
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

A Consistent and Fault-Tolerant Data Store for Software
Defined Networks

Fábio Andrade Botelho

DISSERTAÇÃO

MESTRADO EM SEGURANÇA INFORMÁTICA

2013

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

A Consistent and Fault-Tolerant Data Store for Software
Defined Networks

Fábio Andrade Botelho

DISSERTAÇÃO

MESTRADO EM SEGURANÇA INFORMÁTICA

Dissertação orientada pelo Prof. Doutor Alysson Neves Bessani
e co-orientado pelo Prof. Doutor Fernando Manuel Valente Ramos

2013

Agradecimentos
Aos meus orientadores — Prof. Doutor Alysson Neves Bessani, Prof. Doutor Fer-
nando Manuel Valente Ramos, e Diego Kreutz que muito mais do que ocuparem tı́tulos e
posições, tomaram lugar numa activa equipa de trabalho que tornou este projecto possı́vel.
Um muito obrigado por toda a paciência, apoio e confiança ao longo do meu último ano.
No contexto do meu percurso na FCUL queria também agradecer ao Prof. Doutor Hugo
Alexandre Tavares Miranda, que muito me ensinou sobre sistemas distribuı́dos, e também
aos companheiros do laboratório 25 por serem os melhores. Queria agradecer também
aos reviewers da EWSDN pelos comentários que ajudaram a melhorar o artigo que foi
resultado deste trabalho. Além disso queria agradecer ao financiamento que foi parcial-
mente suportado pelo EC FP7 através do projecto BiobankCloud (ICT-317871) e também
pela FCT através do programa Multianual do LASIGE.

No campo pessoal queria agradecer a todos que me carregaram até aqui. Nomeada-
mente a minha famı́lia (pais e irmãos), que mais do que ser famı́lia, acreditou em mim, e
levou-me às costas todos os anos. Eu nunca vos vou conseguir retribuir o quanto fizeram
por mim. De seguida à minha companheira de viagem, Maria Lalanda. Foste o melhor
deste caminho, espero no futuro perder-me apenas contigo.

Ao pessoal do Jardim, pelas baldas, pelo jardim, por todo o tempo envoltos em ritmo
e poesia. São demasiados os nomes para referir aqui, mas não podia deixar de referir as
pessoas que mais me apoiaram neste percurso: João Sardinha, Tâmara Andrade, e Miguel
Azevedo. Em Braga, a Catarina e Filipe Rebelo, e a senhora Eleanor por terem acreditado
em mim. Ao Manuel Barbosa por me alavancar, ao José Silva e a Bárbara Manso por
se infiltrarem na minha casa. Vocês três são famı́lia. Um especial agradecimento ao José
Silva e Manuel Barbosa, companheiros em muitas batalhas — Nunca é tarde para apanhar
o comboio Cacilda! Aos Monads, à casa vintage, aos gadgets do Toxa, à bandeira que
soprava na direcção de casa, e a todo o restante foklore... Em Lisboa, à Filipa Costa e João
Pereira por suportarem o gajo mais chato de sempre. Ao MSI por ter me confrontado com
o maior desafio da minha vida, e ao José Lopes, porque sem ele nunca teria conseguido.
Fico à espera que me “faças um turing” rapaz. Ao pessoal do FCUL que muito ajudou.
Em especial o Emanuel Alves, Juliana Patrı́cia e Anderson Barretto. À RUMO que me
acolheu; é com remorso que não explorei os teus cantos. À Maria e ao José (os Manos)
pela casa e paciência; igualmente ao Miguel Costa e Francisco Apolinário. Finalmente a
todas as máquinas automáticas do c* que me alimentaram durante as semanas do Globox,
ao café, SG Ventil, stack-overflow e lego-coding: um muito obrigado. Ao Lamport por
usar t-shirts em apresentações, inventar o LATEXe um zilião de papers. Por fim, ao Charlie,
“who has always made it out of the jungle!”. Mesmo sem cão!

Às “Torradas”, à Lonjura, e às Ilhas! — “Sair da ilha é a pior forma de ficar nela”
(Daniel Sá).

iii

A todos “os meus conhecidos” que já levaram porrada.

Resumo

O sucesso da Internet é indiscutı́vel. No entanto, desde há muito tempo que são fei-
tas sérias crı́ticas à sua arquitectura. Investigadores acreditam que o principal problema
dessa arquitectura reside no facto de os dispositivos de rede incorporarem funções dis-
tintas e complexas que vão além do objectivo de encaminhar pacotes, para o qual foram
criados [1]. O melhor exemplo disso são os protocolos distribuı́dos (e complexos) de en-
caminhamento, que os routers executam de forma a conseguir garantir o encaminhamento
de pacotes. Algumas das consequências disso são a complexidade das redes tradicionais
tanto em termos de inovação como de manutenção. Como resultado, temos redes dispen-
diosas e pouco resilientes.

De forma a resolver este problema uma arquitectura de rede diferente tem vindo a ser
adoptada, tanto pela comunidade cientı́fica como pela indústria. Nestas novas redes, co-
nhecidas como Software Defined Networks (SDN), há uma separação fı́sica entre o plano
de controlo do plano de dados. Isto é, toda a lógica e estado de controlo da rede é reti-
rada dos dispositivos de rede, para passar a ser executada num controlador logicamente
centralizado que com uma visão global, lógica e coerente da rede, consegue controlar a
mesma de forma dinâmica. Com esta delegação de funções para o controlador os dispo-
sitivos de rede podem dedicar-se exclusivamente à sua função essencial de encaminhar
pacotes de dados. Assim sendo, os dipositivos de redes permanecem simples e mais bara-
tos, e o controlador pode implementar funções de controlo simplificadas (e possivelmente
mais eficazes) graças à visão global da rede.

No entanto um modelo de programação logicamente centralizado não implica um sis-
tema centralizado. De facto, a necessidade de garantir nı́veis adequados de performance,
escalabilidade e resiliência, proı́bem que o plano de controlo seja centralizado. Em vez
disso, as redes de SDN que operam a nı́vel de produção utilizam planos de controlo dis-
tribuı́dos e os arquitectos destes sistemas têm que enfrentar os trade-offs fundamentais
associados a sistemas distribuı́dos. Nomeadamente o equilibro adequado entre coerência
e disponibilidade do sistema.

Neste trabalho nós propomos uma arquitectura de um controlador distribuı́do, tole-
rante a faltas e coerente. O elemento central desta arquitectura é uma base de dados
replicada e tolerante a faltas que mantêm o estado da rede coerente, de forma a garantir
que as aplicações de controlo da rede, que residem no controlador, possam operar com

vii

base numa visão coerente da rede que garanta coordenação, e consequentemente simpli-
fique o desenvolvimento das aplicações. A desvantagem desta abordagem reflecte-se no
decréscimo de performance, que limita a capacidade de resposta do controlador, e também
a escalabilidade do mesmo. Mesmo assumindo estas consequências, uma conclusão im-
portante do nosso estudo é que é possı́vel atingir os objectivos propostos (i.e., coerência
forte e tolerância a faltas) e manter a performance a um nı́vel aceitável para determinados
tipo de redes.

Relativamente à tolerância a faltas, numa arquitectura SDN estas podem ocorrer em
três domı́nios diferentes: o plano de dados (falhas do equipamento de rede), o plano de
controlo (falhas da ligação entre o controlador e o equipamento de rede) e, finalmente, o
próprio controlador. Este último é de uma importância particular, sendo que a falha do
mesmo pode perturbar a rede por inteiro (i.e., deixando de existir conectividade entre os
hosts). É portanto essencial que as redes de SDN que operam a nı́vel de produção possuam
mecanismos que possam lidar com os vários tipos de faltas e garantir disponibilidade perto
de 100%.

O trabalho recente em SDN têm explorado a questão da coerência a nı́veis diferentes.
Linguagens de programação como a Frenetic [2] oferecem coerência na composição de
polı́ticas de rede, conseguindo resolver incoerências nas regras de encaminhamento au-
tomaticamente. Outra linha de trabalho relacionado propõe abstracções que garantem a
coerência da rede durante a alteração das tabelas de encaminhamento do equipamento. O
objectivo destes dois trabalhos é garantir a coerência depois de decidida a polı́tica de enca-
minhamento. O Onix (um controlador de SDN muitas vezes referenciado [3]) garante um
tipo de coerência diferente: uma que é importante antes da polı́tica de encaminhamento
ser tomada. Este controlador oferece dois tipos de coerência na salvaguarda do estado
da rede: coerência eventual, e coerência forte. O nosso trabalho utiliza apenas coerência
forte, e consegue demonstrar que esta pode ser garantida com uma performance superior
à garantida pelo Onix.

Actualmente, os controladores de SDN distribuı́dos (Onix e HyperFlow [4]) utilizam
modelos de distribuição não transparentes, com propriedades fracas como coerência even-
tual que exigem maior cuidado no desenvolvimento de aplicações de controlo de rede no
controlador. Isto deve-se à ideia (do nosso ponto de vista infundada) de que proprieda-
des como coerência forte limitam significativamente a escalabilidade do controlador. No
entanto um controlador com coerência forte traduz-se num modelo de programação mais
simples e transparente à distribuição do controlador.

Neste trabalho nós argumentámos que é possı́vel utilizar técnicas bem conhecidas de
replicação baseadas na máquina de estados distribuı́da [5], para construir um controlador
SDN, que não só garante tolerância a faltas e coerência forte, mas também o faz com uma
performance aceitável. Neste sentido a principal contribuição desta dissertação é mostrar
que uma base de dados contruı́da com as técnicas mencionadas anteriormente (como as

viii

providenciadas pelo BFT-SMaRt [6]), e integrada com um controlador open-source exis-
tente (como o Floodlight1), consegue lidar com vários tipos de carga, provenientes de
aplicações de controlo de rede, eficientemente.

As contribuições principais do nosso trabalho, podem ser resumidas em:

1. A proposta de uma arquitectura de um controlador distribuı́do baseado nas proprie-
dades de coerência forte e tolerância a faltas;

2. Como a arquitectura proposta é baseada numa base de dados replicada, nós realiza-
mos um estudo da carga produzida por três aplicações na base dados.

3. Para avaliar a viabilidade da nossa arquitectura nós analizamos a capacidade do
middleware de replicação para processar a carga mencionada no ponto anterior.
Este estudo descobre as seguintes variáveis:

(a) Quantos eventos por segundo consegue o middleware processar por segundo;

(b) Qual o impacto de tempo (i.e., latência) necessário para processar tais eventos;

para cada uma das aplicações mencionadas, e para cada um dos possı́veis eventos
de rede processados por essas aplicações. Estas duas variáveis são importantes para
entender a escalabilidade e performance da arquitectura proposta.

Do nosso trabalho, nomeadamente do nosso estudo da carga das aplicações (numa
primeira versão da nossa integração com a base de dados) e da capacidade do middleware
resultou uma publicação: Fábio Botelho, Fernando Ramos, Diego Kreutz and Alysson
Bessani; On the feasibility of a consistent and fault-tolerant data store for SDNs, in Se-
cond European Workshop on Software Defined Networks, Berlin, October 2013. En-
tretanto, nós submetemos esta dissertação cerca de cinco meses depois desse artigo, e
portanto, contêm um estudo muito mais apurado e melhorado.

Palavras-chave: Replicação, Coerência Forte, Redes Controladas por Software,
Tolerância a Faltas, Máquina de Estados Distribuı́da, Plano de Controlo Distribuı́do.

1http://www.projectfloodlight.org/floodlight/

ix

http://www.projectfloodlight.org/floodlight/

Abstract

Even if traditional data networks are very successful, they exhibit considerable complexity
manifested in the configuration of network devices, and development of network proto-
cols. Researchers argue that this complexity derives from the fact that network devices
are responsible for both processing control functions such as distributed routing protocols
and forwarding packets.

This work is motivated by the emergent network architecture of Software Defined Net-
works where the control functionality is removed from the network devices and delegated
to a server (usually called controller) that is responsible for dynamically configuring the
network devices present in the infrastructure. The controller has the advantage of log-
ically centralizing the network state in contrast to the previous model where state was
distributed across the network devices. Despite of this logical centralization, the control
plane (where the controller operates) must be distributed in order to avoid being a sin-
gle point of failure. However, this distribution introduces several challenges due to the
heterogeneous, asynchronous, and faulty environment where the controller operates.

Current distributed controllers lack transparency due to the eventual consistency prop-
erties employed in the distribution of the controller. This results in a complex program-
ming model for the development of network control applications. This work proposes a
fault-tolerant distributed controller with strong consistency properties that allows a trans-
parent distribution of the control plane. The drawback of this approach is the increase
in overhead and delay, which limits responsiveness and scalability. However, despite be-
ing fault-tolerant and strongly consistent, we show that this controller is able to provide
performance results (in some cases) superior to those available in the literature.

Keywords: Replication, Strong Consistency, Distributed State Machine, Distributed
Control Plane, Software Defined Networking.

xi

Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Software Defined Network . 1

1.1.1 Standard Network Problems . 2
1.1.2 Logical Centralization . 3
1.1.3 Distributed Control Plane . 5
1.1.4 Consistency models . 6

1.2 Goals and Contributions . 7
1.3 Planning . 8
1.4 Thesis Organization . 10

2 Related Work 11
2.1 Software Defined Networks History . 11

2.1.1 RCP . 12
2.1.2 4D . 13
2.1.3 Ethane . 13
2.1.4 OpenFlow . 15
2.1.5 Network Operating System . 16

2.2 Software Defined Networks Fundamentals 16
2.2.1 Architecture . 17
2.2.2 OpenFlow . 19

2.3 Centralized Controllers . 21
2.3.1 NOX . 22
2.3.2 Maestro . 22
2.3.3 Beacon . 23
2.3.4 Floodlight . 23

2.4 Distributed Controllers . 24
2.4.1 Kandoo . 24

xiii

2.4.2 HyperFlow . 25
2.4.3 Onix . 27

2.5 Consistent Data Stores . 29
2.5.1 Trade-offs . 30
2.5.2 Eventual Consistency . 30
2.5.3 Strong Consistency . 32
2.5.4 ViewStamped Replication . 32
2.5.5 State Machine Replication Performance 34

2.6 Consistent Data Planes . 34
2.6.1 Abstractions for Network Updates 35
2.6.2 Software Transactional Network 35

3 Architecture 37
3.1 Shared Data Store Controller Architecture 37

3.1.1 General Architecture . 38
3.1.2 Data Store . 41

3.2 Data Store Prototype . 43
3.2.1 Cross References . 45
3.2.2 Versioning . 46
3.2.3 Columns . 47
3.2.4 Micro Components . 48
3.2.5 Cache . 49

4 Evaluation 52
4.1 Methodology and Environment . 52

4.1.1 Workload Generation . 53
4.1.2 Data Store Performance . 54
4.1.3 Test Environment . 55

4.2 Learning Switch . 55
4.2.1 Broadcast Packet . 56
4.2.2 Unicast Packet . 57
4.2.3 Optimizations . 57
4.2.4 Evaluation . 58

4.3 Load Balancer . 58
4.3.1 ARP Request . 60
4.3.2 Packets to a VIP . 60
4.3.3 Optimizations . 61
4.3.4 Evaluation . 62

4.4 Device Manager . 63
4.4.1 Unknown Device . 64

xiv

4.4.2 Known Devices . 65
4.4.3 Optimizations . 65
4.4.4 Evaluation . 67

4.5 Cache . 67
4.5.1 Learning Switch . 68
4.5.2 Load Balancer . 69
4.5.3 Device Manager . 70
4.5.4 Theoretical Evaluation . 71

4.6 Discussion . 71

5 Conclusions 74
5.1 Conclusions . 74
5.2 Future Work . 75

Glossary 77

References 81

xv

List of Figures

1.1 SDN architecture . 3
1.2 The Plan . 9
1.3 Activity Report . 9

2.1 General SDN Architecture . 17
2.2 Flow Request . 20
2.3 Controller Architecture . 21
2.4 Kandoo Architecture . 25
2.5 HyperFlow Architecture . 26
2.6 Onix Architecture . 27
2.7 Eventual Consistency Pitfalls . 31
2.8 Strong Consistency Semantics . 32
2.9 Viewstamped Replication Protocol . 33

3.1 General Architecture . 40
3.2 Performance and Scalability . 41
3.3 Data Store Architecture . 42
3.4 Client Interfaces Class Diagram . 44
3.5 Cross References . 45
3.6 Concurrent updates . 47
3.7 Key Value vs. Column Store . 48
3.8 Reading Values from the Cache . 50

4.1 Workload Definition . 53
4.2 Test Environment and Metholodogy . 54
4.3 Learning Switch Workloads . 56
4.4 Learning Switch Evaluation . 59
4.5 Load Balancer Class Diagram . 59
4.6 Load Balancer Workloads . 60
4.7 Load Balancer Evaluation . 63
4.8 Device Manager Class Diagram . 63
4.9 Device Manager Workload . 64

xvii

4.10 Device Manager Evaluation . 68

xviii

xx

List of Tables

2.1 Openflow Flow Table . 20
2.2 Performance of state machine replication systems 34

4.1 Workload lsw-0-broadcast operations 57
4.2 Workload lsw-0-unicast operations . 57
4.3 Workload lsw-1-unicast Operations . 57
4.4 Workload lsw-2-unicast Operations . 58
4.5 Load Balancer key-value tables . 59
4.6 Workload lbw-0-arp-request operations 60
4.7 Workload lbw-0-ip-to-vip operations . 61
4.8 Load Balancer IP to VIP workload optimizations 61
4.9 Name guide to Load Balancer workloads 62
4.10 Device Manager key-value tables . 63
4.11 Workload dm-0-unknown operations . 65
4.12 Workload dm-0-known (Known Devices) operations 65
4.13 Workload dm-X-known operations . 66
4.14 Name guide to Device Manager workloads 66
4.15 Workload dm-0-unknown operations . 67
4.16 Workload unicast workload with cache 68
4.17 Load Balancer IP to VIP workload with cache 70
4.18 Workload dmw-5-known (cached) . 71
4.19 Bounded Analysis to Cache workloads 71

xxi

Chapter 1 – Introduction

The nice thing about standards is that
you have so many to choose from.

Andrew S. Tanenbaum

1.1 Software Defined Network

Despite its success, current Internet Protocol (IP) networks suffer from problems, which
have long drawn attention of the network academic community. Researchers have been
tackling those problems with one of two strategies: tailoring the performance of IP based
networks and/or providing point solutions to new technological requirements (incremen-
tal approach); or redesigning the entire architecture from scratch (clean slate approach).
Software Defined Network (SDN) is the pragmatic result of several contributions to the
clean slate approach that has the benefit of radically transforming the management and
functionality of IP networks, albeit maintaining intact traditional host-to-host protocols
(i.e., the TCP/IP stack1).

In a nutshell, SDN shifts the control logic of the network (e.g., route discovery) from
the network equipment, to a commodity server where network behavior can be defined in
a high-level control program, without the constraints set by the network equipment. Thus,
there is a separation of the control plane, where the server operates, from the data plane,
where the network infrastructure (the switches & routers) resides. A fundamental abstrac-
tion in SDN is logical centralization that specifies that the control plane operates with a
logically centralized view of the network. This view enables simplified programming
models and facilitates network applications design.

A logically centralized programming model does not postulate a centralized system.
Arguably, a less-prone-to-ambiguity definition for “logically centralized” could be “trans-
parently distributed” because “either you’re centralized, or you’re distributed” [7]. In
fact, the need to guarantee adequate levels of performance, scalability, and reliability pre-
clude a fully centralized solution. Instead, production-level SDN network designs resort

1The TCP/IP stack is a common name for the Internet protocol suite comprising a networking model
and set of communication protocols used in the Internet.

1

Chapter 1. Introduction 2

to physically distributed control planes. Consequently, the designers of such systems have
to face the fundamental trade-offs between the different consistency models, the need to
guarantee acceptable application performance, and the necessity to have a highly available
system.

In this document, we propose a SDN controller architecture that is distributed, fault-
tolerant, and strongly consistent. The central element of this architecture is a data store
that keeps relevant network and applications state, guaranteeing that SDN applications
operate on a consistent network view, ensuring coordinated, correct behavior, and conse-
quently simplifying application design. The drawback of this approach is the decrease
of performance, which limits responsiveness and hinders scalability. Even assuming
these negative consequences, an important conclusion of this study is that it is possible to
achieve those goals while maintaining the performance penalty at an acceptable level.

1.1.1 Standard Network Problems

Traditional IP networks are complex to manage and control. Researchers argue that this
complexity derives from the integration of network control functionalities such as routing
in the network devices, which should be solely responsible for forwarding packets [1]. For
example, both Ethernet2 switches and IP routers are in charge of packet forwarding as well
as path computation3. In fact, control logic is responsible for tasks that go beyond path
computation such as discovery, tunneling, and access control. This vertical integration of
the control and data plane functions is undesirable for multiple reasons.

First, network devices need to run multiple ad-hoc, complicated distributed protocols
to implement a myriad of control functions, which are (arguably) more complex than cen-
tralized control based on a global view of the network state. This problem is aggravated if
we consider the scale of existent networks. To make matters worse, each of those control
functions commonly work in isolation. To exemplify, while routing adapts to topology
changes, the same is not true for the access control process (which controls which hosts
and services can communicate in the network), thus making it possible for a link failure
to cause a breach in the security policy that must be solved by human intervention (see
section 2.1 of the 4D paper [1] for an example).

Second, processing the control algorithms consumes significant resources from the
network equipment, thus requiring powerful and expensive hardware. The path computa-
tion itself is so complex that it may require devices to concurrently execute several control
processes and/or maintain a global view of the network (in each device!).

Third, the current state of affairs impairs network innovation since new network pro-
tocols must undergo years of standardization and interoperability testing because they are

2A family of computer networking technologies for local area networks.
3Paths are found by processing routing protocols in the IP case, and by processing the Spanning Tree

Protocol (STP) in the Ethernet case, as well as a continuous learning process for associating devices with
their correct ports (see section 4.2).

Chapter 1. Introduction 3

implemented in closed, proprietary software and cannot be reused, modified, or improved
upon. As such, researchers have difficulty in testing and deploying new control function-
ality in real networks [8].

Finally, configuring the data plane is typically performed with low level and device-
dependent instructions, a very error-prone process. Empirical studies have found more
than one thousand routing configurations faults in routers from 17 different organiza-
tions [9]. Moreover, misconfiguration can have severe consequences. As an example, in
2008 Pakistan Telecom took YouTube offline almost worldwide with (arguably) miscon-
figured routing directives, while following a censorship order [10]. Consequently, admin-
istrating large networks requires significant (and expensive) human resources.

In conclusion, coupling the data plane and control plane into a vertical integrated,
proprietary solution resulted in networks that are difficult to manage, hard to innovate,
and expensive to maintain.

1.1.2 Logical Centralization

SDN is a novel architecture that emerged to resolve the drawbacks set by closely coupling
the control and data planes. Fig. 1.1 shows that this architecture physically decouples
those planes. In SDN all network control functionality such as routing, load balancing,
etc., can be defined in software and performed by a controller with the help of a logically
centralized Network View containing all the relevant network state (e.g., network topology,
forwarding tables, security policy). This state can be present in the controller memory
or in a data store. Furthermore, the controller can be a generic software framework that
supports multiple applications; each specialized in different control functionalities. These
applications can collaborate and coordinate through the Network View.

Control Plane

Data Plane

Switches

Network
View

Controller

Routing LB Other

Applications

Figure 1.1: SDN architecture: the controller maintains a connection to the network devices re-
siding in the data plane. The Network View contains all the relevant network state (e.g., topology
information) and configuration (e.g., access control). The controller uses this state to configure
the switches (the network devices). Additionally, the controller runs specialized applications that
focus in particular control tasks: Routing, Load Balancing, and others.

Chapter 1. Introduction 4

In order to separate the control plane from the data plane it is crucial that the latter im-
plements an interface to allow the configuration of the network devices. OpenFlow (OF)
is the most common protocol that implements this interface [8, 11]. In OF forwarding is
based on flows, which are broadly equivalent to a stream of related packets. The control
plane manipulates the flow-based forwarding tables present in network devices, such that
devices can recognize flows (e.g., any TCP packet destined to port 80 or any IP packet
destined to 1.1.1.1), and associate them with actions (e.g., drop packet, forward to port x,
forward to controller).

In general, the control plane task can be seen as to implement a function f , repre-
senting all control functionality, having the Network View as input and the configuration
of network devices as output. Alternatively, (and most commonly) the devices can re-
quest forwarding “advice” to the controller for a specific packet that represents a flow;
in OF, this is called a flow request. In this case, function f is expanded to receive both
the network state and the specific packet as input, and the output determines a viable
configuration for forwarding packets for that particular flow. We clarify this further in
section 2.2.

In SDN, the Network View should be updated as conditions change. To attain this goal,
OF switches update the controller with network events such as topological changes (e.g.,
link up, link down). Additionally, the controller can retrieve the switches internal state
to obtain traffic-based information, such as packet counters (e.g., how many packet have
been forwarded to port x), that can amplify the network view. Thus, it is possible to have
a dynamic Network View with different levels of granularity in order to satisfy different
control plane requirements.

When compared to the traditional network architecture SDN can mitigate all the pit-
falls identified in the previous section. First, it enables centralized algorithms for control
that operate on a coherent global view of the network. Furthermore, the control func-
tions can work in concert (i.e., obtain feedback of one another by collaborative building
the network view). Second, since devices only perform forwarding functions, they can
run on much simpler (and cheaper) hardware. Third, since the control plane task can be
performed in commodity servers, running accessible open-source software, researchers
are able to test, deploy, and evaluate innovative control functionality in existent networks.
Additionally, these experiments can run side-by-side with production traffic [8] Finally,
the configuration is now software-driven, which (arguably) can be much simpler than low
level device configuration, and can benefit from well-known software development cor-
roboration techniques such as formal verification [12], debuggers [13], unit testing, etc.

It is worth pointing out that Software Defined Network is not just an artifact for the
scientific community, but it is also being adopted by the industry. For example, Google
has deployed a Software Defined WAN (Wide Area Network) to connect their datacen-
ters [14]. Additionally, this company and other industry partners (Yahoo, Microsoft, Face-

Chapter 1. Introduction 5

book, Verizon and Deutsche Telekom, Nicira, Juniper, etc.) have formed the Open Net-
work Foundation (ONF)4 — a non-profit organization responsible for the standardization
process of SDN technology. Finally, several network hardware vendors currently support
OpenFlow in their equipment. Examples include IBM, Juniper, and HP.

1.1.3 Distributed Control Plane

Most SDN controllers are centralized, leaving to their users the need to address several
challenges such as scalability, availability, and fault tolerance. However, the need for dis-
tribution has been motivated recently in the SDN literature [3, 4, 14, 15].

The following arguments support the distribution of the control plane:

Scalability: The controller memory contains the network state, and the CPU pro-
cesses network events — mainly flow requests. The use of both these resources
grows with the size of the network, eventually leading to resource exhaustion. Thus,
a scalable control plane requires the distribution of the network state and/or event
processing across different machines;

Performance: Scalability may partially be considered for performance reasons
also. However, there can be more intransigent performance requirements such as
in the case of a Wide Area Network (WAN) where big latency penalties may be
observed between the control and data plane communication;

Fault Tolerance: Network control applications built in the controller may require
the availability and durability of the service. Even if failures in the control plane
are inevitable, it is desirable to tolerate those without disrupting the network.

Scalability is a fundamental reason for distributing a computational system. Although
centralized controllers have been reported to handle tens of thousands of hosts [16], and a
million events per second (averaging 2.5 ms per event) [17], there are limits in resources
that will eventually lead to their exhaustion. These limits are easily reached in current
data centers and WANs. Namely, there is evidence of data centers that can easily reach
thousands of switches and hundred of thousands hosts [18]. Also Benson et al. show that
a data center with 100 edge5 switches can (in the worst case) have spikes of 10M flow
arrivals per second [19]. These numbers strongly suggest distributing the control plane in
order to shield controllers from such a large number of network events.

The Performance reason presented is also fundamental. At the time of writing only
one SDN enabled WAN is known [14], but given its publicized success caused by the

4https://www.opennetworking.org/
5The three tier data center topology is an hierarchical topology with 4 levels. In the bottom levels reside

the application servers connected to the edge switches.

https://www.opennetworking.org/

Chapter 1. Introduction 6

cost-effective bandwidth management, one could expect more to follow. Even though the
control plane only requires processing the first packet in a flow, the latency established
in this communication must be minimal such that network applications are not noticeable
affected. Distribution can mitigate the latency problem by bringing the control plane
closer to the data plane [15, 20].

Finally, Fault tolerance is an essential part of any Internet-based system, and this
property is therefore typically built-in by design. Solutions such as Apache’ Zookeeper
(Yahoo!) [21], Dynamo (Amazon) [22] and Spanner (Google) [23] were designed and
deployed in production environments to provide fault tolerance for a variety of critical
services. The increasing number of SDN-based deployments in production networks is
also triggering the need to consider fault tolerance when building SDNs. For example,
the previously mentioned SDN based WAN requires (and employs) fault tolerance [14].

SDN fault tolerance covers different fault domains [24]: the data plane (switch or link
failures), the control plane (failure of the switch-controller connection), and the controller
itself. The latter is of particular importance since a faulty controller can wreak havoc on
the entire network. Thus, it is essential that production SDN networks have mechanisms
to cope with controller faults and guarantee close to 100% availability.

In summary, there are various reasons for distributing the control plane, but they are
multiple challenges in doing so. Namely, the generality of the control plane anticipates the
usage of arbitrary control applications that will require different distribution mechanisms,
to fulfill their different requirements in terms of scalability, performance, and reliability.

1.1.4 Consistency models

In order to provide fault tolerance most distributed systems replicate data. Different repli-
cation techniques are used to manage the different replicas (e.g., servers), relying on the
assumption that failures are independent (i.e., the failure of one replica does not imply
the failure of another). Thus, with a minimal (varying) number of accessible and correct
replicas, the system will be available to its respective clients.

However, from the client viewpoint the techniques used to manage the replicas are
irrelevant. The client interest lies on the consistency model describing the exact semantics
of the read and write operations performed on the replicated system such as: “will this
update survive replica failures?’’ and “when is this update seen by other clients?”. This
interest is well captured by Fekete and Ramamritham: “the principal goal of research on
consistency models is to help application developers understand the behavior they will
see when they interact with a replicated storage system, and especially so they can choose
application logic that will function sensibly” [25]. Indeed, the semantics of the system
operations captured by the consistency model is of paramount importance for the client.

The most widely employed models of data consistency are strong and eventual con-
sistency. The eventual model favors availability and performance of the system at the

Chapter 1. Introduction 7

expense of consistency pitfalls such as stale data and conflicting writes (requiring conflict
resolution techniques); the strong model favors consistency at the expense of availabil-
ity and performance [26, 27]. Thus, the choice of model significantly affects the system
characteristics.

In the SDN context, Levin et al. [28] have analyzed the impact an eventually consis-
tent global network view would have on network control applications — in their study,
they considered a load balancer — and concluded that state inconsistency may signifi-
cantly degrade their performance. Similar trade-offs arise in other applications, such as:
firewalls, intrusion detection, and routing. This study is a clear motivation for the need of
a strongly consistent network view, at least for some applications.

Eventual consistency also affects distribution transparency — the ability of the system
to hide the fact that it is distributed [29] — since the client can be made aware of the
distribution of the system. Namely, the client may be unable to read his own writes or
confronted with un-merged conflicting data. This also affects simplicity since the user of
the system is forced to compensate the lack of consistency. To do so, the user is limited
to external synchronization or data structures that avoid conflicts [30]. In comparison, the
strong consistency model favors transparency and simplicity since the user of such system
is unable to distinguish it from a centralized service (without replication).

Recent work on SDN has explored the need for consistency at different levels. Net-
work programming languages such as Frenetic [2] offer consistency when composing net-
work policies (automatically solving inconsistencies across network applications’ deci-
sions). Other related line of work proposes abstractions to guarantee data plane consis-
tency during network configuration updates [31]. The aim of both these systems is to guar-
antee consistency after the policy decision is made. Onix [3] (an often-cited distributed
control plane) provides a different type of consistency: one that is important before the
policy decisions are made. Onix provides network state (i.e., present in the Networ View)
consistency — both eventual and strong — between different controller instances. How-
ever, the performance associated with strong consistency is limited (in Onix).

In our work, we favor consistency and, consequently, transparency in the distribution
of the network state. Our aim is to simplify application development while still guaran-
teeing acceptable performance and reliability. One of our goals is to show that, despite
the costs of strong consistency, the “severe performance limitations” [3] reported for
Onix’s consistent data store are a consequence of their particular implementation and not
an inherent property of these systems.

1.2 Goals and Contributions

In this thesis, we argue that it is possible, using state-of-the-art replication techniques, to
build a distributed SDN controller that not only guarantees strong consistency and fault

Chapter 1. Introduction 8

tolerance, but also does so with acceptable performance for many SDN applications. In
this sense, the main contribution of this thesis is to show that if a data store built us-
ing these advanced techniques (e.g., as provided by BFT-SMaRt [6]) is integrated with a
production-level controller (e.g., Floodlight6), the resulting distributed control infrastruc-
ture could handle efficiently many real world workloads.

The contributions can be summarized as following:

• A distributed controller architecture exhibiting strong consistency and fault toler-
ance is proposed (chapter 3);

• As the architecture is based on a replicated data store, we performed a study of the
workloads produced by three controller applications on such data store (chapter 4);

• To assess the feasibility of our architecture, we evaluated the capability of a state-of-
the-art replication middleware to process the workloads mentioned in the previous
point (chapter 4). Namely:

– How much data plane events can such a middleware handle per second;

– What is the latency penalty for processing such events.

These two variables are important to understand how such system would scale and
perform.

We note that this thesis resulted in the following paper:

• Fábio Botelho, Fernando Ramos, Diego Kreutz and Alysson Bessani; On the Feasi-
bility of a Consistent and Fault-Tolerant Data Store for SDNs, in Second European
Workshop on Software Defined Networks, Berlin, October 2013.

1.3 Planning

Fig. 1.3 shows the activities that we have performed in order to produce this dissertation.
The scheduling deviated from the initially proposed work plan (Fig. 1.2) for multiple rea-
sons including the submission and presentation of the paper. Ultimately the dissertation
was delayed since it was in the author interest to do so (for private reasons). This can
be seen in Fig. 1.3 — in August, the decision to improve the data store (New Data Store
Functionality) was taken, instead of writing the dissertation. The total delay accounts for
five extra months for the initial prevision of finishing in June 2013.

6http://www.projectfloodlight.org/floodlight/

http://www.projectfloodlight.org/floodlight/

Chapter 1. Introduction 9

Figure 1.2: The activities (and respective durations) anticipated to produce this dissertation.

Figure 1.3: The activities (and respective durations) required to produce this dissertation.

We identify four main phases in the production of this dissertation. A summary fol-
lows:

1. Phase 0 - Requirements — In this phase, we collected information from SDN and
state machine replication literature. Concurrently, we also evaluated the existent
open source controllers that were candidates for the work covered in chapter 4. We
spent considerable time learning the Beacon controller (see section 2.3.3), since we
considered that it was the best fit for our requirements. However, in late December,
we decided to use Floodlight instead (see section 2.3.4). The Viewstamped Repli-
cation protocol study (covered in section 2.5.4) took 28 days, since we planned
to implement it, but this turn out to be unnecessary, since our colleagues were kind
enough to adapt BFT-SMaRt to this protocol. The results from this phase are shown
in chapter 2.

2. Phase1 - Workload Analysis — In this phase, we decided that our work would
focus in analyzing the workloads produced by existent applications in Floodlight
controller. Thus, we developed a data store prototype (covered in section 3.2), and
integrated three Floodlight applications (covered in chapter 4) and a third one, the

Chapter 1. Introduction 10

Topology Manager (responsible for maintaining the topological view of the network
in the controller), which was later abandoned, due to its complexity. The main ac-
tivity during this phase was to analyze the workloads generated by the application
(e.g., through statistical analysis of the number of messages per network event, and
cumulative distribution of the messages sizes). The results obtained were not in-
cluded in the dissertation, but the resultant codebase was leveraged to produce the
study covered in chapter 4. Ultimately, the goal of this analysis was to publish a
paper covering the feasibility of our distributed architecture (covered in chapter 3).
We have not submitted the paper since we were confronted with a possible misun-
derstanding of the field, which was later, found ungrounded.

3. Phase 2 - Performance Analysis — In this phase, we took our study a step further, by
including the performance analysis of the data store when processing the workloads
generated by the applications. This phase resulted in an accepted paper at EWSDN.
Right before summer, we revised our methodology to analyze workloads associated
to a single data plane event as opposed to a single host-to-host interaction (as seen
in the paper).

4. Phase 3 - Improvements — In the beginning of this phase we focused in improving
the data store (with all the functionalities covered in section 3.2, with the exception
of the simple key value table). Additionally, we had to prepare the paper presenta-
tion and, finally, write the dissertation.

1.4 Thesis Organization

Chapter 2 covers the background and related work. This is an extensive chapter: we
present seminal papers on SDN (section 2.1); discuss the SDN architecture (2.2); sur-
vey the literature on open source centralized control planes (2.3); and distributed control
planes (2.4); and finally present work on strong consistent data stores (2.5); and consistent
data planes (2.6).

Chapter 3 proposes a architecture for a distributed control plane based on a fault-
tolerant, strongly consistent data store; and the technical details behind the data store
implementation that are crucial to understand Chapter 4.

Chapter 4 covers the integration of three different SDN applications with our data
store implementation; the workloads generated by the applications for different network
events; and a performance evaluation of a strongly consistent replication middleware to
process the aforementioned workloads.

Finally, Chapter 5 summarizes this work, and concludes.

Chapter 2 – Related Work

If the only tool you have is a hammer,
you treat everything like a nail.

Abraham Maslow

2.1 Software Defined Networks History

Traditionally, networking relied and evolved over a non-transparent distributed model
for the deployment of protocols and configuration of devices that resulted in complex
protocols and intrinsically difficult configuration of network devices. Software Defined
Network (SDN) presents a new way of thinking in networking, shifting the complexity
of protocols and management functions from the network devices to a general purpose
logically centralized service. The motivation behind this decoupling is the following.
If the distributed network state can be collected and presented to a logically centralized
service then it is simpler both to specify network level objectives as well as to translate
these objectives into the appropriate configuration of network devices. These planes,
when loosely coupled, can simplify network management.

This section outlines the major contributions that led to the SDN paradigm. In order
to understand how SDN works today, it is fundamental to understand how it came to be.
Understanding the biggest contributions in the SDN research field allows us to draw a
better picture of its composition, benefits, and drawbacks, thus our historical perspective
handpicks works that have molded the current SDN architecture. SDN contributions can
be decomposed in three phases: the introduction of programmable network hardware; the
control and data plane separation; and, finally, the de facto standardization of the data
plane interface [32]. We only cover the last two since they are the ones directly related to
our work. For an overview of all the existing work, we direct the reader to the survey by
Feamster et al. [32].

11

Chapter 2. Related Work 12

2.1.1 RCP

In 2004, Feamster et al. proposed the Routing Control Platform (RCP) architecture to
solve scalability and correctness problems in the interior Border Gateway Protocol (iBGP)
protocol — a crucial component of the Internet used between routers inside an Au-
tonomous System (AS)1 to distribute external routing information [33]. A year later Cae-
sar et al. described and evaluated a functional RCP system [34].

With standard iBGP, one must choose between scalability and correctness. On one
hand, a full mesh configuration is correct, but requires a connection between any two
routers, which significantly hinders the scalability of the system. On the other hand, the
route reflection technique used to mitigate this scalability problem imposes a hierarchic
structure between routers that narrows their knowledge of the routing state, which can
cause problems such as route oscillations, and persistent forwarding loops. In contrast, in
the RCP architecture routers send the routing information to a server that is responsible
for routing decisions. As such, this server is able to maintain the global routing state in
spite of operating with only one connection per router. This architecture is able to scale
better than the previous due to the lower number of connections, and it is correct given
that the server has a complete view of the routing information.

We note that the RCP architecture is an SDN whereby the routing state and logic are
decoupled from routers (the data plane) and shifted to a server (the control plane). This is
possible because routers expose a well-defined interface for the dynamic configuration of
the routing tables (the iBGP protocol itself). As a result, the data plane configuration is
defined in software by a decoupled server that has access to the global network view (the
routing state). This is therefore an SDN, albeit at the time it was not called as such.

The authors of this work advocate the distribution of the RCP architecture in order to
avoid having a single point a failure and to amplify its scaling ability. In this setting, each
router connects to more than one RCP server that can assign routes to any router under
their command. Interestingly, and in opposition to natural reasoning, the paper shows that
RCP does not requires a strong consistency protocol between servers in order to guarantee
that the routes assigned by two different servers do not conflict (e.g., cause a loop) but,
as laid out by the authors, this observation relies on a weak assumption. Namely, it
assumes a stable period of the routing protocols whereby each server has a complete
view of the routing state (thus ensuring some degree of coordination). Therefore, under
transient periods of the routing updates the RCP replicas might install conflicting rules in
the routers. Hence, not having a consistency protocol may lead to inconsistencies in these
periods. Finally, (and again as stated by the authors), the lack of a consistency protocol
affects the liveness of the system because the servers might not assign routes to routers in
order to avoid conflicts.

1A collection of Internet Protocol (IP) routing devices under the administrative control of a single or-
ganisation.

Chapter 2. Related Work 13

2.1.2 4D

In 2005, Greenberg et al. published a seminal paper proposing a clean slate network archi-
tecture, named 4D, to address the root problem of traditional networks: the complexity
that derives from intertwining the control and data plane on the network elements [1].
In this work, the authors argue that with the current state of affairs the management of
networks is achievable only through dreadful ad-hoc manual intervention (which is error-
prone); the specification of network level goals is difficult since the control functions
are uncooperative; and the development of control functionalities is complex due to the
distributed nature and scale of the data plane. This is the motivation for SDN.

The 4D architecture builds on 3 principles: specification of global network level goals
(e.g., routing, security policy), centralization of the network state (e.g., topology, link
state), and run-time configuration of the network elements. With those principles one
should be able to avoid the hazard of low-level protocol-dependent configuration com-
mands distributed across devices and development of distributed algorithms for control
functions. To achieve these goals the authors’ propose a network architecture structured
in 4 layers (hence the name): the data plane to forward packets; the discovery plane to
collect information from the data plane; the dissemination plane to configure the data
plane; and the decision plane to translate network goals into the configuration of the data
plane.

When compared to the RCP architecture, 4D exposes the same patterns of decou-
pled planes, centralized network state, programmable devices, and so on. However, while
RCP only separates routing from routers, the 4D architecture envisions an extreme design
whereby all control functionality is separated from the network devices. From the 4D
perspective, devices should only be responsible for forwarding packets. Moreover, the
authors argue that it should be possible to use the existing forwarding mechanisms (e.g.,
forwarding tables, packet filters and packet scheduling) as a unified resource at the ser-
vice of high-level network goals (e.g., “keep all links below 70% utilization, even under
single-link failures”). Interestingly, this work has “generated both broad consensus and
wide disagreement from the reviewers” since all reviewers recognized the problem but
did not trust on the proposed solution [1]. The SDN architecture is similar to 4D, with the
discovery and dissemination plane being tied in a single protocol (see section 2.2).

2.1.3 Ethane

In 2007 Casado et al. proposed a network architecture for the enterprise with an emphasis
in security [16]. This architecture, named Ethane, follows the 4D footprints and identifies
the same problems in the traditional network management domain. Namely, the configu-
ration errors caused by distributed configuration and lack of cooperating control functions.
To address those issues they introduced the controller as a logically centralized server in

Chapter 2. Related Work 14

charge of all network devices. By maintaining a global network view that includes topol-
ogy and bindings between users, host machines and addresses, the controller is able to
play the interposition role between any communications occurring in the network. As
such, it can ensure that a network policy is correctly respected.

In Ethane, network devices (i.e., switches) do not perform regular operations such as
learn address, packet filtering, routing protocols, etc. Instead, they are limited to flow-
based forwarding with the help of a local flow table that is maintained by the controller.
Every packet that fails to match with any of the rules available in the flow table is redi-
rected to the controller. Then the controller takes the packet information, current network
state and security policy and decides on a forwarding policy for that packet and the ones
that will follow (i.e., the packets belonging to that flow).

Arguably, the most significant contribution of Ethane came from the results obtained
with its deployment in a campus network with approximately 300 hosts. According to
the reported results, the authors estimate that a single desktop computer could handle a
campus network with 22 thousand hosts (generating 10 thousand flows per second at peak
time). This is interesting since, at the time, one of the biggest objections to decoupled
architectures was its scalability and resilience. Consequently, in the paper we also see a
significant discussion regarding the resilience of Ethane.

The authors present different distribution modes to achieve resilience. In the primary-
backup (or passive) mode there is one active controller while others standby to take its
place in the event of failure. The standby controllers can keep slow-changing state (such
as configuration and user registration) consistently, and keep the binding information, that
associates network (host) devices to users, eventual consistent. The only problem iden-
tified in the paper with this mode is that in the event of failures some users may need to
re-authenticate. In the active mode, two or more controllers control the network while
switches distribute their requests across the existing controllers. Under this mode, the
authors argue that the use of eventually consistent semantics for replication is sufficient
in most implementations. To sustain the argument, the authors observe that the use of
consistency aware data structures such as Convergent Replicated Data Type (CRDT)2 or
simple partitioning schemes such as the separation of the IP address space across con-
trollers for Dynamic Host Configuration Protocol (DHCP)3 allocation can be sufficient to
avoid conflicts. Albeit arguing for eventual consistency they do state that there is need
for further study and stronger consistency guarantees, such as those provided by State
Machine Replication (SMR), as used in our distributed control plane.

We partially agree with the authors, but we further believe that in a sensible deploy-
ment where the security policy must be strictly respected in every host-to-host commu-
nication, it is crucial that the distribution of the control plane is built on top of resilient

2A CRDT is an conflict-free data structure such as a set.
3A networking protocol used by servers on an IP computer network to allocate IP addresses to computers

dynamically (without administrating intervention).

Chapter 2. Related Work 15

and coherent distribution models. However, due to the asynchronous nature of a network
(e.g., as soon as you install a rule in a switch, the network policy or topology may already
have changed) we may need more than strong consistency semantics for the control plane.
In fact, we may need to expand the strong consistency semantics to the data plane (as cov-
ered in section 2.6). Interestingly, our results suggest that our control plane is capable of
handling the load aimed by Ethane (a 22 thousand hosts network; see chapter 4).

To summarize, Ethane was probably the first example of a functional SDN architecture
capable of fully operating with all the control logic separated from the network devices,
which were now reduced to simple forwarding equipment configured in run-time by the
controller with the help of a logically centralized network state.

2.1.4 OpenFlow

In 2008, McKeown et al. introduced the OpenFlow (OF) protocol that would become
the de facto standard to program the data plane, thus “enabling” the broad adoption of
SDN architectures in the years to come [8]. OpenFlow proposed an open interface to
program network devices (that were previously closed by nature). A common analogy
in this respect is to compare network devices to processors, and OF to an instruction set
that exposes the underlying functional behavior through a well-defined interface. In OF,
network devices are limited to flow-based forwarding only (as in Ethane). A flow table
resides in the network device and is composed of tuples 〈match, action〉. The match

entry allows the device to match arriving packets (as flows), while action specifies the
forwarding behavior. Devices can match packets against standard fields in Ethernet, IP,
and transport headers and follow actions that can range from drop, forward to port(s), or
forward to the controller. The controller can install and manipulate this table as it sees fit.
We cover OF in more detail later (see section 2.2.2).

OpenFlow rises from the success of previous systems, like Ethane. In fact, McKe-
own et al. do not introduce any groundbreaking novelty with respect to Ethane but rather
generalize a technology already seen possible in Ethane switches. Furthermore, the paper
can be seen as a “call to arms” to two different communities: the industry community to
adopt the protocol in their equipment, and the academic community to push for innovation
even outside the SDN context. The protocol was quickly adopted for three reasons. First,
it lowers the innovation barrier by “opening” the existent networks (and correspondent
devices) to the deployment of new protocols, that could even run in parallel but isolated
from production traffic. Second, it also lowers the innovation barrier for the develop-
ment of SDN architectures. Third, the OF interface contract only requires capabilities
that were already present in the hardware thus network devices could support it with a
simple firmware upgrade.

In summary, OpenFlow generalizes the technology for the switches already seen fea-
sible in Ethane. Its success, is attested by the several network manufacturers that have

Chapter 2. Related Work 16

included the OF technology in their equipment.

2.1.5 Network Operating System

SDN gained a significant momentum with the adoption of the OF protocol. Up to this
point, the existent work focused in monolithic control planes to satisfy specific network
goals (e.g., routing in the Routing Control Platform; security in Ethane). By generalizing
the data plane interface OF created the possibility of building abstract and general control
planes that consolidate the network control functions.

The first such example, in the context of SDN, was (to our knowledge) the work
introduced by Gude et al. [35]. Their proposal is to decompose the control plane in two
layers: Management and Control. In the management layer resides the application logic,
divided into applications focused in particular network goals (e.g., routing, firewall, load
balancing). With this new approach the control plane can be compared to a Network
Operating System (NOS) that provides the common functionality that ought to be shared
between all applications, such as network device communication, state management, and
application coordination. Those tasks are roughly comparable to the ones performed by a
regular Operating System (i.e., device drivers, shared memory and scheduling).

The NOS enables the development of a broad spectrum of network applications that
can ultimately cooperate and share information. This ability is provided by a program-
ming interface and should allow them to control and observe the state of the network. In
section 2.3 we explore how the current state of the art manages this. Interestingly, the
architecture of the NOS has not changed drastically, and this paper continues to have a
deep impact on the more recent open source controllers that we see today.

2.2 Software Defined Networks Fundamentals

In March 2011, the Open Network Foundation (ONF) was created with the participation
and support from several industry partners4. ONF is a “non-profit consortium dedicated
to the transformation of networking through the development and standardization of a
unique architecture called Software-Defined Networking (SDN)”. They have done so, by
releasing a white paper defining the design principles of the SDN architecture. They are
also responsible for the standardization process of the OpenFlow protocol.

The Software Defined Network (SDN) architecture is not a standard but rather an
architectural approach to networking. It should be clear, by now, that SDNs are based
on three essential design principles: decoupling of the control plane from the data plane,
logically centralized network view, and programmable remote access to network devices.

So far, the SDN architecture has not converged on well-defined interfaces that we
could use as reference to define its meta-architecture. Nonetheless, there are common el-

4https://www.opennetworking.org/

Chapter 2. Related Work 17

ements throughout most of the existing SDN literature. Consequently, this section defines
a common language used throughout this document to refer to different SDN compo-
nents. This includes a definition of a meta-architecture for the SDN stack (section 2.2.1)
and an overview of the most common data plane interface: OpenFlow (section 2.2.2).
This section can (and should) be used as reference throughout the text.

2.2.1 Architecture

The common SDN architecture is a three-layer stack shown in Fig. 2.1. This stack in-
cludes three planes: the Management plane to specify network goals through applica-
tions, the Control plane to support the Management applications and configure the Data
plane, and the Data plane to forward packets. The remaining of this section details all the
components seen in the figure.

Management
Plane

Control
Plane

Data
Plane

CONTROLLER

APP APP APP

NORTH API

SOUTH API

Network
View

EAST API

W
EST API

Figure 2.1: General SDN Architecture. Contains three planes: Management where applications
reside (APP), Control where the controller resides, and Data where the switches reside. The
control plane maintains a logically centralized Network View containing the relevant network state
such as the topology. The planes interact through bidirectional API’s. The WEST/EASTbound
API is the same and enabled only in distributed control planes.

The network logic operates in the Management plane. This plane defines the global
network level objectives in the form of one or more (possibly) cooperative applications.
Examples include load balance, routing, firewalls, among others. From a conceptual point
of view, these applications interact with the controller through the Northbound Applica-
tion Programming Interface (API) (NORTH API in the figure). A possible implementation
of this interface is a Representational State Transfer (REST) web service5 [36] imple-
mented in the controller that allows remote applications to read and modify the network
state and configuration. It is also common for controllers to enable an event-driven pro-
gramming model whereby applications subscribe to network events through this API. This

5A web API based on HyperText Transport Protocol (HTTP) protocol.

Chapter 2. Related Work 18

is typically applicable to in-memory applications but does not need to be the case. For
this reason, the figure also shows the controller invoking operations on the Management
plane through the Northbound API (i.e., the API is bidirectional). All the control planes
described in this document support this model. Truly, SDN is event-driven from the very
beginning, since network events such as topology changes and forwarding requests are
asynchronous in nature. Therefore, the event-driven programming model is present in the
entire SDN stack.

In the Control plane resides the core logic that glues the stack together. This compo-
nent has three major responsibilities. First, it is responsible for orchestrating the multiple
applications available. This implies setting up the remote Northbound API (e.g., REST
web server) and maintaining in-memory applications. Second, it defines how the Network
View (view) is shared between applications. This view is updated by the applications, and
used to process events such as the triggered by the data plane. Third, it is also in charge of
the data plane communication, which is attained through the Southbound API (SOUTH
API in the figure). Again, this API can be event-driven whereby events are commonly
topology information (e.g., link up, link down) or forwarding requests (e.g., flow requests
in OpenFlow).

Finally, the network devices responsible for packet forwarding reside in the Data
plane. Any device can be used (wireless access point, Ethernet Switch, router), as long
as it implements the Northbound API6. We commonly refer to these elements as switches
regardless of the functions they perform in standard mode (i.e., without the intervention
of a controller).

There must be connectivity between the Control and the Data plane. This connectivity
can be in-bound or out-bound. In the in-bound case, the connectivity takes place over the
network used for data forwarding, whereas in the out-bound case a different and isolated
network is used. Connectivity between these two layers require manual configuration of
the network devices.

The West/Eastbound API exists only when distributed control is employed (see sec-
tion 2.4). In that case, the controller uses this API for state distribution and controller-
to-controller communication. Again, it has two flows of communication for functions
performed by one controller on another controller instance, or to receive asynchronous
events from other controller (in event-driven implementations).

Finally, we note that SDNs can operate in two different modes7. In the Reactive mode
a switch reacts to traffic that it does not know how to forward. It can react by sending
a copy of the packet header to the controller and wait for forwarding configuration from
the controller. The controller can then take action by replying to the switch with configu-
ration updates (e.g., forward, drop, log). As shown in Fig. 2.2 the controller (commonly)

6In practice, a mixture of both Northbound enabled devices and normal devices is common.
7This discussion is based on the OpenFlow protocol, covered in the following section.

Chapter 2. Related Work 19

updates the switch with rules for both the packet and subsequent packets that will follow it
(for the flow). In contrast, in a Proactive mode the switch does not bothers the controller
with forwarding requests. Instead, the controller proactively configures the switch to han-
dle all the traffic that it could possibly receive. This configuration is based on the existent
network goals and configuration. Whenever the goals or the network state changes (e.g.,
link goes down) then the control plane updates the configuration of the switches. The
drawback of a reactive mode is that a switch must send one or more packets (in a flow) to
the controller, and possibly hold packets in a buffer. These are all tasks that consume the
switch resources (memory and CPU), and significantly affect the time to forward the traf-
fic. The drawback of a proactive mode is that it may require occupying significant space
in the switches forwarding table (since all the possible traffic is anticipated). Additionally
it limits the array of functions that a controller can perform. We note however that the
current SDN technology is pliable enough to support both modes simultaneously (i.e., the
Hybrid mode).

2.2.2 OpenFlow

OpenFlow (OF) is the most common implementation of the Southbound API shown in
Fig. 2.1, and the only one we consider throughout this document. Thus, in order to make
this document self-contained, it is necessary to detail some technical aspects of the OF
protocol.

Table 2.1 shows a representation of an OF table present in the switch. This table is
used by the controller to define the forwarding rules for each packet in the network that
passes through the switch. As opposed to common devices, which are restricted to a small
set of network packet headers (e.g., MAC addresses for switches, IP addresses for routers),
OF switches are able to match packets against 13 different headers (that can be combined
with logical operators). Furthermore, some headers such as the IP and MAC fields can be
matched against bitmasks, which allows a wide range of values for a single table entry8.
As an example, the table shows that the last two entries match against any host present in
the 10.0.0.0/24 network. Beyond headers, the switch can also match packets according
to the port on which they arrive. We note that conflicting matches (i.e., a packet matches
more than one entry in the table) are arbitrated by the priority associated with the rule (not
show in the table).

For each entry, there is an associated instruction that the switch uses to forward the
packet whenever it is able to find a match. Several instructions are available including:
forward to port x, forward to controller, and drop the packet. As seen in the table, the
instructions can be combined (the first entry forwards to two different ports).

Each entry is removed from the table once one of two private timeouts expires. There
is a hard timeout, which is never reset, and an idle timeout that is reset whenever a packet

8This is equivalent to routers that perform the longest prefix match on the IP field.

Chapter 2. Related Work 20

123

CONTROL PLANE

123

1
1

packet-in

Figure 2.2: Commonly, in reactive mode, the first packet of a flow for which there is no match is
forwarded to the controller, which evaluates it and decides the appropriate action. Normally the
switch flow table is modified, such that the packets that follow (i.e., other packets for the same
flow; packets 2 and 3 in the figure) do not have to go to the controller.

Match Fields Instructions Timeouts

source MAC = 10:20:. AND protocol = ICMP port 2,3 5,10 ms
source IP = 10.0.0.0/24 port 1 0/0
source IP = 10.0.0.0/24 AND protocol = TCP controller 0/0
any controller 0/0

Table 2.1: Simplified representation of a flow table in OpenFlow switches.

is matched against the entry. The controller recycles and controls the entries in the switch
table using both timeouts. The switch can be configured to send flow-removed mes-
sages to the controller whenever an entry expires. It is also possible that a rule is persistent
(never expires). In this case, the timeout will be set to 0.

An OF switch table can be configured to forward non-matching packets to the con-
troller (e.g., the last entry in the table). In reactive mode, the switch forwards the first
packet of a flow (stream of one or more packets in a communication) to the controller.
To exemplify, a flow could be all the packets sent from an HTTP client to a server to
download a web page, or all the Internet Control Message Protocol (ICMP) packets sent
to a host.

Fig. 2.2 illustrates how the switch processes packets in reactive mode. The first packet
(1) for some “flow” (e.g., download of a web page) reaches the switch but is redirect to the
controller since there is no rule that matches it in the switch table. We call this message
a flow request or packet-in (the original name in the protocol). This request must
contain (at least) the packet header from packet 1 that will be used by the controller to
determine the reply. For this reason, we usually abuse the language and say something like
“an IP packet arrives at the controller”. Getting back to our example, when the controller
receives a flow request, it processes it and then replies to the switch with instructions on
how to process this packet. Commonly, the controller will use a flow-mod to configure
the switch table such that future packets for this flow are acted upon accordingly to the

Chapter 2. Related Work 21

switch (1 and 2 in the figure). However, a controller can also forward the packet directly
without changes to the switch flow table, or even inject packets in the data plane (e.g., to
reply to an ARP request9).

The OF protocol can support multiple connections to different controllers. In the
context of our work, it suffices to known that each switch can have one master controller,
and multiple slave controllers. Only the master controller can affect the switch table rules,
whereas all controllers can receive messages from a switch such as packet-in requests.
This behavior can be modified. Namely, slave controllers can specify the type of events
that they want to receive from each switch. A slave controller can be promoted to master
by sending a message to the switch. However, there can only be one master, thus each
switch processing a role-change request from a slave controller to master demotes
the current master controller to slave.

2.3 Centralized Controllers

A simplified view of the architecture of centralized controllers is shown in Fig. 2.3. In
this architecture, the controller supports multiple in-memory applications listening to dif-
ferent events that are triggered by the data plane. For each event ex (e.g., link up, new
switch, flow request), the switch sends an OpenFlow (OF) message to the controller,
which parses the message to analyze its type and triggers an event to the appropriate
pipeline. A pipeline is composed of several stages. In each stage, a different application
processes the event and chooses to pass it further along in the pipeline, or aborts event
processing. At any stage in the pipeline, an application can configure the switch with
explicit OF configuration messages. We note that this architecture commonly presents a
tight-bound between the management and data plane since the Northbound Application
Programming Interface (API) exposes the Southbound API through OF events.

C
O

N
TR

O
LLER

e1

e1 pipeline

APP 1

e2

e1

e1 APP 2e1

e2 pipeline

e2 APP 1

Figure 2.3: The common (meta) controller architecture is event-driven. The data plane triggers
events (e1, e2) that are dispatched by the controller to a pipeline of interested applications.

9The Address Resolution Protocol (ARP) is used to translate Internet Protocol (IP) addresses into Me-
dia Access Control (MAC) addresses, which is essential for communication in Ethernet networks. Hosts
broadcast ARP requests to find out the MAC of other hosts.

Chapter 2. Related Work 22

2.3.1 NOX

NOX10 was published and publicly released under the GNU Public License (GPL) in 2008
[35]. It was developed in both C++ and Python, and enabled a standard interface for the
integration of management applications in the controller. Even though one of the main
contributions of the paper is the introduction of the Network Operating System (NOS)
abstraction (see section 2.1.5), NOX itself is tightly bound to the OF API.

The NOX programming model is event-driven, as shown in Fig. 2.3. Applications
register in a priority-based pipeline with event handlers associated to either OpenFlow or
application based events. The NOX core is equipped with applications that build a host
and switch level topology in its Network view (view).

In NOX, applications define network policies (i.e., control the network), and coop-
erate to define the current view. The view can consist of the switch-level topology; the
location of users, hosts, middleboxes and other network elements; and the services (e.g.,
HTTP, FTP) being offered. The authors’ point out that this choice of granularity for state
is adequate for many network applications, since it changes slowly enough that it can be
scalable. They also argue that the view can be distributed with standard replication tech-
niques, for resilience. In fact, the view is a set of indexed hash tables with support for
local caching. In this regard, the paper vision is very similar to ours, but has not been
effectively implemented.

Initially, NOX was a single threaded application not focused on performance. How-
ever, from its publishing date several improvements have taken place that have signif-
icantly improved NOX performance [17]. Under the set of improvements, we highlight
the natural evolution to a multi-core design that statically binds each thread to one or more
switches. In the time of writing, NOX is publicly available but ramifies into two differ-
ent controllers: A C++ based controller available in Linux and a Python based controller
(POX) available in multiple Operating Systems.

2.3.2 Maestro

A NOS has (at least) two functions: introduce a layer of abstraction between the network
and the applications and control the interaction between applications. Maestro, focus
is in the second [37]. In particular, its authors’ recognize that management components
(i.e., the applications) do not operate independently and in isolation. Instead, they operate
concurrently but with inter-dependent state. With this in mind, Maestro exploits parallel
computing techniques to enhance the control plane performance.

Maestro splits the regular pipeline execution such that it can be concurrently executed
(as NOX-MT). As seen in Fig. 2.3, events may follow different execution paths since
singular applications are not interested in every single event. Three major design goals

10http://www.noxrepo.org/

http://www.noxrepo.org/

Chapter 2. Related Work 23

shape Maestro: fair distribution of work across cores; minimal overhead introduced by
cross-core and cache synchronization; and minimal memory consumption. In addition, it
exploits throughput optimization through batching. The results published show that Mae-
stro linearly scales the throughput with the number of cores available on the controller.

Currently Maestro is available11 under the LGPL 2.1 license. It ships with the usual
switching and routing capabilities.

2.3.3 Beacon

Beacon12 is an open source controller built in Java by David Erickson, during his aca-
demic studies in Stanford University [38]. Beacon is also based on the event-driven model
shown before. Applications register for specific type of events, and process these in the
order configured by the user. Any application processing an event chooses to forward the
event further in the pipeline, or terminate its execution. It is also multi-threaded, binding
switches to particular threads.

Applications in Beacon are implemented as bundles. A bundle is the unit of abstrac-
tion in the OSGI13 framework — a component and service platform for the Java program-
ming language with dynamic capabilities — allowing features such as hot-swapping (i.e.,
deploy, start and stop modules in run time). Beacon provides a central service for regis-
tration of bundles as services (the registry). Each bundle implements a service, exports it
to the registry and other bundles may consume it. Application events take place through
the service abstraction: bundles may register in other bundles as listeners to be notified
when specific events take place.

2.3.4 Floodlight

Floodlight is an open source Apache licensed controller. It is developed by an open com-
munity mainly composed of Big Switch14 employers. It is written in Java, but applications
can be implemented in either Java, Jython or any other language through the REST API
available.

Floodlight follows the common event-driven programming model of the previous con-
trollers. Although Floodlight was originally forked from Beacon, the OSGI support was
abandoned for performance and deployment reasons. The overall functionality is based
on modules (i.e., applications) that implement services that can be consumed by other
modules. It is similar to Beacon in this regard, however the module/service functionality
is directly provided by Floodlight instead of delegated to a third-party framework.

11https://code.google.com/p/maestro-platform/
12http://goo.gl/pqMqh [stanford.edu]
13http://www.osgi.org/Main/HomePage
14An SDN vendor with a commercial distributed controller named Big Controller. See http://goo.

gl/s4X53q [bigswitch.com]

https://code.google.com/p/maestro-platform/
http://goo.gl/pqMqh
http://www.osgi.org/Main/HomePage
http://goo.gl/s4X53q
http://goo.gl/s4X53q

Chapter 2. Related Work 24

Floodlight is also multi-threaded. It accomplishes this through an asynchronous event
based multithreaded library named Netty15 that manages input/output communication
with the managed switches.

We choose Floodlight as the base for our distributed controller study for two reasons:
the programming language and the variety of applications already developed to it and
made publicly available. The programming language — Java — is a priority since it
simplifies the integration with the replication library that we use to build a consistent
data store (see section 3.1.2). In addition, Floodlight has a very active community of
developers and users.

2.4 Distributed Controllers

In this section, we present an overview of relevant distributed control planes architectures.
A distributed controller is, by our definition, a controller that uses more than one controller
to administrate the data plane. According to our general architecture (see section 2.2.1),
the controller has an East/West Application Programming Interface (API).

The control planes that we will cover are focused in scalability, simplicity, and gener-
ality. They employ different techniques to manage the distributed access to the network
state, and the distribution of the state itself such that it may become resilient to failures (in
some cases). A common characteristic between all of them is that the data plane is par-
titioned across different controllers such that event processing can be distributed across
different machines.

2.4.1 Kandoo

In 2012, Yeganesh et al. presented Kandoo [15] — a hierarchical controller for scalable
Software Defined Network (SDN) infrastructures. The main contribution comes from the
deployment of isolated controllers near the switches that shield a parent controller from
processing all flow requests triggered by the network. It is implemented in a mixture of
C, C++, and Python and is not publicly available.

In Kandoo — see Figure 2.4 — the control and management plane is split in two
levels: in the top level resides the root controller, responsible for normal operation; in
the bottom level, local controllers that are located closer to the managed switches (they
may even be implemented in the switches themselves). This design is motivated by the
idea of bringing specific control functionality towards the data plane for performance and
scalability reasons.

Global applications reside in the top level and operate on of the global Network View
(view), whereas Local applications reside in the bottom level and operate without direct
access to the view, since they should be able to take decisions without it. Thus, specific

15http://netty.io/

http://netty.io/

Chapter 2. Related Work 25

ROOT CONTROLLER

Global
APP

Local Controller

Local APP

Local Controller

Local APP

Global
APP

Global
APP

Network
View

Figure 2.4: Kandoo decomposes the control plane into in two levels. The root controller and global
applications have access to the global network state (view). The local controller and applications
remain close to the data plane and do not require access to the global state.

events can be processed by local applications without the root controller collaboration.
These events benefit from a lower latency penalty. However, if a local application decides
that a particular event either affects the view, or requires accessing it, then the application
can redirect the event to the root controller.

In theory, Kandoo can effectively scale the control plane. However, the paper does not
specify the class of applications that can operate with local state only. This is something
still under investigation.

2.4.2 HyperFlow

In 2010, Tootoonchian et al. introduced HyperFlow, a distributed SDN controller [4]. This
work was motivated by the lack of scalability in centralized controllers. The authors aim
was to provide scalability without sacrificing the simplicity that centralized controllers
offer when building network applications. It is built as a C++ application on top of
the NOX controller [35], requiring minor modifications to the controller applications.
HyperFlow is not publicly available.

Fig. 2.5 shows HyperFlow overall architecture. The control plane is distributed over
different controller instances (or replicas). Each instance maintains, under its adminis-
trative domain, the connection to a subset of the data plane. HyperFlow supports the
crash-recovery fault model where controllers can fail (e.g., crash, disconnect) and recover
later on without affecting the network state.

In HyperFlow, each controller instance contains a replica of the entire network state.
To replicate state, HyperFlow intercepts any event that causes changes to it. In such case,
it distributes this event to other controllers that also process the event in the application
pipeline. This way — and assuming that all controller instances run the same set of
deterministic applications — all controller instances eventually arrive at the same state
(if we assume a sufficient long period with no pending events). The benefit of having a
view of the entire network is that each controller can take decisions based on local state.

Chapter 2. Related Work 26

HyperFlow

APP APP APP

Events/
Configuration

Publish/Subscribe
Middleware

HyperFlow

APP APP APP

Events/
Configuration

Figure 2.5: HyperFlow architecture. The two major components are the controller which in-
tercepts events and configuration commands that must be distributed, and the Publish/Subscribe
system used for all communication between controllers.

Still, the controller has to communicate with others to distribute state changing events and
configuration directives (i.e., commands) to switches controlled by other instances.

The inter-controller communication system is based on the well-known Publish/Sub-
scribe model, whereby one defines publishers as senders of messages and subscribers as
the receivers. Publishers do not send messages directly to receivers. Instead, messages
are published in a medium, and interested receivers selectively receive them through some
form of subscription logic. This model allows the decoupling of both space and time in
the communication between publishers and subscribers. The authors have implemented a
Publish/Subscribe system (on top of a distributed file system dubbed WheelFS [39]) that
provides: persistent storage of the events published, FIFO (First-In-First-Out) ordered
delivery of the messages published by the same controller, and resilience against network
partitioning.

HyperFlow addresses scalability of the control plane by filtering the number of events
that an instance replicates to others. To this end, it forces applications to tag local events
that affect the network state. Furthermore, each application that triggers an event (e2)
must associate the event (e1) that has caused it. Then, the distribution of e1 is enough
since applications in remote controllers will also trigger e2 when processing e1. As one
single event can cause several application events to be triggered this can reduce the vol-
ume of traffic in the Publish/Subscribe middleware. Thus, HyperFlow is focused on the
scalability of the CPU. It does not address state scalability since each controller contains
the entire network state.

One of the advantages of HyperFlow is that the existing centralized applications are
barely modified in order to work in such distributed model. Anyway, applications do have
to account for the restrictions of the underlying distribution system. Otherwise, network
state might diverge. Notice that even with FIFO based channels some controller c might
receive event ei followed by event ej (sent from controllers i and j), while a controller c′

perceives ej followed by ei. If the change of state is dependent of the ordering of such
events (i.e., operations are not commutative) then the state from c and c′ will be different.
Consistency problems can thus emerge.

Another benefit of HyperFlow is that under read intensive workloads the controller

Chapter 2. Related Work 27

can achieve low response times since events are processed locally. However, in our expe-
rience with centralized applications (as the ones that HyperFlow targets), read intensive
workloads are not too common. In fact, Chapter 3.2.5 shows that all three applications
we analyzed show at least one write operation for each event processed in the controller.

2.4.3 Onix

Onix improves on the NOX legacy with multiple contributions [3]. It provides an im-
proved controller architecture on which the Northbound API does not reflect the South-
bound API (the first to do so). Management applications are programmed against a net-
work graph very similar to the Object Oriented paradigm and are not aware of the South-
bound characteristics (e.g., the use of OpenFlow). The graph is implemented in the Net-
work Information Base (NIB) — an in-memory data structure that contains the network
state — and can be distributed across a cluster of Onix controllers. Applications have the
choice to specify consistency and durability requirements per network entity present in
the NIB. Onix was the result of a joint effort between Google, NEC, Nicira, ISCI, and
Berkeley, and (at least) both Google and Ericson have developed their controllers from
Onix [14, 40]. Thus, it is the first production level controller. At the time of writing Onix
is not publicly available.

Onix architecture is presented in figure 2.6. The NIB is the only element in Onix
Northbound interface. The management layer directly modifies the NIB and subscribes
to changes on it. The data plane indirectly modifies the NIB (through the controller). The
controller has to guarantee that changes in the data plane are reflected in the NIB and
vice-versa. For this, it translates network events into changes in the NIB and changes in
the NIB to changes in the data plane configuration. Onix supports OpenFlow (OF) but it
could transparently move to another Southbound API.

Onix

APP

NIB

Weak Consistency
Strong Consistency

Import
Export

Fault-Tolerant
Data Store's

Import
Export

Onix

APP

NIB

Figure 2.6: Onix achitecture. The NIB is an in-memory network graph of typed entities (i.e.,
objects in a statically typed language). It is supported by two replicated data store’s accessible
across Onix instances. The data store’s interface is bidirectional, the controller exports information
from the NIB to the data store and vice-versa.

Each Onix instance independently manages a subset of the data plane. However, each
instance can be exposed to the entire network state through the NIB. Under such scenario,

Chapter 2. Related Work 28

each time a local Onix instance alters the NIB, these changes are reflected in all other
instances. Thus, the NIB is also the distribution mechanism of the Onix controller. The
distribution itself is done by the data stores that back up the NIB state (seen in figure 2.6).
However, in concept the NIB is not built to contain all the network state. In fact, the NIB
may be best seen as a kind of in-memory cache which imports (exports) particular state
from (to) the fault-tolerant distributed data stores.

Onix defines a flexible distribution model for the NIB whereby it offers the application
designer the choice of consistency guarantees. Two replicated data stores are present:
one offers strong, another eventual consistency. Strong consistent is supported through a
transactional persistent database backed up by a replicated state machine (see section 2.5).
This data store is favored for data with low-frequency events (e.g., topology changes) as
its performance limitations are significant. The eventually consistent data store consists in
a memory based Distributed Hash Table (DHT) (as Dynamo [22]) favored for volatile data
with high update rates. Both the integration of multiple data stores and the inconsistency
characteristics of the DHT can lead the NIB to an inconsistent state where reads performed
in some entity may return more than one result. Thus, Onix provides primitives for the
integration of inconsistency resolution logic as well as direct integration of a distributed
coordination framework (such as Apache’ Zookeeper [21]) in the Northbound interface.

Onix is intended for large-scale network infrastructures where scalability is funda-
mental. However, in each Onix instance the NIB size reflecting the network state could
lead to memory exhaustion; and the processing of both network events and subscriptions
to changes in the NIB can lead to CPU exhaustion. Thus, the management layer must
employ partition and aggregation techniques in order to guarantee scalability. Partition
avoids full replication of both data and workload such that additional instances do not
only replicate overall work but also relief it (e.g., hiding inaccessible network servers
from other controllers). Aggregation combines several entities in the NIB of a controller
before exporting them to the data stores’ (e.g., a collection of switches appears to be a
single “big” switch).

The application only interacts with the NIB graph data structure that is composed of
Typed Entities supporting the Object Oriented paradigm (i.e., encapsulation of data, func-
tions over entities, hierarchy, etc.). Onix supports extensible representations of network
entities. The NIB API provides essential functions to search, inspect, create, destroy, and
modify the network entities present in the NIB. It is also possible to register notifications
for creation, removal, and updates of data entities. When network events of other Onix
instances update the data stores those changes can be reflected on the local NIB and the
application can be notified through a callback function. All operations are asynchronous,
with eventual delivery and no ordering or latency guarantees given. Therefore, a bar-
rier synchronization primitive is available allowing the application to wait as updates are
translated and applied in the network devices and/or other controllers.

Chapter 2. Related Work 29

Onix is focused in generality; and it does a great job at it. In fact, the authors empha-
size that “when faced with a tradeoff between generality and control plane performance
we try to optimize the former while satisfying the latter”. This choice is revealed in the
strong consistent data store. One of our main goals is to show that this performance limi-
tation is merely a performance characteristic of the particular implementation considered
in the paper.

2.5 Consistent Data Stores

The key idea of our distributed controller architecture is to make multiple controller in-
stances coordinate their actions through a dependable data store in which all relevant state
of the network and of its control applications is maintained in a consistent way. This data
store is implemented with a set of servers (replicas) to avoid any single point of failure,
without impairing consistency.

Our data store provides one of the strongest consistency models known in distributed
systems: linearizability [41]. This model is completely transparent for the client of the
system: it is indistinguishable from a centralized system (i.e., non-replicated). Such
strong consistency is achieved at the expense of performance and, more importantly, avail-
ability, since it requires a majority of the system’s replicas to be accessible. In contrast,
the eventually consistency model relaxes such constraints in order to improve availability
and performance. This model has multiple variations and lacks a clear definition. Loosely,
it is a particular form of weak-consistency, grounded on a liveness guarantee: eventually
the replicas of a system converge to the same state [39, 42]. Sections 2.5.1 to 2.5.3 further
clarify the differences between these two models.

One of the most popular techniques for implementing a strongly consistent data store
is State Machine Replication (SMR) [5, 43]. Practical fault-tolerant replicated state ma-
chines are usually based on the Paxos agreement algorithm for ensuring that all updates
to the data store are applied in the same order in all replicas (thus ensuring strong consis-
tency) [43]. However, since the original Paxos describes only an algorithmic framework
for maintaining synchronized replicas with minimal assumptions, we instead describe —
in section 2.5.4 —- the Viewstamped Replication (VR) protocol, a similar (but more con-
crete) state machine replication algorithm introduced at the same time [44].

State Machine Replication is a fundamental technique that is used by real world sys-
tems in a wide array of applications. Furthermore, and contrary to popular believe, it
can be used in systems where availability and performance are crucial requirements. To
support this claim, in section 2.5.5 we give an overview of state of the art SMR based
systems.

Chapter 2. Related Work 30

2.5.1 Trade-offs

With the proof of the CAP theorem in 2002, by Gilbert and Lynch, a significant inter-
est arisen for eventual consistent distributed systems [27]. This theorem establishes that
a distributed system can only be qualified with two of the following properties: consis-
tency, availability, and partition-tolerance. In this context, consistency is equivalent to a
system supporting linearizability; availability is equivalent to the guarantee than any re-
quest performed on the system eventually receives a reply; and partition-tolerance implies
tolerating arbitrary message loss. Since networks often exhibit message loss, systems are
forced, in practice, to choose between availability and consistency.

However, in practice systems are not this black or white. One of the outcomes of the
dichotomy established by CAP is a panoply of systems with different consistency models
that attempt to position themselves at a different optimal point between the availability
and consistency spectrum. Due to space constraints, we cannot cover this topic in depth
and instead defer the interested reader for surveys on the topic [25, 30, 42].

2.5.2 Eventual Consistency

Under the eventual consistency model, when a write to the data store is finished, the
replicated system guarantees that, at some point in time, all replicas will converge to the
same value (in the absence of pending client operations). A benefit of this model is that it
is straightforward to implement. A replica can accept client requests, process them, reply
to the client, and only later spread the outcome to other replicas. The process of spreading
values to others is commonly known as anti-entropy and can take several forms, but is in
essence an asynchronous process (i.e., it only takes place “some time” after replying to
the client).

Several undesirable outcomes come out of this model. For example, consider a repli-
cated system with three replicas and a single register containing some arbitrary value.
There are two clients of the system: client 1 and client 2 that can both perform write and
read operations on this register. Fig. 2.7 shows the system composition with two different
histories of client requests.

First, Fig. 2.7a shows that after a write operation clients may see older values of the
register. Namely, client 1 performs an update on the data store (write(X)), and later
client 2 stills sees the older value of the register (Y). The time between a write being
applied in a data store replica and all clients being able to see that value is named the
window of inconsistency. A recent paper on eventually consistent systems states that
this window of inconsistency varies between 200 milliseconds to 15 seconds in different
types of systems [30].

It may be the case that for some clients of the data store, the window of inconsistency
does no represents a problem. However, another subtle problem can emerge from the

Chapter 2. Related Work 31

1

2

Write (X)

Read (Y)

time

(a) Stale data: reading an old value.

1

2

Write X

Read Y,XWrite Y

time

(b) Conflicting data.

Figure 2.7: Two clients of a replicated data store experiencing some of the eventual consistency
model pitfalls. In the stale data case Client 2 is not able to see the last write done to the data store.
As for the conflicting data case the concurrent update done by two clients causes the data store to
become “confused” as to what value it should keep. Consequently, it keeps both.

asynchronous anti-entropy process — there is no guarantee that an update will reach other
replicas. Consequently, clients cannot be certain that the outcome of operations such as
write(X) will eventually be seen by other clients. This is possible in the case the server
that process the update fails before spreading it to other replicas. If so, either he recovers
and the update was stored on disk, or the update is lost forever. Truly, eventual consistency
ensures convergence only if replicas survive long enough to spread updates to others16.

The last problem we identify in eventual consistency systems is conflicting values
caused by concurrent updates. Fig. 2.7b shows two clients concurrently updating the
register. Consider (not shown in the figure) that two different data store replicas (out of
three) process and reply to the clients independently. Then, the anti-entropy process takes
place and each updated replica spreads the update to the others. The question that must be
answered then is the following: how can the replicas decide which update should persist
between the two: write(X), write(Y)? Eventually consistent systems diverge in how
they arbiter conflicts but, in practice, either the system solves the conflict “arbitrarily”, or
it applies conflict resolution logic provided by the user.

In general, eventually consistent data stores are better equipped to deal with volatile
data that does not have stringent requirements such as consistency and reliability. Notwith-
standing the evidence that systems can also be equipped to deal with the problems men-
tioned above, they do so at the expense of possible incorrectness, or the extra effort re-
quired from the developer. Still, this extra effort can be justified, in systems where scala-
bility and performance is crucial as in the case of Dynamo, an eventually consistent data
store used by Amazon’s core services [22]

16Getting back to the consistency spectrum comment performed in the previous section: some eventually
consistent systems could update more than one replica before replying to the client, thus obtaining a higher
reliability.

Chapter 2. Related Work 32

2.5.3 Strong Consistency

The most significant advantage of the strong consistency model is that developers can
relax their concern towards the semantics of the replicated system since a strong consistent
system is not any different from a centralized (single site), un-replicated system.

The strong consistency property is formally introduced as linearizability in a seminal
paper by Herlihy et al. [41]. Informally, this property establishes that every operation
performed on the replicated system appears to have effect instantaneously. The practical
consequence is that clients can be made sure that after receiving a reply from the system
for an update operation, every other client will be able to see the effect of that write. In
practice, this condition is true as soon as the data store processes the client update, but it
makes more sense, from the client point of view, to base this assumption only as soon as
the reply arrives since it has no other mean to determine that the data store has processed
his operation. Fig. 2.8 exemplifies this condition.

With strong consistency, clients can rest assured that their operations survive failures
as soon as they receive a reply from the system. To exemplify, the SMR technique that
we use (covered in the following section) blocks client requests until they are processed
by a majority of replicas. Given that this technique assumes that there will always be a
majority of replicas “alive” and reachable, the client is made sure that the aforementioned
operation will never be lost in the data store.

1

2
Read X

time

Everyone sees X

Write X

Figure 2.8: Strong Consistency Semantics. A client can be sure that every client sees its operation
outcome as soon as the data store replies.

2.5.4 ViewStamped Replication

The Viewstamped (VR) protocol provides a transparent State Machine Replication (SMR)
behavior that can be leveraged to implement a replicated data store with strong consis-
tency semantics [44]. SMR allows a set of machines to provide a replicated service, usu-
ally to support availability and reliability characteristics in the system [5]. Informally, the
model states that a distinguished set of machines who start in the same state and execute
the same set of instructions (in the same order) achieve the same final state. SMR is

Chapter 2. Related Work 33

suitable for distributed applications, such as file systems, lock managers, and data stores
which can be built on top of the distributed state machine.

The algorithm is built over a partial-synchronous model (i.e., the system eventually
progresses) with a crash-recover failure model for the participants (replicas). In practice,
this failure and timing model establishes that replicas may stop (due to crash) and later
recover, perform computations arbitrarily slow, and/or be isolated from the rest of the
group. The remaining group suspects the replica has failed as a reaction to its lack of
feedback. VR allows replicas to re-join the group as long as they are updated on the
missed executions by others. The group is composed of n = 2f + 1 replicas, assuming
that only f replicas can fail simultaneously. Thus, as long as f+1 replicas (i.e., a majority)
are accessible the protocol guarantees liveness (which translates to availability from the
client point of view).

VR is based on total-order, an ordered delivery guarantee between a set of machines
communicating in-group. The protocol is structured around the notion of a leader (a
distinguished replica named primary) who chooses and imposes the order of delivery of
executions on the group. This approach has the drawback of overloading the primary with
client requests but simplifies the protocol. Fig. 2.9 shows the messages exchanged in VR
for an update operation: the client sends a message (Request) to a primary replica (the
leader) that disseminates the update to all other replicas. These replicas write the update
to their log and send an acknowledgment message to the primary (PrepareOk). In the
final step, the leader executes the request and sends the reply to the client. If the primary
fails, messages will not be ordered and thus a new primary will be elected to ensure the
algorithm makes progress. When read-only operations are invoked, the leader can answer
them without contacting the other replicas. Strong consistency is ensured because the
leader orders all requests before executed by each replica.

C

(leader) 0

1

2

Request

Prepare PrepareOk

Reply

Figure 2.9: The normal execution of the ViewStamped Replication protocol. Each client request
must be acknowledged (PrepareOk) by a majority of the replicas before being executed.

This short description covers only the normal execution of the protocol. The interested
reader is forwarded to the original work for a description of the details on re-electing a
new leader, and for recovering failed replicas [44].

Chapter 2. Related Work 34

2.5.5 State Machine Replication Performance

The Paxos/VR algorithm has served as the foundation for many recent replicated (consis-
tent and fault-tolerant) data stores, from main-memory databases with the purpose of im-
plementing coordination and configuration management (e.g., Apache’ Zookeeper [21]),
to experimental block-based data stores or virtual discs [45–47], and even to wide-area
replication systems, such as Google Spanner [23]. These systems employ many imple-
mentation techniques to efficiently use the network and storage media.

Although not as scalable as a weakly consistent data store, these systems grant the
advantages of consistency for a large number of applications, namely those with moderate
performance and scalability requirements. To give an idea of the performance of these
systems, Table 2.2 shows the reported throughput for read and write operations of several
state-of-the-art consistent data stores.

System Block Size kRead/s kWrite/s

Spanner [23] 4kB 11 4
Spinnaker [45] 4kB 45+ 4
SCKV-Store [47] 4kB N/R 4.7
Zookeeper [21] 1kB 87 21

Table 2.2: Throughput (in thousands data block reads and writes per second) of consistent and
fault-tolerant data stores based on state machine replication (N/R = Not Reported).

Given the differences in the design and the environments where these measurements
were taken, we present these values here only as supporting arguments for the possibility
of using consistent data stores for storing the relevant state of SDN control applications.
Interestingly, these values are of the same order of magnitude of the reported values for
non-consistent updates in Onix (33k small updates per second considering 3 nodes), and
much higher than the reported values for their consistent data store (50 SQL queries/sec-
ond) [3]. The Onix paper does not describe how its consistent database is implemented
but, as shown by these results, its performance is far from what is being reported in the
current literature.

2.6 Consistent Data Planes

A couple of recent works on Software Defined Network (SDN) consistency has appeared
recently. However, these works target consistency at a different level. In essence, they
target consistent flow rule updates on switches, dealing with overlapping policies and
using atomic-like flow rule installation in SDN devices. The aim of both these systems is
to guarantee consistency after the policy decision is made. Our work provides a different
type of consistency: one that is important before the policy decisions are made (as with
Onix, but we want better performance also).

Chapter 2. Related Work 35

2.6.1 Abstractions for Network Updates

Reitblatt et al. introduce two abstractions capable of preserving well-defined behaviors
while updating the data plane configuration [31]. In their work they show, that the tran-
sition of data plane forwarding rules from one state to another may lead to violation of
network policies and disturb network services.

To avoid such pitfalls, the authors ague that the update of the data plane configura-
tion should be done step-by-step (rule by rule) in each switch until completion, while
making sure that any intermediary state of the network configuration is valid. Reitblatt et
al. proposed an abstraction that is capable of transitioning the network from one state
to another while maintaining the following property: per-packet consistency — “ev-
ery packet traversing the network is processed by exactly one consistent global network
configuration”. This is important since it guarantees that packets are processed by the
initial policy, or the final policy but not an intermediary (potentially invalid) policy. To
implement such abstraction the authors suggest a mechanism based on stamping packets
entering the network with version numbers corresponding to the network policy used to
take the forwarding decision. Additionally, the authors build on this abstraction to pro-
vide per-flow consistency, an property analogous to the previous, but this time applied to
flows.

2.6.2 Software Transactional Network

Software Transactional Networking focuses in consistency policy composition in the con-
text of a concurrent (i.e., distributed) control plane [48]. Contrary to the previous work,
consistency policy composition deals with overlapping policy updates. To exemplify
imagine two control applications that deal with forwarding and traffic monitoring. The
forwarding application establishes that all packets addressed to a particular address such
as 10.0/16 should follow a specific path along the data plane (i.e., a composition of differ-
ent switches and ports), and the monitor application establishes that all HyperText Trans-
port Protocol (HTTP) packets should be counted. Since the monitor application policy
applies to a subset of the forwarding application policy, they must be composed. The only
consistent solution to this composition is that all the HTTP traffic destined to 10.0/16
should be counted and follow the forwarding application specified path. The nitty-gritty
of this composition is that in the switches, the rules installed by both applications must
have the correct priorities in order to avoid, for example, the case where the HTTP traffic
rule has a higher priority than the forwarding rule. The result would be that HTTP traffic
to 10.0/6 would be counted but not forwarded since the policies did not compose.

In essence, this problem was already solved by Frenetic [2] in the context of a central-
ized controller (leveraging the central point to resolve policy conflicts and order policy
updates). However, in STN the authors take this notion of consistent composition and

Chapter 2. Related Work 36

confront it with concurrent policy updates whereby different controllers that execute the
same set of control applications can update and compose the network policy in different
points in time, and with different ordering. The authors show that: “without synchro-
nization it is impossible at any single point in time for a particular controller instance
to ensure that its policy specification does not conflict with that of any others”. Indeed,
given the asynchronous nature of the policy updates in each controller, conflicting policies
can be applied to the data plane.

The authors distinguish between weak-composition, where policies updates can be
composed arbitrarily but eventually reach the same final composition for every controller,
and strong-composition where policies updates are composed in the same global order
by independent controllers. Furthermore, they propose a transactional interface imple-
mentation, for the weak-composition case, whereby policy updates either commit or are
aborted, and single packets are processed by a single configuration of the network (either
the configuration before the update, or after the update, but not an intermediary configu-
ration) In essence, this proposal is an atomic update of the network configuration that is
susceptible to global conflicting policies caused by the weak-composition pitfall — dif-
ferent controllers can employ different policies at a single point in time. However, it does
guarantee that eventually the network reaches the coherent, consistent, and correct state.

This work is fundamental to understand the pitfalls of distributed updates to the data
plane. As observed by the authors, the strong-composition semantics of concurrent up-
dates can be implemented by resorting to the state-machine-replication technique (as used
by our data store) that could be used to impose a global order in the policy update. How-
ever, this will certainly be limiting the number of different policies and rate of policy
update supported. We are not certain that this would be a serious problem since we do not
have any evidence of specific requirements in real-world deployments (we plan to address
this issue in the future). Finally, we note that the weak-composition technique proposed
in the paper is orthogonal to our distributed controller design.

Chapter 3 – Architecture

All problems in computer science can
be solved by another level of
indirection, except for the problem of
too many layers of indirection.

Kevlin Henney’s

Before the appearance of SDNs, control functions such as routing required their own
distributed protocol that would span over the data plane elements. With Software Defined
Network (SDN), the logically centralized architecture enables control functions based on
protocols that can leverage the logical centralization of the network state. However, as
already covered in the previous chapters, this does not postulate a centralized system. In
this chapter we present a distributed control architecture that relies on standard distributed
techniques to preserve the primordial logical centralization abstraction of SDN.

3.1 Shared Data Store Controller Architecture

Building a distributed system is a complicated task. There are plenty of problems to
address: failures are inevitable and must be considered, implementing the “right” con-
sistency model right is hard; and testing can be unwieldy. Ideally, the development of
control applications should not be exposed to such a complex environment. In tradi-
tional networks, control applications (e.g., routing protocols) have to solve the problem
of distributing the system and solve the control problem. In this section we present a ar-
chitecture that can mitigate the complexity of distributed systems.

The fundamental requirements that have driven our design are:

Transparency – the distribution of the system is invisible to applications;

Simplicity – the distribution of the system allows a centralized programming model;

Generality – the system should be as general as possible providing useful distributed
constructs for the use of the client;

Reliability – the system should be prepared to handle failures;

37

Chapter 3. Architecture 38

Scalability – the system should anticipate scaling requirements.

The transparency and simplicity requirements protect the developer of network appli-
cations from the idiosyncrasies of a distributed system. Distributed systems can be built
transparently offerring a centralized programming model whereby the user is only faced
with the distribution in the event of particular network exceptions. The next requirement
(generality) establishes the need of robust distributed systems tools such as locks, barriers,
and leader election that are indispensable in a distributed context. We aim to provide the
essential building blocks to develop these tools under the same Application Programming
Interface (API) used for state distribution.

Reliability for a distributed control plane is an obvious requirement for production
networks. As stated before, faults are the norm and not the exception in real-world ap-
plications. Thus, it is crucial for the system to handle failures from any of its composing
components.

The insightful reader may found curious that we set scalability as one of our require-
ments given that we already established that, when faced with the tradeoff between con-
sistency and scalability, we prefer the former to the latter. However, this does not rule out
the consideration of scalability mechanisms.

3.1.1 General Architecture

We propose a novel Software Defined Network (SDN) controller architecture that is dis-
tributed, fault-tolerant, and strongly consistent. The central element of this architecture
is a key value data store that keeps relevant network and application state, guaranteeing
that SDN applications operate on a consistent network view, ensuring coordinated, correct
behavior, and consequently simplifying application design.

The architecture is based on a set of controllers acting as clients of the fault-tolerant
replicated data store, reading and updating the required state as the control application de-
mands, maintaining only soft state locally. This architecture is data-centric — it is through
the data store that we support distribution, and the data store, being strongly consistent, is
versatile enough to satisfy most of the control plane requirements with the exception of
scalability (when contrasted with eventual consistent data stores). The data store mimics
the centralized shared memory model existent in concurrent centralized controllers such
as Floodlight. Therefore, other controllers can easily be integrated as a component of our
architecture (see chapter 4).

Fig. 3.1 shows the architecture of our shared data store distributed controller. The
architecture comprises a set of SDN controllers connected to the switches in the network.
All decisions of the control plane applications running on the distributed controller are
based on data plane events triggered by the switches and the consistent network state the
controllers share on the data store. The fact that we have a consistent data store makes

Chapter 3. Architecture 39

the interaction between controllers as simple as reading and writing on the shared data
store: there is no need for code that deals with conflict resolution or the complexities due
to possible corner cases arising from weak consistency.

The control plane is stateless and cares only about processing the data plane events.
The only state kept is soft-state1, which can easily be reconstructed after a crash. The
hard-state is kept in the data store. Thus, once a controller fails, any of the existent con-
trollers can take over its place based on the network state that always survives in the data
store. The switches can tolerate controller crashes using the master-slave configuration
introduced in OpenFlow 1.2 [11], which allows each switch to connect to f+1 controllers
(being f an upper bound on the number of faults tolerated), with a single one being master
for each particular switch. The master is constantly being monitored by the remaining f

controllers, which can takeover its role in case of a crash. Because the data store provides
strong consistency, the controllers can leverage it to assure coordination while “fighting”
over the switches in the network (e.g., leader election, locks, etc.).

Interestingly, our architecture can be used in two different models. Fig 3.1a shows
that in the active model the control plane is distributed and each controller takes over
a different subset of the network (coordinating through the data store). In this model,
each controller can serve as master for a subset of a network and as slave for any other
subset. Once a controller fails, any controller can take over. In this model, only the master
controller processes the events of the switches.

The second model shown in Fig. 3.1b is the Primary-Backup. In this model, the con-
trol plane is “centralized” since only the primary controller controls the network while
others stand by. Still, the fault-tolerant data store can be used to store the pertinent con-
troller state, making it extremely simple to recover from the primary crash. In this case,
the applications deployed on the primary controller manage the network while a set of f
backup controllers keep monitoring this primary, just as in the active model. If the pri-
mary fails, one of the backups – say, the one with the highest IP address – takes the role
of primary and uses the data store to continue controlling the network. In this model, the
primary controller can contain in cache the frequently accessed data without impairing
consistency since it is the only reader and writer of data. In such case, all writes can be
performed on the data store, and reads can be performed locally (if available in cache).

Our distributed controller architecture covers the two most complex fault domains
in an SDN, as introduced in [24]. It has the potential to tolerate faults in the controller
(if the controller itself or associated machinery fails) by having the state stored in the
fault-tolerant data store. It can also deal with faults in the control plane (the connection
controller-switch) by having each switch connected to several controllers (which is ongo-
ing work). The third SDN fault domain — the data plane — is orthogonal to this work
since it depends on the topology of the network and how control applications react to

1State used for efficiency such as precomputed tables in hashing algorithms.

Chapter 3. Architecture 40

Controller

APPS

Controller

APPS

Controller

APPS

Data Store

Master
Slave

(a) Active

Primary

APPS

Backup

APPS

Data Store

(b) Primary-Backup

Figure 3.1: General Architecture: The controllers coordinate their actions using a logically cen-
tralized data store, implemented as a set of synchronized replicas (see Figure 2.9). The architecture
comprises two models. In the Active model, each controller is actively responsible for a subset of
the network. In the Primary-Backup model, a single controller is active, and another is prepared
to take its place in case of failure.

faults. This problem is being addressed in other recent efforts [24, 49].
To increase the overall scalability and generality of this architecture we consider, from

the outset, two fundamental components: cache and domains. Cache offers latency ben-
efits at the expense of consistency and memory space; domains offers scalability and
latency benefits at the expense of more hardware.

Fig. 3.2a shows each controller with a cache that may store a frequently accessed
subset of the data store data, thus enabling local read operations that do not experience
the latency penalty of the data store. In order to be coherent with our design — that favors
consistency — it is of the utmost importance for the cache to be exposed as a functional
component to the applications that reside on the controller. In order words, it is the clients
that have explicit control over the values present in cache and whether each operation
allows a cached value or not. For this purpose, we propose a time-based cache validity
scheme (see section 3.2.5).

Fig. 3.2b shows that, in a multi-domain setting, each domain is a single data store
instance in isolation, and controllers can connect to multiple domains. This setting is in-
spired by Kandoo [15]. Our proposal is to have a single domain for global information
that is made accessible to every controller. In Wide Area Network (WAN) SDN deploy-
ments the global domain data store could use resilient protocols optimized for that envi-
ronment [50]. Then, multiple local domains could be positioned closer to the controllers
exploiting the amount of data shared between them (say, in a single building of a campus).
This scheme can improve the latency of the overall system since frequently accessed data
is closer to the controllers. Additionally, it can also improve the global throughput since
the data store is partitioned across multiple systems. With this configuration, controllers

Chapter 3. Architecture 41

Controller

APP

Controller Controller

Data Store

Cache APP Cache APP Cache

(a) Cache

Controller Controller Controller

Global Domain

Local Domain Local Domain

(b) Domains

Figure 3.2: Performance and Scalability improvements. The cache is a subset of the data store
present in the controller memory thus enabling local read operations. Domains allow the data
store to be partitioned across different configurations enhancing scalability.

can selectively choose how their network state is exposed to others. To clarify, in the
global domain they can expose an aggregated topology view of their own network subset
(i.e., more succinct), while in the local domain they can keep the entire topology.

3.1.2 Data Store

Our architecture orbits around a data store that is replicated to guarantee fault tolerance,
and strongly consistent to guarantee transparency. As previously covered (in section 2.5),
a solution that covers all these requirements is the State Machine Replication (SMR). In
this section, we explain how we exploit this technique to implement our data store.

Fig. 3.3 shows the architecture of our data store. In order to be fault tolerant, the data
store is composed of a set of servers (replicas) that are initialized with the same state.
Then, for each client request (e.g., read, write) the SMR component is responsible for
running an ordering protocol between the different replicas that ensures that all replicas
receive requests in the same order. An example of such protocol is Viewstamped Repli-
cation [44], which was specified in section 2.5.4. When the protocol finishes, the SMR
component transfers the request to the Data Store component responsible for processing
it. When the Data Store finishes it can reply to the SMR component, which in turns replies
to the client. In the meanwhile, the Data Store moves to process the next request. If the
Data Store actions are deterministic, this technique ensures that all replicas achieve the
same state (in the absence of pending client requests2).

We use the Byzantine Fault-Tolerant State Machine Replication (BFT-SMaRt) — an
open source Java-based library for state machine replication — to implement the SMR
component. Among other things, this library supports a tunable fault model, durabil-

2Due to the asynchronous nature of the model (network and computational), replicas can process the
same requests in different moments of time. Replicas only achieve the same state when they have processed
the same set of client requests. Such moment is guaranteed in the absence of pending client requests.

Chapter 3. Architecture 42

Replica

Data Store

Ordering

Replica

Data Store

Ordering

Replica

Data Store

R
eq

ue
st

SMR

R
eq

ue
st

SMR

R
eq

ue
st

SMR

Figure 3.3: Data Store Architecture: each replica is composed by two main components: BFT-
SMaRt, responsible for the ordering protocol; the Data Store responsible for the structure of data
(e.g., tables, columns), and processing of client requests. Each client request that reaches a replica,
is ordered by the BFT-SMaRt protocol which guarantees that every Data Store execute requests in
the same order, thus achieving a coherent state.

ity, and reconfiguration. The fault model can be either Byzantine3 or crash-recovery.
For performance reasons, we consider the crash-recovery model whereby a process (i.e.,
replica) is considered faulty if either the process crashes and never recovers or the process
keeps infinitely crashing and recovering [51]. The library operates under an eventually
synchronous model for ensuring liveness, which informally states that at some point in
time, the system progresses (i.e., computations finish and messages get delivered). For
durability, a state transfer protocol guarantees that state survives the failure of more than
f replicas (the number of replicas that can fail simultaneously). Finally, BFT-SMaRt pos-
sesses a reconfiguration protocol that allows the system to shrink and grow in run-time.

Our BFT-SMaRt-based data store is therefore, replicated and fault-tolerant, being up
and running as long as a majority of replicas is alive [43]. Under partition scenarios where
replicas can be temporarily isolated from each other either due to network partitions or
more obscure conditions that inhibit the replicas from participating in the protocol, at
least a majority (i.e., half plus one) of the replicas must be available in order to guarantee
progress. More formally, 2f+1 replicas are needed to tolerate f simultaneous faults (e.g.,
a cluster of three servers supports one fault).

BFT-SMaRt also enables transparency via strong consistency. Namely, it guarantees
linearizability (i.e., an operation appears to execute instantaneously, exactly once, at some
point between its invocation and its response) [41]. The reader may easily understand how
this is achieve by our system, since each ordered operation is in fact executed in isolation
(as explained above). Therefore, our data store is in congruence with concurrent shared
memory systems. The user of the data store is not aware of its distribution unless: (i)

the network connection to the majority of replicas that compose the data store fails; or

3In a Byzantine fault model, processes can deviate from the protocol in any way. Namely, they can lie,
omit messages, and crash.

Chapter 3. Architecture 43

(ii) the performance penalty of the network is noticeable (by measurement). Otherwise,
it behaves just as a centralized system (it is transparent).

3.2 Data Store Prototype

In this section, we present the details of the key value data store prototype that we have
built to evaluate the feasibility of the architecture propose before. The implementation of
this prototype required two components: the data store server (i.e., Data Store component
of Fig. 3.3), and the data store client (i.e., the client code necessary to interact with the
data store). To connect the two, we developed a simple Remote Procedure Call (RPC)
protocol over BFT-SMaRt. This protocol establishes the format of the messages sent such
that the data store is able to identify the appropriate operation and extract the relevant
arguments (i.e., keys, values, etc.).

We started by developing simple key value data store where the client can define an
arbitrary number of tables (uniquely identified by their name). Each table is a key value
table (i.e., an hash table) mapping unique keys to an arbitrary value (i.e., raw data). The
server has no semantic knowledge of the data present in the data-store and supports simple
operations such as create, read, update, and delete4.

Fig 3.4 shows the class diagram for the client side interface with the data store. The
reader familiar with Java will quickly identify that from the client perspective the data
store client interface is similar to existent constructs (i.e., the java.util.Map interface). In
production code we could use any of the multiple off-the-shelve data stores (either SQL
or NoSQL) available, given that they offer functionalities akin to the ones that we present
in this section. However, in the context of our study (in chapter 4) it was simpler to use
these constructs.

As the figure shows all the interfaces are statically typed. We relied on the client to
provide marshalling and unmarshalling code5 for each table instance. Our initial ver-
sion of the data store (i.e., the key value) relied only in the IKeyValueTable interface.
However, our data store prototype was iteratively refined to incorporate new data store
functions (and interfaces), required to increase the performance of Software Defined Net-
work (SDN) applications.

A brief overview of the interfaces identified in the figure follows6:

4This was enough for the purpose of the study performed, but we intend to explore the possibility of
building or incorporating richer query languages.

5The process where values are transformed into byte streams (marshalling) and vice-versa (un-
marshalling).

6For the sake of brevity, we simplify the inheritance design of the interfaces. To conform to a proper
separation of concerns each table extending an ICrossReferenceTable should have a counterpart interface
extending an IKeyValueTable.

Chapter 3. Architecture 44

get(k : K, accepted_staleness: long) : VersionedValue<V>
getCrossReference(k: K, accepted_staleness : long) : VersionedValue<Object>

<<interface>>
ICachedKeyValueTable

K,V

getColumn(k : K, col: String , accepted_staleness: long) : VersionedValue<V>

<<interface>>
ICachedColumnTable

K,V

value() : V
version(): int

VersionedValue
V put (k: K, v : V) : VersionedValue<V>

insert (k : K, v: V) : boolean
putIfAbsent (k: K, v: V) : VersionedValue<V>
get (k : K) : V
replace(k : K, expected_version : int , v : V) : boolean
remove (k: K, expected_version : int) : boolean
remove(k: K) : VersionedValue<Object>

<<interface>>
IKeyValueTable

K,V

getColumn(k : K, column : String) : VersionedValue<V>
getColumns(k : K, columns : Set<String>) : VersionedValue<V>
setColumn(k : K, column : String, val : Object) : boolean
replaceColumn (k : K , version : int, column : String, val : Object) : boolean

<<interface>>
IColumnTable

K,V

uses

getCrossReference (k : K) : VersionedValue<Object>

<<interface>>
ICrossReferenceTable

K,V

Figure 3.4: Class diagram of the client interface to data store tables.

• IKeyValueTable is a key-value (i.e., hash table) interface. You can manipulate the
key-to-value association in different ways (create, update, remove, replace);

• ICrossReferenceTable extends an IKeyValueTable. It is used for tables that contain
values that can be used as keys in another table (section 3.2.1);

• IColumnTable is the extension of an IKeyValueTable into a bidimensional table
where two keys access an individual value (section 3.2.3);

• ICachedKeyValueTable handles caching of the entries retrieved/updated from/to the
data store. In addition it allows explicit control over the window of inconsistency
accepted in cached entries (section 3.2.5);

• ICachedColumnTable does the same as the previous interface, but for an IColum-
nTable interface;

• VersionedValue is a container for versioned values obtained from the data store
(section 3.2.2).

The remaining of this section further clarifies the functions of those interfaces.

Chapter 3. Architecture 45

3.2.1 Cross References

Commonly, a hash table is restricted to a single key to identify a value despite the number
of unique attributes that are associated with the value. Furthermore, the asymptotical
complexity to obtain a value with a particular key is O

(
1
)

as opposed to searching for one,
which at best has Ω(log n) complexity for n entries (using balanced trees). To circumvent
those limitations, one can use an additional table that relates a “secondary” key of a value
to its “main” one. As an example, imagine that for the purpose of tracking hosts in
a network we consider that a device is uniquely identified by an IP or MAC address.
Therefore, we could use two tables: table IPS relating IPs (key) to MACs (value), and
table MACS relating MACs (key) to devices (value). This is a reasonable scheme in a local
environment (in memory hash table) given that the asymptotical cost to obtain a device
with a MAC address or its IP is equal (O

(
1
)
). However, in a distributed environment, this

requires two round trips to the data store just to obtain a single device with an IP address
(one to fetch the MAC, and another to fetch the device), thus incurring in a significant
latency penalty.

To address this problem (i.e., two round trips to obtain a single value) we implemented
a Cross Reference table (ICrossReferenceTable interface in Fig. 3.4), which is able to
obtain the device with a single access to the data store. Fig. 3.5 clarifies how our Cross
Reference table works. In this example, the client (controller) configures the IPS table
as a cross reference to the MACS table. In practice, this is understood as: the values of the
IPS table can be used in the MACS table. With this setting, the client can fetch a device
from the IPS table, with a single data store operation (the getCrossReference method).
Thus, this operation reduces in half the latency penalty required to obtain the device.

Controller Data Store

getCrossReference(IPS,IP)

IPS TABLE

IP MAC

MACS TABLE

MAC Device

MAC = read(IP)

Device = read(MAC)

2

3

Device

1

4

Table Key

Cross Reference Table of

Figure 3.5: Cross Reference table example with Table IPS configured as a cross reference to table
MACS. First, the controller sends a cross reference read request to the data store for table IPS and
key IP (1). Then, the data store performs a read in table IPS to obtain the key MAC (2), that is
used in table MACS (3) to finally reply to the client the Device (4).

Chapter 3. Architecture 46

3.2.2 Versioning

Despite being strongly consistent, our data store is still exposed to the pitfalls of concur-
rent updates performed by clients. Namely, the loss of data caused by overlapping writes.
To clarify, imagine an HTTP network logger running in a controller that maintains a key-
value table (in the data store) to map each Uniform Resource Locator (URL)7 observed,
in the network packets, to the set of IP addresses that have visited it. In other words,
whenever a host visits a web site, the controller adds the IP address of that host to that
URL set. However, for the data store a set is merely an opaque binary object. Hence, the
controllers need to fetch the set, add an element locally, and finally write the new set in
the data store8. If two controllers do this concurrently, it is possible to loose values added
to the set.

Fig. 3.6a shows an example to clarify this further. First, controllers 1 and 2 fetch the
same visitors set for a particular web site (uniquely identified by the URL), and then
they replace it by a new set that includes IP2 and IP3 respectively. In this case, the lack of
concurrency control results in the loss of the write operation that includes the IP2 visit to
the site (visitors=IP1,IP2) since the last write (visitors = IP1, IP3) overwrites the previous.

With Versioning, each table entry (i.e., key value pair) is associated with a monoton-
ically increasing counter — the version number — that is incremented in every mutation
operation. Doing so, we empower the data store with the capability to detect and prevent
conflicting updates that otherwise could result in the loss of data.

Fig 3.6b shows that with Versioning, the write from controller 1 results in an increase
of the version number of the visitors set at the data store (to 2), which prevents any update
done by controllers unaware of the most recent version of the set. Therefore, by the time
the second write request (from controller 2) arrives at the data store it is aborted, since
the version number included in the operation is not consistent with the data store. We dub
this kind of write operation as conditional write. It succeeds only if the version included
by the client matches the version present at the data store.

Whenever the data store denies a request (as in the example above) the client can only
repeat the entire process since, in order to complete its write, it must obtain the most recent
version from the data store. It is important to realize that the data store has no mechanism
to guarantee that a stubborn client will eventually succeed. Indeed, it is possible that one
client loops indefinitely if another client constantly out-wins him in every write attempt.
Clients are solely accountable for guaranteeing the progress (liveness) of their updates.
This process is commonly termed of Optimistic Concurrency Control [52]. Clients are
optimistic in the sense that they hope that no one else updates the value while they perform

7A uniform resource locator, also known as web address, constitutes a reference to a resource such as a
web page or an email.

8This can be considered a limitation of the data store, since it could support append operations to sets,
however the problem stills exists for arbitrary raw data.

Chapter 3. Architecture 47

Controller 1

Controller 2

visitors = {IP1}

visitors = {IP1}

Data store

read visitors

read visitors

visitors = {IP1, IP2}

visitors = {IP1, IP3}

(a) No Versioning.

Controller 1

Controller 2

visitors = {IP1}, version =1

visitors = {IP1}, version = 1

Data store

read visitors

read visitors

visitors = {IP1, IP2}
known version =1

visitors = {IP1, IP3}
known version =1

version =2

(b) Versioning.

Figure 3.6: Both figures show the history of interactions in a system composed of a data store and
two controllers (1 and 2). Time flows from left to right. The concurrent update to the visitors
set for a particular site can result in loss of data. In Fig. 3.6a, the update from controller 1 is
forgotten when replaced by the update from controller 2 (last-write-wins). Conversely, in Fig 3.6b,
the use of versioning in the data store prevents controller 2 from overwriting the last update.

the entire process (read, modify and write).
Concerning implementation, the Java common library provides a concurrent hash ta-

ble9 with concurrent control primitives equivalent to the ones we include in our data store
Application Programming Interface (API). However, the control is based on the logical
equivalence of objects (as established by their equals contract10 [53]) instead of version
numbers. That is to say, instead of providing the version number in a conditional write,
the client must provide the value that it expects to find in the hash table. Then, the hash
table implementation can perform a logical test to assert if the client provided value is
logically equivalent to the one that it holds. If so, the write is allowed, otherwise it is
“aborted”.

While adapting existing applications to our API that used the Java concurrent hash
table, we have chosen to modify them slightly to use the version number mechanism
instead of the logical equivalence method refereed to above (using method replace in
IKeyValueTable). We have done so for two reasons. First, while equivalence tests work
well with objects, the same is not true for the raw bytes that result from the marshalling
process. In fact, we found cases where two objects where logically equivalent, but their
byte representation was disparate. Second, with version numbers we reduce the size of
messages (sent to the data store) significantly.

3.2.3 Columns

With a key value data model (Fig. 3.7a), clients are able to map a unique key to any ar-
bitrary value with no syntactical meaning for the data store (it is just raw data). This is
a quite limited data model since values are often composed of multiple attributes. Con-
sequently, when the client interest lies towards a small portion of the value (e.g., a single
attribute), this model can be a bottleneck, since both the update messages (sent to the

9java.util.concurrent.ConcurrentHashMap ; see http://goo.gl/avpkVb [oracle.com]
10http://goo.gl/5ZVbE [oracle.com]

http://goo.gl/avpkVb
http://goo.gl/5ZVbE

Chapter 3. Architecture 48

data store), and reply messages (received from the data store) may contain unnecessary
attributes (thus increasing the latency penalty for the client). Therefore, we expanded the
key value table (Fig. 3.7b) to allow clients to access the individual components of a value
with an additional key (i.e., the column name). With Columns, we enhance the unidimen-
sional model of a key value table to a bidimensional one whereby two keys (as opposed
to one) can access an individual attribute of a value inside a table.

Despite the fact that a Column table decomposes a value into columns, the client is
still able to manipulate the entire value. In fact, the class diagram introduced before
(Fig 3.4) shows that the client API for an IColumnTable inherits all the IKeyValueTable
methods. Namely, the client is still able to retrieve or update a value “entirely” (i.e., a Java
object) even if he is not aware of the column names that compose a value. Furthermore,
the column names are not static, not even in the context of a table. Each key-value entry
may have different columns, and clients can add and delete columns from a value as they
see fit (in run-time).

Key Colum
Value Value

(a) Key Value store.

Key

Column
Name

Colum
Value

Column
Value

...

...

Column
Name

Column
Value

(b) Column store.

Figure 3.7: From a Key Value model to a Column model. In the Key Value model a key references
an entire value (raw data from the data store viewpoint). As for the Column model, the client can
still manipulate the entire value (using only the key), or use two keys to address the value (key and
Column name).

A column based table model is beneficial because reading an entire value introduces
considerable overhead, as the message returned by the data store may be considerable big.
To address this the client can create a column table, and obtain a selected set of columns
(using the getColumns method in IColumnTable). Furthermore, before introducing the
column model, the updates performed by the clients on the data store required the entire
value, despite the number of attributes changed (remember that attributes are meaningful
for the client, not the data store). Again, this can result in considerable big messages.
To solve this, the client can use the replaceColumn method in IcolumnTable to replace a
single column inside a value, thus reducing the size of the update message when compared
to updating the entire value. This operation is also conditional (see previous section).

3.2.4 Micro Components

So far, we have focused in particular client use cases (i.e., multiple keys to obtain a value,
concurrent updates, and manipulation of attributes) to introduce techniques that reduce

Chapter 3. Architecture 49

the number or size of messages in the client-to-data store interaction. However, for an
arbitrary number of operations that have no explicit connection to each other we need
a more general and powerful abstraction. To exemplify imagine that the client intends
to: “read two value from different tables”, “add them”, “update other table with the
result”, and “return the result to the client”. Clearly, with the current interface, this
set of operations will require multiple client-to-data store interactions, thus revealing a
significant latency penalty for such a simple task. To address these types of problems, we
introduce the Micro Components functionality.

Micro Components are equivalent to the stored procedure functionality existent in
Structured Query Language (SQL) databases. Truly, they are a powerful abstraction that
can be used to implement any of the features seen before. In essence, a micro component
is an arbitrary long method that is executed in the data store and triggered by the client.
This method has semantic knowledge of the data that is contained in the data store. It
knows what to do with the data kept in the data store, which implies that it knows the
marshalling and un-marshalling process used for the tables that it manipulates. The most
significant advantage of a micro component is performance since it allows the client to
merge multiple operations in a single method. This diminishes the latency impact that the
data store has in the client.

In our prototype, we developed multiple micro components that were statically (i.e.,
prior to compilation) included in the data store along with the Classes that each micro
component required to operate (i.e., we included the client code in the data store server).
This is undesirable, mainly because it forces the re-deployment of the data store code in
order to add new micro components. We plan to address this issue in the feature.

3.2.5 Cache

With a Cache table (ICachedTable), the client can keep frequently accessed values locally,
for a particular data store table. In this table, each value that is read or written from and
to the data store is added to the local cache. Consequently, each read performed by the
client can avoid the latency penalty in the data store interaction. However, the client has
the choice to reject cached values if he wishes so, since we explicitly provide the Cache
interface (ICachedKeyValueTable and ICachedColumnTable) as a functional element of
our interface design, for which the client has absolute control. Thus, the cache is not an
implementation detail hidden beneath the data store interface. To clarify, the client is able
to define if he accepts a cached value as well as the bound on the window of inconsistency
that he is willing to tolerate. We note this can only be strictly guaranteed in a synchronous
system model11.

11A synchronous model specifies a known limit on processing and message delivery delays. Under other
models clock errors and undefined time limits on computations can result in the client obtaining a value
outside the specified window of inconsistency bound

Chapter 3. Architecture 50

In order to define the inconsistency bound, the client can use the get method in an
ICachedKeyValueTable that requires an argument (accepted staleness) defining
the upper time bound for accepting the value present in the cache. Then, for each client
request, the cache returns the local value, if it has been added to the cache within the time
specified by the client (i.e., the time passed between adding the value to the cache and the
current time is lower than the accepted staleness). Otherwise, the cache retrieves
the value from the data store. This is shown in Fig. 3.8. It is worth pointing out than if the
bound specified by the client is 0, then the cache must forcibly fetch the value from the
data store (hence providing consistency).

Controller

Data StoreCache

read(k1, ts)

Key Value : timestamp

k1 v1 : t0

Key Value

k1 v1

[(current time - t0) > ts]

[Otherwise]

Figure 3.8: Reading Values from the Cache: the client performs a read on the data store for key
k1 and accepted staleness ts. The cache returns a local value iff: it was added to the cache for less
than ts time. Otherwise, it obtains the value from the data store (and updates the cache).

To be fair, the use of cache may (arguably) break the transparency characteristic of our
design. However, it does not need to break the consistency semantics if the clients wish
so. Moreover, this design still has multiple advantages when compared to an eventually
consistent data store. First, clients have the freedom to choose whether they are willing
to accept a possibly stale value present in cache or a consistent value retrieved from the
data store. Furthermore, they have explicit control over the window of inconsistency that
they are willing to accept. Second, as long as writes are performed consistently (i.e., in
the data store) there is no risk of conflicting values. Finally, clients still have a strong
consistency data store on which they can rely upon to evaluate the consistency of their
cached values.

The previous point is of fundamental importance. Clients can always evaluate the
staleness of their cached values in the data store. To clarify, imagine some task that
involves reading a value from the data store, modify it, and update the data store. If the
value read is present in cache, then the client can save a trip to the data store, and evaluate

Chapter 3. Architecture 51

the staleness of the cached value on the write. To evaluate staleness, the client can use the
Versioning technique, introduced in section 3.2.2, to ensure that the cached value used is
in fact consistent with the data store version. Thus, a task composed of two round-trips to
the data store may be performed with a single data store request.

Chapter 4 – Evaluation

There are only two hard things in Computer Science:
cache invalidation, naming things and off-by-one errors.

Variation of Phil Karlton quote

To evaluate the feasibility of our distributed controller design we implemented a pro-
totype of the previously described architecture by integrating applications from the Flood-
light controller1 with the data store built over a state-of-the-art State Machine Replication
(SMR) library, BFT-SMaRt [6] (which was described in the previous chapter). We consid-
ered three SDN applications provided with Floodlight: Learning Switch (a common layer
2 switch), Load Balancer (a round-robin load balancer), and Device Manager (an appli-
cation that tracks devices as they move around a network). The applications were slightly
modified to use the data store efficiently (i.e., always trying to minimize communication)
instead of the controller volatile memory.

Our main goal was to analyze the workloads generated by these applications to there-
after measure the performance of the BFT-SMaRt library when subject to the realistic de-
mand caused by real applications. We measured our data store focusing in BFT-SMaRt, as
it is the bottleneck of our architecture due to the expensive consistency and fault tolerance
guarantees.

In the remaining of this chapter we introduce the methodology to evaluate our system
in section 4.1. Then, we report our results for each individual application, from section 4.2
to Section 4.4. Finally, we report our results for caching in section 4.5.

4.1 Methodology and Environment

To evaluate our design, we consider each application in isolation. Namely, we focus in
the workload that they apply to the data store. A workload is a trace (or log) of data store
requests that result from processing a data plane event by a particular application.

Fig. 4.1 shows that whenever a switch triggers some message to a controller applica-
tion, the latter uses the data store for an arbitrary number of operations (e.g., associate the
source address of the some flow request to the switch port at which it arrived, as in the
Learning Switch application). Then, as soon as the application finishes, it may reply to
the switch with a message (named “controller reaction” in the figure).

1http://www.projectfloodlight.org/floodlight/

52

http://www.projectfloodlight.org/floodlight/

Chapter 4. Evaluation 53

In our evaluation we analyze the operations performed between the time that a data
plane event is received at the controller and the time the application replies to the event.
This log of operations (i.e., the workload) is later used to analyze how each individual
application acts according to the different data plane events. In addition, we also consider
changes in the workload caused by variations of the state present in the data store (re-
turning to the Learning Switch example, the case when the source address of a packet is
already “known” by the data store).

operation 1 (request , reply)
operation 2 (request, reply)

....
operation n (request, reply)

Data Plane event

Controller Reaction

Datastore

WORKLOAD

Controller Application

Figure 4.1: Each data plane events trigger a variable number of operations in the data store. The
trace of those operations and their characteristics is our workload.

The workload analysis is thus performed in two distinct phases: first, we generate
data plane traffic and record the respective workloads, and second, we use the workloads
to measure the performance of our data store. The following two sections describe both
phases.

4.1.1 Workload Generation

For the first phase of our study we emulated a network environment in Mininet [54].
Briefly, Mininet is a network emulation platform that enables a virtual network (a real
kernel, switch and application code) on a single machine, and we use it to emulate the
network devices (switches and hosts). As far as our study is concerned, we use it to
trigger the appropriate OpenFlow (OF) data plane events messages sent from the switch
to the controller (recall Fig. 4.1)2.

Our network environment for each application consists of a single switch and at least
a pair of host devices. After the initialization of the test environment (e.g., creation of a
switch table, configuration of the Load Balancer application, etc.) we generated Internet
Control Message Protocol (ICMP) requests between two devices. The goal was to create
OF traffic (packet-in messages) from the ingress switch to the controller.

Then, for each OF request, the controller performs a variable, application-dependent
number of read and write operations, of different sizes, in the data store (i.e., the work-

2We could have used an OF library to trigger the data plane events, but we choose Mininet given its
simplicity as well as our familiarity with it.

Chapter 4. Evaluation 54

load). In the controller (the data store client), each data store interaction is recorded
entirely (i.e., request and reply size, type of operation, etc.) and associated with the data
plane event that has caused it.

4.1.2 Data Store Performance

In this phase, the previously collected workload traces were used to measure the perfor-
mance of the BFT-SMaRt-based data store.

As shown in Fig. 4.2, we set up an environment in a cluster composed of four ma-
chines: one for the data store client (that simulates several controllers), and three for the
data store (to tolerate one crash fault (f = 1), wee need three replicas, as explained in
sections 2.5 and 3.1.2).

Thread 1
Thread 2

...
Thread 3

Clients Data StoreWorkload

Figure 4.2: Illustration of the data store performance test. The machine at the left simulates
multiple clients — equivalent to multiple controller applications — that replay the workload over
several iterations. The data store is composed of 3 BFT-SMaRt replicas (see section 3.1.2).

The data store client runs in a single Java process, but executes multiple threads that
replay a simulation of the recorded workload with an equal number of messages and
payloads (i.e., same message type and size). We emphasize that in order to replay a
workload composed of op1, op2, ...opn operations, a thread must send operation op1, wait
for a reply from the data store and, only after, send operation op2 (and so on, until opn).

In the simulation we use a special data store implementation for two reasons: i) to
reply to each client request with an message equivalent to the one recorded by the work-
load, and ii) measure the number of workloads processed. Since the data store server
is unaware of the workload composition it relies on the client to: include the expected
reply size in each request, and signal the data store when all the operations of a workload
complete3.

This simulation is repeated for a variable number of concurrent data store clients (rep-
resenting different threads in one controller and/or different controllers). From the mea-
surements we obtain throughput and latency benchmarks for the data store under different
realistic loads.

3This is why our reports show a decrease in performance, when compared to the existent BFT-SMaRt
analysis [6].

Chapter 4. Evaluation 55

Each workload was run 50 thousand times, measuring both latency and throughput.
We calculated the average, minimum, maximum and standard deviation at the 90, 95
and 99th percentile. In this document we only show the averages at the 90th percentile.
Appendix A (available online [55]) contains all the benchmark information (in graphical
and raw format) and the traces (i.e., data plane events and respective workloads) for each
workload shown in this chapter. We also made available the scripts that automate the data
plane events in Mininet (used in our experiments), as well as the original codebase that
can be used to reproduce all the work presented.

4.1.3 Test Environment

Each machine in the performance benchmarks had two quad-core 2.27 GHz Intel Xeon
E5520 and 32 GB of RAM memory, and they were interconnected with a gigabit Eth-
ernet. The software environment was Ubuntu 12.04.2 LTS with Java(TM) SE Runtime
Environment (build 1.7.0 07-b10) 64 bits. For the applications, we used Mininet 2.04, a
Floodlight fork5 and BFT-SMaRt6.

4.2 Learning Switch

The Learning Switch application emulates the hardware layer 2 switch forwarding pro-
cess7 based on a switch table that associates Media Access Control (MAC) addresses to
the switch ports where they were last seen. The switch is able to populate this table by
listening to every incoming packet that, in turn, is forwarded according to information
present in the table.

Similarly, in the application, for each switch a different MAC-to-switch-port table is
maintained in the data store. Each table is populated using the source address information
(i.e., MAC and switch port) present in every OpenFlow (OF) packet-in request, which
is used for maintaining the location of devices. After learning this location, the controller
can install rules in the switches to forward packets from a source to a destination. Until
then, the controller must instruct the switch to flood the packet to every port, with the
exception of the ingress port (where the packet came from).

Fig. 4.3 shows the detailed interaction between the switch, Learning Switch applica-
tion, and data store for the only two possible cases of an OF packet-in request. First,
the case for broadcast packets that require one write operation to store the switch-port of

4Available at http://mininet.org (mininet-2.0.0-113012-amd64-ovf). We had an issue with this
version and corrected it by following online instructions available at http://goo.gl/DQ7FQF [stand-
ford.edu].

5http://goo.gl/RbBXag [github.com] commit 9b361fbb3f84629b98d99adc108cddffc606521f
6http://code.google.com/p/bft-smart, revision 334
7If the reader is not aware of how this process works do not worry, it is identical to the one we will

describe for the Learning Switch application.

http://mininet.org
http://goo.gl/DQ7FQF
http://goo.gl/RbBXag
http://code.google.com/p/bft-smart

Chapter 4. Evaluation 56

the source address (Fig. 4.3a). Second, the case for unicast packets, that not only stores
the source information, but also reads the (possibly) known switch port for the destination
address (Fig. 4.3b). If the port is not known, the packet is flooded through all the switch
ports (with the exception of the incoming port).

source MAC is at port x

Broadcast packet

Flood packet

Datastore

WORKLOAD

Learning Switch

(a) Broadcast packet.

source MAC is at port x
where is the destination MAC ?

Unicast packet

Instal rule(s)/Flood

Datastore

WORKLOAD

Learning Switch

(b) Unicast packet.

Figure 4.3: Operations in the data store vary based on whether the OF packet-in is triggered
by a broadcast or unicast packet.

It is critical, both for the original and the distributed versions of this application, that
each switch table is limited in size due to resource exhaustion (each table can potentially
keep an entry for each host present in the network!). For this reason the application limits
a table to a fixed number of hosts (1024 by default). When this limit is reached the least
recently used entries are replaced by new ones. This eviction policy favors (i.e., avoids
deleting) active devices over inactive ones. Each access to the table (either a read or a
write) promotes the key to the top of the list making it the most recently used. After
the table is full, newly added entries replace the bottom entry of the same list (the least
referenced).

The Least Recently Used (LRU) tables are not the only way to control the table en-
tries. The Learning Switch application also applies timeouts (hard and soft — see sec-
tion 2.2.2) to the flows installed in the data plane. When they expire, a switch triggers
an OF flow-removed message (containing a source and a destination address) to the
control plane that, in turn, deletes the associated entry from the data store. Consequently,
the application constantly recycles both switch flow rules and data store entries.

4.2.1 Broadcast Packet

This workload is defined by the operations performed in the data store when process-
ing broadcast packets in an OpenFlow (OF) packet-in request (Fig. 4.3a). Table 4.1
shows that for the purpose of associating the source address of the packet to the ingress
switch-port where it was received, the Learning Switch application performs one write
(W) operation with a request size (Request) of 113 bytes and reply size (Reply) of 1 byte
(reporting success).

Chapter 4. Evaluation 57

Operation Type Request Reply

1) Associate source address to ingress port W 113 1

Table 4.1: Workload lsw-0-broadcast operations and sizes (in bytes).

Notice that in order to tag the source-to-port entry as the most recently used (in the
LRU table) the Load Balancer has to perform this write regardless of the entry being
already known or not.

4.2.2 Unicast Packet

This workload adds an operation to the previous one, since for every unicast packet we
must also fetch the known switch port location of the destination address. Table 4.2 shows
that this second operation requires 36 bytes for the request payload (sent to the data store)
and a 77 byte response size containing the known switch port.

Operation Type Request Reply

1) Associate source address to ingress port W 113 1
2) Read egress port for destination address R 36 77

Table 4.2: Workload lsw-0-unicast operations and sizes (in bytes).

4.2.3 Optimizations

The Learning Switch operations are simple, so there is not much to be done to improve
them. Still, there is an overhead in the messages exchanged considering their content:
a MAC address (6 byte standard); and a switch port identifier. This is justified by the
fixed overhead of the Java Object Serialization Stream Protocol [56] used to transform
the object values into byte arrays (as required by the data store prototype). By doing it
“manually” (i.e., convert the MAC address and switch port identifier to their underlying
byte representation) we lower the total size of the messages in the unicast workload by
72% (see Table 4.3). The same goes for the broadcast workload (first line of the same
table).

Operation Type Request Reply

1) Associate source address to ingress port W 29 1
2) Read egress port for destination address R 27 6

Table 4.3: Workload lsw-1-unicast operations and sizes (in bytes).

Finally, we merge the two operations that compose the unicast workload (lsw-1-
unicast) into one, as shown in Table 4.4. This is possible using micro components (recall

Chapter 4. Evaluation 58

section 3.2.4), which enables the Learning Switch application to perform more than one
operation with a single request to the data store. Notice that in the broadcast case it is
irrelevant to use micro components since it is already composed of a single operation.

Operation Type Request Reply

1)
Associate source address to ingress port; and

W 56 6
read egress port for destination address

Table 4.4: Workload lsw-2-unicast operations and sizes (in bytes). The two operations are per-
formed as a single one by resorting to micro components (recall section 3.2.4).

4.2.4 Evaluation

Fig. 4.4 shows the results of the performance analysis made to the data store using the
five workloads described above. The reported metric for the average throughput is flows
per second, with each flow being the equivalent to the execution of all the workload
steps. Similarly, the measured latency is taken per flow. The resulting values follow an
exponential growth as we increase the load on the system by adding more clients.

Surprisingly, the difference in performance between the original versions (with work-
load names prefixed by lsw-0) and the optimized size versions (prefixed by lsw-1) is
unnoticeable (Fig. 4.4a). Indeed, we will soon verify that size optimizations are bearably
unnoticeable in all our examples, except when they differ at least one order of magnitude.

Furthermore, Fig. 4.4a shows a significant difference between unicast and broadcast
workloads. This is due to the different number of message exchanges. For the broadcast
workload (1 message) the data store can support up to 20k Flows/s under 3 ms latency,
whereas for the unicast workload (2 messages) the data store only supports 12k Flows/s,
with the same 3 ms latency penalty. The results shown in Fig. 4.4b show an analagous
result for the reduction of messages in the unicast workload (lsw-2-unicast).

4.3 Load Balancer

The Load Balancer application employs a round-robin8 algorithm to distribute the re-
quests addressed to a Virtual IP (VIP) address across a set of servers.

Fig. 4.5 shows the entities relevant to understand this application. The VIP entity rep-
resents a virtual endpoint with a specified MAC, IP, protocol (ICMP, TCP or UDP), and
port. Each VIP can be associated with one or more Pools9. Each Pool has a current as-
signed server (current-member attribute), which changes every time the round-robin
algorithm is executed. Finally, the third entity — Member — represents a real server.

8This algorithm distributes each request to a different server in a circular fashion.
9The original application associates each vip to more than one pool since it considers enhancing the

round-robin model in the future. As with all other applications, we prefer to maintain its original behavior.

Chapter 4. Evaluation 59

0 5000 10000 15000 20000 25000
Throughput (Flows/s)

1

2

3

4

5

6

7

8

9

10

La
te

n
cy

 (
m

s)
lsw-0-broadcast
lsw-0-unicast
lsw-1-broadcast
lsw-1-unicast

(a) lsw-1-X vs. lsw-0-X

0 5000 10000 15000 20000 25000
Throughput (Flows/s)

2

3

4

5

6

7

8

9

10

La
te

n
cy

 (
m

s)

lsw-0-unicast
lsw-1-unicast
lsw-2-unicast

(b) lsw-X-unicast

Figure 4.4: Learning Switch workloads performance comparison.

Table 4.5 shows the different tables required by the Load Balancer application. The first
three track entities by their key attributes. An additional table (vip-ip-to-id) links
IPs to VIPs.

pool-id
address
members*
current-member

Pool

vip-id
ip
mac
protocol
port
pools*

VIP
member-id
address

Member
**

Figure 4.5: Simplified Load Balancer entity
model. Only the attributes relevant to our dis-
cussion are shown.

Name Key Value

vips vip-id vip
pools pool-id pool

members member-id member
vip-ip-to-id ip vip-id

Table 4.5: Load Balancer key-value tables.

The Load Balancer application asserts if any packet-in request triggered by a
switch is addressed to a VIP. If so, two different executions flows are possible:

1. (Fig. 4.6a) when the event is caused by an Address Resolution Protocol (ARP)
request, the Load Balancer application must fetch the mac address attribute of the
VIP to reply to the source host.

2. (Fig. 4.6b) if the event is caused by Internet Protocol (IP) data packets the applica-
tion must: (i) fetch the VIP information; (ii) choose and fetch a Pool; (iii) rotate
the current-member attribute of the Pool (to perform the round-robin algo-
rithm); and (iv) fetch the chosen Member data (to install the appropriate rule in the
switch).

Chapter 4. Evaluation 60

Is this IP a VIP?
Read the proxy MAC for that VIP

Reply to ARP

ARP Request

Datastore

WORKLOAD

Load Balancer

(a) ARP packet address at a VIP.

Is this IP a VIP?
Round robin

Get the server address

Install rule(s)

IP packet to VIP

Datastore

WORKLOAD

Load Balancer

(b) IP packets addressed at a VIP.

Figure 4.6: Load Balancer workloads by events.

4.3.1 ARP Request

Table 4.6 shows the operations that result from an OF packet-in caused by an ARP
request querying the VIP MAC address. In the first operation, the Load Balancer appli-
cation attempts to retrieve the vip-id for the destination IP. If it succeeds (since the
association exists and the reply is different than 0), then the retrieved vip-id is used
to obtain the related VIP entity in operation #2 (we surround the operation description
with brackets to mark it as optional being that it is only executed when the first succeeds).
Despite the fact that only the MAC address is required to answer the ARP request; the
VIP entity is read entirely. Notice that the size (509 bytes) is two orders of magnitude
bigger than a standard MAC address size (6 bytes).

Operation Type Request Reply

1) Get vip-id for the destination IP R 104 8
2) [Get VIP] R 29 509

Table 4.6: Workload lbw-0-arp-request operations and sizes (in bytes). Bracketed operations is
optional.

4.3.2 Packets to a VIP

Table 4.7 shows the detailed operations triggered by IP packets addressed at a VIP.
The first two operations fetch the VIP entity associated with the destination IP address
of the packet. From the VIP we obtain the pool-id used to retrieve the Pool (op-
eration #3). The next step is to perform the round-robin algorithm by updating the
current-member attribute of the retrieved Pool. This is done locally. Afterwards,
the fourth operation aims to replace the data store Pool by the newly update one. If the
Pool has changed between the retrieve and replace operation this operation fails (reply
equal to 0) and we must try again by fetching the Pool one more time (repeating operation
#3 and #4, hence the * mark). In order to check if the versions have changed, the replace
operation contains both the original and updated Pool to be used by the data store. To

Chapter 4. Evaluation 61

succeed the original client version must be equal to the current data store version when
processing the request. If successful (reply equal to 1), we can move on and read the
chosen Member (server) associated with the member-id that has been determined by
the round-robin algorithm.

Operation Type Request Reply

1) Get vip-id for the destination IP R 104 8
2) [Get VIP] R 29 509
3) [Get the chosen pool]∗ R 30 369
4) [Conditional replace pool after round-robin]∗ W 772 1
5) [Read the chosen Member] R 32 221

Table 4.7: Workload lbw-0-ip-to-vip operations and sizes (in bytes). The * symbol signals that the
operation may be repeated due to concurrent updates.

4.3.3 Optimizations

Table 4.8 shows all the optimizations done to the workload triggered by a packet addressed
to a VIP. It is similar to previous workload description tables but this time, we show how
the data store optimizations affect the workloads. The reader can attest the improvement
in the workloads reading from left to right. To simplify our discussion we prefix each
workload with a different name: lbw-0, lbw-1,..., lbw-4. For reference, Table 4.9 relates
prefixes to data store optimization techniques. Prefix lbw-0 refers to the initial key value
store implementation already presented (in Table 4.7).

Operation Type (Request, Reply)

lbw-0 lbw-1 lbw-2 lbw-3 lbw-4

1) Get VIP id of destination IP R (104,8)
(104,509) (104,513) (62,324) -

2) Get VIP info (pool) R (29,509)

3) Get the chosen pool R (30,369) - (30,373) -

(11,4)4) Conditionally replace pool W (772,1) - (403, 1) -

5) Read the chosen Member R (32,221) - (32,225) (44,4)

Table 4.8: Load Balancer lbw-X-ip-to-vip workload operations and respective sizes (in bytes)
across different optimizations. Sizes marked with - are equal to the previous.

In the first improvement (lbw-1) we eliminate the double step required to obtain a VIP
(first two operations). This can be done with the Cross Reference functionality by stating,
when creating the vip-ip-to-id table, consulted in the first workload operation that
its values can be used as keys in the vips table. Then, the Load Balancer application can
fetch the VIP for the provided IP address in a single operation.

Chapter 4. Evaluation 62

Prefix Data store Section

lbw-0 Simple Key-Value 3.2
lbw-1 Cross References 3.2.1
lbw-2 Versioning 3.2.2
lbw-3 Column Store 3.2.3
lbw-4 Micro Components 3.2.4

Table 4.9: Name guide to Load Balancer workloads.

Next, in workload lbw-2 we reduce operation #4 size in half, by “upgrading” the
conditional replace (after round-robin) by a similar operation based on version numbers
that are provided by the data store while reading the VIP information (notice the 4 byte
increase in operation #1-2 caused by adding the version number of the VIP to the reply).

Following (lbw-3), we modify the members and vips tables to keep values as
columns. As such, we can now replace the existing read of a VIP and Member by “partial”
reads. Only a slight improvement (from 513 to 324 byte) is seen for reading the VIP (op-
eration #1-2) since the application requires most of the VIP attributes. On the other hand,
with a column-based members table, we reduce the return value of the last operation by
a factor of 56 in the return value because we only require reading its IP attribute.

Finally (lbw-4), the most significant improvement consists in setting up a method in
the data store equivalent to the local round-robin operation that also returns the Member
IP in a single step (i.e., merges operations #3 through #5). Note also that there is an
additional benefit that is not shown in Table 4.8. In the previous versions, we fetch and
update a Pool in two separate steps, and as we explained, the conditional replace can fail in
case of concurrent updates. This can become a potential bottleneck under peaks of traffic.
This problem disappears in the final optimization phase (lbw-4), since load balancing is
performed as a single operation in the data store (exploiting the linearizability property
referred to in section 2.5).

4.3.4 Evaluation

Fig. 4.7a shows the performance results of our analysis of the different workloads opti-
mizations. In the figure we can identify similar patterns to the previous analysis.

Again, the message size reduction optimizations have little to no effect, as can be at-
tested from workloads lbw1 to lbw-3. This was expected since the relative improvements
have smaller impact when compared with the Learning Switch case.

As before, it is the reduction of the number of messages that has the greatest impact.
From workload lbw-0 to lbw-1 we see a clear, albeit small improvement. The improve-
ment is much more significant with the final optimization (lbw-4) where we obtained a
throughput of 12k Flows/s under 5 ms latency — at the same latency penalty (5 ms), we
triple the throughput (4k to 12k) from lbw-0 to lbw-4.

Chapter 4. Evaluation 63

2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

0

5

10

15

20

25

La
te

n
cy

 (
m

s)
lbw-0-ip-to-vip
lbw-1-ip-to-vip
lbw-2-ip-to-vip
lbw-3-ip-to-vip
lbw-4-ip-to-vip

(a) ip-to-vip.

6000 8000 10000 12000 14000 16000
Throughput (Flows/s)

0

1

2

3

4

5

6

7

La
te

n
cy

 (
m

s)

lbw-0-arp-request
lbw-1-arp-request
lbw-3-arp-request

(b) arp-request

Figure 4.7: Load Balancer workloads performance comparison.

Regarding Fig. 4.7b, it shows the performance analysis to the arp request workload
described previously. This workload is equivalent to the first two operations of the ip-to-
vip workload in Table 4.8. Again, the message size improvements from lbw-1 to lbw-3
have no considerable effect as opossed to the reduction in the number of messages from
lbw-0 to lbw-1.

4.4 Device Manager

The Device Manager application tracks and stores host device information such as the
switch-ports attachment points (ports where devices are connected to). This information
is retrieved from all OF packets that the controller receives. For each new flow, the De-
vice Manager application retrieves the known switch ports for the source and destination
addresses for later use by other applications.

The Device Manager application requires three data store tables, listed in Table 4.10.
The first table (devices) keeps track of known devices. The second (macs), tracks the
devices by their MAC address and Virtual Local Area Network (VLAN) identifier pair.
Finally, a third table named ips links IPs addresses to one or more devices.

device-id
(mac,vlan)
attachment-points*
...

Device
ipv4-address
last-seen
active-since

Entity

*1

Figure 4.8: Simplified Device Manager class di-
agram. Only the attributes relevant to our dis-
cussion are shown.

Name Key Value

devices device-id device
macs (MAC,VLAN) device-id
ips IP device-ids*

Table 4.10: Device Manager key-value tables.

This application extracts the switch port, MAC and VLAN information for the source
address from every OF packet-in request processed by the controller. Then it updates

Chapter 4. Evaluation 64

Read the source device
Create device

Read the destination device

Unknown device
WORKLOAD

Device Manager Datastore

(a) Packet from an unknown device.

Read the source device
Update "last seen" timestamp
Read the destination device

Known device
WORKLOAD

Device Manager Datastore

(b) Packet from a known device.

Figure 4.9: Workloads for this application heavily depend on the state of the data store. Unknown
devices trigger several operations to their creation, while known devices only require an update of
their ”last seen” timestamp. No matter the case, the source and destination devices are retrieved if
they exist.

or creates new devices based on that information. A device (see Fig. 4.8) is uniquely
identified by its device-id or (MAC,VLAN) pair (represented in bold in the figure).
It is also composed of one or more entities (Entity class in the figure). Each entity is a
“visible trace” of a device activity. The application always creates two entities for each
device: one associated with the device IP address, that is created (or updated) on every
ARP request, and a generic one (with IP 0.0.0.0), that is created (or updated) on every IP
data packet seen from that device. The last-seen timestamp of the each entity is updated
on every packet seen, and is later used to age out inactive devices.

We analyze and improve two workloads generated by this application. The first
(Fig. 4.9a) is caused by an ARP packet from an unknown device, and the second (Fig. 4.9b)
by an IP packet from a well-known device. In the former case, the application must create
the device information and update all tables. As for the latter case, the Device Manager
updates the source device last-seen timestamp. In both cases, the known attachment
points of both source and destination devices are fetched to be made available to other
applications.

4.4.1 Unknown Device

This workload is triggered in the specific case in which the source device is unknown
and the OF message carries an ARP reply packet. As seen in Table 4.11, eight data
store operations are required in order to create a device. The first operation reads the
source device key. Being that it is unknown (notice, in the table, that the reply has a
size of zero bytes corresponding to null) the application proceeds with the creation
of the device. For this, the following write (second operation) atomically retrieves and
increments a device unique id counter. Afterwards, the third and fourth operation updates
the devices and macs tables respectively. Then, since the ips table links an IP to
several devices, we need to first collect a set of devices (operation #5) in order to update
it (operation #6). This read-modify-write operation can fail in case of concurrent updates.

Chapter 4. Evaluation 65

However, this should not be an issue since it will be unusual to have a device updated
by different controllers concurrently. If successful, the Device Manager has created the
new device info and can, finally, move to the last two operations that fetch the destination
device information. If unsuccessful, the process is repeated from step #5.

Operation Type Request Reply

1) Read the source device key R 408 0
2) [Get and increment the device id counter] W 21 4
3) [Put new device in device table] W 1395 1
4) [Put new device in (MAC,VLAN) table] W 416 0
5) [Get devices with source IP]∗ R 386 0
6) [Update devices with source IP]∗ W 517 0
7) Read the destination device key R 408 8
8) [Read the destination device] R 26 1378

Table 4.11: Workload dm-0-unknown operations and sizes (in bytes).

4.4.2 Known Devices

When the devices are known to the application, a packet-in request triggers the opera-
tions seen in table 4.12. The first two operations read the source device information. Then
an update is required to update the “last seen” timestamp of the device generic entity.
Notice that the size of this request message is nearly twice that of a device (1444 bytes).
This is due to the fact that this is a standard replace containing both the original device
(fetch in step #2) and the updated device. This operation will fail if other data store client
has changed the device. If so, the process is restarted from the beginning. Otherwise, the
last two operations can fetch the destination device.

Operation Type Request Reply

1) Read the source device key∗ R 408 8
2) [Read the source device]∗ R 26 1444
3) [Update ”last seen” timestamp]∗ W 2942 0
4) Read the destination device key R 408 8
5) [Read the destination device] R 26 1369

Table 4.12: Workload dm-0-known (Known Devices) operations and sizes (in bytes).

4.4.3 Optimizations

Table 4.13 summarizes the optimizations done to the know devices workload. As before,
we use different optimization prefixes (dmw-0, dmw-1, ..., dmw-4) that are described in
Table 4.14.

In the first optimization (dmw-1) the two-step operation required to fetch a device is
replaced by a single read with the help of Cross References tables (just as we have done

Chapter 4. Evaluation 66

Operation Type (Request, Reply)

dmw-0 dmw-1 dmw-2 dmw-3 dmw-4

1) Get source key R (408, 8)
(408,1274) (408,1278) (486,1261) (28,1414)

a

2) Get source device R (26,1444)

3) Update timestamp W (2942,0) (2602,0) (1316,1) (667,1) (36,0)

4) Get target key R (408,8)
(408,1199) (408,1203) (416,474) N/A

5) Get target device R (26,1369)

a) This operation also fetches the target device.

Table 4.13: Device Manager dmw-X-known operations and respective sizes (in bytes) across dif-
ferent optimizations.

Prefix Data store Section

dmw-0 Simple Key-Value 3.2
dmw-1 Cross References 3.2.1
dmw-2 Versioning 3.2.2
dmw-3 Column Store 3.2.3
dmw-4 Micro Components 3.2.4

Table 4.14: Name guide to Device Manager workloads.

in lbw-1 in Table 4.8). Then, in dmw-2, we upgrade the replace operation used to update
the Device timestamp (operation #3) by a versioned based replace operation.

Following these optimizations, in dmw-3 we use a column table to store devices. The
update timestamp operation (#3) is reduced to half its previous size. This improvement
is caused by using only the updated column in the replace operation. We could improve
this further if we kept the timestamp in a single column on the data store. However, the
timestamp is kept in an array of entities, and our current data store prototype cannot
break each array element in a different column. Additionally, with columns we reduce
the return size of the last operation (#4-5) by a factor of 3 since we only need to read the
switch attachment points of the destination (target) device.

As before, the final optimization step is to use micro-components (dmw-4). Two
components are created for the known device workload. First, one that merges the two
operations required to fetch the source and destinations device into a single operation
(notice the Not Applicable in operation #4-5). Second, one to update the timestamp in the
data store. In this operation, only the device key, entity index, the new timestamp, and
version number of the device are sent. This significantly improves the message size.

However, the most significant improvement of micro components is in creating de-
vices. Table 4.15 shows that the different optimizations to the Device Manager applica-
tions make no significant improvements up to dmw-3. However, the introduction of a
micro component to create a device replaces 5 operations (from #2 to #6) with a single

Chapter 4. Evaluation 67

one. In addition, the source and destination device are read simultaneously, just as in the
known-device workload. Thus, in the final optimization the workload is composed of two
operations (#1 and #2-6).

Operation Type (Request, Reply)

dmw-0 dmw-1 dmw-2 dmw-3 dmw-4

1) Read source key R (408,0) - - (486,0) (28,201)a

2) Increment counter W (21,4) - - -

(476,8)
3) Update device table W (1395,1) (1225,1)b - (1183,1)
4) Update MAC table W (416,0) - - -
5) Get from IP index R (386,0) - - -
6) Update IP index W (517,0) - - -
7) Get target key R (408,8)

(408,1208)
b

(408,1212) (416,474) N/A
8) Get target device R (26,1378)

a) This operation also fetches the destination device.
b) Differences in sizes caused by a marshalling improvement.

Table 4.15: Workload dm-0-unknown operations and sizes (in bytes).

4.4.4 Evaluation

In Fig. 4.10 we present the results from the performance analysis for the two workloads
previously covered.

The figure confirms that the most significant improvement comes from using a micro
component to create a device (dmw-4-unknown in Fig. 4.10a). With it we can reduce the
latency penalty significantly while increasing the data store throughput from 2k Flows/s
(and a penalty of around 12 ms) to nearly 12k Flows/s (with a reduced penalty of around
4ms). This significant improvement is also observed, albeit to a less degree, in the known
device workload (Fig. 4.10b).

Also, note that under adequate workloads the data store has a significantly low la-
tency penalty (the use of micro-components in both cases shows a steady latency penalty
between 2 to 3 ms until 8k Flows/s).

4.5 Cache

In the workloads shown in the previous sections, the applications perform all operations in
the data store. However, it is possible to perform some of the operations of each workload
locally (in the controller) by integrating the applications with our cache interface (see
section 3.2.5).

We should start by explaining why we “isolated” this optimization technique from
the others. This is simply due to the differences in the evaluation process used in the

Chapter 4. Evaluation 68

0 2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

2

4

6

8

10

12

14

16

18

20

La
te

n
cy

 (
m

s)
dm-0-unknown
dm-1-unknown
dm-2-unknown
dm-3-unknown
dm-4-unknown

(a) Unknown device

0 2000 4000 6000 8000 10000 12000 14000
Throughput (Flows/s)

2

4

6

8

10

12

14

16

La
te

n
cy

 (
m

s)

dmw-0-known
dmw-1-known
dmw-2-known
dmw-3-known
dmw-4-known

(b) Known device

Figure 4.10: Device Manager performance comparison

cache optimization. This process differs from the others since it is theoretical and not
experimental, as the reader will see.

In this section we show how we modified the workloads with the cache integration, the
effect that it can have on the staleness of the data used by the clients (i.e., the applications),
and if any consistency problems can arise. We conclude with a theoretical analysis of the
performance of the cache optimization for the considered workloads.

4.5.1 Learning Switch

Given that Learning Switch is a single reader, single writer application10, we can introduce
caching mechanisms without impairing the consistency semantics or the staleness of the
data. To clarify, a cached entry in the Learning Switch application is always consistent
with the data store since no other controller modifies that entry. Therefore, with cache we
can potentially avoid the data store while processing data plane events, thus avoiding the
two operations in the unicast packet workload (lsw-1-unicast).

Table 4.16 shows the operations that can be cached (in gray background) from the
lsw-1-unicast workload (in Table 4.3)11.

Operation Type Request Reply

1) Associate source address to ingress port W 29 1
2) Read egress port for destination address R 27 6

Table 4.16: Workload lsw-3-unicast operations and sizes (in bytes). Operations in gray back-
ground are cached. Operation #1 can only be performed in cache, iff the source address to ingress
port association is already known (in cache).

10For each switch table only a single thread, in a particular controller (the one responsible for the switch)
reads and performs writes in the data store.

11We choose lsw-1-unicast as opossed to lsw-2-unicast, since our current implementation of the cache is
based on the former.

Chapter 4. Evaluation 69

First, we avoid re-writing the source address to source port association when we al-
ready now it, because it is present in cache (operation #1). Second, we can also avoid
the read operation #2, which queries the egress port of the currently processed packet, if
that entry is available in cache. With this improvement, we no longer have to read values
from the data store as long as they are available in cache, and we still get consistent values
because when we update a value we also update the cache. Note however, that the cache
is also limited in size, thus entries are refreshed over time. In the case of cache-misses
(i.e., entry is not available in cache), then the operation is performed in the data store.

By performing operation #1 in cache we affect the behavior of the original application.
In the original Learning Switch application this re-write is not expensive (since it is local)
and tags the source device entry as the most recent one in the LRU table. However, if we
avoid updating the data store, then the active host will be removed from the LRU table
sooner, even if active. Still, we choose to avoid the data store since an active host will
(arguably) benefit in latency while being processed by the Learning Switch application
until being removed from the cache and data store.

The reader may think of an exception where we find stale data: when a host moves
from a switch to another, the tables from the first switch will have incorrect data and
devices will be unreachable from that switch, for some time. However, this also happens
with the centralized version of the application. In fact, this is why rules installed in the
switches must have an idle timeout set (recall section 4.5.1). When one of the timeouts
expires, the switch triggers a flow-removed message to the controller that, in turn,
deletes the respective information in the data store. This type of problems resides on the
data plane consistency side.

4.5.2 Load Balancer

In the Load Balancer case we use the cache to maintain VIP entities locally. The reader
may think that by doing this we will affect the consistency of the application, since in the
worst case the local VIP information can be stale. Namely, the application can install rules
in the data plane to reach a VIP address server when the VIP has been removed (from the
data store) or possibly changed the pool of servers. Note that this may also happen in
the strong consistent version since a VIP fetched from the data store can be invalid by
the time it arrives at the controller. With cache the probability of such an event is higher
but we recall that this is tunable, since our implementation has a time-base cache validity
interface (recall section 3.2.5).

Table 4.17 builds on the lbw-4-ip-to-vip workload (see Table 4.8) to illustrate how
caching can increase the system performance. Only the first operation can be cached
since it is the only read. For the write, we must rely on the data store to accurately perform
the round-robin algorithm and return the address of the next server chosen. Otherwise,
consistency problems could occur (i.e., conflicts). We leverage on this mandatory trip

Chapter 4. Evaluation 70

to the data store, to evaluate the staleness of the VIP present in the cache. If the VIP
changed between the time it was added to the application cache and the time the write is
performed, then the data store aborts the operation and the application can restart from
scratch. This time the value is obtained from the data store.

Operation Type Request Reply

1) Get VIP pool for the destination IP∗ R 62 324
2) [Round-robin pool and read chosen Member]∗ W 21 4

Table 4.17: Load Balancer lbw-5-ip-to-vip workload operations and respective sizes (in bytes).
Greyed operations are cached.

4.5.3 Device Manager

As before (in the Load Balancer case), we can introduce the cache to service a portion
of the reads operations locally. This time we keep devices12 in cache which, in the worst
case, can lead to path decisions based on outdated device locations. Again, this can also
happen in the non-cached implementation of the application since devices read from the
data store can already be outdated by the time the reply arrives at the controller (e.g., a
mobile device moves from one access point to another).

First, we analyze how cache can affect the workload for a known device. Table 4.18
builds on our last workload (dmw-4-known in Table 4.13) to show that only a single
operation (out of two) can be local. This operation (#1) reads the source and target devices
based on the IP’s addresses present in the packet. If any of the two are not available in
cache, the application fetches both from the data store. Also, notice that we rely on the
second operation (the write updating the timestamp) to validate the cached data, but in
our current implementation, this operation only validates the source device. If the cached
source device has been modified in the data store, the operation fails and the process must
be repeated. If repeated then the first operation forcibly fetches values from the data store.
Off course, this validity check could be expanded to include the destination device, thus
narrowing the inconsistency window of all the cached information used to install flows.

In the unknown device workload (see dmw-4-unknown in Table 4.15) caching has no
effect, because the cache will definitely need to consult the data store when the source
device does not exists (thus cannot be in cache). In practice, the first operation of this
workload is the same of the known device workload from Table 4.18, which must be
performed in the data store when any of the devices is not available locally.

12For the thorough reader: we keep the cross reference tables that obtain devices.

Chapter 4. Evaluation 71

Operation Type Request Reply

1) Get source and target devices∗ R 28 1414
2) [Update “last-seen” timestamp of source device]∗ W 36 0

Table 4.18: Device Manager dmw-5-known workload operations and respective sizes (in bytes).
Greyed operations are cached.

4.5.4 Theoretical Evaluation

Table 4.19 shows the results the performance analysis to the cached workloads shown in
the previous sections. The best case of each workload refers to when all the cache-enabled
operations are performed locally. In contrast, the worst case refers to when all operations
that compose the workload are performed in the data store. Of course, these values can
only be used as a broad reference to understand the impact of cache. The true results may
be far from the best case, since the frequency of cache-hits is dependent of the accepted
staleness, the frequency of data plane events, the size of the cache, etc.

Regarding the results, in the lsw-3-unicast workload we show that the best case has an
infinitive throughput and zero latency since no operation is performed in the data store.
Thus, only the controller throughput and latency would have impact in such best case.

Naturally, the results of the device manager and load balancer best case are very sim-
ilar since they have identical workloads. Additionally, the best case of each workload
has roughly the double of the throughput when compared to the worst case. This was
expected since the best case in each workload reduces the number of message sent to the
data store in half.

Workload Case Throughput (kFlows/s) Latency (ms)

lsw-3-unicast
best ∞ 0
worsta 21.5 4.7

lbw-5-ip-to-vip
best 21.4 4.8
worst 11.4 3.4

dmw-5-known
best 21.4 3.6
worst 11.1 3.5

Table 4.19: Bounded Analysis to Cache Workloads

aWe consider the lsw-2-unicast as reference for the worst case

4.6 Discussion

The introduction of a fault-tolerant, consistent data store in the architecture of a distributed
SDN controller has a cost. Adding fault tolerance increases the robustness of the system,

Chapter 4. Evaluation 72

while strong consistency facilitates application design, but the fact is that these mecha-
nisms affect system performance. First, the overall throughput will decrease to the least
common denominator, which will in most settings be the data store. Second, the total
latency will increase as the response time for a data path request now has to include i) the
latency to send a request to the data store; ii) the time to process the request; and iii) the
latency to reply back to the controller. Starting by assuming the inevitability of this cost,
our objective was to show that, for some network applications at least, the cost may be
bearable and the overall performance of the system remain acceptable.

First, we note that the performance results of our data store are similar to those re-
ported for the original NOX and other popular SDN controllers [17]. The average through-
put for the Learning Switch application (the only application considered in [17]) is not
far from that reported by the original NOX (30kReq/s), so our data store would not be-
come a bottleneck in this respect. In addition, the latency is equivalent to the reported
for the different SDN controllers analyzed in that work (including the high-performance,
multi-threaded ones), so the additional latency introduced, although non-negligible, can
(arguably) be considered acceptable. We consider this result to be remarkable given that
our data store provides both strong consistency and fault tolerance. Of course, the in-
sightful reader will note that the results become quite distant from what is obtained with a
controller that is optimized for performance, such as NOX-MT [17], in terms of through-
put.

As the second part of the argument, it is important to understand that every update to
our data store represents a similar execution of the protocol of Fig. 2.9, while in NOX-MT
we have simply OF requests being received by a controller with the data store kept in main
memory. Even if NOX-MT (or any other high-performance controller) synchronously
writes particular data to disk (something that takes around 5ms), no more than 200 up-
dates/second can be executed. This unequivocally shows that if some basic durability
guarantees are required (e.g., to ensure recoverability after a crash), then the impressive
capabilities of these high-performance controllers will be of little use.

Another goal of our work is to show that even with strong consistent semantics our
data store can perform with equal or superior performance when compared to the exis-
tent distributed control platforms, namely HyperFlow [4] and Onix [3]. The HyperFlow
evaluation results reveals that it can only maintain a bounded13 window of inconsistency
between controllers if the network state is updated at a rate lower than 1000 events per
second [4]. Our results show that a strong consistent data store is superior by at least an
order of magnitude (even when considering that an event causes more than one data store
interaction). The limited performance in HyperFlow derives from the replication mid-
dleware used which, despite being eventually consistent, only supports 300 writes/s with
3kB messages [4].

13There is no information regarding the bound.

Chapter 4. Evaluation 73

Onix, on the other hand, uses two data stores to maintain the network state: one
eventually consistent, and the other strong consistent. The consistent data store, supports
50 SQL queries per second without batching. Even with batching (grouping more than
one operation in a single request), the data store only supports 500 operations/s. As our
results show, this performance limitation is associated with the implementation of the
data store itself, not with the use of a state machine replication technique. The eventual
consistent data store used in Onix can support 22 thousand “load attribute” updates/s with
5 replicas and 33 thousand with 3 replicas. These values are equivalent to ours and we
support a strong, coherent view of the network state, contrary to Onix’s eventual data
store.

As a final note, we would like to give some context to these numbers vis-à-vis a real
network deployment. According to Casado et al. [16], a Stanford network campus with 22
thousand hosts can have peaks of 9 thousand new flow requests per second (at maximum).
Our results suggest that our distributed control plane would be able to handle that load
for the application we considered. However, our architecture is not suitable for large-
scale networks such as big data centers. Empirical studies have shown that data centers
can have peaks of millions of new flows per second [19]. Clearly, our numbers show that
our data store is incapable of handling such load. We leave as future work considering
proactive SDN models to offer consistency guarantees in such environments.

Chapter 5 – Conclusions

The Free Lunch Is Over.

Herb Sutter

5.1 Conclusions

In this work we have proposed a distributed, highly-available, strongly consistent con-
troller for SDNs. The central element of the architecture is a fault-tolerant data store that
guarantees acceptable performance. We have studied the feasibility of this distributed
controller by analyzing the workloads generated by representative SDN applications and
demonstrating that the data store is capable of handling these workloads, not becoming
a system bottleneck. Our results suggest that this architecture is capable of handling a
medium-sized network.

We have chosen a simple design that emphasizes dependability and simplicity. One of
the fundamental aspects of this design is that by using our data store, current centralized
applications may easily become distributed and fault tolerant without affecting codebase
significantly. However, our study also shows that a seamless integration process falls short
in performance when compared to a fine-tuned adaptation of the data store to applications
requirements. This is demonstrated by our ability to improve on the overall performance
of the system by adopting well-known techniques borrowed from the database commu-
nity.

The drawback of a strongly consistent, fault-tolerant approach for an SDN platform
is the increase in latency, which limits responsiveness; and the decrease in throughput,
which hinders scalability. Even assuming these negative consequences, an important con-
clusion of this study is that it is possible to achieve those goals while maintaining the
performance penalty at an acceptable level (for a medium-size network). As the number
of SDN production networks increase the need for dependability becomes essential. The
key takeover of this work is that dependability mechanisms have their cost, and it is there-
fore an interesting challenge for the SDN community to integrate these mechanisms into
scalable control platforms.

74

Chapter 5. Conclusions 75

5.2 Future Work

As future work, we plan to expand our analysis to be thorough. Namely, we want to: i)
account for the impact that multiple applications can have in the control plane (running in
parallel); and ii) perform experiments with realistic network traffic simulations.

The impact of running multiple applications in parallel is crucial, since applications
do not operate in isolation. Therefore, by including other applications, and optimizing
the overall workload, we expected to have a practical Software Defined Network (SDN)
controller in the future.

A realistic network traffic is also crucial to understand the limitations of our design.
Despite our experience being focused in the more frequent type of data plane events (flow
requests), we must take into consideration the hybrid workloads generated by the data
plane in realistic scenarios.

Finally, as previously stated, we plan to study the feasibility of a proactive distributed
SDN controller supported by a strong consistent data store to address the stringent re-
quirements of large-scale networks such as big data centers.

Chapter 5. Conclusions 78

Glossary

API Application Programming Interface.
ARP Address Resolution Protocol.
AS Autonomous System.

BGP Border Gateway Protocol.

CPU Central Processing Unit.
CRDT Convergent Replicated Data Type.

DHCP Dynamic Host Configuration
Protocol.

DHT Distributed Hash Table.

FIFO First In,First Out.

HTTP HyperText Transport Protocol.

iBGP interior Border Gateway Protocol.
ICMP Internet Control Message Protocol.
IP Internet Protocol.

LRU Least Recently Used.

MAC Media Access Control.

NIB Network Information Base.
NOS Network Operating System.

OF OpenFlow.
OS Operating System.

RCP Routing Control Platform.
REST Representational State Transfer.
RPC Remote Procedure Call.

SDN Software Defined Network.
SMR State Machine Replication.
SQL Structured Query Language.

URL Uniform Resource Locator.

VIP Virtual Enpoint Internet Protocol.
VLAN Virtual Local Area Network.

79

Acronyms 80

References

[1] Albert Greenberg et al. “A Clean Slate 4D Approach to Network Control and Man-
agement”. In: SIGCOMM Comput. Commun. Rev. 35.5 (Oct. 2005), pp. 41–54 (cit.
on pp. vii, 2, 13).

[2] Nate Foster et al. “Frenetic: A High-level Language for OpenFlow Networks”. In:
Proceedings of the Workshop on Programmable Routers for Extensible Services of
Tomorrow. PRESTO ’10. Philadelphia, Pennsylvania: ACM, 2010, 6:1–6:6 (cit. on
pp. viii, 7, 35).

[3] Teemu Koponen et al. “Onix: A Distributed Control Platform for Large-scale Pro-
duction Networks”. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. OSDI’10. Vancouver, BC, Canada: USENIX
Association, 2010, pp. 1–6 (cit. on pp. viii, 5, 7, 27, 34, 72).

[4] Amin Tootoonchian and Yashar Ganjali. “HyperFlow: A Distributed Control Plane
for OpenFlow”. In: Proceedings of the 2010 Internet Network Management Con-
ference on Research on Enterprise Networking. INM/WREN’10. San Jose, CA:
USENIX Association, 2010, pp. 3–3 (cit. on pp. viii, 5, 25, 72).

[5] Fred B. Schneider. “Implementing Fault-tolerant Services Using the State Machine
Approach: A Tutorial”. In: ACM Comput. Surv. 22.4 (Dec. 1990), pp. 299–319 (cit.
on pp. viii, 29, 32).

[6] Alysson Bessani, João Sousa, and Eduardo Alchieri. State Machine Replication
for the Masses with BFT-SMaRt. Tech. rep. 2013;07. DI-FCUL, Oct. 2013 (cit. on
pp. ix, 8, 52, 54).

[7] Martin Casado. The Scaling Implications of SDN [networkheresy.com]. June 2011
(cit. on p. 1).
URL: http://goo.gl/zILFm (visited on 12/13/2013).

[8] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”. In:
SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74 (cit. on pp. 3, 4,
15).

[9] Nick Feamster and Hari Balakrishnan. “Detecting BGP Configuration Faults with
Static Analysis”. In: Proceedings of the 2Nd Conference on Symposium on Net-
worked Systems Design & Implementation - Volume 2. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 43–56 (cit. on p. 3).

[10] Declan McCullagh. How Pakistan knocked YouTube offline [cnet.com]. Feb. 2008
(cit. on p. 3).
URL: http://goo.gl/bVWOSa (visited on 12/13/2013).

81

http://goo.gl/zILFm
http://goo.gl/bVWOSa

References 82

[11] Open Network Foundation. OpenFlow Switch Specification (version 1.2) [opennet-
working.org]. Dec. 2011 (cit. on pp. 4, 39).
URL: \url{http://goo.gl/tKo6r} (visited on 12/13/2013).

[12] Ahmed Khurshid et al. “VeriFlow: Verifying Network-wide Invariants in Real Time”.
In: Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation. nsdi’13. Lombard, IL: USENIX Association, 2013, pp. 15–28 (cit.
on p. 4).

[13] Nikhil Handigol et al. “Where is the Debugger for My Software-defined Network?”
In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks.
HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 55–60 (cit. on p. 4).

[14] Sushant Jain et al. “B4: Experience with a Globally-Deployed Software Defined
Wan”. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM.
SIGCOMM ’13. Hong Kong, China: ACM, 2013, pp. 3–14 (cit. on pp. 4–6, 27).

[15] Soheil Hassas Yeganeh and Yashar Ganjali. “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications”. In: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks. HotSDN ’12. Helsinki,
Finland: ACM, 2012, pp. 19–24 (cit. on pp. 5, 6, 24, 40).

[16] Martin Casado et al. “Ethane: Taking Control of the Enterprise”. In: Proceedings of
the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications. SIGCOMM ’07. Kyoto, Japan: ACM, 2007, pp. 1–
12 (cit. on pp. 5, 13, 73).

[17] Amin Tootoonchian et al. “On Controller Performance in Software-defined Net-
works”. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Man-
agement of Internet, Cloud, and Enterprise Networks and Services. Hot-ICE’12.
San Jose, CA: USENIX Association, 2012, pp. 10–10 (cit. on pp. 5, 22, 72).

[18] Robert Colin Scott et al. What, Where, and When: Software Fault Localization for
SDN. Tech. rep. UCB/EECS-2012-178. EECS Department, University of Califor-
nia, Berkeley, 2012 (cit. on p. 5).

[19] Theophilus Benson, Aditya Akella, and David A. Maltz. “Network Traffic Charac-
teristics of Data Centers in the Wild”. In: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement. IMC ’10. Melbourne, Australia: ACM, 2010,
pp. 267–280 (cit. on pp. 5, 73).

[20] Brandon Heller, Rob Sherwood, and Nick McKeown. “The Controller Placement
Problem”. In: SIGCOMM Comput. Commun. Rev. 42.4 (Sept. 2012), pp. 473–478
(cit. on p. 6).

[21] Patrick Hunt et al. “ZooKeeper: Wait-free Coordination for Internet-scale Sys-
tems”. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference. USENIXATC’10. Boston, MA: USENIX Association, 2010, pp. 11–
11 (cit. on pp. 6, 28, 34).

[22] Giuseppe DeCandia et al. “Dynamo: Amazon’s Highly Available Key-value Store”.
In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles. SOSP ’07. Stevenson, Washington, USA: ACM, 2007, pp. 205–220
(cit. on pp. 6, 28, 31).

\url{http://goo.gl/tKo6r}

References 83

[23] James C. Corbett et al. “Spanner: Google’s Globally-Distributed Database”. In:
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation. OSDI’12. Hollywood, CA, USA: USENIX Association, 2012,
pp. 251–264 (cit. on pp. 6, 34).

[24] Hyojoon Kim et al. “CORONET: Fault Tolerance for Software Defined Networks”.
In: Proceedings of the 2012 20th IEEE International Conference on Network Pro-
tocols (ICNP). ICNP ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 1–2 (cit. on pp. 6, 39, 40).

[25] AlanD. Fekete and Krithi Ramamritham. “Consistency Models for Replicated Data”.
In: Replication. Ed. by Bernadette Charron-Bost, Fernando Pedone, and André
Schiper. Vol. 5959. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pp. 1–17 (cit. on pp. 6, 30).

[26] Eric Brewer. Towards Robust Distributed Systems [berkeley.edu]. July 2000 (cit.
on p. 7).
URL: http://goo.gl/u7uhTS (visited on 12/13/2013).

[27] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Con-
sistent, Available, Partition-tolerant Web Services”. In: SIGACT News 33.2 (June
2002), pp. 51–59 (cit. on pp. 7, 30).

[28] Dan Levin et al. “Logically Centralized?: State Distribution Trade-offs in Software
Defined Networks”. In: Proceedings of the First Workshop on Hot Topics in Soft-
ware Defined Networks. HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 1–6 (cit.
on p. 7).

[29] Paulo Verissimo and Luis Rodrigues. Distributed systems for systems architects.
Vol. 1. Springer, 2001 (cit. on p. 7).

[30] Peter Bailis and Ali Ghodsi. “Eventual Consistency Today: Limitations, Exten-
sions, and Beyond”. In: Queue 11.3 (Mar. 2013), 20:20–20:32 (cit. on pp. 7, 30).

[31] Mark Reitblatt et al. “Abstractions for Network Update”. In: Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. SIGCOMM ’12. Helsinki, Finland:
ACM, 2012, pp. 323–334 (cit. on pp. 7, 35).

[32] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN: An Intellec-
tual History of Programmable Networks [princeton.edu]. 2013 (cit. on p. 11).
URL: http://goo.gl/Xxky9s.

[33] Nick Feamster et al. “The Case for Separating Routing from Routers”. In: Proceed-
ings of the ACM SIGCOMM Workshop on Future Directions in Network Architec-
ture. FDNA ’04. Portland, Oregon, USA: ACM, 2004, pp. 5–12 (cit. on p. 12).

[34] Matthew Caesar et al. “Design and Implementation of a Routing Control Platform”.
In: Proceedings of the 2Nd Conference on Symposium on Networked Systems De-
sign & Implementation - Volume 2. NSDI’05. Berkeley, CA, USA: USENIX Asso-
ciation, 2005, pp. 15–28 (cit. on p. 12).

[35] Natasha Gude et al. “NOX: Towards an Operating System for Networks”. In: SIG-
COMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110 (cit. on pp. 16, 22,
25).

http://goo.gl/u7uhTS
http://goo.gl/Xxky9s

References 84

[36] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web
Architecture”. In: Proceedings of the 22Nd International Conference on Software
Engineering. ICSE ’00. Limerick, Ireland: ACM, 2000, pp. 407–416 (cit. on p. 17).

[37] Zen Cai, Alan L Cox, and T S Eugene Ng. Maestro: A System for Scalable Open-
Flow Control. Tech. rep. TR10-08. Rice University, 2012, pp. 1–10 (cit. on p. 22).

[38] David Erickson. “The Beacon Openflow Controller”. In: Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.
HotSDN ’13. Hong Kong, China: ACM, 2013, pp. 13–18 (cit. on p. 23).

[39] Jeremy Stribling et al. “Flexible, Wide-area Storage for Distributed Systems with
WheelFS”. In: Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation. NSDI’09. Boston, Massachusetts: USENIX Associa-
tion, 2009, pp. 43–58 (cit. on pp. 26, 29).

[40] SDN Controller Ecosystems Critical to Market Success [wordpress.com]. June
2012 (cit. on p. 27).
URL: http://goo.gl/06dB4P (visited on 12/13/2013).

[41] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Con-
dition for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (July
1990), pp. 463–492 (cit. on pp. 29, 32, 42).

[42] Werner Vogels. “Eventually Consistent”. In: Queue 6.6 (Oct. 2008), pp. 14–19 (cit.
on pp. 29, 30).

[43] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst. 16.2
(May 1998), pp. 133–169 (cit. on pp. 29, 42).

[44] Barbara Liskov. “From Viewstamped Replication to Byzantine Fault Tolerance”.
In: Replication. Ed. by Bernadette Charron-Bost, Fernando Pedone, and André
Schiper. Vol. 5959. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pp. 121–149 (cit. on pp. 29, 32, 33, 41).

[45] Jun Rao, Eugene J. Shekita, and Sandeep Tata. “Using Paxos to Build a Scalable,
Consistent, and Highly Available Datastore”. In: Proc. VLDB Endow. 4.4 (Jan.
2011), pp. 243–254 (cit. on p. 34).

[46] William J. Bolosky et al. “Paxos Replicated State Machines As the Basis of a
High-performance Data Store”. In: Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation. NSDI’11. Boston, MA: USENIX
Association, 2011, pp. 11–11 (cit. on p. 34).

[47] Alysson Bessani et al. “On the Efficiency of Durable State Machine Replication”.
In: Proceedings of the 2013 USENIX Conference on Annual Technical Conference.
USENIX ATC’13. San Jose, CA: USENIX Association, 2013, pp. 169–180 (cit. on
p. 34).

[48] Marco Canini et al. “Software Transactional Networking: Concurrent and Consis-
tent Policy Composition”. In: Proceedings of the Second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking. HotSDN ’13. Hong Kong,
China: ACM, 2013, pp. 1–6 (cit. on p. 35).

http://goo.gl/06dB4P

References 85

[49] Mark Reitblatt et al. “FatTire: Declarative Fault Tolerance for Software-defined
Networks”. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Top-
ics in Software Defined Networking. HotSDN ’13. Hong Kong, China: ACM, 2013,
pp. 109–114 (cit. on p. 40).

[50] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. “Mencius: Building Effi-
cient Replicated State Machines for WANs”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation. OSDI’08. San Diego,
California: USENIX Association, 2008, pp. 369–384 (cit. on p. 40).

[51] Christian Cachin, Rachid Guerraoui, and Luı́s Rodrigues. Introduction to Reliable
and Secure Distributed Programming. English. 2nd Edition. Springer, Feb. 2011
(cit. on p. 42).

[52] H. T. Kung and John T. Robinson. “On Optimistic Methods for Concurrency Con-
trol”. In: ACM Trans. Database Syst. 6.2 (June 1981), pp. 213–226 (cit. on p. 46).

[53] Joshua Bloch. Effective java. Addison-Wesley Professional, 2008 (cit. on p. 47).

[54] Nikhil Handigol et al. “Reproducible Network Experiments Using Container-based
Emulation”. In: Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies. CoNEXT ’12. Nice, France: ACM, 2012,
pp. 253–264 (cit. on p. 53).

[55] Fábio Botelho. Appendices (cit. on p. 55).
URL: http://goo.gl/q3Cvhz.

[56] Java Object Serialization Specification (version 6.0). Online at :http://docs.
oracle.com/javase/6/docs/platform/serialization/spec/s
erialTOC.html (cit. on p. 57).

http://goo.gl/q3Cvhz
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html

	List of Figures
	List of Tables
	Introduction
	Software Defined Network
	Standard Network Problems
	Logical Centralization
	Distributed Control Plane
	Consistency models

	Goals and Contributions
	Planning
	Thesis Organization

	Related Work
	Software Defined Networks History
	RCP
	4D
	Ethane
	OpenFlow
	Network Operating System

	Software Defined Networks Fundamentals
	Architecture
	OpenFlow

	Centralized Controllers
	NOX
	Maestro
	Beacon
	Floodlight

	Distributed Controllers
	Kandoo
	HyperFlow
	Onix

	Consistent Data Stores
	Trade-offs
	Eventual Consistency
	Strong Consistency
	ViewStamped Replication
	State Machine Replication Performance

	Consistent Data Planes
	Abstractions for Network Updates
	Software Transactional Network

	Architecture
	Shared Data Store Controller Architecture
	General Architecture
	Data Store

	Data Store Prototype
	Cross References
	Versioning
	Columns
	Micro Components
	Cache

	Evaluation
	Methodology and Environment
	Workload Generation
	Data Store Performance
	Test Environment

	Learning Switch
	Broadcast Packet
	Unicast Packet
	Optimizations
	Evaluation

	Load Balancer
	ARP Request
	Packets to a VIP
	Optimizations
	Evaluation

	Device Manager
	Unknown Device
	Known Devices
	Optimizations
	Evaluation

	Cache
	Learning Switch
	Load Balancer
	Device Manager
	Theoretical Evaluation

	Discussion

	Conclusions
	Conclusions
	Future Work

	Glossary
	References

