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One of unusual features of high-Tc superconductors, that we discuss 
in the present report, is related to inhomogeneous distribution of holes.
It results in a stripe-phase which consists of antiferromagnetic domains 
separated by hole-rich domain walls. We study how the upper critical field 
is affected by this specific distribution of carriers. We consider a two­
dimensional square lattice immersed in a perpendicular uniform magnetic 
field. In order to simulate the presence of a stripe-phase we carry out the 
calculations for a system with modulated hopping integral. Namely, the 
magnitude of the hopping integral is constant along the stripe, whereas it 
oscillates in the opposite direction.

PACS numbers: 74.20-z, 74.80.-g

1. In tro d u c tio n

Some of experimentally observed unusual properties of the high tem per­
ature superconductors (HTSC) are related to  their magnetic properties. In 
particular, the measurements of the upper critical field (Hc2) reveal a qual­
itative differences with respect to  classical superconducting systems. For 
optim al doped systems the extrapolated value of H c2(T  —» 0) can be of the 
order of a few hundred Tesla. In contradistinction to  conventional supercon­
ductors H c2(T)  is characterized by positive curvature [1,2]. Moreover, for 
overdoped compounds the critical field does not satu rate  even at genuinely 
low tem peratures. These features cannot be explained within a conventional 
theory of H c2 [3]. From the theoretical point of view the positive curvature 
of H c2(T) occurs for instance in: Bose-Einstein condensation of charged 
bosons [4], Josephson tunneling between superconducting clusters [5], and
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in mean-field-tvpe theory of H c2 with a strong spin-flip scattering [6]. How­
ever, none of these approaches has definitively been accepted. In particular, 
the purely bosonic approach [4] is not applicable in the overdoped regime, 
when HTSC exhibit a Fermi-liquid type of behavior [7].

O ther unusual feature of high-Tc superconductors is related to the stripe 
phase. W ithin this scenario holes, which enter the copper-oxvgen planes 
in the doping process, are not d istributed uniformly. Instead, they form 
antiferrom agnetic domains separated by hole-reach domain walls [8-14].

In the present report we investigate influence of the inhomogeneous dis­
tribution of carriers upon the upper critical field.

2. M odel

We consider a square lattice immersed in a perpendicular, uniform mag­
netic field, described by the following Hamiltonian:
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O perator c\a creates an electron with spin a  on site i, V  stands for the 
m agnitude of the pairing interaction, A  is the vector potential corresponding 
to  the external m agnetic field H ,  and Ajt = (cpcp)  is the superconducting 
order param eter.

According to the Peierls substitution the original hopping integral ¿¿j is 
multiplied by a phase factor, which accounts for coupling of electrons to the 
magnetic field ¿¿j (A )  =  ¿¿ j(0 )  e x p  ( p p  p. A  • d l j .

In order to simulate the presence of stripes we assume ¿¿j(0) as a position- 
dependent quantity. We m odulate the hopping in the direction perpendic­
ular to the stripe and keep the hopping along the stripe constant. More 
precisely, we take ¿¿j(0) =  t, when the bond between i and j  is parallel 
to  the stripe, t  represents also the m aximal value of the hopping integral 
in the perpendicular direction. Tuning the m odulation depth, d, we can 
continuously drive the system between two limiting cases: separated stripes 
for d > t  and homogeneous two-dimensional lattice for d =  0. The site- 
dependent hopping integral is presented in Fig. 1.

To calculate i i c2 one can apply the lattice version of the G or’kov equa­
tions

^  = ^ i r Y  (2)
j-Nn

Here, G ( i , j , w„) is the one-electron Green’s function in the presence of a uni­
form and static  m agnetic field and oon is the fermionie M atsubara frequency. 
For details we refer to  Ref. [15].
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Fig. 1. Modulation of fy (0). The upper panel shows the hopping integral in the 
direction perpendicular to the stripe. In the lower panel the thickness of lines is 
proportional to the magnitude of fy (0).

3. R e su lts  an d  d iscussion

Figure 2 shows the tem perature dependence of H c2 determined for dif­
ferent values of the m odulations depth.

Small-to-medium m odulation hardly affects the shape of H c2(T). How­
ever, for d / t  > 0.9 stripes become almost separated and one can see a 
substantial modification of the critical field. This modification is of par­
ticular im portance for weak magnetic fields, when the radii of the Landau 
orbits exceed the width of the stripe. Here, one can observe a dram atic 
change of the slope, d H c2/d T ,  calculated at T  = Tc. This effect has a nice 
physical interpretation: the geometry of the stripe does not allow for a for­
m ation of rotationallv invariant Landau orbits. Therefore, the diamagnetic 
pair-breaking is strongly reduced and superconductivity is hardly affected 
by a weak m agnetic field. For stronger fields the radii of the Landau orbits 
decrease, and this effect becomes less im portant.
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Fig. 2. Hc2 (T) calculated for V = 1.21 and different values of the modulation 
depth d. Left plot shows results for modulation depth up to d /t  = 0.8, whereas 
right plot shows results for 1 > d/t  > 0.81.
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