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ON RANDOM LY IN TER R U PT ED  DIFFUSION* **

J. L u c z k a

Department of Theoretical Physics, Silesian University 
Bankowa 14, 40-007 Katowice, Poland

(Received November 13, 1992)

Processes driven by randomly interrupted Gaussian white noise are 
considered. An evolution equation for single-event probability distribu
tions is presented. Stationary states are considered as a solution of a 
second-order ordinary differential equation with two imposed conditions.
A linear model is analyzed and its stationary distributions are explicitly 
given.

PACS numbers: 05.40. + j, 02.50. +s

1. In tro d u c tio n

A standard diffusion process y ( t )  is described by a second-order par
tial differential equation of parabolic type (therefore it is sometimes named 
parabolic diffusion [1]). For example, one of the possible form of such an 
equation can be written as

d d d d
-Qt P{Vi 0  = - g - f ( y ) p ( y ,  t ) + D — g ( y ) — g(y) p( y ,  t ) , (1.1)

where p (y ,  t)  is a one-dimensional probability distribution of the process 
y( t )  or it can be a transition probability function for y( t ) .  The determin
istic functions f ( y)  and g(y)  are named drift and a diffusion function, re
spectively. The constant D is a diffusion coefficient. The stochastic process 
y( t )  is Markovian and in consequence its dynamics is known as far as one is 
able to solve (1.1) under some conditions. If so, then all finite-dimensional 
distributions, all m ulti-tim e correlation functions, and so on, are known.
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On the o ther hand , y(t) can be considered to  be a process described by 
the stochastic equation

y = f (y)  + 9(v)°T)(t),  y e ( y i , V 2),  (1-2)

where 77(f) is G aussian white noise w ith

(17(f)) =  0 , (T,(t)r](s)) = 2 D S ( t - s ) ,  D >  0 . (1.3)

The m ultip lication  “ o” in  the expression <7(2/) 077(f) denotes the S tratonovich 
in te rp re ta tion  [2] of Eq. (1.2) and in consequence the probability  density 
p (y , t) of the  process (1.2) obeys Eq. (1.1).

Now, let us consider a  s itua tion  when the second term  in (1.2) is 
switched on and  off a t  random  instan ts:
— if it  is switched off then  the process is determ inistic, in particu lar, it is 

M arkovian;
— if it is sw itched on then  the process is diffusional, in particu lar, it is 

M arkovian.
The above process will be nam ed random ly in terrup ted  diffusion. It can be 
generated by the  stochastic equation

i t  = f ( x t ) + g ( x t ) o T] ( t ) r ( t ) , x e ( x 1, x 2) ,  (1.4)

where T (f) is a  random  process th a t  can take two values {0, 1} in a  random  
way. Such a  process can be constructed  w ith the help of a  well known 
sym m etric tw o-sta te  M arkov process (telegraphic noise) £(f) [3] as follows

C( i ) =  j [ l  + « !)] (1.5)

and

№  = { - 1 , 1} , ( № )  = 0 , (=  £(0 f(j)>  =  exp(—2i/|f -  s \ ) . ( 1 .6)

The m ulti-tim e correlation functions of £(f) are given by the recurrence 
relation

( f ( t i ) f ( t2 ) f ( i3 )  • ..£(*»)> =  № i № 2 ) ) № 3 )  • • • £ + ) >  (1.7)

for ti  >  t 2 > t3 > . . .  > t n . The param eter v  > O' is the tran si
tion  probability  per un it tim e from  one s ta te  to the other. The quantity  
r c =  1/ 2v  is the correlation tim e of the process £(i).

Now, a  few words abou t an in te rp re ta tion  and possible applications of 
Eq. ( 1 .4). If  the  variable t is in terp re ted  as tim e then the second term  
on the righ t-hand  side of Eq. (1.4) can be thought to  be a Langevin force



switched on and off in random moments. If t  is interpreted as a spatial 
variable then (1.4) can describe diffusion in a stochastic two-layer medium: 
one layer is surroundings characterized by a diffusion coefficient D\  =  0 (it 
is a vacuum) and the other is a medium with a diffusion coefficient D2 =  D 
[4, 5]. This model of “nothing” (Z>i =  0) and “something” (D2 =  D)  
randomly distributed in space is a caricature of a random medium and can 
be a starting point of generalizations for N  layers with different diffusion 
coefficients.

As possible applications one can mention:
(a) the problem of multiple scattering, where one considers the transit of 

particles through plates of matter separated by vacuum gaps; there are 
domains of a deterministic motion and domains of a diffusional m otion
[4];

(b) transport phenomena in porous media, in sponge and pum ice-type 
structures;

(c) vapor transport through polymer membranes (separation of gaseous 
mixtures);

(d) wave propagation in random media.
Another applications are presented by van Kampen in Ref. [6]. The problem 
like (1.4) was considered in the literature [4-7]. Laskin [4] analyzed a case of 
f ( x )  =  0 and g(x ) =  1. In Ref. [7] first-passage time problem was studied for 
dichotomic diffusion dynamics with the composite process T](t )£( t ) .  Here, we 
present exact results for full dynamics in terms of probability distributions.

2. P r o b a b ility  d is tr ib u tio n s

The process x t in (1.4) is Markovian because the composite force 
r j ( t ) r ( t ) is uncorrelated. Indeed, the multitime correlations functions

( V ( t 1 ) r ( t 1 )r1( t 2 ) r ( t 2 ) . . . i 1( t n ) r ( t n )) =  0 (2.1)

for
t i  #  t 2 f  f  t n . ( 2 . 2 )

Thus, any finite-dimensional probability distribution

P(X\  , t \  , X2 , ¿2 > • • • > > ¿n)

is known by virtue of the equality

P(x  j , f j ;  x 2 , t 2 ;. •.; x n , t n ) — II  (x j , t  \ \x2 , t 2 )

x l l ( x 2 , t2\x3 , t3) . . .  n ( x n—j , tn_ i | z n , tn )P(xn , G ) ,  (2-3)



which is valid for all Markovian processes [2]. The distribution II(x,  t\y, s) 
is a transition probability function for x t . A one-dimensional probability 
distribution P(x t) can be obtained from the relation

OO

p (x > 0 =  J dyII(x, t \y,0)P{y,0) ,  (2.4)
— OO

where P(a:,0) is an initial distribution.
To obtain P(x, t )  or 77(a:,i|y ,0), one can use the same method as in 

obtaining (1.1) for the process (1.2). E.g., one can use the Furutsu-Novikov- 
Donsker formula [8] and then one obtains a similar equation as (1.1), namely,

=  —^ f { x )F (x ,t)  +  D { t ) ^ g ( x ) ^ g { x ) F { x , t )  (2.5)

but now with the stochastic diffusion coefficient D(t),

D(t) = Dr ( t ) r ( t ) ,  (2.6)

and P( x , t ) is connected with F(x, t )  via the relation

P(x, t )  = (F(x, t ) )DW , (2.7)

where superscript D(t)  means averaging over all realizations of the stochas
tic function D(t).  The averaging can be performed [5] with the result

| 0 < m ) =  -  ¿ № № . 0  +  f  A j w A j W q * , « )
t  OO

+  J d s e ~ 2v(t~s) J  dyTB(x,t\y,  s ) ~ - g ( y ) ^ g ( y ) P( y ,  s ) ,
0  — o o

(2.8)
where the integral kernel IB (a;, t\y, s) is given by

9

dx
9

m{ x , t \ y , s ) = ~  g(x)— (g{x)R(x, t \y,s))  , (2.9)

and R(x,  t\y, s) is a transition probability distribution of a diffusion process 
(1.1) but with the diffusion coefficient D /2  instead of D, i.e. it is a solution 
of the problem [5]

d  d
— R ( x , t \ y , s ) = -  — f ( x ) R ( x , t \ y , s )

JD d d
~ 2 d x 9 ^ 9 x 9 ^ R(<X,^ y , S ^



liin R(x,  t\y, s) = 6(x -  y ) . (2.10b)
t — a

Let us note that if  v —> oo then the last term in (2.8) tends to zero and
the process x t tends to a corresponding diffusion process with a diffusion
coefficient D/2.  If as the initial condition one chooses

P (* ,0 )  =  i ( * - * 0) (2.11)

then the solution o f Eq. (2.8) is a transition probability II(x,  i|2o, 0).

3. S ta tio n a r y  s ta te s

Evolution equations for probability distributions of the parabolic diffu
sion and randomly interrupted diffusion are given by Eqs (1.1) and (2.8), 
respectively. A stationary state p(y) (if exists) for the parabolic diffusion is 
determined by the ordinary differential equation of the first order,

D g ( y ) ^ g ( y ) p { y )  -  f ( y ) p ( y )  = j  = constant (3.1)

and can be easily solved ( j  is a stationary probability current). For the 
randomly interrupted diffusion, a stationary distribution P{x)  is determined 
by the ordinary differential equation of the second order,

a(a ) "'<fe2~  +  b(x)dP̂  +  c{x)P(x) = G( x ) , (3.2)

where an explicit form of the functions a(:c), b(x), c(x) and G(x)  is pre
sented in Ref. [5].

For the case (3.1) one must determine one integration constant. It is 
determined by the normalization condition for p(y).  For the case (3.2) one 
must find two integration constants. The first condition is, as in the former 
case, the normalization of P(x),

*2
(1) =  j  P(x)dx = 1 . (3.3)

zi

The second condition takes the form

*2



where

[f(x)g(x)]'  n \f{x)g{x)]
w W  =  “ i g P  -  2 P ^ f  ] -  ( 3 . 5 )

and
u(a;) =  2ug(x)  +  f ' (x)g(x)  -  f{x)g' (x)  (3.6)

(the prim e denotes the  derivative w ith  respect to  x).
The constant Co depends upon boundary conditions and the sta tionary  

probability  current Jo as follows

C „ = S W , , ) - * ( « . ) ] (3.7)

w ith
A ( x )  =  f ( x ) g ( x ) P f i .  ( 3 . 8 )

u(  X)

In  generic cases, the  constan t (3.7) is zero.

3. A n  e x a m p le :  a  lin ea r  s y s te m  w ith  a d d it iv e  n o ise

For com parison, let us consider a special case of Eqs (1.2) and (1.4), 
nam ely

y = - a y  + T](t), a > 0 , y £  ( - 0 0 , 0 0 ) ,  (4.1)
x t =  - a x t +  T] ( t ) r ( t ) , a > 0 ,  x G ( - 0 0 , 0 0 ) .  (4.2)

A process y( t )  described by (4.1) is a  M arkovian exponentially correlated 
G aussian stochastic  process (an O rnstein-U hlenbeck process). The process 
x t in (4.2) is non-G aussian. Its  dynam ics can be found exactly [9]. Here we
present its  s ta tionary  d istribu tions P(x).  Eq. (3.2) for the  case (4.2) takes
the  form

x P" ( x ) + 2 -  -  + ^ -x 2 P' (x)  -f -7^(3 — 2—S\xP(x)  =  0 . (4.3)
a D JJ \ a /

The condition (3.4) reduces to  the form

OO



and determines stationary fluctuations is the system (4.2). The substitution
2ax

'  =  - 2 D  (4 '5)

converts Eq. (4.3) into a confluent hyper geometric equation [10] which so
lutions are given by confluent hypergeometric functions. A solution that 
fulfills conditions (3.3) and (4.4) reads

. / a  w ,  T ( 1  — p) f a x 2 \  t aæ2 \  / 1  „ ax2 \

(4.6)
where U(b,c,z)  stands for a Tricomi (confluent hypergeometric) function, 
r ( l  — p) is an Euler gamma function and

(4.7)

The solution (4.6) is valid for v >  0 (finite correlation time rc of the process 
4(t) in (1 .6)). If the correlation time t c is infinite (v =  0) then a solution of 
Eq. (4.3) is given by the singular distribution

, 1 k 1 l a  ( ax2 \
P(*)  =  2 ff(*) +  2 V M B 'eX? (  " 2D )  • (4 '8)

It consists of a deterministic part and of a Gaussian part because in this 
case with probability 1/2 the noise 77(f) is switched on and with the same 
probability it is switched off. If v € [0, a] then the distributions (4.6) diverge 
to infinity when x tends to zero. E.g., for u — a/2  one obtains

which diverges as |a: | _ 1 / 2 when x —► 0. If v £ (a, 00) then the distributions
(4.6) are finite for x =  0. E.g. for v — 2a, Eq. (4.6) takes the-form (cf. [10]
p. 287)

(4-10)
where D v(z) is a parabolic cylinder function [10]. Since D - 2(0) =  1 (see 
[10] p. 324), so P{x)  in (4.10) is finite. If v tends to infinity then (4.6) 
tends to a Gaussian distribution. For rc =  0 (v =  00) it has the form

p(l) = (td ) 2 “ p ( '  i r ) ' (4'u)
Changing D —> 2D,  we get a distribution of the process (4.1).



5. F in a l rem ark s

Processes with Gaussian white noise, which is randomly interrupted 
by an exponentially correlated two state Markovian process, are presented. 
Probability distributions of such processes are determined by partial integro- 
differential equations of the type (2.8). Eq. (2.8) contains a double integral 
operator over temporal and spatial variables. Additionally, the integral 
kernel B3(a:, t\y, s) is a solution of an auxiliary diffusion problem given by Eqs
(2.10). In a general case, obviously, Eq. (2.8) cannot be solved. For linear 
models with additive and multiplicative noise, a solution of Eq. (2.8) can be 
obtained and is analyzed elsewhere [9]. In the paper, stationary properties 
of a Unear model with additive noise are investigated. Stationary states are 
characterized by four classes of distributions: singular (4.8), diverging to 
infinity at zero (4.9), smooth at zero but non-Gaussian (4.10) and Gaussian
(4.11) in dependence on the relation between correlation time t c =  l/2i* of 
the noise £(£) and the deterministic relaxation time rd =  1/a.

I would Uke to thank Dr Adam Gadomski for discussions, Professor 
Peter Hanggi for informing me of his results and providing me with Ref. [7].
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