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A MECHANISM OF COMPACTIFICATION*

By R. M a ń k a  and J. S l a d k o w s k i  

D e p a r tm e n t  o f  T h e o r e t i c a l  P h y s ic s ,  S i le s ia n  U n iv e r s i ty * *

(Received November 3, 1989)

A  m e c h a n is m  o f  c o m p a c t i f ic a t i o n  is  s u g g e s te d . A s  i t  w a s  r e c e n t ly  s h o w n  b y  F u k a y a  
s o m e  l im i t in g  p r o c e d u r e s  o n  a  s u b s e t  o f  R ie m a n n ia n  m a n if o ld s  a r e  p o s s ib le .  T h e y  c a n  l e a d  
t o  p h y s ic a l  s p a c e - t im e  w i th  a lm o s t  v a n is h in g  c o s m o lo g ic a l  c o n s ta n t  in  a  m u lt id im e n s io n a l  
th e o r y .  C o n d i t io n s  p r e v e n t in g  d e c o m p a c t i f i c a t io n  a r e  d is c u s s e d . A n  e x a m p le  s h o w in g  t h a t  
tw is te d  b o u n d a r y  c o n d i t io n s  c a n  s ta b i l iz e  t h e  s i tu a t io n  is  g iv e n .

P A C S  n u m b e r s :  0 3 .7 0 .+  k ,  0 4 .5 0 . +  h

To explain why our Universe is four-dimensional is one of the main goals of con
temporary theoretical physics. Of course, one may answer that the Universe is four-di
mensional because only four-dimensional universes allow human beings to exist. But 
then the question may be reformulated in an obvious way. In the Kaluza-Klein approach
[1] the space-time is higher-dimensional and symmetries in the additional dimensions are 
the sources of gauge interactions. In string theories, [2], the situation is similar. In fact 
compactification of superstring theories involves Kaluza-Klein program at least in their 
field theory limit. The peculiar feature of string theory is that they can be constructed in 
a consistent way at least, in no less than in 26 dimensions (bosonic string) or 10 dimensions 
(fermionie ones). So some light is apparently shed on the dimensionality of space-time. 
Why only four dimensions are chosen to form the world we live in we still do not know.

Recently, Fukaya has proven some theorems [3-5], which we think may be of great 
importance in trying to understand “collapsing” of Riemannian manifold to a lower 
dimensional one. We would like to use them to understand at least some aspects of the 
vanishing cosmological constant. This assumption is justified by our experimental know
ledge, although theoretical explanation of this fact is very difficult and still lacking. The 
vanishing of A is usually connected with the fact that the vacuum energy vanishes [6]. 
Field theoretical calculations [6-10] say that the value of vacuum energy can be expressed 
in terms of the ^-functions of the appropriate (Dirac, Laplace-Beltrami...) field operator:

C(s) =  Z V -  (1)
k
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where A* denotes the fc-th (non-zero) eigenvalue of the operator in questions. In the case 
of scalar electrodynamics the vacuum energy is given by (one loop approximation) [7-9]:

where Q denotes the (-function of the scalar Laplace-Beltrami operator on the internal 
space and A is the renormalization constant. Dimensional regularization has been applied 
to remove the ultraviolet divergencies (cf. [8]). This regularization introduces p2 as the 
mass square dimension value. Physical parameters should be independent of p2. Coun
terterms could be introduced in such a way that e0 is independent of p2. The expression
(2) contains some information about topology of the internal space [9]. Apparently, when 
the spectrum of the Laplace-Beltrami operator can be “removed” in some way the vacuum 
energy (cosmological constant) vanishes.

As it was shown by Fukaya [3-5], a subspace of a Riemannian manifold can be given 
a topology so that the eigenvalues A*(M) of the Laplace-Beltrami operator AM on a mani
fold M can be extended to continuous functions. This topology is not a natural one and 
we refer the reader to [3-5] for details. The continuity of the eigenvalues Ak(M) can lead 
in some cases to interesting conclusions. Suppose that the space-time is of the form M x N, 
where M and N are Riemannian manifolds with metric tensors gM and gN. Let us discuss 
some examples of compactification.

Example 1. Toroidal compactification. Let N be the «-dimensional torus T" = R /Z ”. 
I W M x T* = £m © £2(dt2 © ... © dt2). Then (A* denotes the k-th eigenvalue of the Laplaee- 
-Beltrami operator)

Example 2. Compactification on «-sphere N =  S". Let g[,xN =  gM © e2fe")- Then 
we have

In both examples the additional (internal) part of the spectrum is removed to infinity ! 
This is a mathematical formula which describes the fact that the massive modes are so 
heavy that they are invisible in the low energy world. But the above examples suggest 
that they may be in fact removed. It is obvious that in these cases cosmological constant 
vanishes because only the zero modes survive the compactification.

(2)
r

n

(3)
1=1

and we have lim A*(M x T", gMx-r-) =  Ak(N).

{A*(M x s", gMxs"

and also we have lim Ak(M xS") =  At(M).



Example 3 (see [11]). Let (M, g) be a Riemannian manifold on which U(l) acts freely 
and isometrically. Let gl denote the Riemannian metric such that

. _  jeg(v, v) if v is tangent to a U(l)-orbit 
^  ’ V (g(r, t’)ift> is perpendicular to a U(l)-orbit. (5)

Then lim (M, ge) =  (M/U(l), g') for some metric g' and we obtain a fiber bundle S' -> M 
«-»o

-* M/S1. This example can be generalized to a very interesting theorem [3-5].
From the physical point of view the parameter e in examples 1 and 2 can be treated

as a variational parameter and the physical space-time is chosen by demanding that cos
mological constant has a minimum as a function of e and, in fact, is almost vanishing.
This can be shown as follows (cf. [6-9]). Introduce a parameter v2 by the relation

X =  v2X. (6)

In the cases discussed in examples 1-3

, 1v2 ~  ^  (7 )
e

and (2) takes the form

£o(v2) =  - ~ 2 I v4C ( - 2 )  + v 4C ( - 2 )  In647C \ A42 (8)

From the physical point of view collapsing of the internal space to a single point is unaccept
able. This is reflected in (8) by the proportionality of e0 to v4 (in a Kaluza-Klein-like 
interpretation v2 ~  R 2, R  being the radius of the internal space). We should look for 
a minimum of e0(v2) at v2 /  0. If £(—2) = 0 then ( '( —2) = 0 or v2 == 0. The latter case, 
obviously, corresponds to decompactification (cf. [7]). If ( ( - 2 )  #  0 then e0(v2) has ex
tremum at

v2in‘= d 2 e x p A / 2 - i ^ ) ,  (9)
C(-2),

«o(v£„) =  - T  A*a-2) exp 1 — H i “ )  • (10)

The above formula expresses «oGmin) in terms of ( and ( ' and consequently in terms of 
the spectral invariants at [9, 12]. We can say that the vacuum energy (cosmological con
stant) prevents the internal space from collapsing to a single point because in that case 
it tends to infinity (v2 -* oo).

Let us discuss compactification on the torus T  =  (S1)". The eigenvalues on (S1)" 
have the general form Xu = £ n 2. If we impose twisted boundary conditions on the fields



C“(s) =  * j )  25 =  C h lh ( 2 s ,  — oCj), ( 1 2 )
m

where CHlh(x oj) — Y,(n +a>)~’ is the generalized zeta function. We have [12]
II

r ( - 2 )  =  CHLH( - 4 , a i). (13)

Chlh( ~ 4, 0) can be expressed in terms of the Bemouli polynomials [12]. It follows that

Chlh( - 4 ,0 )  =  0. (14)

This means that compactifications on a torus are unstable unless we choose twisted boun
dary conditions. Twisted boundary conditions emerge in a natural way on orbifolds.
The analysis given suggest that compactification on orbifolds may be stable. In principle,
we have the possibility of comparing different orbifolds. The orbifold with lower vacuum 
energy should be preferred in compactification process. This can be interpreted as a phase 
transition (an analogue to crystalization in solid state physics). The twisted sectors corres
pond to nonequivalent topological sectors (anyons [13]). This is under investigation.

Apparently some questions arise. Firstly, Fukaya’s analysis deals with a Riemannian 
manifold while the space-time is a pseudo-Riemannian one. The above analysis can be 
repeated if we suppose that the space-time has the structure R x M(3) x N(mt), where R 
represents the time axis. A genuine pseudo-Riemannian analysis should also be given 
but as far as the internal space has no time-like part, the conclusions are the same. Secondly, 
the “route of collapsing” should be found, that is the appropriate internal spaces. The 
approach of [9] may turn out to be useful as it tries to relate the vacuum energy to topolog
ical invariants. Nevertheless, we think that the examples given above shed some light 
on the models of compactification discussed in the literature. They may also explain how 
a possible bigger internal space may collapse to the one demanded by the Kaluza-Klein 
or string approach.
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