one has a possibility to determine the distance
— redshift relation and hence to estimate certain cosmological parameters
[16, 19].

The rate
dṄ(> ρ0)

dz
at which we observe the inspiral events that originate

in the redshift interval [z, z + dz] is given by [30]:

dṄ(> ρ0)

dz
=

ṅ0

1 + z
η(z) 4πd2

M

d

dz
dM (z) CΘ(x)

= 4π

(

dH

h

)3 ṅ0

1 + z

d̄2
M (z)

H(z)
CΘ(x) , (8)

where ṅ0 denotes the local binary coalescing rate per unit comoving volume,
η(z) factor parametrizes source evolution over the sample and CΘ(x) denotes
the probability that given detector registers inspiral event at redshift z with
ρ > ρ0 (for details see [19, 30]). We assume the detector’s characteristics
as representative for the second generation of interferometric detectors [19,
20, 30] For the ṅ0 one can use “the best guess” for local rate density ṅ0 ≈
9.9 h 10−8 Mpc−3yr−1 as inferred from the observed binary pulsar systems
that will coalesce in less than a Hubble time [31]. Recent attempts aimed
at predicting the coalescing rate from stellar evolution using the population
synthesis method [32] gave estimates spread over the range of 2 orders of
magnitude. However, the P (z,> ρ0) statistical observable discussed below
is insensitive to the precise value of coalescence rate.

Source evolution over sample is parametrized by the factor η(z). We
have adopted the functional form of η(z) found by Schneider et al. [33] from
the population synthesis approach and which has also been used by Zhu et
al. [20] in a similar context.

The method of extracting the cosmological parameters advocated by
Finn and Chernoff [16] makes use of the redshift distribution of observed
events in a catalogue composed of observations with the signal-to-noise ratio
greater than the threshold value ρ0. Therefore it is important to find this
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distribution function for different cosmological scenarios. The formula for
the expected distribution of observed events in the source redshift can be
obtained from the equation (8):

P (z,> ρ0) =
1

Ṅ(> ρ0)

dṄ(> ρ0)

dz

=
4π

Ṅ(> ρ0)

(

dH

h

)3 ṅ0

1 + z
η(z)

d̄2
M (z)

H(z)
CΘ(x) . (9)

The illustration of numerical computations for the generalised Chaplygin
gas models and brane-world cosmologies based on the formulae (9) and (8)
is given in figures Figs. 1–3. Similar results for the quintessence models can
be found in [19]. Computations consisted in performing sensitivity analysis
of P (z,> ρ0) observable by constructing a grid of models by systematically
varying free parameters A0 and α — in the case of Chaplygin gas models
and rc in brane-world scenarios.
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Fig. 1. Sensitivity of the P (z, > ρ0) distribution function, with respect to A0 pa-

rameter (α = 0.5 assumed), in (Ωm = 0.3 , ΩCh = 0.7) generalised Chaplygin gas

cosmological model.

Figure 1 illustrates sensitivity, with respect to A0 parameter (α = 0.5
assumed), of the P (z,> ρ0) distribution function in (Ωm = 0.3 , ΩCh =
0.7) generalised Chaplygin gas cosmological model. One can see noticeable
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crossover scale rc (in units of the Hubble distance), in the brane-world scenario.
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differences in P (z,> ρ0) distribution functions when A is systematically
varied. Similar sensitivity analysis for α revealed a very small effect, hence
the respective figure is not reported. The family of curves on Fig. 1 is
representative for the full range of α parameter, in the sense that it properly
illustrates the emerging trends.

In figure 2 one can see how P (z,> ρ0) distribution function varies while
changing the cross-over scale rc (in units of the Hubble radius) in braneworld
scenarios.

Finally in figure 3 the P (z,> ρ0) distribution functions for different cos-
mological scenarios have been plotted collectively. The scenarios comprise:
best fitted quintessence model, flat ΛCDM scenario, brane-world scenario
(with rc = 1.4) and generalised Chaplygin gas models with ΩCh = 0.3,
A0 = 0.83, α = 1. and ΩCh = 0.05, A0 = 0.83, α = 0.4, respectively.

4. Results and discussion

In the class of generalised Chaplygin gas models the P (z,> ρ0) observ-
able could be useful for constraining A parameter. Unfortunately, as already
mentioned there still exists a strong degeneracy with respect to α. This effect
has also been noticed in previous studies using other techniques.

There are also perspectives for constraining the cross-over scale in brane-
world scenarios with P (z,> ρ0) observable, yet this would demand high
quality data. Figure 3 shows that there is also a noticeable difference in
predicted redshift distribution functions P (z,> ρ0) for different cosmological
scenarios.

At the level of yearly detection rates the difference between scenarios
turned out to be negligibly small. However, as we have discussed in [19] the
yearly detection rate is very sensitive to source evolution effects and thus it
would allow to constrain the freedom in astrophysical input to the P (z,> ρ0)
observable. The redshift distribution P (z,> ρ0) is in fact inferred from
observed chirp mass distribution. Therefore it can in principle be distorted
by the intrinsic chirp mass distribution. Theoretical studies of the neutron
star formation suggest that masses of nascent neutron stars do not vary
much with either mass or composition of the progenitor [16]. Also the mass
estimates of observed binary pulsars suggest that there are good reasons to
assume a negligible spread of intrinsic chirp mass.

In conclusion one can hope that the catalogues of inspiral events gathered
in future gravitational waves experiments can provide helpful information
about the nature of the dark energy in the Universe complementary to that
obtained by other techniques.
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