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P E R S IS T E N T  CU R R EN TS IN T W IS T E D  T O R I 
MADE OF CHIRAL NANOTUBES*

M . M a r g a ń s k a  a n d  M . S z o p a

Institute of Theoretical Physics, University of Silesia 
Uniwersytecka 4, 40-007 Katowice, Poland

(Received October 2Ą, 2000)

Mesoscopic metal rings can carry persistent currents driven by a con­
stant magnetic field. The geometrical structure of a toroidal carbon nan­
otube can be characterized by four independent parameters. We derive the 
formula for persistent currents driven by a constant Bohm-Aharonov type 
of field perpendicular to the plane of the torus. The dependencies of the 
currents on the chirality, twist and circumference of the torus are discussed.

PACS numbers: 03.75.Fi

The existence of persistent currents is one of the most beautiful proofs 
th a t there are plenty interesting phenomena in the physics of mesoscopic 
systems, which are impossible in macroscopic solid sta te  physics. In a small 
(of an order of a few pm)  m etal ring, threaded by a constant magnetic flux 
(like in Bohm -Aharonov effect) currents appear, with no varying magnetic 
fields or any electric potential. The idea th a t such currents might exist comes 
from Buttiker et al. [1], and was further explored by Gefen et al. in [2].

Since we are dealing with a closed system, the very first step is to define 
the boundary conditions. For the wave function of an electron on a ring of 
circumference L, the most comfortable way of defining them  is to consider 
the system as one-dimensional and periodic with period L:

* Presented a t the XXIV International School of Theoretical Physics “Transport 
Phenom ena from Q uantum  to  Classical Regimes”, Ustron, Poland, September 25- 
October 1, 2000.

1. P e rs is te n t c u rre n ts  in  a  m e ta l rin g

(1)



where (j) is the magnetic flux through the ring and (j)q is the flux unit, 
(f)o =  hc/e. The system is one-dimensional, with the Bohm -Aharonov effect 
duly taken into account. Our job is to investigate the possible currents in 
the ring. As the system is finite, the m omentum is quantized. The n -th  
m omentum  sta te  carries the current:

j  _  evn _  e l  d E n   e d E n d(f> _  d E n
n L  LH  dkn HE d f  dkn C d f  ’

The formula above is valid for any closed system, provided th a t the boundary 
conditions are of the form (1). The simplest Hamiltonian is sufficient to 
understand the nature of persistent currents, so we will work in the free 
electron approximation, and in a gauge in which the vector potential does 
not enter directly in the Hamiltonian. If our ring is free from impurities and 
there is no external potential V (x) ,  the energy and the current of the n -th  
s ta te  are

h2
E n = 2m
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(4)

The result above is not surprising, an electron with a nonzero m omentum 
always carries a current, bu t usually the currents carried by all the electrons 
in the system cancel out, so there is no macroscopic current. Here they do 
not cancel out, and this is easier to  understand when we look at the Fig. 1.
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Fig. 1. The left figure is the plot of general energy versus momentum relation in a 
ring with no magnetic flux inside — note that the states are arranged in perfect 
symmetry on both sides of the E  axis. The second figure shows the general shape 
of the dispersion relation in the system with the magnetic flux switched on and 
equal 4> = 0.3<f>o-



W hen the m agnetic flux is present in the system, the states on the pos­
itive m omentum side go up, the states on the negative side slide down, and 
the currents (proportional to the slope of E n at the kn point) on both sides 
do not cancel out any more. W hen T  =  0, all occupied states have the same 
weight, and the to ta l current in the system is a function periodic in <f>/<f>o, 
with period 1, given by the formula (cf. [3]):

T(S) =  2neHN f  fo > f o r  Nodd  a n d  -  i  <  5
m L 2 |  i - 1 ,  for N  even and 0 <  ^  <  1 '

The plots of the current for N  odd and N  even are presented in the Fig. 2.
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Fig. 2. The left plot corresponds to a system with N  even, the right one to N  
odd, where Iq = j f f f -  The sudden leaps in the current are due to some states 
being shifted above the Fermi level, thus becoming unavailable, while their negative 
counterparts are lowered into the spectrum of available states at exactly the same 
flux.

2. T h e  s t r u c tu r e  o f  a  n a n o tu b e

A nanotube basically is ju st a strip of graphene sheet, rolled up, with 
opposite edges glued. (We see already th a t a boundary condition will be 
necessary.) W hen we want to close it into a torus, we bend it and glue the 
opposite edges once again. (Another boundary condition appears.)

We work here in the basis and approxim ation used by Gonzalez et al. in 
the Ref. [4]. T \  and T 2 are vectors generating the honeycomb lattice, given 
in our basis by T \  =  \ /3ex and T 2 =  ^ ex +  \ e y . Both the circumference 
of the nanotube L n and the circumference of the torus L t can be expressed 
as linear combinations of these two vectors, with param eters m i, m 2, p\  
and p2 :

L n = m \ T i  +  m 2T 2, L t = pffTi  +  p2T 2. (5)

We cannot roll this strip in any arb itrary  way, bu t only so th a t the “gluing” 
edges correspond exactly. The nanotorus is thus uniquely defined by four



param eters: m i, m 2 corresponding to  the gluing of a nanotube, and p\, p2 
defining the gluing of the nanotube to  make a torus. We shall refer to  it as 
the ( ra i ,m 2) x (p i ,p2) torus. The meaning of these param eters is illustrated 
by the Fig. 3.

y

Fig. 3. The structure of a graphene sheet and the patch of the (3,1) x (—3,6) torus 
(TO 1 = 3, TO>2 = 1, pi = —3, p2 = 6).

Note th a t L n and L t do not have to be perpendicular — the torus is then 
twisted, bu t this is allowed. In fact, most of the experimentally obtained 
tori are twisted, as we gather from the paper by Ceulemans et al. (Ref. [5]).

Upon trying out different ways of rolling a nanotube, we meet with a 
few cases so special th a t they got given names. The first is the one when 
m 2 =  0, thereby producing a “zigzag” structure along the circumference of 
the tube. The second is m i =  m 2, which has a characteristic “arm chair” 
structure along the circumference.

It turns out th a t every armchair nanotube and the zigzag tubes with m i 
divisible by 3 are metallic. This is due to a specific property of the energy 
spectrum  of the graphene sheet, which in the tight-binding approximation 
is given by the formula:

and, when plotted, looks like a double crown, of which we only show the 
lower part, corresponding to  the ’ sign in the equation (6). The existence
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Fig. 4. This is the negative part of the honeycomb lattice dispersion relation, plot­
ted against kr and ky. A very interesting feature of this spectrum is that it does 
not have Fermi surface or rather, the Fermi surface is limited to six points at 
the peaks of the crown. Also, only two of these points are independent. This will 
turn out to be very important when we will calculate the conducting properties of 
the nanotubes.

of Fermi points only, instead of a whole Fermi surface, is the very feature re­
sponsible for different conducting properties of differently folded nanotubes. 
As can be seen after performing some careful calculations, only the tubes 
which satisfy the relation (m i — m 2)|mod3 =  b have Fermi points among 
their allowed m omentum states (cf. Ref. [6]). The armchair (m i =  m 2) and 
“triple zigzag” (m i =  3ft, m 2 =  0 ) tubes are just special eases of this general 
rule.

By imposing the nanotube boundary condition on our graphene sheet 
we reduced the m omenta spectrum  to  a set of lines (which may or may not 
cross the Fermi points). W hen we glue it into a torus, we impose the second 
boundary condition, and the set of allowed momentum  states becomes just 
a set of points. Here again, we can make our torus either in such a way 
th a t Fermi points belong to the spectrum , or in such th a t they do not. It 
turns out th a t when both (m i — m 2)|mod3 =  b and (pi — i>2)|mod3 =  b, the 
tori are metallic. W hen the m ’s fulfill this condition but the p ’s do not, 
the torus is a narrow-gap semiconductor. W hy? Because the tori which are 
stable (and without topological defects, which would spoil our Hamiltonian) 
are much longer than  they are wide. Therefore the m omentum states are 
more narrowly spaced along the m omentum lines corresponding to  the L t



direction, than  the L n direction. So, once they are on a m omentum line 
which passes through a Fermi point, they can miss it only by very little. 
W hen the nanotube is not metallic, we have wide-gap semiconductors, which 
are beyond the scope of our paper.

3. Persistent currents in toroidal nanotubes
We take now our torus and thread it with a line of m agnetic fiux. W hat 

current will the Bohm -Aharonov effect produce? Finding an answer to 
this question can proceed along similar lines as before, in the case of one­
dimensional metallic ring — with a few im portant differences:

•  the energy is given by a different formula;

•  the system is 2-dimensional, therefore there are two boundary condi­
tions to be taken into account;

•  the number of electrons is always even and, more precisely, equal 
2(m ip2 - P i m 2).

Let us deal with these points in the proper order. The formula for energy 
is the same as in case of the fiat graphene sheet and was given in the previous 
section. The boundary conditions for k  are

n / 3 , „  . m  . 3

T
k  - L n — 2ttIj i  =7> ^ ( 2 m i  + m 2) k x  T  r.m,2A:g — 27r%,

k  ■ L t =  27T(lt +  ) +> ^ ( 2 P l + P 2 ) k x  +  \ p 2 k y =  2 n ( l t  +  - f - )• (7 )
<po 2 2 cp o

Since the flux influences only the motion along the torus, it enters into 
the second condition, bu t not the first one. From these equations we can 
calculate currents associated with every state . The resulting formula has 
the following, rather complicated shape:

2tt
In = ------------------ |2 m 2 cos «(</>) s in a (á )  +  m 2 cos/3(ó) s in a (á )

n iip 2 -  m 2p i
1 ley

— (2m i +  m 2) cos a(<f>) sin/3(</>)} ( l  +  4 cos2 a(<f>) +  4 cos a(<f>) cos /3(<f>)) ,

(8)

where

K(p2ln ~  m 2(h +  <f>))a((f>) =  ------------------------------,
mip2 -  Pini2
( 2 p i  + p 2 ) ln  +  ( 2 m i  +  m 2) (It +  4>)

m  =



This formula for the persistent current, in the special cases of the zigzag and 
armchair nanotubes, has been found by Lin and Chuu in the Ref. [7]. In 
our system we have one unbound (or 7T-) electron per lattice site, therefore 
the Fermi level lies a t E  =  0. The sum m ation over all states in the first 
Brillouin zone gives the to ta l current in the torus a t zero tem perature. This 
current depends on four param eters — two of them  define the nanotube 
and the remaining two define the torus. We want to check the currents’ 
dependencies on:

•  the chirality of the nanotube (m i/m 2);

•  the twist with which we glue together the edges of the tube in order 
to obtain the torus (the angle between L n and L t ), proportional to

TOl(2pi+p2)+?W2(pi+2p2) .

y/(ml+mim2+m?2)(pl+pip2+P2) ’

•  the circumference of the torus, y /3 (p\ + p ip2 + P2)-

Fig. 5 illustrates the dependence of the current on the chirality of the orig­
inal nanotube. One should understand, though, th a t a nanotube is not a 
continuous object and it is impossible to keep fixed its length and chirality, 
while changing only the twist. So, when we say “we compare the nanotubes 
of the same length and chirality and varying tw ist”, it m ust be understood 
th a t the length will also vary — albeit very slightly. O ut of the three main 
features of the torus, the most im portant turns out to be the chirality of 
the nanotube which made it. Once we fix m i — m 2 =  3k, the current is 
relatively big and has the characteristic “saw tooth” shape, always crossing 
the 0 /0o  axis a t integer and half-integer values of 0 /0o  (see Fig. 5 (b), (e)).

The current depends on the explicit difference (pi — P2 )|mod3 - If Pi ^  P2 
is not divisible by 3, it is a zigzag crossing the 0 /0o  axis also at 1/3 and 
2/3, if it is divisible by 3 it has no additional zero points. (See Fig. 6.)

W hile we keep (pi — P2 )|mod3 constant, we can still play with pi  and p 2 
separately, varying the circumference and twist of the torus. The current 
is then inversely proportional to  the circumference of the torus (see Fig. 7) 
and it has no essential dependence on the twist. W hen the tube itself is not 
metallic, the current is sinusoidal and definitely smaller (as can be seen on 
the Fig. 5(a), (c) and (d)), for any value of pi  -  j>2. It does not depend much 
on the p i  — p 2, bu t it decreases strongly with increasing circumference of the 
torus.

These effects can be understood by analysing the structure of the Bril­
louin zone. There are two main factors influencing the am plitude of the 
current. F irst, the number of states shifted through the edge of the Bril­
louin zone with increasing magnetic flux: if many states are shifted a t once 
out of the Brillouin zone while their counterparts appear on the opposite side
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Fig. 5. The examples of normalised persistent currents versus in tori made 
with nanotubes of different chiralities, with approximately the same length and 
twist. The tori whose currents are presented here are (a) (4,0) x (—30,60), (b) 
(4,1) x (-39,60), (c) (4,2) x (-44,55), (d) (4,3) x (-51,55) and (e) (4,4) x (-50,49). 
Also, we keep fixed (pi — P2 )|mod3 =  0.

of the hexagon, the current is strong. Second, the distance of the shifted 
states from the Fermi points. The states close to the “Fermi peaks” carry the 
greatest currents, so if they are present, the overall current is significantly 
greater than  when we shift even many states, bu t far from the peaks.

The case of the metallic tube ( (m i—m 2 )|mod3 =  0), when (pi — P2 )|mod3 =  0 
as well, is the one where the conditions are most favourable for the persistent 
currents. The Fermi points belong to  the m omentum spectrum  at <f> =  0, 
and when we switch on the flux, many states a t once cross the edge of the 
first Brillouin zone.

W hen the tube is metallic, bu t p i  — p2 V  3k, there are many states but 
they lie only close to the Fermi points: a t 1/3 or 2 /3 from them , hence the 
specific zigzag shape of I((f)). Both cases are illustrated on the Fig. 6. W hen



I/Io I/Io

4>/4> o

l / l 0

Fig. 6. Current versus flux of the tori (4,1) x (—30,60), (4,1) x (—31,60), and 
(4,1) x (—32,60). They all have the same nanotube chirality and similar circum­
ference and twist, but their values of (pi — P2 )|mod3 are different.

I/Io I/Io
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Fig. 7. The persistent current I/Io  for the tori (4,1) x (—30,60), (4,1) x (—300,600) 
and (4,1) x (—3000,6000). They all have the same chirality and twist, while their 
circumference varies by a factor of 10 and 100.

the tube is not metallic, Fermi points lie far from the allowed m omentum 
states, so even when quite many of them  cross the edge of the Brillouin zone, 
the effect is not big.



4. C on clu sion s

We have shown th a t at the half-filling, i.e. when the number of free 
electrons in the nanotorus is equal to  the number of its atoms, the main 
factor determining the strength of the persistent currents is the chirality 
of the constituent nanotube. The condition for the enhancement of the 
current coincides with the criterion for the m etalicitv of the nanotube, 
(m i — *7*2 ) |mod3 =  0. W ithin this condition, if in addition the twist pa­
ram eters obey (pi — P2 )|mod3 =  0, the currents are param agnetic for small 
(f)/(f) 0 and have sawtooth-shaped plots like in a single metallic ring with odd 
number of electrons. Otherwise, for (pi — P2 )|mod3 A 0 the am plitude re­
mains similar, bu t the currents are diam agnetic for small (f>/(f>o and behave 
like the currents in a single ring with odd number of electrons. Instead of 
one, two jum ps of the current occur, a t (f>/(f>o =  1/3 and <f>/<f>o =  2/3. W hen 
varying the circumference of the torus while keeping the chirality and twist 
unchanged we observe inverse proportionality of the current to the circumfer­
ence. In case when the constituent nanotube is not metallic, the am plitude 
of the current drops significantly and no jum ps are observed any more. It 
becomes sinusoidal with the applied field and both param agnetic and dia­
magnetic currents are observed for small <f>/<f>o. The twist of the torus, when 
(pi — P2 )|mod3 is fixed, seems to have no significant influence on the currents.

This work was supported by the Polish S tate Com m ittee for Scientific 
Research (KBN) grant.
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