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An analytical approach to  the  d-dimensional grain growth, which is 
a  kind of the  heterogeneous nucleation-and-grow th phase transform ation, 
is offered. The system  is assum ed to  be driven by capillary forces. An­
other im portan t operative assum ption is th a t  the  system  evolves under 
preservation of its hypervolum e, which results in considering the  process as 
a  random  walk in the  space of grain sizes. A role of the  initial condition 
imposed on the  system  behaviour, and how does the  system  behave upon 
a  prescribed initial s ta te , have been examined. A general conclusion ap­
pears, which sta tes th a t  th is  prescription does not affect the  asym ptotic 
system  behavior, bu t may be of im portance when inspecting the  early­
tim e dom ain more carefully, cf. the  W eibull-type initial distribution . This 
study  is addressed to  some analogous theoretical descriptions concerning 
polycrystals as well as bubbles-containing system s. Some com parison to  an­
other modelling, in which a  crucial role of local m aterial gradients (fluxes) 
was em phasized, has been attached.

PACS num bers: 05.40.-a, 64.60.-i, 81.10.Jt
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1. In tro d u ctio n

Nucleation-and-growth phase transitions belong to  a class of the so-called 
heterogeneous phase transform ations. Among quite many of them , one could 
list such as: grain growth (of normal and abnormal nature), recrystallization, 
some polymorphic as well as order-disorder phase transitions [1].

Throughout this study we wish to  explore some kinetic effects character­
istic of the grain growth, preferentially of the normal type [2]. An emphasis 
will be particularly put on revealing certain crucial points of the influence of 
Initial Conditions (IC) on the grain growth process studied, which is chosen 
by the authors as a landm ark system. The reason for so doing comes from 
the fact, th a t up to  now rather a little is known about the relation of how 
does some IC prescribed influence the overall system behavior [3].

Let us s ta rt with short characteristics of what really the grain growth 
means. For this purpose we may adopt a kind of definition proposed in a 
review paper by Weaire and McMurry. It can be summarized as follows [4]:

(?) grain growth process yields a cellular system of preserved hvpervolume;

(ii) Grain Boundaries (G B’s) are associated with a positive surface energy;

(in) G B ’s m igrate as to  lower their energy;

(iv) grain structure evolves with tim e in the direction of increasing grain 
size;

(v) the above points would suffice to  model the kinetics of the grain growth 
in a statistical way, which means, th a t such im portant notions, like 
grain texture and grain structure topology are unfortunately not in­
volved explictlv in this description.

From point (v) it immediately follows th a t grain growth as well as other 
related processes, like soap froth formation or evolution of bubbles-containing 
systems, can by modeled by the same means. There is, in fact, a long­
standing analogy between polvcrvstals and soap froths, which has been ex­
ploited in various contexts, cf. [4,5].

As for the mechanism of grain growth, one is readily encouraged to see [2]. 
At this point, we may quite generally sta te  th a t there are two types of 
forces driving the system and /o r inhibiting the system evolution. Among 
a few principal types of driving forces we would ju st mention a determ inistic 
one, inevitably connected with the surface (line) tension effect (for bubbles, 
according to  the Laplace’s law, with a pressure difference), and term ed the 
capillary force. It is known [2], th a t this force may really be enhanced 
in a fluctuating system. Another type of forces is named the drag forces,



among which the Zener force, due to  pinning, as well as the Mullins force, 
subjected to therm al grooves, emerging mostly in high-tem perature limit, 
can be mentioned [6,7].

Looking into the nature  of G B ’s, being always of param ount im portance 
while trying to  study thoroughly the phenomenon, one may simply divide 
them  into two basic types. These are as folows:

(?) low-angle G B ’s;

(ii) high-angle G B ’s.

For our description it is sufficient to  m ention th a t the first ones, occuring 
typically in some early stages of the grain growth, are equivalent to G B ’s of 
small curvature, whereas the second ones, emerging most probably in a late 
tim e zone, do not conform to this type of GB. They, in turn , are attribu ted  
to  G B ’s with a big curvature, rather.

The systems mentioned above can be crudely classified by their kinetics, 
which can be best seen while looking at their asym ptotic behavior. They 
m ostly express the physical fact th a t their characteristic average linear size 
(grain radius) changes either powerlv or logarithmically, except the system 
ceases to grow [8]. Under such circumstances, it would be interesting what 
would happen if we put various IC ’s ju st for having a look at how does it 
influence the global tem poral system behavior and which are the details of it.

For sure, it would be equally interesting to  provide a physically justified 
rationale for the use of the starting  system  of equations, cf. (1)—(3) in the 
next section. Let us sketch roughly both a physical m otivation as well as 
m athem atical reasoning for keeping the system (1)—(3) a t work. First of all, 
we are of the opinion th a t we may s ta rt with a general kinetic equation of 
Avrami-Kolmogorov-type, which is custom ary in the theory of phase trans­
formations [9]. Namely, we begin by stating th a t the rate  of a small change 
in the average number of grains, designated by d / d t  f ( ( v ) ; t ) d ( v )  [10], will 
be of interest. In other words, one is likely to look for the ensemble evolu­
tion over a set of states m easured in subsequent tim e instants t. We take 
an average over the corresponding ensemble of grains, characterized by the 
distribution f ( ( v ) ; t ) ,  where tim e t  stands for a param eter, and (...) de­
notes the average over the statistical ensemble. Next, one should notice 
th a t the ra te  has to be proportional ju st to  a small change in the aver­
age number of grains, i.e. to the overall (local) m agnitude characterizing 
the process, namely d / d t  f ( ( v ) ; t ) d ( v )  cx f ( ( v ) ; t ) d ( v ) ,  which is by the way 
again consistent with philosophy of formulation of the above mentioned ki­
netic equation [9]. The second observation is a more physically m otivated 
remark, namely, th a t the proportionality coefficient should be determined 
by the (d — l)-dim ensional area of a d-dimensional grain [11-13]. It im­
m ediately results in proposing the following “averaged” equation, namely



d/ d t  f ( ( v) ; t )d(v)  cx (v) l ^ l ^df ( ( v ) ; t ) d ( v ) . Expanding the right-hand side of 
the proposed equation into the Taylor series around (%c!) the hvpervolume 
of a single grain, v, neglecting the zeroth-term  of the series (it could, by 
choice, be equal to  zero), noticing negligible meaning of its first term , espe­
cially, when compared to the next one, and keeping as the most im portant 
the second term , one may safely arrive a t the system  ( l)-(3 ).

The paper is structured in the following way. In the next section we in­
troduce a statistical-m echanical model of grain growth, which for a specific 
choice of param eters, i.e. under constancy of to ta l hvpervolume of the sys­
tem, reduces to  the M ulheran-H arding (M II) model for the random  walk 
in the space of grain sizes. In Sec. 3 we sketch quite thoroughly the m ethod 
of solving the grain-growth problem, whereas in Secs. 4-6 we provide exact 
result for the n -th  statistical moment of the process, enabling one to include 
the entire analysis by splitting into both  the main characteristics of the ini­
tial as well as late evolution stages, and discuss their physical meaning. Last 
section serves for conclusions and comparative analyses of related growing 
processes, for which the to ta l hvpervolume preservation is unfortunately not 
assured [14], with a certain comment on some experimental case, coming 
from physical metallurgy.

2. M u lh era n -H a rd in g  m od el in d -d im en sion s

The M II model [8,11,12] is a diffusion-tvpe model which describes the 
size- and tim e-dependent evolution of a grain system. It has a form of the 
continuity equation, namely,

d  d 2 d
— f ( v , t )  = L Df ( v , t )  = D 0 - ^ 2 v a f ( v , t )  = - — j ( v , t ) ,  v € [0, o o ) , (1)

where v is a volume of a grain, D q is a constant representing a random 
walk behavior in grain growth, f ( v , t )  is the distribution function of grains 
a t tim e t, i.e., f ( v , t ) d v  is a relative number of grains of size in the volume 
range [v, v +  dv) and the param eter a  depends on dimension of the system. 
We have introduced the “diffusion” operator L jj defined by the equality 
in (1). Below, we put Do =  1 because it enters only in the product Dot  
which rescales tim e t. Assuming th a t the net flux of the m igrating particles 
across the grain boundaries is proportional, for three-dimensional systems, 
to  the surface of grains of volume v and, for two-dimensional systems, to the 
length of the circumference of crystallites of area s [8, 11], one provides for 
a  the relation



The flux j (v ,  t) reads, cf. (1),

(3 )

After performing differentiation in (3) one sees th a t the flux j ( v , t ) is de­
composed into two parts, namely,

These are respectively: the drift part and the diffusional part. Notice th a t 
the determ inistic drift part is proportional to  curvature 1/ r  of the grains, 
where r  is the grain radius. Indeed, it is proportional to %rl !d, bu t clearly v  

is proportional to r d. The curvature-driven part is proportional to the sur­
face tension change. The diffusional part conforms to a form of the first 
Fick’s law and is proportional to the area of a single grain (because grains 
change their volume by gaining or losing atoms and the rate  of attachm ent 
or detachm ent is proportional to the grain surface [15]) and to the gradient 
of the distribution function f ( v , t ) .  Thus, one realizes th a t the surface prop­
erties, subjected to the (d — l)-dim ensional hvpersurface of a d-dimensional 
crystallite (bubble) are of crucial im portance in understanding the mecha­
nism of our modeling.

In order to solve Eq. (1) we have to  support this equation by appropriate 
conditions. These are [8,11]: 

a) the initial condition

j ( v , t )  = - a v a~ 1 f ( v , t ) - v a F f ( v , t ) . (4 )

(5)

(6 )

The physical interpretation of the boundary conditions is clear as well as 
unambiguous: the number of grains of zero volume v =  0 as well as of 
infinite volume v =  oo a t any tim e is zero.



3. Solution of th e  m odel

The solution f ( v , t )  of the diffusion-tvpe equation (1) can be presented 
in term s of a family of two-param eter evolution operators P(t ,  s ) as follows

f ( v , t )  = P ( t , s ) f ( v , s ) , t > s >  0 . (7)

This equation can be rew ritten in the integral form, namely,

OO

f ( v , t ) =  I  P ( v , t \ w , s ) f ( w , s ) d w ,  (8)

where the integral kernel P ( v ,  t \ w ,  s ) of the tim e evolution operators P ( t ,  s ) 
forms a family of propagators. From the definition (8) of the propagators it 
follows th a t they obey the semigroup property

OO

P ( M K « ) Q p ( M | = ) P U + , s+ ,  < +  (9)
0

and the condition

l imP(v ,  t\w,  s) =  S ( v  — w ) , (10)

holds for any t  > s > 0. Let us note th a t (9) is similar to  the C hapm an- 
Kolmogorov equation for the conditional probability distribution of stochas­
tic Markovian processes. However, the distribution f ( v , t )  is not normalized 
to  unity and changes with time.

If the initial distribution f ( v ,  0) is given then from (8) it follows th a t

f ( v , t )  = J  P ( v , t \ w , 0 ) f ( w , 0 ) d w .  (11)
0

It means th a t it is sufficient to  construct the propagator P(v , t \w,0) .  We 
seek a solution of (1) using the separation ansatz for f ( v , t ) ,  namely,

f x ( v , t ) = e - xtg x(v).  (12)

It leads to the eigenvalue problem



Here Q\(v)  and A are the eigenfunctions and eigenvalues of the “diffusion” 
operator Ljj  defined in (1). The eigenvalues may be discrete or continuous
or both. One can show [16] th a t A takes non-negative values in [0, oo).

Prom (1) and (12) it follows th a t Q\(v)  fulfils the ordinary differential 
equation of the second order

v a g' i(v)  +  2ava~ 1 g ,x (v) +  [a(a -  l)u Q“ 2 +  A] Qx (v) =  0, (14)

where the prime indicates differentiation with respect to  v. The change of 
the independent variable

y =  v a (15)

transform s (14) into the equation

y 2 F ,l ( y )  +  ayF'x (y) +  (bym +  c)Fx (y) =  0 , (16)

where the new function Fx (y) is defined via the relation

Fx (y) = gx(v) (17)

and a =  3 — 1 /a , b =  A /a 2, c =  1 — 1 /a , m  =  —1 +  2 /a . Eq. (16) 
is the Bessel equation [17]. One can take an arb itrary  set of two linearly 
independent particular solutions of this equation. Then a general solution 
is a linear combination of them . We choose it in the form [17]

F\{y)  = QX(v)

= v (l-2a)/2 Ci(X)Jv ( P̂~u(2- “ )/2)  + C 2( \ ) j - V ( 1/2- “ ) /
~ a  I \ 2 — a  i

(18)

where
1 d

v  =   ------=   -------  (19)
2 — a  1 +  (I

and J v (x) is the Bessel function [18]. Two “constants” @i(A) and C2 (A) 
appearing in the linear combination of the particular solutions J v (x) and 
J - U(x) are determined by initial and boundary conditions. Let us notice 
th a t the eigenvalues A are continuous and as it was sta ted  above A G [0, oo). 
Therefore from the m ethod of separation of variables (12) it follows th a t the 
general solution f ( v ,  t ) is a linear combination of the solutions f x (v, t ) taken 
over all values of A. It means th a t in the case of continuous eigenvalues 
f ( v , t )  can eventually be represented by the expression:



We have to determ ine two “constants” 6 1 (A) and 6 2(A). For this aim, let us 
rewrite (18) in the form

Gx(v) = G(f ( v )  + g(f(v), (21)

where

g p \ v ) =  C l (X)vp - 2aP2J u i | ^ / « (2_Q)/2)  (22)

and

e f t » )  =  c 2(a)»(1- 2“)/2J - „  i | Y ” <2_“)/j ' (23)

For sufficiently small i  ( i  «  1), the leading term  of the Bessel function is

J v (x) ~  x v . (24)

Therefore for small values of v  the functions and G * \ \ v )  behave as

g (f ( v )  ~  C l ( \ ) \ u/ 2 v l - a (25)

and

g f ]( v ) ~ C 2 ( \ ) \ - ^ 2 v - a . (26)

Accordingly, for sufficiently small v the distribution f ( v ,  t )  depends upon v as

OO

f ( v ,  t) ~  w1-Q j  e~xtCi(X)Xv/2dX +  w-Q j  e-Ai6 2(A)A-iy/2dA . (27)
0 0

Two integrals in this expression are different from zero and should be finite 
if f ( v , t )  exists. The first term  in (27) tends to  zero when v —> 0 while the 
second term  tends to  infinity. Hence, the first boundary condition /(0 , t) =  0 
holds only if 6 2 (A) =  0. The second boundary condition, / ( 00, t) =  0, is 
fulfilled because for large x  the Bessel function behaves as J v(x)  ~  a;-1 / 2 
which tends to  zero as x  —> 00.

Because 6 2 (A) =  0, the expression (20) can be recast in the explicit form as

OO



where the new integration variable z =  y/X has been introduced and B( z )  =  
Ci ( z 2) is a function determined by an initial distribution f ( v ,  0). Let us 
take the limit t  —» 0. Then (28) converges to

OO

f ( v ,  0) = 2 v i l - 2 a ) / 2  J dz z B ( z ) J v ( ^ 3 7 t,(2_Q)/2) (29)

Formally, it is an integral equation with respect to  the unknown function 
B(z) .  In fact, it is a Bessel transform  [19]. The inverse Bessel transform  
yields B( z )  as an integral of f ( v ,  0). As a result we obtain

OO

B(z )  = f  d w 1/ 2 f ( v , 0 ) J v ( ^ — v (2^ a)/2)  . (30)
2 — a  J \ 2  — a  J

0

If we insert (30) into (28) and change the integration order, we obtain the 
relation (11) in which the propagator P( v , t \ w,0 )  has the form

v i  + i n \  2v {-l ^2aU2w l l 2 f  _ tz2 f  2z  (2 —a ) /2 " )P(v , t \w,  0) =  ----------------   d z z e  J v   v ( j/
2 — a  J  \ 2  ^  a  J

0

(31)

The integration can be carried out [20] with the result

. w ( l - 2 a ) / 2 w l / 2  /  w2 - a + w 2- a x  / 2 ( w w ) ( 2 - a ) / 2 \

P +  ¡ K  0) =  { 2 _ a) t  exp ( -  { 2 _ a ) H  )  V  (  { 2 _ a ) H  j  • P 2)

where I v (x) is the modified Bessel function [18]. Thus, the solution f ( v , t )  
is fully determined and now can be analyzed.

4. M ain characteristics of th e  process

For any sta te  function G(v)  one can determine the statistical charac­
teristics of it like a mean value or fluctuations. For the special case when 
G(v) = vn , n  =  0 ,1 ,2 ,... one can obtain statistical moments m n(t) which 
we define by the integrals

OO

m n ( t )  = J v nf (v , t )d , v ,  n  =  0 , 1, 2,
0



v 2—a 
oo

x / dw f ( w ,  0 ) w  exp

In virtue of (11) and (32) and after integration over the variable v, they 
take on the form:

p ( « - 0 + 2 ^
/ X . 2("~1) I 2— a J n=x

m n (t ) =  ( 2 - a )  2-a -------  -----  ¿ 2 - a

r ( l E 4 )

w 2 - a

(2 — a ) 2t  , 
o

/ n  —a  +  2 3 — a  w 2^ a \  . .
x M b ^ ; w p T E Y l J .  (M)

where M (a, 6, ±) is the Kummer (confluent hypergeometric) function and 
r ( x )  is the Euler gamma function [18].

The first two moments N( t )  = mo(t)  and V( t )  = m\ ( t )  are the most 
im portant ones because of their physical interpretation. The zero-order mo­
ment

OO

N( t )  = J f ( v , t ) d v  (35)
o

is the relative number of grains at tim e t. From (34) one gets

OOol / (2-a)( f \  r
N( t )  =   r— F ( w , t ) d w ,  (36)

r  [ 5=0 ) J
\ 2— a J o

where

F(w,  t) = w exp Y / 3 ( t ) w 2^ a) M  ( 1;  ------ ; /3( t )w2^ a ) f ( w ,  0) (37)
\  2 — a  J

and

=  (2 -  a ) 2t  ' (38)

The first-order moment V (t ) is the average total volume of the system. Using 
(11) and (32), one can show by an explicit evaluation of the integrals th a t

O O  OO

V{t)  = Jv f ( v , t )  dv = Jv f ( v , Q ) d v  = V(Q).  (39)
0 0

It means th a t statistically  the to ta l volume of the system is preserved in 
time.



The next im portant characteristics of the process is the average volume 
of  a single grain. It is defined as:

OO
J v f ( v , t )  dv

< + ) >  =  ^ ------------------• (40 )
f  f ( v , t )  dv
o

By virtue of (39), the mean single grain volume can be expressed via the 
average number of grains. Indeed, Eq. (40) can be rew ritten as

{v(t)) = ^ F  = v (0)N - H t ) .  (41)

In this way, the main characteristics are determined by the zero-order mo­
m ent N( t )  only.

5. E arly  stages of evolution

Now, let us investigate the influence of the initial condition f ( v ,  0) on 
evolution of the system. As a first example we consider the Dirac-delta 
initial distribution,

f ( v , 0 )  = N 0 8 ( v - v o )  = ^ - l s ( v - v o ) .  (42)
v0

Physically, it means th a t at initial tim e t =  0 there are N q grains each of 
non-zero volume vq and in consequence the to ta l volume of the system is 
F (0 ) =  vqN q. In this case one gets

f ( v , t )  = N 0 P( v , t \ v 0 ,0) (43)

and the zero-order moment

N( t )  = V ( 0 ) r ™  exp ( - m W /lJ)  M  (l;  is + l;/3 (t)vQl/l' )  , (44)

where is is given by (19). The second initial distribution f ( v ,  0) is chosen to 
be the Weibull distribution (see Fig. 1),

f ( v ,  0) =  iVo(2 — a)w1“ a exp (—v2“ “ )

=  —y ^ ^ -y (2  — a ) 2w1“ a exp (—v2“ “ ) . (45)
F
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Fig. 1. P lo t of the  initial d istributions f ( v ,  0) =  f ( v ) versus v for a -  the  Weibull 
function defined by Eq. (45) and b -  the  W eibull-type function defined by Eq. (47). 
The param eters V(0) =  100 and a = 2 /3  (which corresponds to  the  th ree­
dim ensional case, d = 3).

In this case, the zero-order moment is expressed by an elementary function, 
namely,

The th ird  example of the initial distribution f ( v ,  0) is the W eibull-tvpe dis­
tribution (see Fig. 1),

The corresponding zero-order moment is more complicated than  in the sec­
ond case and reads

where U( a , b , z ) is the Tricomi (conhuent hvpergeometric) function. In 
Fig. 2, we visualize the inhuence of the initial distributions on the kinet­
ics of the mean number of grains in the system. In all three cases we assume

N( t )  = N 0 [u-2t  +  1] lJ = ^ L  [v - 2 t +  1] %
v l ( v )

(46)

f ( v , 0 ) = No(4 — 2a)t!3-2“ exp (—v4-2“ )

=  (4 -  2«) V -2 aexp ( - v 4- 2a) . (47)

(48)



t

Fig. 2. The mean number N(t)  of grains as a function of time t in the 3-d systems 
and for three various initial distributions: a -  f (v,  0) is the Weibull-type function 
given by (47), b -  f (v,  0) is the Dirac-delta distribution (42) with vq = I, c f (v,  0) 
is the Weibull function (45). The average total volume of the system is V(0) =  100.

the same value of the to ta l volume F (0) of the system, cf. (42), (45) and
(47). All three functions N ( t )  monotonicallv decrease with time. For the 
Dirac-delta (42) and W eibull-tvpe (47) initial distributions, after a relatively 
short transient regime, the zero-order moments approach almost the same 
values. In the case of the Weibull initial distribution (45), the mean number 
N ( t )  of grains is, after very short time, smaller than  in two previous cases. 
In turn , because the average to ta l volume is the same in all cases, it means 
th a t the average radius of grains is larger in the th ird  case.

6. Late stages of evolution
The behavior of the system for long tim e can be studied by analyzing 

the statistical moments in (34). If tim e t  —> oo, the integrand in (34) tends 
to  the function w f ( w ,  0 ) and the integral tends to  a constant value F ( 0). 
Therefore one can conclude th a t for long time, t  >> 1, the statistical moments 
m n (t) behave as

m n(t) ~  ¿(” -1 )/(2 -a ) . (49)

In particular, the zero-order moment exhibits the asymptotics

N( t )  ~  i -1 /(2-Q) =  r dpd+lK (50)

The im portant feature is th a t the asym ptotics do not depend on the initial 
s ta te  of the system which is characterized by the initial distribution f ( v ,  0) 
of the grains.



One of the basic characteristics of the normal grain growth is the average 
radius (r(t))  of the single grain. Because the volume v(t)  ~  r d(t), the average 
radius is OO

f  v l !df ( v ,  t) dv 
<r(i)> ~  ( / " { , . ) )  s  ----------------- . (5i)

)  l ( v , i ) d v
0

Although the exponent l / d  is not a natural number, nevertheless one can 
exploit the expression (34) to  calculate the average radius. As a result one 
obtains

(r(t)) ~  i f  (52)

with the exponent

“=dh- (53)
So, the average radius of grains increases with tim e and independently of 
the initial conditions, it depends powerlv on time. It is interesting th a t the 
mean-held type definition

(r(t)) ~  (v( t ))pd  ~  N - p d (t), (54)

used in other papers [14], leads to  the same result (52).
Now, let us integrate (1) over the phase space v € [0, oo). Then one gets

^  = (ss)
One can check th a t j ( 0, t) < 0 and the flux at infinity j(oo , t) =  0. From this
relation it follows th a t the diminishing of the grain number N( t )  is related
to the flux across the absorbing boundary at v =  0. This is why there are 
less and less grains: infinitesimallv small grains disappear attaching some 
bigger ones.

7. Conclusions

The following conclusions can be listed as being of prior im portance for 
the kinetics of d-dimensional grain growth as well as soap froth evolution:

(i) For the growth process with constant to ta l hvpervolume the evolution 
does not asym ptotically depend upon the initial sta te  f ( v ,  0);

(ii) Influence of the initial condition may sometimes be more pronounced 
(cf. the initial sta te  in the form of Weibull functions of v),  which 
suggests some possible application of the modeling proposed, mostly 
towards designing a fine-grained material;



(in) Main characteristics of the evolution show up an explicit dependency 
upon dimensionality;

(iv) Evolution goes in a self-similar way both  in the regimes of the space 
of grain sizes as well as time;

(v) If the to ta l hypervolume of the system remains unconserved, one may 
expect abnormalities, cf. [2 , 6].

Some comparison to another approach, proposed to describe a phase change 
or m icrostructure formation, under a set of physical conditions juxtaposed 
below is worth making. The conditions are [14]:

(i) the kinetic equation is of diffusion type, bu t the physical mechanism 
is readily manifested via some dom ination of local fluxes in the space 
of grain sizes; by the way, right at this point it is worth to realize a 
perennially alive discussion by Van Kam pen on which kind of diffusion 
equation, suitable for description of kinetic processes in inhomogeneous 
media, one is likely to work under concrete physical circumstances to 
be modeled, cf. [21];

(ii) the diffusion (migration, m utation, etc. [14]) is a state-dependent pro­
cess and the diffusion function D(v)  does depend powerlv upon the 
physical sta te  of the system, so th a t the role of the boundary is very 
much pronounced in this case;

(in) there is no dom ination of the smallest as well as largest grains;

(iv) there exists an explicit dependence of the problem in question upon 
dimensionality by means of (2);

(v) to ta l volume (hypervolume in a d-dimensional case, or simply area in 
a 2d case) increases powerlv with time, which is in apparent contra­
diction with what is presented here. The first and last above stated 
conditions differ substantially while comparing with the normal grain 
growth conditions (formally, it should be realized th a t also the num­
ber of grains decreases slower in tim e than  in the case of normal grain 
growth, namely as ~  1/(<i+1) [8, 14]) while conditions (ii)-(iv) are
exactly the same. It m ust also be noticed th a t the average radius of 
the grain or domain follows the same asym ptotics in the both cases 
mentioned.

It is also worthy to  argue th a t the phase transform ation process, de­
scribed in the present paper, proceeds in 2d as well as in 3d systems similarly 
from the qualitative point of view (cf. [8,14]). There are, however, certain



quantitative differences. Namely, the distribution function, subjected to  the 
same values of param eters, reaches its maximum value somewhat higher in 
3d than  in 2d case. The first two moments behave also in a slightly different 
manner, th a t means, the number of grains in the system (the 0-th  moment 
of the process) decreases somewhat slower in 2 d than  in 3d case, whereas 
the to ta l volume of the system (the first moment of the process) remains 
always conserved, no m atter whether the system  under consideration is two- 
or three-dimensional. The average radius, in tu rn , evolves a bit slower in 
a 3d system, which is also the case represented by the diffusion-tvpe model 
mentioned above. Moreover, it is interesting to notice here th a t all the basic 
physical quantities th a t we have analyzed (the two first moments and the 
average radius of the microdomain) do scale perfectly with tim e t, with cer­
tain  exponents being less than  one, which are going to  become exclusively 
dimensionality d-dependent.

In a final word, let us draw some attention to the fact, th a t the afore pre­
sented comparison could, to a certain extent, be exemplified by the recrvstal- 
lization as well as grain growth processes in the single phase b.c.c. iron [22]. 
In the former, grains of the pre-strained iron phase after prim ary crystalliza­
tion do not perfectly feel the available space and the remaining amorphous 
part competes with the crystalline one, which is however the case character­
istic of earlier annealing times. In the latter, th a t means, when the annealing 
tim e rises considerably, the crystalline phase prevails, which eventually re­
sults in perfect space-feeling by the formed polycrvstal. Then, the evolution 
of the polycrvstal is reported to proceed in a uniform way, rather (no signa­
tures of abnorm ality are detected in [22]). It appears to  be interesting, th a t 
the growth exponents got from measurements differ, while compared with 
ours, mostly in the (stationary) grain growth case. It may thus imply, th a t 
the offered model would be more suitable for bubbles-containing systems, 
where such low-valued fractional exponents can be m et [3]. It cannot, in 
fact, be discarded in to ta l for polvcrvstals, since for such systems one an­
ticipates quite often (for instance, for ceramic ferroelectric polvcrvstals) the 
exponents about 1/2 or lower, ju st around 1/4 for three-dimensional systems 
(Ba Ti O3) [1,2,23]. It may, however, follow from the presented modeling, 
th a t no hope for inclusion of some necessary information about the type of 
crystallinitv (perhaps, about the mechanism of appearence/disappearence 
of the grain boundaries as well as grain shapes alterations [22]) into the of­
fered statistical-physical description would as usually result, at least in some 
specific cases, in misfits between theory and practice.

One of us (A. G.) wishes to thank  Dr. S. Hutzler for his prom pt response 
concerning literature information, and Prof. J. Piasecki for pointing out the 
problem of exam ination of survival conditions for the global grain flux in the 
system studied.
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