
 

 

 

 

 

 

 

 

 
 

 

 

 

Title: Barrier crossing and transport activated by kangaroo fluctuations 

 

Author: Marcin Kostur, Jerzy Łuczka 

 

Citation style: Kostur Marcin, Łuczka Jerzy. (1999). Barrier crossing and transport 
activated by kangaroo fluctuations. "Acta Physica Polonica. B" (1999, nr 1, s. 27-43). 



B A R R IE R  CROSSING AND T R A N SPO R T  
ACTIVATED BY K A NGA ROO FLUCTUATIONS*
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We study barrier crossing of Brownian particles in a bistable symmetric 
potential and transport of Brownian particles in spatially periodic struc­
tures, driven by both kangaroo fluctuations and thermal equilibrium noise 
of zero mean values. We consider exponentially and algebraically correlated 
kangaroo fluctuations. Starting with the full Newton-Langevin equation for 
the Brownian particle and by introducing scaling as well as dimensionless 
variables, we show that the equation is very well approximated by over­
damped dynamics in which inertial effects can be neglected. We analyze 
properties of selected macroscopic characteristics of the system such as the 
mean first passage time (MFPT) of particles from one minimum of the 
bistable potential to the other and mean stationary velocity of particles 
moving in a spatially periodic potential. In dependence upon statistics of 
kangaroo fluctuations and temperature of the system, macroscopic char­
acteristics exhibit distinctive non-monotonic behavior. Accordingly, there 
exist optimal statistics of fluctuations optimizing macroscopic characteris­
tics.

PACS numbers: 05.40.+J, 02.50.-r

1. In tro d u ctio n

Processes activated by fluctuations and noise play a crucial role in nature. 
Examples are not only in physics, chemistry or engineering but also in soci­
ology, economy and politics. One of such processes, the noise-assisted escape 
over a barrier is realized in such diverse phenomena as thermionic emission of 
electrons from a m etal surface, chemical reactions in condensed phases, flux 
transitions in SQUIDs and transport of molecules in proteins, to  mention 
only a few [1 ,2 ]. An archetypal m athem atical model is based on an equation
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of motion of a Brownian particle in a bistable potential and driven by ther­
mal non-correlated fluctuations, i.e., by ¿-correlated Gaussian white noise. 
An equivalent description can be presented in term s of a Fokker-Planck 
equation which determines the tim e evolution of a probability density for a 
position of the Brownian particle. M otivated by experiments, theoreticians 
have started  to  analyze more realistic models by incorporating a finite noise 
correlation tim e or finite bandwidth. A considerable effort has been made to 
study dynamical systems driven by colored or correlated noise such as expo­
nentially correlated Gaussian or dichotomic processes [2-5]. Unfortunately, 
systems driven by arbitrary  correlated noise are difficult to handle analyti­
cally. An example is algebraically (powerlv) correlated noise with long time 
tail [6,7]. In the paper, we study the influence of such noise on two systems, 
namely, a bistable system and a ratchet-tvpe system. The former is very 
well known for a scientific community. The la tter has mainly been inspired 
by biological systems (with the hope to explain transport by protein motors 
in cells) [8 ]. The literature on this subject can be found in [9-11].

In Section 2, we form ulate the model of noisy dynamics as the Newton 
equation for a particle in bistable or spatially periodic potentials and driven 
by two random  forces, one describing interaction with surroundings (thermal 
noise) and the other th a t mimic nontherm al fluctuations. By introducing 
specific scaling and dimensionless variables, we dem onstrate th a t the limit of 
overdamped motion is an extremely good approxim ation to  full dynamics. 
As nontherm al fluctuations, we consider two classes of kangaroo Markov 
processes: exponentially and algebraically correlated processes. The former 
is named the Kubo-Anderson process (Section 3). In Section 4, forward and 
backward m aster equations for the two dimensional process in the extended 
phase space are presented. These are partial integro-differential equations 
which cannot be solved analytically. Therefore, in Section 5 we apply the 
simulation m ethod of the Langevin equation to investigate the mean first 
passage tim e problem for the bistable system and transport properties of 
the Brownian particles in spatially periodic structures. Our findings are 
discussed in Section 6 .

2. M od el

We study a Brownian m otion of particles in a one-dimensional symmetric 
bistable potential V (x )  (Fig. 1) or a spatially periodic potential V (x )  = 
V ( x  +  L)  of period L  (Fig. 2). The dynamics of particles is assumed to be 
governed by a Newton-Langevin equation of the form

M x  + j x  =  _|_ 7(1) _|_ / ( ¿ j ;
ax



where M  denotes mass of the particle and 7  is the friction coefficient. The 
random  process T ( i )  represents therm al equilibrium fluctuations modelled 
by ¿-correlated Gaussian white noise with the first two moments

( f ( î ) )  =  0 , ( r ( ï ) r ( û ) )  =  2D ô ( î  -  Û) , (2)

where, according to  the dissipation-fluctuation theorem, the thermal-noise 
strength D  relates to the friction constant and tem perature T  of the system 
as follows

I) =  yk\i'T  (3)

with fcß denoting the Boltzmann constant.

Fig. 1. The bistable potential V(x)  of barrier height A V  and minima at x  = ± i min

Fig. 2. The piecewise linear periodic potential V(x)  of period L,  barrier height A V  
and asymmetry k.

The random  force £(i) represents zero-m ean  nontherm al fluctuations 
which are modelled here by a sym m etric  kangaroo process (by symmetric 
process we mean th a t its probability density p(£, t ) is a symmetric function



of £). This process is described briefly in the next section. As usual, we 
assume th a t P( t )  is not correlated with ( ( t ) .

Now, let us introduce dimensionless variables. The symmetric bistable 
(Fig. 1) or spatially periodic (Fig. 2) potentials V ( x )  have the barrier height 
A V  =  ffnax — ffmin- The bistable potential has two minima at x  =  ± T min and 
a maximum at x  =  Tmax =  0. Hence, a characteristic length Iq is determined 
by the distance between positions of maximum and minima of the potential,
i.e., Iq =  |&min—£max|- For the spatially periodic potential, the characteristic 
length Iq is determined by the period L  of V ( x ) ,  i.e., Iq =  L . To identify 
a characteristic tim e to, let us consider a deterministic, overdamped motion 
of a particle in the potential V ( x ) ,  namely,

dx  d V ( x )
W t  =  - N O T  ■ (4)

Then we define to by the relation

l° qo
7 -  =  T "  (5)To ¿0

and it reads

TO =  4  (6)
A V

During this tim e interval, an overdamped particle moves a distance of length 
Iq under the influence of the constant force A V / I q . Accordingly, the scaling 
for the position of the Brownian particle is x  =  x/ Iq  and for tim e t  =  / / t q .  

In this case, Eq. (1) is transform ed into the dimensionless form

m x  + x  =  f ( x )  + r ( t )  + £(t),  f ( x )  =  —d V ( x ) / d x ,  (7)

where

M
m = -- (8)

7 ro

is the dimensionless mass related to  inertia of Brownian particles. The 
rescaled bistable or spatially periodic potentials V ( x )  =  V ( x ) / A V  have now 
the unit-barrier height A V  =  Vmax — Fmin =  1. Minima of the bistable po­
tential V ( x )  are located at x  =  a:min =  ±1 and a maximum at x  =  x max =  0 .
The spatially periodic potential V ( x )  =  V ( x  +  1) has a unit period L  =  1. 
The dimensionless strength D  of rescaled Gaussian white noise r ( t )  is mea­
sured in units of the barrier height, D  =  k ^ T / A V . Finally, the rescaled 
kangaroo noise ( Q)  =  Oo/ A V ) ( ( i ) .



Let us analyze the problem of overdamped dynamics. As the first ex­
ample, we consider particles in fluid. Jean Perrin in his fundam ental ex­
perim ents in 1908 [12] used particles of radius R  =  10-7 m and of mass 
M  =  10- 17kg. For fluid being water in room tem perature, the viscosity 
i] =  10- 3kg/s m. From the Stokes formula [13], 7  =  dirgR, one gets for 
the friction coefficient 7  =  2 x 10- 9kg/s. Assuming a diffusion regime, 
A V  «  h k ^ T ,  room tem peratures T  =  300K of the system and a character­
istic length Iq =  10-5 m being 100 times greater than  the particle radius, we 
infer th a t m  =  5 x 10-1° -C 1. As the second example, we take into account 
the kinesin movement along m icrotubules inside of cells [14]. Microtubules 
are spatially periodic structures which consist of tubulin heterodim ers ar­
ranged in rows called protofilaments which, in turn , are oriented nearly 
parallel to  the m icrotubule axis. A heterodim er is about 8nm long [15] and 
is composed of two various globular subunits: a -tubulin  and /3-tubulin. It 
leads to sym m etry breaking of the spatial reflection of the potential V ( x )  
with period L  =  8nm. The mass of kinesins m  =  6 x 10-22kg and their 
radius R  =  10- 8m. The friction coefficient 7  =  2 x 10-8 kg/s which is 
calculated from the Stokes formula with 7 =  10-1 kg/m s (it is the effective 
viscosity coefficient of the medium [15]). If we assume th a t A V  =  5k FT  
and T  =  310K then m  =  5 • 10-1° -C 1. Let us note th a t the dimensionless 
mass m  at the acceleration term  is 10 orders less than  the dimensionless 
friction coefficient 1 at the velocity term . For th a t reason inertial effects can 
completely be neglected and the second order differential equation (7) can 
be approxim ated by the first order differential equation

x  =  f ( x )  +  R( t )  + £ ( i) .  (9)

This is an equation describing overdamped dynamics of Brownian particles 
and for the above two examples is indeed a very good approxim ation to  the 
full equation (7). Below, we analyze this simplified model.

3. K a n g a ro o  s to c h a s tic  p ro c e s s

Nonthermal and nonequilibrium fluctuations can be modelled by the 
kangaroo process f ( t ) .  It is a purely discontinuous (Kolmogorov-Feller) 
stationary  stochastic process for which the transition probability per unit 
tim e LF(£|£o) for a flipping from the sta te  £0 into the sta te  £ factorizes [16], 
i.e.,

IL(CICo) =  Q(CMCo)- (10)

It means th a t the system jum ps from the sta te  £0 with the frequency v((o)-  
The quantity  t(£ )  =  is the mean waiting tim e in the sta te  £. The



probability th a t the process jum ps into the sta te  £ is Q(£)  and it is normal­
ized over the phase space of £(i) to unity. The corresponding Kolomogorov- 
Feller equation for the probability density p ( £ ,  t )  of this process takes the 
form [17]

OO

dP^  ^  =  -v(£)p(£,t) + Q(0 J  v( v )p( v , t ) dr ] , (11)
— OO

where £  defined by this equation is an infinitesimal (forward) generator of 
the process £(i). The backward operator £ + , acting on an arbitrary  function 
g( i ) ,  has the form

OO

£ +g(0 = -v (0 g (0  + H Q  J  Q(v)g(v)dg • (12)
— oo

It plays a crucial role in first passage tim e problems.
For the symmetric kangaroo process, which is considered in the paper, 

its correlation function F ( t )  is [17]
OO

F i t  -  ,)  =  ( m m )  =  2 / i V ( i ) e xp ( - O f l | i -  , |)  ^  (1 3 )

o

where p(£) =  p ( —£) is a stationary  probability distribution of £(i) and i/(£) =
v (—£). In this case it is a zero-mean process, (£(i)) =  0.

3.1. K ubo-A nderson  fluctua tions

The K ubo-Anderson process is a particular case of the kangaroo process 
when the jum ping frequency is constant, i/(£) =  vq [17-19]. Then from (13) 
it follows th a t the K ubo-Anderson process is exponentially correlated,

F ( t  - s )  =  (C(i)C(s)) =  (C2) e x p ( - |i  -  s \ / t c ) (14)

with the correlation tim e r c =  I/uq and (£2) is a mean value of £2(i) over 
the stationary probability density p(£) =  Q(£) ,  cf. (11). We will consider 
two examples of this noise:

(1) the process £(i) is unbounded, defined on (—oo, oo) and has the Gaus­
sian stationary  distribution,

P ( 0  =  Q(0 =  -)= = - e x p (-£ 2/ 2cr2) , £(i) G ( - oo ,oo). (15)
V 2-7T0



(2) The process £(i) is bounded, defined on [—A, A] and has the uniform 
stationary distribution,

p ( 0  =  Q ( 0  =  F e ( x  + A ) e ( A  -  x ) , m  e  [ - a , a ] . (16)

3.2. Algebraically correlated fluctua tions

Let us define the kangaroo process for which its correlation function is 
a power function of time. For the bounded process £(i) defined on [—A, A] 
and uniformly distributed as in (16), its correlation function has the form

A

F ( t  - s )  =  (C(i)C(s)) = \  J C2exp(-i/(C )|i -  s |) d (  (17)
o

We generalize the previous case to the situation when the jum ping frequency 
i/(£) depends powerlv on the state, i.e.,

'M ) 3“" ( i )  =  "0 ( - J  (18)

The distribution Q(£)  is given by

Q (i) =  b r  ( I ) "  d a)

and the correlation function takes the form

A2 (  1 h 1 / “
F ( t - s )  =  {( ( t ) ( ( s ) )  = - y ( l / a , v 0\ t - s \ )  , (20)

where 7 (a, z ) is an Euler incomplete Gam m a function [20]. As |t — s| —> 00, 
the function 7 (1/ 0:, i/q11 — s|) tends to a constant value given by the Euler 
gamma function T( 1 /a ) . Accordingly, for long time, £(i) is algebraically 
correlated with the exponent 1 / a  exhibiting the long tim e tail |i — sj“ 1/“ . 
Let us observe th a t when a  ^  0 then this process tends to the K ubo- 
Anderson process: The jum ping frequency tends to  a constsnt value, ¿/(0 
vq. Using the relation [20]

7 (a, x)  =  a ~ 1x ae~ x 1+ 1(1,1 +  a, x) ,  (21)

where 1+1 (1,1 +  a , x )  stands for the Kummer (confluent hypergeometric) 
function, we infer th a t in (20),

(C(i)C(s)) -»• exp(—i/0| i -  s\) as a ^ O  (22)

and is the same as (14) with {£2) =  T 2/3  for uniformly distributed noise.



4. M a s te r  e q u a tio n s

The output process x( t )  in (9) is non-Markovian as driven by correlated 
noise 4(t).  However, the two-dimensional process { x ( t ) , 4 ( t ) }  is Markovian 
and its joint probability density obeys a m aster equation of the form [16]

a n Y ' t) =  + ( } r A ( , t )  + D F p ( X , ( , t )
OO

- i s ( 4 ) P ( x , 4 , t )  +  Q ( 0  [  v(r j )P(x,  r\, t )dr / . (23)

It is not required to  know the probability density P ( x , £, t) in the extended 
phase space {x ( t ) , 4 ( t ) } .  We are rather interested in the probability den­
sity V ( x , t) of the process x( t )  only. It can be obtained from P ( x , £, t) by 
integration it over £, i.e.,

OO

V ( x , t ) =  J  P ( x , f , t ) d f .  (24)
— OO

Integrating (23) over the noise variable £ yields the continuity equation for 
the distribution density, V ( x , t ) ,

d V ( x , t )  d J ( x ,  t)
S mT -  =  — m T ’ (25)

here the probability current J ( x , t )  of the process x( t )  reads
OO

= / M H M )  -  (26)
— OO

The probability current J ( x , t )  characterizes transport properties of systems 
because an average velocity of Brownian particles can be expressed by J ( x ,  t ) 
(Sec. 6).

The mean first passage tim e T ( x )  of the process x( t )  is one of the most 
im portant quantity  for bistable processes. It is known th a t the mean first 
passage tim e T ( x , f )  of the joint process { x ( t ) , 4 ( t ) }  is determined by the 
backward integro-differential equation

[ f ( x )  + 4 } - ^ T ( x , 0  +  D - ^ T ( x , 0

oo



with specified boundary conditions. The mean first passage tim e T ( x ) of 
the process x( t )  alone can be calculated as follows [21]

OO

T ( x ) =  J  T ( x , O P o ( O d f l ,  (28)
— OO

where po(Z) is an initial probability density of noise /(£). Unfortunately, 
neither (23) nor (27) can analytically be solved.

5. S im u la tio n s  o f  th e  L a n g e v in  e q u a tio n  w ith  k a n g a ro o  
a n d  K u b o -A n d e r s o n  n o ise

The complicated m aster equations (23) and (27) make the m ethod of nu­
merical simulations the most im portant tool in the investigation of dynamics 
of Brownian particles driven by kangaroo and therm al sources of noise. The 
m ethod of integration the Langevin equation is a standard  procedure. First 
we integrate Eq. (9) over one tim e step:

ti+i

x ( t ) d t  =  x ( t i+1) — x( t i )

U

ti+ i t i+1 ti+1

=  J  f ( x ( t ) ) d t +  J  r ( t ) d t +  J  C( t )d t . (29)
ti u u

If h =  1 — ti is sufficiently small, we can make following approximations:

(A)
ti+i

f  ( x ( t ) )dt  «  f ( x i ) h ,
I

where X{ =  x(tjt). This is simply a step of Euler integration of ordinary 
differential equations.

(B)
k+ i

r ( t ) d t  =  W ( U  +  h) -  W( U)  =  V 2 D h N (0 ,1 ) ,

where W ( t )  is the W iener process and N ( 0,1) is a Gaussian random 
variable of zero average and unit standard  deviation (we use the fact



th a t the W iener process is an integral of Gaussian white noise ). The 
number iV(0, 1) has to be an independent random  value in each step 
(we have used the uniform pseudorandom number generator based on 
the linear congruential generator with shuffling and then the Box- 
Muller m ethod to convert it to Gaussian one).

provided th a t h is much smaller than  the correlation tim e of noise f ( t ) .  

Thus we can write Eq. (29) in the approxim ate form

X i + l  =  X i  + f (Xi) • h +  V 2 D h N ( 0 , 1) +  (( t i )h +  0 (/i3/2) . (30)

The algorithm  of integration of the Langevin equation consists of a genera­
tion of the tra jectory  x( t )  starting  from an initial position xq =  ±(0) (which 
can be a random  variable d istributed according to  a specified distribution 
or it can be determ inistic). The m ethod of generation of the particular re­
alization of f ( t )  is based on generation of states to  which the process jum ps 
and tim e intervals in which the process stays in a given state. In the case of 
kangaroo processes those times are dependent on the current sta te  of noise. 
Therefore first we have to  calculate the value £ of noise as a random  variable 
with distribution (15) or (16), or (19) and then the jum ping rate v ( ( )  which 
is constant or given by (18). W hen v ( ( )  is known the tim e the process spend 
in the sta te  £ is d istributed according to

and can be easily generated. To avoid side effects connected with the “bad” 
properties of a pseudorandom number generator we constructed it in such 
a way th a t N  particles are simulated at the same tim e and the loop over 
particles is inside of the loop over time. Therefore the subsequent calls to  the 
pseudorandom number generator are d istributed over different trajectories. 
This makes the m ethod more stable with respect to  quality of pseudorandom 
number generators. In order to  investigate the statistical properties of the 
generated kangaroo noise we have calculated the correlation function F( t )  =  
( f ( t ) f ( s ) ) .  The comparison of F( t )  calculated from numerical experiment 
and analytical formula shows good coincidence for short as well as for long 
times (see Fig. 3).

(C)

k

P ( T )  =  i/(£)e_T,/(e) (31)



Fig. 3. The correlation function F(t)  of the Kubo-Anderson process (KAP) and 
kagaroo fluctuations with exponents a  = 0.9 and a  = 2.0. The amplitude . 4 = 1  
and the frequency =  1.

6 . D isc u ss io n

In this Section we analyze results of simulations. Two characteristics 
have been studied, namely, the mean first passage tim e T ( x )  and the sta­
tionary mean velocity (v) of Brownian particles. To explore features of the 
system we have considered three types of noise:

(%) Exponentially correlated Kubo-Anderson noise with the Gaussian sta­
tionary distribution (15).

(ii) Exponentially correlated Kubo-Anderson noise with the uniform sta­
tionary distribution (16).

(Hi) Algebraically correlated kangaroo noise with the uniform stationary 
distribution (Sec. 3.2).

6.1. M ean F irs t Passage T im e

We considered the particle moving in the bistable potential

V ( x )  =  x 4 — 2 x2, x  € (—00, 00), (32)

driven by both  therm al and kangaroo sources of noise. For all numeri­
cal experiments we have used dimensionless variables and the overdamped
equation of motion (9).

To obtain the mean first passage tim e we integrate Eq. (9) numerically 
starting  from ±(0) =  — 1 to x ( T )  =  +1 according to the formula (30). The 
m easured tim e T  has to  be averaged over a large number of realizations 
(usually 103 — 104). The integration step was taken to  be h =  10-3 in all 
simulations. The choice of a comparatively small tim e step assured th a t



simulations were reliable and precise. However, this resulted in long tim e of 
calculations. A typical “run” consisted of 108 tim e steps and we obtained 
one plot consisting of c.a. 10 points in tim e of order 24 hours.

M FPT depends on three param eters: jum ping frequency vq, the strength 
D  =  L b T /A V  of therm al fluctuations and the variance proportional to a  or 
A  for Gaussian and uniformly distributed noise, respectively. Additionally, 
in the case of algebraically correlated noise, it depends on the exponent a. 
For the system driven by K ubo-Anderson noise with the Gaussian station­
ary distribution (unbounded noise), the dependence of M FPT on frequency 
vq is depicted in Fig. 4 for three values of a stationary  variance a  =  \ f  ( f 2) 
and fixed strength of therm al fluctuations (or equivalently tem perature of the 
system ). We find th a t M FPT is a non-monotonic function of the jum ping fre­
quency. It decreases as the jum ping frequency increases attaining a minimal 
value at some vq (the extrem al point vq shifts to  the right for greater values 
of a ). Next, M FPT grows as v q  —» o o .  One can observe th a t M FPT mono- 
tonicallv diminishes as the variance a  increases. Qualitatively, the same 
behaviour exhibits M FPT for systems driven by bounded exponentially as 
well as algebraically correlated noise. We show it in Fig. 5. Inferentiallv we 
note th a t there exists an optim al jum ping frequency at which M FPT  is the 
smallest and the activation process is the fastest. Another im portant fea­
ture is related to the fact th a t exponentially correlated (Kubo-Anderson) 
bounded noise is “worse” than  algebraically correlated kangaroo bounded 
noise of any non-zero value of the exponent a . In turn , algebraically corre­
lated noise is observed to be a better activator when a  is bigger. The larger 
value of a  means the longer tail in the correlation function. Accordingly, 
long tails make the activation easier.

Fig. 4. The depencence of MFPT on the frequency vQ in the system activated by 
Gaussian (unbounded) Kubo-Anderson noise of the variance o = 1.0, 1.5 and 2.0 
and for fixed temperature T  = 0.001. The insert shows the same for a =  2.0 and 
for a greater interval of showing existence of the extremal value of minimizing
MFPT.



Fig. 5. MFPT against the frequency vQ for the system activated by: Gaussian 
(unbounded) Kubo-Anderson noise (KAP-Gaussian) of the variance a = 2/^/3; 
uniform (bounded) Kubo-Anderson noise (KAP-uniform) of the amplitude A = 2; 
kangaroo (bounded) noise with .4 =  2 and a  = 1/6, 2. In all cases, temperature 
T  = 0.001.

It seems to  be difficult to compare the Gaussian (unbounded) K ubo- 
Anderson noise with uniform (bounded) noise. The param eters A  and a  may 
be related to  each other via, e.g., stationary  moments <  fff1 > , n  =  1, 2, 3 , . . .  
bu t it is rather artificial. For bounded noise, (£2” ) =  A 2n/ ( 2 n  +  1) and for 
Gaussian noise, (£2” ) =  (2n  — 1)!!tr2” . However, we can observe the same 
features of this dependence — the optim al value of the frequency at which 
M FPT  is the smallest.

Next, we focus on the dependence of the escape ra te  1 MFPT  upon 
the am plitude A  of bounded noise. Details are shown in Fig. 6. The force 
f ( x )  =  —d V ( x ) / d x  =  —4a;3 +  4a; has a local minimal value f ( x o) =  —%/Zy/Z

* * G aussian
/

■------- U niform f

—  0.001 !  j
— —  0.02 i /

i /  *
■------ * 0.05

M
y  /

Y  J J
0.00 1.00 2.00 

v ariance

Fig. 6. The escape rate (1/MFPT) as a function of the variance of noise for the 
system activated by: Gaussian (unbounded) Kubo-Anderson noise of fixed u0 = 0.4 
and for T  = 0.001; uniform (bounded) Kubo-Anderson noise with u0 = 0.4 and 
for T  = 0.001; kangaroo (bounded) noise with fixed a  = 1 and u0 = 0.4 for three 
various temperatures T  = 0.001, 0.02, 0.05.



for xq =  —1/ 7/ 3 . If tem perature T  =  0 and if the am plitude A  of noise /(£) is 
smaller than  the absolute value of x q ,  the crossing over the barrier from the 
left to  the right cannot be realized because x  = f ( x )  +  /(£) <  0. The increase 
of tem perature enables weak noise (with the am plitude A  below the value 
x q )  to  activate the system because therm al noise is unbounded. In turn, 
the unbounded Kubo-Anderson process induces the barrier crossing at any 
tem perature of the system. This is the main difference between influence of 
bounded and unbounded sources of noise. In the former, fluctuations cannot 
be smaller than  some minimal value and there exists a threshold value of the 
noise am plitude below which there is no activation. In the latter, fluctuations 
can take an arb itrary  large value (with correspondingly low probability) and 
therefore no threshold exists. We also notice th a t exponentially correlated 
Kubo-Anderson noise leads to  a smaller activation ra te  than  corresponding 
algebraically correlated kangaroo noise.

6.2. Transport in spatially periodic structures

We have also performed simulations of transport of Brownian particles 
in a spatially periodic system driven by algebraically correlated bounded 
kangaroo noise. The case of exponentially correlated Gaussian (unbounded) 
Kubo-Anderson noise has been studied elsewhere [18,19]. The potential we 
use is piecewise linear (Fig. 2),

f I+lf> a; € [ - 1 / 2 ,  ft] m o d i,
V (x )  = { (33)

I I = l f ’ a; G [ft, 1/2] m o d i,

where the param eter k  characterizes asym m etry of the potential: if ft =  0
then it is symmetric. Otherwise, it is asymmetric. Transport properties are
determined by the average velocity (v(t)) of particles,

1

^  ( S )  = V° ("<//) = V° =V° 1 8 x )'p (x : t ) d x '. (34)
0

where integration is over a period L =  1 of the rescaled potential and the 
characteristic velocity vq = Iq/ tq. To obtain the above relation, we have 
utilized Eq. (9) and the fact th a t mean values of both  sources of fluctuations 
are zero. Using (26), we obtain



In the stationary state, P ( x ) =  lim t^ O0P (x , t ) ,  and J  =  lim ^oo J(;r, i). 
Then (35) reduces to the form

(v) =  V0 J. (36)

The dimensionless probability current J  depends on the dimensionless pa­
ram eters, i.e., J  =  J ( D;  vq, A, a; k)  for bounded noise with the stationary 
uniform density.

The numerical integration of the equation of m otion was carried out ac­
cording to  the algorithm  (30). The tim e required was longer than  in the case 
of M FPT. The number of steps for one set of param eters was usually 3 x 109. 
Hence, we needed c.a. 50-100 h to  obtain one plot. The main purpose of 
this part of our work is to study the influence of a  and vq on transport. A 
generic graphical representation is the dependence of the probability current 
on tem perature. We depicted this dependence in Fig. 7 for two values of the 
exponent a  =  1/6 and a  =  2.0, and two frequencies vq =  1.0 and vq =  2.0. 
It is simulated for a fixed am plitude A  of kangaroo noise with values be­
tween two extrem al values of the force f ( x ) .  The observed rule is th a t two 
factors cause the increase of the current: the increase of a  and the decrease 
of vq. Moreover, we plotted the probability current against the frequency 
for a  =  1/6 and vq =  1 in the case of zero tem perature limit. The current 
decreases monotonicallv, approaching zero for an infinitely large frequency 
v q . The limit of v q  =  0 corresponds to the adiabatic limit, for which changes 
of noise are much slower than  determ inistic relaxation of the system.

Fig. 7. The probability current versus temperature for the system activated by 
kangaroo (bounded) noise with vQ = 1, a  = 1/ 6; =  2, a  = 1/ 6; =  1, a  = 1;
vq = 2, a  = 1. In all cases, the amplitude A = 2.

A general note concerns a direction of particle transport. We considered 
a region of sm all-to-interm ediate values of frequency. Then the current is 
positive for a positive asym m etry of the potential with k > 0. Conversely, if 
the potential has a negative asym m etry k < 0, the resulting current assumes



Fig. 8. The probability current as a function of the frequency vQ for the system 
activated by kangaroo (bounded) noise with a  = 1/6, L = 2 and fixed T  = 0.001.

negative values. If k  =  0 then J  =  0. As follows from [18,19], for large values 
of frequency (or small correlation time) of Gaussian (unbounded) Kubo- 
Anderson noise the current is negative. The explanation of this current- 
reversal phenomenon is presented in [18].

Finally, our simulations lead to the conclusion th a t long tails (bigger a) 
in noise correlation affect advantageously on transport in spatially periodic 
structures.
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