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To improve the accuracy of the e+e− → π+π−γ Radiative Return
Method, one has to control the theoretical uncertainty of the final-state
photon emission. It is of particular importance at DAPHNE for the anal-
ysis, where cuts are relaxed to cover the threshold region. By means of
Monte Carlo generator PHOKHARA we compare several final-state radi-
ation models and present results, relevant for a meson factory running at√
s = 1 GeV.

PACS numbers: 14.40.Be, 13.40.Ks, 13.60.Le, 13.66.Bc

1. Introduction

The Radiative Return Method [1–3] (RRM) allows an extraction of the
hadronic cross-section σhad(Q2) for hadronic invariant mass squared Q2 from
the energy threshold up to the nominal energy of the experiment at the fixed
beam energy e+e− colliders. High-luminosity meson factories are especially
suited for this purpose [4]. Interest in precise measurement of σhad(Q2)
is motivated, in part, by its relevance to the hadronic contribution to the
muon anomalous magnetic moment ahad

µ [5, 6] and the electromagnetic fine
structure constant [7]. However, the method can also be applied to extract
the meson form factors and other meson properties.

The RRM uses dσ(e+e− → hadrons + photons)/dQ2, a measured differ-
ential cross-section, for the extraction of dσ(e+e− → hadrons). For the the-
oretical description, the perturbative QED diagrams at the leading order in
QED coupling α (LO) and at the next-to-leading order (NLO) are considered
and classified as initial-state radiation (ISR) or final-state radiation (FSR)
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ones. The kinematic cuts are applied to sufficiently suppress the FSR, when-
ever possible, as the factorization dσ(s,Q2)

∣∣
ISR

= R(s,Q2) × dσhad(Q2),
which allows for dσhad(Q2) extraction, holds for diagrams with ISR photons
only. The function R(s,Q2) is given by QED. The FSR part is model-
dependent, thus dedicated numerical studies are needed for correct ISR–
FSR separation. The Monte Carlo generator PHOKHARA was developed
for these and related purposes: FSR at NLO has been included [8] for pion
pair production and, in addition to scalar QED (sQED), some particular
ingredients (the φ radiative decay) were implemented [9]. The FSR was also
examined by other Monte Carlo programs, e.g., that with the Resonance
Chiral Theory (RχT) motivated framework [10] and phenomenologically-
oriented model [11], which was also included into PHOKHARA 6.1 [12].

The reaction e+e− → π+π−γ was explored by KLOE [13]: the cross-
section dσhad/dQ2 and pion form factor Fπ(Q2) in the range 0.35 GeV2 <
Q2 < 0.95 GeV2 were extracted [14] from the on-peak (

√
s=Mφ = 1.02 GeV)

data sample by means of the RRM. However, the kinematic cuts, which were
applied in order to suppress FSR, did not allow to measure at Q2 below
0.35 GeV2.

One can measure the Fπ(Q2) in the threshold region relaxing some of
the cuts, but then one has to subtract the FSR contribution. In this sce-
nario, one needs to control the description of the final-state emission process
and detailed studies are needed to estimate the theoretical uncertainty. To
simplify the analysis, it is better to perform the measurement off the φ me-
son peak, because in this case the contributions from the φ meson radiative
decays are small and the FSR models can be controlled easier.

The investigations presented here are of particular importance for the
forthcoming KLOE RRM analysis of pion pair production. We focus on the
off-φ-peak measurement, at e+e− center-of-mass energy

√
s = 1 GeV, for

which KLOE collected 230 pb−1 of data [15]. Due to the interest in precision
at small Q2 (i.e., below the ρ resonance), the Chiral Perturbation Theory
(χPT) [16] can be helpful. The relevant theoretical aspects are sketched in
Section 2. We use Monte Carlo generator PHOKHARA to compare several
final-sate radiation models. The theoretical heritage of Virtual Compton
Scattering (VCS) off the pion in χPT framework [17,18] is used to estimate
the rôle of higher order χPT effects.

The numerical results for cross-section and asymmetry are presented in
Section 3. All the parameters of implemented models are fixed indepen-
dently, thus one deals with model predictions. In Section 4 we present our
conclusions.
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2. Theoretical issues of final-state radiation

The transition γ∗ → π+π−γ is described by the model-dependent FSR
tensor Mµν1. In all realistic models it contains the same Born-level contri-
bution Mµν

Born, which corresponds to a no-structure approximation for pion
(scalar QED or lowest-order χPT). Thus we consider Mµν

Born as a model-
independent part.

The first correction accounts for the pion structure by means of the
pion form factor. It replaces the Born-level amplitude by “Generalized
Born” (GB) one [17], Mµν

GB, which is also called “sQED*VMD” [8]. Gen-
eralized Born FSR tensor reads

Mµν
GB = −ie2Fπ

(
P 2

) (
(k + q1 − q2)µqν1

q1 · k
+

(k + q2 − q1)µqν2
q2 · k

− 2 gµν
)
, (1)

where P and k are the virtual and real photon momenta, q1 and q2 — pion
momenta (Q = q1 + q2).

Limit Fπ(P 2) → 1 reproduces the Mµν
Born amplitude. Notice, that in

e+e− → π+π−γ at LO, P 2 = s, thus the form factor Fπ(P 2) 6= 1 and
its correction is never negligible. Also this part is well established both
theoretically and experimentally.

In the ISR amplitude, with γ∗ → π+π− transition in the final state, one
finds Fπ(Q2) factor in the amplitude. Therefore, the π+π− invariant mass
distribution is governed by the form factor shape. For consistency, one has
to use the same expression for the pion form factor in the ISR and FSR am-
plitudes. It is important to take the form factor tested experimentally and
not to rely only on a particular model assumptions. This will be illustrated
in the next section. In order to understand the accuracy of Mµν

GB approxi-
mation, we study further corrections using the models of Refs [11,17,18].

The first model, “VMD*χPT”, is based on O(p4) χPT SU(2) description
of VCS γ∗π± → γπ± [17] and that in SU(3) case [18]. The FSR tensor
has the form Mµν = Mµν

GB + Mµν
NB. The first term is given by Eq. (1)

and a straightforward improvement beyond χPT is supposed (denoted by
prefix “VMD*”): the pion form factor Fπ is an external input (e.g., defined
by parametrization of the measured Fπ). The second term, the Non-Born
correction to FSR reads: Mµν

NB = −ie2 (kµQν − gµν k ·Q) fNB
1 , where

fNB
1 =

−1
16 π2 F 2

(
2
3

(
l̄6 − l̄5

)
+
P 2 − 2 P ·k

P · k
× Gπ

)
, (2)

fNB
1 =

−1
16 π2 F 2

0

(
128π2 (Lr9 + Lr10) +

P 2−2 P ·k
P · k

×
(
Gπ +

1
2
GK

))
(3)

1 For example, the matrix element of e+e− → γ∗ → π+π−γ reads: M
(LO)
FSR =

s−1e v̄ γµu ε
∗
ν M

µν , where e =
√

4πα.
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in SU(2) and SU(3) framework, correspondingly; see original papers [17,18]
for the explicit form of the loop functions Gπ and GK . Numerical values
of the low energy constants are F = 92.4 MeV, (l̄6 − l̄5) = 3.0 ± 0.3 and
F0 = 87.7 MeV, as cited in [21], and (Lr9 + Lr10) = (1.32 ± 0.14) × 10−3 at
scale µ = Mρ, as estimated in [22].

The second model [11], called the “main model” further in the text, can
be considered as a parametrization of π0π0γ KLOE data, transformed to
π+π−γ via isospin symmetry [23]. It was implemented in FASTERD Monte
Carlo generator [11] and in PHOKHARA 6.1 recently [12]. The FSR ten-
sor contains Mµν

GB given by Eq. (1) and the Non-Born corrections due to
important vector-resonance and double-vector-resonance contributions.

3. Numerical results

We use Monte Carlo generator PHOKHARA to compare the model-
dependent effects in e+e− → π+π−γ cross-section and asymmetry for the
off-peak case at φ-meson factory,

√
s = 1 GeV.

First of all, we stress that any simplification of the pion form factor Fπ
can drastically affect the model results. Figure 1 shows that rigorous O(p4)
χPT form factor [16] gives completely wrong estimate for differential cross-
section even in the region of Q2 below the ρ meson peak. The theoretical
explanation of the form factor rôle was given above. The form factor used in
VMD*χPT and “main model” is the parametrization of available data given
by Gounaris–Sakurai version of Ref. [20].
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Fig. 1. Differential cross-section for e+e− → π+π−γ. All the listed models, but
the one with the O(p4) χPT form factor, give very close predictions (overlapping
curves in the plot).

In Fig. 1, one can see the very close cross-section predictions, despite the
fact, that the models have completely different Non-Born corrections. This
is due to the fact that the GB contribution dominate for the given event
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selection. Taking the GB approximation, Eq. (1), as a reference, we plot
(dσ[model]−dσ[GB])/dσ[GB]. To show the relative contribution of loop and
“constant” terms in χPT we consider also the case of (l̄6− l̄5) and (Lr

9 +Lr
10)

being artificially set to zero. Corresponding results are marked as “loop only”
in the pictures. Figure 2 shows that the Non-Born corrections are at a few
per cent level. From Fig. 3 one concludes that the FSR contribution to the
cross-section is significant in the whole range of Q2, especially at low Q2.
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Fig. 2. Non-Born corrections to dσ/dQ2. Note, that at NLO the interference is
neglected. At Q2 > 0.5 GeV2 all the curves but “main model” overlap.
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Fig. 3. The rôle of FSR in dσ/dQ2. All the listed models give very close predictions
(overlapping curves in the plot). Note, that at NLO the interference is neglected.

Pion forward–backward asymmetry (FBA) as a function of Q2 reads

AFB(Q2) =
N(θπ+ > 90◦)−N(θπ+ < 90◦)
N(θπ+ > 90◦) +N(θπ+ < 90◦)

(
Q2

)
(4)

in terms of numbers of events. Origin of the non-zero FBA is the interference
of C-odd and C-even amplitudes, e.g., that of ISR and FSR at LO. Thus,



3190 S. Ivashyn, H. Czyż, A. Korchin

FBA is sensitive to the relative phase, which may differ among the models
even if they predict the same cross-section. Notice, that the experimen-
tal data on asymmetry and cross-section are to large extent independent.
Therefore the FBA is a good test for models. Aspects of using the FBA in
e+e− → π+π−γ were discussed in [3, 8–10,19].

Figure 4 shows that FBA is sizable and relatively easy measurable. From
Fig. 5 we conclude that the Non-Born corrections to the FBA are of few per
cent order and will not have a big influence on the theoretical uncertainty.
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Fig. 4. Forward–backward asymmetry for pion. All the listed models give very
close predictions (overlapping curves in the plot).
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Fig. 5. Relative non-born corrections to the forward–backward asymmetry for pion.
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It has to be stressed that if the χPT corrections were not accounted for
in the formulae used to measure the |Fπ|, they are partly accounted for in
the experimental parameters of Fπ and other model parameters. In other
words, one model should be used in all experimental analyzes and adding
ad hoc additional corrections is not appropriate.

4. Conclusions

Using PHOKHARA, we studied the corrections given by χPT [17, 18],
and by a phenomenological model including miscellaneous hadronic reso-
nance effects [11]. Corrections due to a1 resonance [19] are to be considered
elsewhere. The rôle of the pion form factor is seen to be very important.
Final-state radiation is significant in the whole range of Q2, especially at
low Q2. We have found the NLO corrections to be non-negligible, even if
the Generalized Born contribution is dominant. Non-Born corrections are
of the order of few per cent. They differ among the models, but it will be
difficult to distinguish them with the present KLOE off-peak statistics. The
results presented here show that one should include the χPT corrections in
the analysis when the accuracy of the experiment reaches a per cent level.
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