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A  POTENTIAL M ODEL OF FU SIO N  WITH TRANSM ISSION  
COEFFICIENTS CALCULATED BY THE M ATRIX M ETHOD*

By M. L esia k , W. Z ip p er a n d  J. C z a k a ń s k i

Institute o f Physics, Silesian University, Katowice**

(Received December 6, 1984)

A  barrier penetration model o f heavy-ions fusion is presented. To calculate the trans
mission coefficients through any one-dimensional barrier of nucleus-nucleus real potential 
a matrix method is used. The parameters of the model are the critical radius and the param
eters o f nuclear interaction. The model is tested on several cases oi fusion, i.e. a + 40,44Ca, 
12C + 12C, 160 + 160  and 12C + 24Mg and it is found to reproduce the data quite well.

PACS numbers: 25.70.Ij

1. Introduction

The interaction potential V(r, I) of two colliding nuclei in the sudden-approximation
is given as a sum of nuclear Vx, Coulomb Vc and centrifugal terms, i.e.

V(r, I) = Vx (r)+ Fc(r)+ h- ~ 2 l )  ■ (0

In the potential model of fusion it is assumed that the incoming particle penetrates the 
potential barrier and the fusion occurs, when it reaches some critical distance R CJ £1, 2]. 
In our model the energy dissipation of the relative motion at distances i? >  R CT is neglected. 
At the distance R  =  IQ, the kinetic energy of the ions is then decreased abruptly. The 
fusion cross section can be written as follows [2]:

00

crflIS(£) =  p  ^  [1 + ( — 1)i+2i<5/(2/+1)] (2/+  1)T|(£), (2)
/=0

where k  is the wave number of incoming particle, and 3 =  0 (5 =  1) for nonidenticàl 
(identical) nuclei, I  is the spin of the incident particle, Tt(E)'s are (he transmission coeffi
cients through the potential barrier at £ cr for a given angular momentum /.
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The crucial point in Eq. (2) is the calculation of the transmission coefficients T fty 's .  
There are several approaches to calculate T,'s: f.i. the semiclassical method [3], the para
bolic approximation [1,4], the double barrier method [2] and the parabolic approximation 
with a Coulomb tail [5]. These approaches to calculate T,’s give relatively simple expres
sions for the fusion cross section but the approximations introduced influence the physical 
interpretation of the results significantly. As a consequence of these approximate calcula
tions of the transmission coefficients one gets usually wrong information about the fusion 
process, even if one knows the interaction potential. In the present paper we propose 
a matrix method for the calculation of transmission coefficients for any shape of the static 
nuclear potential barrier.

2. The matrix method o f  T{s calculation

Let us take two points on the r-axis, namely R CT and i?CHt (see Fig. 1). We assume that 
the fusion appears for r < R ct. Rcut is the distance beyond which the nuclear potential 
Vx becomes negligible. The potential curve for a given angular momentum / is divided

Fig. 1. The shape of the potential barrier for a given angular momentum /. The form o f the wave functions
in all intervals is defined in the inset

in the region of R cr <  r <  i?cut into N  equal parts. Each part forms a rectangular barrier 
of height V„ =  V(Rct+ (n - ^ )a ) ,  (n = 1, 2, ..., N )  and width a =  (Rcut- R cr)N. The wave 
going to the right (left) is labelled by “ + ” (“ — ”). We assume F(r) =  0 in the intervals 
[Acr—Ar, Rct), [Rct + a —Ar, RQr + a), [R,.t + N a —Ar, Rcr+Na), (without points 
R cr, R CT + a, ..., Rcr + Na). The corresponding wave functions have the following forms:

ip =  A +elkr+ A - e ~ ikr, y> =  A t e ikr+ A : e ~ ikr, ip =  A ^ e ^ + A R e~№r.



On the other hand in the intervals [/?„+(«— 1 )a, Rct + na-Ar) (with points R^,, Ret+na). 
the corresponding wave functions have the forms ip = B f elXnr+B f e-ianr (n = 1, 2, N) 
For r >  Rcut, ip =  £Y + + where u± = G +  iF and G, F are the Coulomb wave 
functions [5].

The wave function and its derivative must be continuous at the points RCI, Rct + a—Ar, 
Rct+a, Rt'+Na—Ar, Rcf+Na. If we eliminate all An and Bn (n = 1,2 N) from 
the equations of continuity, we have for Ar -r 0:

t f - o o

AY'
A Y - ikRc (IIn- I

, e l | ! (3)

where the matrix elements of f(ctn) and C are the following: 

fu(a„) =  »«(«») = cos <x„a—j  i ^
a„ k
— + — ] sm ocna, 
k a.

sin a „a,

with

k a„

c l l  =  *-22 ~  ~2 [M  ( 0 c u t ) - < u  ( ffc u t) ] ’

*"21 =  x12 ~  ~2 D* (ecu«) +  >“  (f?cut)]»

k =  (2 pElh2)li2, 

a, = [2K E -V J lh 2]'!2,

Qcut ~  k ' R cut, 

du ±-1

d Q Je=ecut

(4a)

(4b)

(5a)

(5b)

(6a)

(6b)

(7a)

(7b)

If E = VB, the term —  sin <xna which appears in Eq. (4) has the value ka and the sin- 
<*«

gularity disappears at the turning points.
If N  -*• oo i.e. a -* 0, the transmissions coefficient through the potential barrier for 

the wave going to the right has the form:

DHL.
and for the wave going to the left:

' A~ 2-

r

(8a)



One can show, that T+ = T~, because the Wronskian W(G, F) =  1. Thus the transmission 
coefficients do not depend on the direction of the incoming wave. The formula (3) will 
be used in calculations of the fusion cross sections from equation (2).

We have analyzed the experimental fusion cross sections for the systems a + 40’44Ca, 
12C + 12C, 12C + 24Mg and 160  +  160 . For the cases a + 40,44Ca we have assumed that the

Ex is the energy of a-particle in the laboratory system.
For the other cases we have used the Satchler folding model potential [7, 18]. The 

Coulomb potential was taken to be that of an uniformly charged sphere of radius i?COui- 
We have calculated the fusion cross sections as a function of energy with transmission 
coefficients based on the matrix method. The critical values of R cr used in the calculations 
are given in Table I. The width barrier parameter a was taken to be a =  0.05 fin.

The results of our calculations are presented as a solid line in Fig. 2. For comparison 
we present here also the results based on the Hill-Wheeler parabolic approximation (dashed 
line) for the a + 40,44Ca systems. One can see, that the present approach gives a much better 
fit to the experimental data [10] than the Rill-Wheeler method.

As a second case, we have fitted the experimental data of Kovar et al. for the 12C +  12C 
system [11] — the results are presented in Fig. 3. One can see, that the experimental 
points are well reproduced up to an energy of 22 MeV. In Fig. 3 the data of Parks et al.
[12] and Nambodiri [13] are also presented. The points of this last experiment are placed 
near the curve of present model. The Hill-Wheeler method reproduces well only the points 
of the experiment made by Nambodiri.

The curves given by our method and by the parabolic approximation are very similar 
for the 12C + 24Mg [14] (Fig. 4) and 160  +  160  [15, 17] (Fig. 5) systems. Both describe the 
experiment very well. The bad fits of the fusion excitation function obtained by the Hill- 
-Wheeler method can be seen on the graph of the a + 40Ca reaction (Fig. 6a). The parabola 
used in this method is a bad approximation for the potential barrier curve," these two Curves 
agree only at the vertex area. If  we consider then the reaction 12C + 24Mg, we see from 
Fig. 4 that both curves lie very close to one another, so the parabola is a good approxima
tion for the potential barrier in this case (Fig. 6b).

3. Applications and discussion o f  the results

nuclear potential Vx is equal to the real part of the optical model potential which reproduces 
the e'astic scattering very well [6] i.e.:

Vx(r) =  — U0f 2(r, d, b),

where
l/0 =  U ^ U z E , ,

and



EK (MeV)

F ig .  2 . F u s io n  c ro s s  s e c t io n s  f o r  « + 40,44C a  f r o m  R e f .  [10]. T h e  s o l id  l in e  is  t h e  r e s u l t  o f  p re s e n t  m o d e l.  
T h e  d a s h e d  c u rv e  g iv e s  t h e  H il l - W h e e le r  a p p r o x im a t io n

F ig .  3 . F u s io n  c ro s s  s e c t io n s  f o r  12C -t- 12C . D a t a  C * ) + r e  f r o m  R e f .  [11], ( ■ )  f r o m  R e f .  .[12], ( O )  f r o m  
R e f .  [13]. T h e  c u rv e s  h a v e  th e  s a m e  m e a n in g  a s  in  F ig .  2



P o te n t ia ls  u s e d  in  t h e  c a lc u la t io n .  Rct =  rct(A jl/l + Ail13). F o r  « + * 0 4 4 C a :  Rc, =  rCIAT1/3. F o r  d e ta ils
s e e  t e x t

R e a c t io n P o te n t ia l Rcui ( fm ) R Cr (fm ) rc r ( fm )

a + 40C a

lh  =  1 9 8 .6  M e V  
V i =  - 0 . 3 3 4  
d =  1 .3 7  fm  
b =  1 .2 9  fm  

Rcoui — 4 .4 5  fm

12 .015 1.81 ± 0 .0 5 0 .5 3  ± 0 .0 2

a + ^ C a

i / i  =  17 1 .8  M e V  
U2 =  - 0 . 1 4 6  
d =  1 .4 2  fm  
b =  1 .25  fm  

T?coui =  4 .5 8  fm

12 .015 2 .21 ± 0 .0 5 0 .6 3  ± 0 .0 2

,2 C + 12C
S a tc h le r - f o ld .  

Rcowi =  5 .9 5  fm 11 .625 3 .4 8  ± 0 .0 5 0 .7 6  ± 0 .0 1

12C + 24M g
S a tc h le r - f o ld .

Rmui =  6 .7 3  fm 1 5 .025 4 .9 3  ± 0 .0 5 0 .9 5  ± 0 .0 1

1 « 0  +  1 « 0
S a tc h le r - f o ld .  

R coui =  6 .5 5  fm 13 .025 5 .5 3  ± 0 .0 5 1 .1 0 ± 0 .0 1

20 30 AO
Ec.m.(MeV)

F ig .  4 .  F u s io n  c ro s s  s e c t io n s  f o r  12C + 24M g . D a t a  w e re  ta k e n  f r o m  R e f .  {14). T h e  c u rv e s  h a v e  t h e  s a m e
m e a n in g  a s  in  F ig .  2



Summarizing, it follows from the present considerations, that the parabolic potential 
approximation can be used only if the shape of the potential barrier is close to a parabola. 
In all other cases, one should be cautious with the interpretation of the results obtained 
by the, use of the Hill-Wheeler method, even if one gets a good fit for the fusion excita
tion function since it can lead to a wrong physical interpretation. It follows from the 
analysis of 12C + 24Mg and 160  + 160  reactions, that the critical distances in the present 
calculations are close to one fm.

F ig .  5 . F u s io n  c ro s s  s e c t io n s  f o r  160 +  1<sO . D a t a  ( • )  a r e  f r o m  R e f .  [15] a n d  (O ) f r o m  R e f .  [17 ]. T h e  c u rv e s
h a v e  th e  s a m e  m e a n in g  a s  in  F ig .  2

Galin et al. [8] propose the value Rcr =  1.0+0.07 fm, which is equal approximately 
to the sum of two half nuclear matter density radii. A similar observation is contained in 
the work of Natowitz et al. [9]. One should notice that our R cr is not defined by the radius 
of the half density, but that it defines the distance for which the assumed nuclear potential 
is meaningful for the reproduction of both elastic scattering and fusion processes [16, 19]. 
Hence our critical radius is a free parameter and it is impossible at present to calculate 
it correctly.

In any case, however, the critical distance R C[ is determined by the shape of the po
tential of the colliding ions, their internal structure and, in some cases, by shell effects. 
The most popular approach to study the fusion process has been proposed by Glas and 
Mosel [1]. However, a consequence of a simple barrier penetration model with the inverted 
parabola approximation is that the barrier parameters obtained from the Hill-Whecler 
transmission probability are not realistic.

The main advantage of the present model is that the transmission coefficients are 
calculated for any shape of a realistic potential barrier. Using this method we have been 
able to reproduce the experimental fusion data of the strongly nonsymmetric system
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oc-t-40'44Ca as well as the symmetric 12C + 12C and 160 + 160  systems. Our model is valid 
over a broad energy range and works with any realistic nucleus-nucleus interaction. It 
takes into account the exact form of the Coulomb potential and the centrifugal barrier 
and it uses a general matrix formalism for calculating the transmission coefficient through 
a realistic potential barrier.

In our calculations we have used the real potential of a Saxon-Woods optical model 
potential, and the Satchler folding potential. The^e potentials are known to reproduce 
satisfactorily the elastic scattering data [16, 18] and in the present paper we have shown, 
that they fit also the energy behaviour of ihe fusion cross section.

The authors are deeply indebted to G.R. Satchler fcr providing the numerical values 
of our potential.
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