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The effective method of simulation of stochastic excitable media by 
en ensemble of Brownian particles is presented. The system studied is a 
variant of Rinzel-Keller model with global inhibition. The formation, time 
evolution, and statistical properties of localized structures — spots — are 
investigated.
PACS numbers: 53.35.Mw

1. I n tr o d u c t io n

Beside the great breakthrough in the understanding of the physical side 
of nature, which has been caused at the beginning of XX century by the de­
velopment of Q uantum  Mechanics and Relativity Theory, the notion of self­
organization in non-equilibrium systems has led to the remarkable changes 
in outlook upon the living nature. The fact th a t a system can increase its 
complexity, which was before thought to  be a feature of the living materia, 
has also been observed in experiments with non-living objects. Since the 
first works, structure formation phenomena have attrac ted  much attention 
from both  theoretical as well experimental scientists over.

In the beginning of 50’s the Russian chemist Belousov observed tem poral 
oscillations in the concentration of some chemicals during catalytic oxidation 
of citric acid (1]. This, as it was ahead of its time, was strongly criticized 
and due to  its novelty was not even taken seriously1. One had to wait till the
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Phenom ena from Q uantum  to  Classical Regimes”, Ustron, Poland, September 25- 
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1 His m anuscript was rejected due to  the  referee comments “it is impossi­
ble”. A brief survey of Belousov life and work can be found on Web page 
h ttp : / / w w w.m ath.chalm ers.se/~ jacques/kf2na/H istoria/B elousev.htm l
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70’s, when the new findings of a study in the field of non-equilibrium ther­
modynamics made by groups of Prigogine and Haken dram atically changed 
common beliefs on the complexity of systems (see e.g. [2,3]). In this time, Be­
lousov’s work was continued by A.M. Zabotvnskv. He modified the original 
reaction; his variant was easier to  reproduce and the oscillations were visual­
ized by changes of color [4]. Finally, due to  his contribution, the existence of 
chemical oscillations have been accepted in professional circles. Nowadays, 
the so called Belousov-Zabotvnsky (BZ) reaction due to its novel and uni­
versal features belongs to  one of the most popular chemical reactions, even 
amongst non-chemists.

If one conducts the BZ reaction in a medium where the diffusion length 
of reactants is smaller than  the size of the reaction volume, spatial patterns 
appear — chemical waves [5]. There are many types of chemical waves 
possible, the most frequently investigated are ro tating spirals. They have 
attrac ted  much attention in recent years many different aspects have been 
studied e.g.: the problem of the m otion of spiral tip  [6], the influence of 
fluctuations on its motion, [7] and the control of the spiral tip  by the means 
of feedback effects [8,9].

The structure formation is not only limited to the BZ reaction; in princi­
ple any nonlinear spatially extended system with e.g. excitable type in some 
regime becomes a medium where dissipative structures can exist. Exper­
imentally, some such systems are know like the catalytic oxidation of CO 
on P t(llO ) [10], and the gas discharge and transport processes in semicon­
ductors [11]. In these systems, however, other factors become significant. 
Firstly  the global coupling plays an im portant role. In the case of catalytic 
oxidation processes it is due to  coupling of different reacting parts of solid 
phase via partial pressure variation of the surrounding gas phase. Secondly, 
in contrary to the structures obtained in typical BZ reaction, the struc­
tures observed in the above processes are microscopic, hence the influence 
of fluctuations becomes im portant.

In this paper we will study localized structures which arise in excitable 
medium with global inhibition — spots. Such structures have been inves­
tigated theoretically in [12]. It has been shown th a t spots can be in two 
regimes: traveling and stationary. The aim of our work will be to investi­
gate how the internal fluctuations influence the behavior the spots. In order 
to  to  th a t we will propose a particle oriented algorithm, which will naturally  
include random  factors. The paper is organized as follows: in the next sec­
tion we present the system of interest, in the th ird  section we explain the 
m ethod of simulation used here, in the fourth section the main results are 
presented.



2. The m odel system

We will here consider an excitable system which is a variant of Rinzcl 
Keller model [13] described by following Reaction Diffusion equations:

di'a, =  ku9(u — a,)(vo — '*!kopp'*!) — ksuti +  Z)UV" u . (1)
dpv =  kvii — k svv +  D },V 2w,

where u  and v are concentrations of activator and inhibitor correspondingly, 
kj are kinetic constants, 9 is Heaviside step function, a is an excitability 
threshold, and D n, D„ are diffusion constants. Notice th a t the only nonlin- 
earitv is the term  containing the step function 6(u — a). Above system due 
to  its excitable kinetics exhibits such features as: moving excitable fronts, 
ro tating spiral waves etc. In order to  obtain the localized solutions we will 
impose the global inhibition:

a =  ciq +  f i J  j  u (x , y )d x d y ,  (2 )

where /* is global inhibition constant. The stable solution of the system (1) 
with (2) is the localized excitation, which looks as a piece of spiral with end 
which are hindered to  grow. The value of the coupling strength /* controls 
its shape (see figure 1). We are interested in the ease of large /* in such 
a ease the spot is well localized.

Fig. 1. Spots for small // =  1.2 (left) and large // =  2.2 (right): the number of 
particles is different but the shape changes dramatically.

3. The sim ulation by an ensem ble of Brow nian particles

There are several m ethods of simulating Activator Inhibitor systems on 
the microscopic scale. They differ in assumptions, the precision, and the 
required amount of com putational power. Perhaps the most straightfor­
ward approach is the numerical simulation of mean field equations with an 
additional noise term . This, however, does not guarantee th a t the micro­
scopic origin of fluctuations are sufficiently good reproduced. Nevertheless



the efficiency of such treatm ent, especially for one dimensional systems, has 
been commonly used [14]. The next, recently very popular and efficient way 
of producing spatial structures, are Cellular A utom ata (CA) [15-18]. The 
biggest advantage of this approach is its com putational efficiency, however 
pictures of microscopic scale is in this approach relatively rough. In the 
contrary the most accurate is a direct simulation of individual molecules: 
Molecular Dynamics. Unfortunately it is com putationally the most expen­
sive m ethod. Here we will propose a particle oriented algorithm  which due 
to  some approxim ations is not as precise as MD, however is well reflecting 
underlying molecular nature of the medium.

We represent each field u and v by an ensemble of Brownian particles 
which performs a stochastic m otion on two dimensional domain as well as 
are destroyed or born according to  determ inistic kinetics.

The additional param eter which appears in such approach is the number 
of particles. It controls the amount of noise in our system: less particles 
we put in the simulation, more noisy picture we get. In the limit of in­
finite number of particles we expect the quantitative equivalence with the 
determ inistic model described by the equation (1). We want to  introduce 
the number of particles independently of the mean field properties of the 
medium. Therefore we will scale the concentration u = N / V  by the density 
p: u  =  it/p. The interpretation of p if following: it is a number of parti­
cles which are on the average in the unit of volume when the dimensionless 
concentration is u  =  1. In our simulation the typical values of p will vary 
between 3000-100000.

Let us explain details of the implem entation. The diffusion term s D uV 2u  
(DvV 2v ) in (1) are simulated by the Langevin dynamics:

i i  =  V 2 DQ{t ) ,

m =  V/2Dpflt) ,  (3)

where £*(i) and rn(t) are uncorrelated white Gaussian noises.
Linear term s in (1) can be straightforwardly implemented in term s of 

b irth  and death processes. The only term  in (1) which includes many par­
ticles interaction is and can not be simulated in particle picture directly with­
out taking into the account correlation between particles is: 
ku9(u — a)(uo — Woppffi)- I n the sake of efficiency we will introduce follow­
ing approximation. We introduce the rectangular grid with box volume Vb- 
During each tim e step the number of particles in each box n* is calculated. 
Then, having the density p we can calculate the local concentration in the 
box U{ = rtiKpVn). The field of local concentrations is used for evaluation 
of the nonlinear 0-term  in (1). It is done in two steps:



•  In each box it is checked if u; > a ( 6(ui — a) ), if so the box is marked 
as excited.

•  Each excited box box produces particles with a rate  pVb(vo — Ukoppffl); 
new particles are placed within the given box with random  position.

The natural tim e stepping is given by the simulation of the Langevin dy­
namics (3). The counting of particle on a grid is done once per simulation 
step.

We have simulated spots using above algorithm with following restric­
tions concerning characteristic volumes and macroscopic observable — the 
size of the spot Vs:

•  Vs -C Vb; the spot should be much bigger than  anisotropy of the 
medium.

•  Vb > Vp] if the volume of the particle is bigger than  the box it means 
th a t there are less than  one particle per box in excited region. Thus 
the relative fluctuation of the particles are extremallv large. In such 
a case the spot is usually unstable and we are not interested in such 
regime.

4. R e s u lts

At first let us look at the spot for different param eters values. The basic 
control on the size of the spot is provided by the global inhibition constant 
p. In the figure 1 we have plotted two spots for different values of p =  1.2 
and 2.2. The spot with the smaller feedback is larger and resembles more 
a piece of spiral whereas the strongly inhibited one is almost round. The 
medium here has a constant particle density — the number of particles of 
which the spot is built is proportional then to  its area. Hence, one could have 
used the global inhibition as a control of the transition between microscopic 
and macroscopic spots. However, as we see in figure 1, not only the size 
but also the shape of spot is influenced by the change of p. Therefore in 
order to isolate features connected with the particle number of the spot, 
we decided to use the density of the medium p. The spots for different p 
have approxim ately the same shape but differ in the number of particles (see 
figure 2). In this paper we will consider only the spot with relatively strong 
global inhibition p cz 2.0 (like in figure 2).

In the contrary to the determ inistic case, due to the stochastic character 
of the simulation the spot never becomes stationary. It changes the shape 
and the direction of motion permanently. We neglect the fluctuation of the



Fig. 2. Spots for small p = 42000 (loft) and largo p = 10000 (right). The number 
of particles is different without essential change of the shape.

shape and take trace of the center of mass:

1 f
Eu(t) = j j  d xxu (x . t ) ,  (4)

1 fx.„(t) = — dxx v (x . t ) ,  (5)

where U = Y ' tlik =  f  u,(x)dx and V  = f  v(x)dx.  A  typical path  of x u is
depicted in figure 3.

Fig. 3. A typical trajectory for a running spot in presence of fluctuation. In the 
insert we show magnification, of the trajectory. On the large scale the path looks 
similar to Brownian particle but on small scale the correlation of the direction of 
motion arc noticeable.



4.1. Transition fro m  ballistic to diffusive m otion  
controlled by internal, fluctua tions

The tra jectory  of the spot on short tim e scale (see hgure 3) exhibits fea­
tures of the ballistic motion (the velocity and direction remain constant). On 
the other hand on the large tim e scale the motion seems to be of diffusional 
type. This has been thoroughly investigated by measuring the displacement 
of the spot from the initial point and averaging over an ensemble of realiza­
tions. In the general case the dependence of mean square displacement of 
the particle position can be w ritten in the form:

V (A  r 2) =  V 2 D ta . (6)

The exponent a  is equal to  one for ballistic m otion and 1/2 for pure diffu­
sive one. Therefore one could expect a transition from ballistic to  diffusive 
motion for on a certain time-scale. The another appropriate indicator of 
character of the motion of particle is the correlation function of velocity. 
At small time-scales one should expect strong correlation of spo t’s velocity, 
while for long tim e intervals the velocity should be uncorrelated.

We have generated an ensemble of long enough trajectories of the spot, 
then the mean displacement from initial point, the exponent a  and finally 
the correlation function of the velocity c(t) have been calculated. In hgure 4 
we have plotted for running and stationary  spots all above characteristics. 
Firstly  one can notice th a t the exponent a  varies from 1 for small time 
scales (t < 100) to 0.5 for long times (t > 1000). Secondly, the tim e when 
the correction function vanish coincides with the tim e of the transition a  : 
1 -+ 0.5.

The numerical experiment has been repeated for different number of 
particles; the controlled by the param eter p. The number of particles is 
connected with the amount of noise in the system: smaller value of p, larger 
huctuations occur in the system. The results are shown in hgure 4. One 
can observe th a t more noisy running spots undergo the transition into the 
diffusive motion on shorter time-scale then less noisy ones.

It has been shown in [12] th a t the steady solution of reaction-diffusion 
system might be in one of two regimes: steady or moving. The transition 
between those states can be controlled by the diffusion of inhibitor D v . We 
have also studied the inhuence of macroscopic features of the spot on the 
transition point. For values of inhibitor diffusion: D v =  0.30,0.20,0.11 we 
have analyzed the trajectory  as in the previous case hgure 5. The transition 
point depends signihcantlv on the type of spot. For stationary spots the 
ballistic motion is changes into diffusive for shorter times.



Log(t)
Fig. 4. The comparison of statistical properties for spots with consisting of different 
number of particles. The spot is in running regime: Dv = 0.2. The number of 
particles is controlled via parameter p = 3000,5000,10000. One can observe that 
the transition from ballistic into diffusive motion is shifted to smaller times as 
amount of noise increases (p decreases). In the upper plot we have shown the 
correlation function of velocity cv(t), in the middle the mean displacement of the 
spot, and the bottom contains the exponent a  (see equation (6)).

4-2. Mean field limit

The im portant issue is the question whether the particle algorithm can 
reproduce the mean field description in the limit of large number of particles 
on correspondingly small grid:

p —> oo,
Ub -+ 0, (7)

pVB — const. 1.

We have been able to increase the number of particles to ca. 106 and number 
of boxes to ca. 105. In this case we expect th a t the properties of the 
spot are comparable with properties of determ inistic spot i.e. the solution 
of the system (1). Because one of the most im portant param eters of the 
spot is its velocity, we have compared distribution function of velocities 
of the stochastic spot with the numerically obtained value of velocity of 
determ inistic spot. In figure 6 we have plotted the velocity distribution for 
three spot build by increasing number of particles and determ inistic velocity 
for the same macroscopic param eters. We see th a t the algorithm reproduces 
solution of RDS system when the number of boxes within one spot and 
number of particles which compose one spot are large.
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Fig. 5. The comparison of statistical properties for spots with different velocities 
controlled via diffusion constant of inhibitor Dv. The spot consists of relatively 
small number of particles: p = 5000. The upper plot shows exponent a, middle 
correlation function of velocity c(t), and the last shows mean displacement. The 
straight lines show approximately time scales at which the transition from ballistic 
into diffusive motion occurs. In the upper plot we have shown the correlation 
function of velocity cv(t), in the middle the mean displacement of the spot, and 
the bottom contains the exponent a  (see equation (6)).
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5. S u m m a ry

We have presented a way of simulating stochastic excitable media. The 
m ain concern was to study the influence of internal fluctuation on the be­
havior of the dynamics of spot. Using our algorithm  we have shown th a t the 
spots perform of short and long time-scales two different kinds of motion. 
On the short time-scale the velocity is strongly correlated and the motion is 
of ballistic type. The long time-scale is, in turn , dom inated by diffusion like 
motion, which is characterized by vanishing correlations of velocity. Those 
two time-scales are connected by the transitional region ( 0.5 <  a  <  1 ). The 
tim e where this transition occurs is strongly influenced by the fluctuations. 
In general the stronger internal noise shifts the transition toward shorter 
time-scales.

The work supported by SFB 555 A l, the Polish S tate Com m ittee for 
Scientific Research (KBN) G rant No. 2 P03B 160 17 and the Foundation 
for Polish Science.
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