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BROW NIAN M OTION: A CASE OF 
T E M PE R A T U R E  FLUCTUA TIO NS

J . Ł u c z k a  a n d  B. Z a b o r e k

Institute of Physics, University of Silesia 
Uniwersytecka 4, 40-007 Katowice, Poland

(Received April 26, 2004)

A diffusion process of a Brownian particle in a medium of temperature 
T  is re-considered. We assume that temperature of the medium fluctuates 
around its mean value. The velocity probability distribution is obtained. It 
is shown that the stationary state is not a thermodynamic equilibrium state 
described by the Maxwell distribution. Instead a nonequilibrium state is 
produced by temperature fluctuations.

PACS numbers: 05.40.Jc, 05.40.-a, 02.50.Ey, 05.10.Gg

1. Introduction
Generalized statistics or ‘superstatistics’ occur in non-equilibrium sys

tems as a result of param eter (tem perature, friction, energy dissipation, 
pressure, chemical potential, etc.) fluctuations [1]. An example of super
statistics is the Tsallis statistics in nonextensive statistical mechanics [2]. 
One of a dynamical realization of this statistics has been constructed by a 
Langevin equation for the Brownian particle [3,4] with the inverse tem pera
ture being a fluctuating param eter. In the paper we consider a more natural 
model with fluctuating tem perature instead of its inverse. Fluctuations of 
tem perature can plav a significant role in many processes and phenomena. 
E.g., in astrophysics, the spectrum  of tem perature fluctuations of the cos
mic microwave background radiation can change our view on the universe 
a t epochs from redshifts of the order of ten thousand to nearly the present 
and can provide im portant clues to inflationary models and the dark m atter- 
energv problem [5]. In plasm a physics, an experimental evidence of substan
tial tem perature fluctuations has been found in mechanisms responsible for 
anomalous transport observed in tokamaks and stellarators [6]. The concept 
of tem perature fluctuations is used in the theory of heavy ion collisions and 
m ultiparticle production [7]. In the Ravleigh-Benard convection, tem pera
ture fluctuations can be passively transported  in the turbulence regimes [8].



Characteristics of tem perature fluctuations in living tissue has been stud
ied in [9]. Below, we study the influence of tem perature fluctuations on 
m otion of the Brownian particle. As mentioned, the similar problem has 
been studied previously, mainly in the context of the Tsallis statistics [3] 
with application to  velocity fluctuations in a turbulent flow [4]. However, 
the studies have been limited to inverse tem perature fluctuations and to 
the ‘s ta tic ’ case when fluctuations are represented by a tim e-independent 
random  variable. The problem is m athem atically trivial in the sense th a t 
the probability density of velocity can be calculated for an arb itrary  ran
dom variable modeling fluctuations. The more realistic model seems to  be 
the ‘dynam ic’ model based on tim e-dependent noise for which tem perature 
fluctuations are represented by a stationary  stochastic process. Then, as is 
shown below, the problem becomes non-trivial, even for the simplest model 
of tem perature fluctuations.

Let us remind th a t in the classical theory of diffusion, a position x  =  x(t)
of a one-dimensional m otion of a Brownian particle of mass m moving in
an equilibrium homogeneous medium of tem perature T  is described bv a 
Newton equation with a random  force which, according to  the fluctuation
-dissipation theorem, has the form [1 0 ]

mX +  qX =  V * y K T № ,  ( i)

where y is the friction coefficient (given by e.g. the Stokes formula), k  is the 
Boltzm ann constant and £(t) is a random  force modeled by the Gaussian 
white noise,

<£(t)> = 0 , <£(t)£(s)> =  S(t -  s ) . (2 )

The velocity v =  X is the Ornstein-Uhlenbeck stochastic process and its 
probability density P (v ,t) obeys the Fokker-Planck equation

d P ( v , t ) y  d P ( v , t )  ^ k T  d 2P (v , t )  
dt  m  dv F  m 2 d v 2 '

A general solution of this equation is given by the expression
CO

P(v , t) =  J  p(v, t|vo, 0)P(vo, 0) dvo , (4)
— O

P(v , 0)
bution



m  V )
(6 )

The stationary  velocity distribution function PM (v) does not depend on the 
initial distribution P (v , 0) and is the Maxwell distribution,

It means th a t the stationary sta te  in the velocity space is a therm odynam ic 
equilibrium state.

Now, let us consider the situation when the fluid is in a nonequilibrium 
steady state. W hat is a stationary sta te  of the Brownian particle in this 
case? We should use a theoretical framework which enables one to answer 
this question in a unified manner. For the moment, however, such a universal 
theory does not exist. F irst of all, we should specify a nonequilibrium state  
of the fluid: We assume th a t this sta te  is not far from equilibrium and can 
be described similarly as an equilibrium sta te  with the only exception th a t 
now tem perature T  is tim e-dependent, T  = T(t) .  We follow and extend the 
proposal of Beck [1,4] from adiabatic to  non-adiabatic tem perature changes 
and apply Eq. (1) to  this case. The problem is whether and when we can use 
Eq. (1) if T  =  T (t), cf. also polemics in [11]. Let us remember th a t when
(1) is derived from the microscopic Hamiltonian model [12], it is assumed 
th a t the fluid (medium) is in the therm odynam ic equilibrium sta te  of tem- 

T
can be characterized bv the tim e-dependent tem perature T  =  T (t), then (1) 
cannot be rigorously justified. We are optim istic (because of good agree
ment between theory and experimental da ta  presented in [4]) and believe 
th a t it can be used as a first approxim ation to an exact (but non-existing) 
theory. In Section 2, we present a m ethod how to trea t such a system when

T(t)
how to obtain the velocity distribution. In Section 3, we consider a curtailed 
characteristic functional for which an evolution equation is determined by 
the infinitesimal generator of the stochastic process representing tem pera
ture fluctuations. In Section 4, we consider a case of dichotomic tem perature 
fluctuations and solve the evolution equation for the curtailed characteristic 
functional. In Section 5, we discuss properties of the velocity probability 
density. In Section 6 , we analyze statistical moments of the velocity.



Now, let us assume th a t tem perature of the fluid fluctuates around its 
mean value To,

T  =  T (i) =  To +  n ( t ) . (8 )

The zero-mean stationary  stochastic process n(t) describes tem perature fluc
tuations and is independent of the stochastic process £ (t) describing therm al 
noise (interaction with surroundings). The formal restriction on this process 
follows from the condition T (t) >  0 and its phase space Y  is

n(t) € Y =  ( -T o , œ ) . (9)

The velocity probability distribution P (v ,i) can be obtained from the re
lation (4), in which the initial transition probability density p (v ,i |v 0, 0) is 
expressed as

CO

p(v, t\vo, 0 ) =  J  duje~%UJVCv (uj,t]v0) , ( 10 )

— O

where the conditional characteristic function Cv (w,t; v0) of the velocity is 
defined by

Cv(w,t; vo) =  ( e ^ v« )  . ( 1 1 )

The velocity v(i) is a solution of Eq. (1) with tim e-dependent tem perature
T  =  T (t), namely,

u(f) =  u0 exp ( j  +  f  ^se x P Y(t -  s)
m

where v0 is the initial velocity of the Brownian particle. Inserting the above 
equation into (1 1 ) yields

Cv (w,i; v0 ) =  exp ^¿wv0 e-7 i/m j  C (w ,i), (13)

where

C(w, t) =  ( exp /  d s e ' 7(i" )/m V î > ) e ( s ) .

t



The subscripts 4 and n denote average over all realizations of therm al noise 
4(t) and tem perature fluctuations n(t), respectively. The averaging over the 
Gaussian white noise 4(t) can be performed leading to the expression

where

C  (w, t) = exp
2m

& n (w,t), (15)

(w,t)  =  / exp d s e  2Ys/mn(s) (16)

is the characteristic functional of the stochastic process n(t). In this ap
proach, the velocity probability of the Brownian particle is determined by 
the characteristic functional of tem perature fluctuations. The explicit form 
of this functional will be obtained by the m ethod of the so-called ‘curtailed’ 
characteristic functional.

3. C urtailed characteristic functional

In order to calculate the functional (16) we proceed in the following 
wav [13]. For fixed tim e t = t  we define [14]

7* 2 -2rrt/nQ = —r- w e  
m 2

Let us introduce the auxiliary functional

i

F [n; O , i] =  ( exp -  n j  t o '  ̂  * , )
0

Then the relation

holds.

(w, t) =  F  [n; n , t  =  t]

(17)

(18)

(19)

The curtailed characteristic functional corresponding to (18) is defined 
as [15]

V (y, t )  =  ( 8(n(t),y)  exp -  n J  d  n t-J (20)

n

n



where y  G Y  takes values from the phase space of the stochastic process 
n(t) and S(n(t), y) is the Kronecker delta when n(t) is a discrete process or 
the Dirac delta for the continuous stochastic processes y(t).  The relation 
between these two functions is the following

(u , t )  = j  V  (y , t )dy ,  (21)
Y

where the integration for the continuous (or sum m ation for discrete ) process
Y

because for it, in contrary to (16), an evolution equation is known. In the 
abbreviated notation, it has the form [15]

J - V (y ,  t ) =  LV (y ,  t ) -  yV(y ,  t ) ,  (22)

where L  is an infinitesimal generator (a forward operator) of the stochastic 
process n(t). If n(t) is determined bv an Ito stochastic equation, the in
finitesimal generator is a differential operator which occurs in the forward 
Kolmogorov equation (i.e. in the Fokker-Planck equation). Now, the prob
lem reduces to solving the evolution equation (2 2 ) which, in dependence of 
n(t), can be a single or a set of differential or integro-differential equations. 
Below, we present an example which can be solved exactly.

4. Dichotomic fluctuations

Here, we consider a caricature of tem perature fluctuations, i.e. a discrete, 
two-state model [1 ]. An extension to  a m any-state or continuous model of 
fluctuations is in principle possible [16]. However, physics should be similar 
bu t m athem atics would be much more complicated because of difficulties in 
solving the evolution equation (22). So, we represent tem perature fluctua
tions by dichotomic noise [17]

n(t) = { - a , b }  , 0 < a < T 0 , b >  0 . (23)

Transition probabilities per unit tim e from one sta te  to the other are given 
by the relations

P r ( —a —>■ b) = n  = —  ,
Ta

Pr(b  —> —a) =  A =  — , (24)
Tb



where Ta and Tb are mean waiting times in states —a and b, respectively. We 
assume th a t

bp = a \ .  (25)

Then the process is stationary  and the probabilities

. . . . A b
Pr(rj(t)  =  —a) =

p  + A a + b

Pr(r](t) = b) = — • (26
w w  7 p  +  A a +  b '

The first two moments read

(n(t)) = 0 ,  (n(t)n(s)) = abexp (—|t — s | / t J , (27

where the correlation tim e t c is given by the formula 1 / t c =  p  +  A.
The relation (21) takes the form

<PV (w,t) = V  (—a,t)  + V  (b,t) (28

and the explicit form of (2 2 ) reads

^ V ( - a , t ) =  - p V ( - a , t ) +  \ V ( b , t )  + Qe2lt/ma V ( - a , t ) , (29

J w ( 6 ,  t) = p V ( —a, t ) -  XV(b, t ) -  Qe2lt/mbV(b, t ) .  (30

The initial conditions follow from (20) and read (cf. (26))

V ( - a ,  0) =  (5 (p( t ) , - a ))  = , (31
p  + A

V(b,0)  = (5(r](t),b)) = - ^ — . (32
p  + A

Let us define a new tim e variable

t  =  t  (t) = Q e27i/m (33

and two new functions V ( —a,T^ d  V(b ,T ) via the relations

V ( —a,t)  = V ( —a ,T ( t ) ) , (34
V(b, t )  = V ( b ,T ( t ) ) . (35

Then Eqs (30) and (29) can be transform ed to the form 

2j t  d
m  d r  

2 j r  d
m  dr

V ( —a , r ) = —p V ( —a , r ) +  W ( b , r ) +  r a V ( - a , r ) ,  (36

V ( b , r ) = p V ( —a , r ) — \ V ( b , r ) — r b V ( b , r ) (37



V (—a, Q) = (38)
P +  A

V(b, (2) = . (39)
P +  A

We define two new functions in the following wav

F (t ) =  V ( —a,T ) +  V(b ,T ) ,  (40)
G(t ) =  bV(b,T) — a V (—a, t ) .  (41)

Then from Eqs (36) and (37) one gets

~ F ( t ) = —G(t ) , (42)
m

F L q (t ) _|_ _|_ \  _  r (a _  b))G(r)  +  rabFfr )  = 0 , (43)

where the dot denotes a derivative with respect to  the argument. The initial
conditions follow from (40)-(43) and take the form

F  (Q ) =  1 , G(Q ) = 0  . (44)

The function F (t ) is crucial because the characteristic functional (16) is 
related to  it in a simple way. Indeed,

= F ( t )  for r  =  Qe2lt/m  and Q = F  uj2e~ 2zt/ m . (45)
m 2

From the above system of two coupled differential equations (42) and (43), 
we obtain a closed differential equation for the function F (t ) only. It has 
the form

t F ( t ) +  —  [¡i +  A +  r(b -  a)} F ( t )  JZf—F (,T) = 0 (46)
m r „  m 2abT
—  [p +  A +  r(b -  a)} F ( t ) -  —

with the initial conditions

F ( Q ) =  1 , F ( Q ) =  0 . (47)

It belongs to a class of hvpergeometric equations. Its solution is the function 
(18]

F (t ) =  e-mbT/2Y {C i(Q ) + [ a ,P , x ( r )] +  C 2 (Q ) V [ a , P , x ( r )]} , (48)



where W stand for the confluent hvpergeometric Kummer and Tricomi
functions, respectively [19]. The param eters

mb a +  A mb
a  = ----------- r  = ------ 7 tv , (49)

2 y a +  b 2 y rc(a +  b)

_  m ( p  +  A) _  _m _
27  27 tc ( }

and
m(a  +  b)

x (Q  =  — —— t . (51)

The constants C \ ( Q ^ d  C2(Q ) are determined from the conditions (47) 
and read

C i ( Q )  -   b r ( a )  Y ( n \ P  -m aQ/ 2 - f
j  “  ( a  +  b ) P ( / 3 ) X l  j  6

x (  V[a, 13, x m  +  m(/^ |  A) + l , P  + l , X m )  (52)

and

Co (12) -   b r ( a )   Y ( n ) P  e - m a ü / 2 j
21 j “  {a + b )r[ (3 )X{ ’

x (£ [a  +  1 , 0  +  1 ,x (D )] -  £ [a ,& x (Æ )]) (53)

where r ( z )  is the Euler Gam m a function. In this wav we found the function 
F (t ) and via the expressions in (45) we can find the characteristic functional 
&v (u, t ) .

5. P ro b a b ility  d istr ib u tio n

The probability distribution is obtained from Eqs (10)—(16) and the re
lations (45). It has the form

CO

p(v, t\vo, 0 ) =  —  d u e 1' 
2 n J

—-f t /m _  ^ 0  ̂ 2 G _  -2 j t /m \
2 m



The explicit form of the characteristic functional is

(u , t )
(a + b ) r  (ß) 

x < #  [a, ß, A u 2] ( W a, ß, A u 2e~2Tt/m

exp
a k u 2 m 2i t / m

m

m  T
H W

27tc
a +  1 ,ß  +  1 ,A u 2e ~2Yt/m

+  W [a, ß, A u 2 ] #  [a  +  1 ,ß  +  1 , A u 2 e~2̂ t/m

- $ a , ß , A u 2e-2Yt/m (55)

where the constant A  = k(a  +  b)/2m.  By use of (4), the distribution 
p(v, t l v0, 0 ) allows to determine evolution of the one-dimensional velocity 
probability density P(v, t) for an arb itrary  initial sta te  defined bv the distri
bution P(v,  0 ) and analyze relaxation of the system to the stationary state.

5.1. Stationary distribution

The stationary velocity distribution function Pst(v)  does not depend on 
the initial distribution P(v,  0). It is obtained from (4) and (54) performing 
the long tim e limit, t  ^  to. We use the relations [19]

and

lim # [a, ß , z ] = 1z^Q

r ( a  -  ß  +  1 ) r ( a )

(56)

(57)

which represents the leading term s for small z  = A u 2e 2Tt/m ^  1 when 
t  ^  to . Then the stationary  distribution takes the form

CO

Pst(v) = ~ J  du ex3s(uv)e~iTo+b')küj2i 2md>
b m

2 j r c(a + bY 2 j r f  2m



It is not a Maxwell distribution and we can conclude th a t the stationary 
sta te  is not an equilibrium state: It is a nonequilibrium state. In the case of 
absence of tem perature fluctuations, i.e. when a =  0  and next b =  0 , then

m m
0 =  1

2  TcY  2 y t c

and the Maxwell distribution (7) is obtained for T  =  T0.

(59)

5.2. Limiting cases of short and long correlation time 

The correlation tim e t c of tem perature fluctuations is defined below
Eq. (27). For very fast fluctuations when the correlation tim e is short,

b m  m  a +  b
lim 9

Tc ̂ 0 2 yTc(a +  b) ’ 2 y rc ’ 2  m
  Jkw 2/2m= (60)

and (58) reduces to  the Maxwell distribution (7) with tem perature T  =  T0. 
The short correlation tim e limit can be achieved when (cf. (25)):

(i) p  ^  ^  a id  b ^  0  bu t bp =  a \  =  const.

(ii) X ^  to and a ^  0 bu t aX =  bp =  const.

(Hi) b ^  to and X ^  to  t a t  b/X =  const. (the la tte r corresponds to the 
Poisson white shot noise)

(iv) p  ^  ^  a id  X ^  to  t a t  p / X  =  const.

In these limits, the system is not able to react to  very fast fluctuations and 
effectively it feels the mean tem perature T  =  T0.

The opposite limit is the adiabatic limit when fluctuations are slow and 
the correlation tim e is very long, tc ^  to . The Kummer function takes the 
form

lim 9
Tc

b m m  a +  b
2jTc(a +  b) ’ 2 yTc ’ 2  m  

and Eq. (58) reduces to the function

k v 2 +
b (̂a+b) hiM2/ 2m

a +  b a +  b
(6i)

b m
a +  b y  2nk(T0 — a) 

a
+ -

m

exp
mv

2k(T0 — a) 
2m v 2

a



It is a linear combinations of two Maxwellian distributions for two tem per
atures T0 — a and T0 +  b and with the weights given by Eqs (26). The 
long correlation tim e limit can be achieved when ^, A ^  0 and the mean 
residence times in the states — a and b tend to infinity, r a , Tb ^  to . The 
adiabatic limit for other models of inverse tem perature fluctuations has been 
considered in [1 ].

Fig. 1. The stationary velocity distribution P st (v ) for three values of th e  correlation tim e 
Tc of tem perature fluctuations: Tc =  0 (dotted line, the Maxwell distribution), Tc =  5 
(dashed line) and Tc ^  to  (solid line).

6. D isc u ss io n

Applying a m ethod of the curtailed characteristic functional we obtained 
a tim e-dependent probability distribution of velocity of the Brownian par
ticle moving in medium in which tem perature fluctuates. We considered 
tem perature fluctuations to  be as simple as possible, i.e., a two-state sta
tionary Markovian process n ( t )  Nevertheless, the problem is formulated for 
an arb itrary  Markovian stochastic process n(t) because what we need is the 
infinitesimal generator L  of the process rj(t), see Eq. (22). We note th a t the 
correlation function of the force F(t)  = \ j 2 r)kT(t)  £(f) in Eq. (1) has the 
form

( F ( t)F (s))  = 2 7 fcTo5(t -  s), (63)

independently of statistics of fluctuations n(t) and has the same form as 
in the case without tem perature fluctuations. It resembles the dissipation- 
fluctuation relation. However, we showed th a t the stationary  sta te  is a 
nonequilibrium state . We can ask how far the system is from equilibrium.



To this aim, let us analyze statistical moments of the velocity. From Eq. (58) 
it follows th a t the stationary characteristic function Cv (w) of the velocity is

Cv (w) =  e-(To +b)k“2/2m $
2YTc(a +  b) ’ 2 q tc ’ 2  m

(64)

The statistical moments (vn ) , (n =  1, 2, 3 , . . . )  can be obtained from the 
relation (vn ) =  in dn Cv (w)/dwn |w=0. The odd order moments are equal to 
zero. The second moment

(v2) = ■ (65)

It does not depend on the statistics of tem perature fluctuations and is the 
same as for the Maxwell distribution! The forth order moment m easure a 
deviation from the Maxwell distribution. We use it to  calculate the kurtosis,

K ™ «('0 =  ^ - i  =  W f = 7y j . (66)

where Td =  m /q  is the relaxation tim e of the velocity in the determ inistic 
case (cf. Eq. (12) when 4(t) =  0) and Tc is the correlation tim e of fluctuations 
(see Eq. (27)). For the equilibrium state, i.e. for the Maxwell distribution, 
the kurtosis is zero. In the case considered, the kurtosis is always positive 
and it means th a t Pst(v) is more peaked than  the Maxwell distribution. It is 
an increasing function of the variance (n2 (t)) =  ab and the correlation time
Tc
from zero for tc =  0 to  the m aximal value ab/Tg when tc ^  to. Generally, 
all even order moments are greater than  for the Maxwell distribution.

One can determine the moments for the position of the Brownian particle. 
E.g., for long times, t  »  Td, the mean squared displacement

(x2( t ) ) -  2 D t , (67)

where the diffusion coefficient D  =  kT0/ 7  is the same as in the case with
out tem perature fluctuations. It means th a t for long time, the process in 
the position space is the standard  normal diffusion with the same diffusion 
constant. We can conclude th a t the first two moments of position and of 
velocity are the same in both  cases: without and with tem perature fluctua
tions. So, when we m easure only first two moments, we cannot distinguish 
these two states. We emphasize th a t it does not depend on the model of 
tem perature fluctuations.

The work partially  supported by the European Science Foundation (the 
Program  Stochastic Dynamics: Fundam entals and Applications).
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