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We discuss the recently proposed model, where the spacetime in large
scales is parametrized by the usual real line R, while at small (quantum
mechanical) scales, the space is parametrized by the real numbers RM

from some formal model M of Zermelo–Fraenkel set theory. We argue
that the set-theoretic forcing is an important ingredient of the shift from
micro- to macroscale. The set RM , describing the space at the Planck era,
is merely a meager subset of R. It is Lebesgue non-measurable and all
its measurable subsets have Lebesgue measure 0. According to this, the
contributions to the cosmological constant from the zero-point energies of
quantum fields vanish. Moreover, the emerged irregularities in the real line
can be considered as the source of the primordial quantum fluctuations.
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1. Introduction

Nowadays, the primordial inflation is a widely accepted scenario for the
cosmological evolution of the early Universe (e.g. [1]). The scenario can be
successfully described by a class of simple models based on general relativity
(GR), with the addition of the single scalar inflaton field φ with the potential
V (φ). Even though these models are very effective, we still do not know
the reason why the inflation emerged. The aim of this paper is to show
that turning to the fundamental mathematical structures, like the real line,
improves our understanding of the origins of cosmic inflation and sheds some
light on the cosmological constant (CC) problem.

The structure of the set of real numbers can be described algebraically as
the linearly ordered complete field or topologically (and smoothly) as a 1-di-
mensional Euclidean manifold, which is the simplest manifold of dimension
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one. Higher-dimensional manifolds, like Rn, are directly modeled by R. It is
a truism to say that physicists refer to differentiable manifolds, hence to real
numbers, when developing various models of reality. Besides, R is the basic
mathematical object containing the formal representations of the results of
classical and quantum measurements. Thus, it is the basic field to which
(almost) all physical theories refer to. Let us just mention that space and
time coordinates are described by real numbers. The impact of the nontrivial
structure of the real field on physics was discussed mostly in the context of
quantum mechanics (QM) and quantum gravity [2, 3]. Here, we study the
mathematical model for the evolution of the Universe with varying set of
reals. The set of real numbers is a formal object in models of ZFC — the
Zermelo–Fraenkel set theory (with the axiom of choice). Since ZFC is the
first order theory (its axioms are formulated in the first order language), it
is not categorical, i.e. there exist infinitely many non-isomorphic models of
ZFC. Every model M of ZFC determines the object of real numbers RM ,
which is the set of all internal in M subsets of NM ' N. The structure of
RM , the model-dependent real line is, in general, very rich and complicated
with the properties relative to a model [4]. The general tool for exploring
the real line is the set-theoretic forcing, the procedure invented by Cohen
in 1963 when proving the independence of the continuum hypothesis of the
axioms of ZFC (and ZF) [5].

In this paper, we consider the model of the evolution of the Universe in
which the change of a model of ZFC took place (during the Planck era).
Thus, the set of real numbers is a varying and model-dependent object
rather than absolute. We apply the forcing on the measure algebra as a
tool to formally grasp the changes of the set of reals. From the point of view
of cosmology, forcing can be seen as a process that underlies the cosmic
inflation and the inflation potential can be related with the change of the
inherent density of reals. Moreover, the gravitational contributions of the
zero-point energies of quantum fields described in some model M vanish in
the, extended by forcing, generic model M [G]. It is shown in Sec. 3. We
begin with some results about forcing and QM to justify the use of forcing
in cosmology.

2. Forcing in QM

This section is the summary of our previous article regarding the forcing
emerging from QM. An interested reader is referred to [6] for a more detailed
treatment. A forcing can be seen as the deriving property of some Boolean
algebra1. By B, we denote some Boolean algebra of projections chosen from
the lattice of projections L(H) on a Hilbert space H. The spectral theorem,

1 The algebra should be complete and atomless to support a nontrivial forcing.
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in general, gives the correspondence between the algebra of self-adjoint (s-a)
operators which are in the Boolean algebra B [6, 7] and the measure algebra
defined on the Borel subsets of X = R3. Actually, there exists the isomor-
phism between the algebra B generating the family of s-a operators {Aα}
and the measure algebra of the space2 (X,µ). Such measure algebra is com-
plete and, in general, non-atomic. Thus, there exists a nontrivial measure
forcing adding random reals to a model M and resulting in the extended
model M [G]. Roughly speaking, a forcing allows us to formally grasp the
quantumness of the observables in the Boolean contexts [6].

The direct consequence of Wesep’s analysis of the LHV program in [8] is
that the results of the continuous measurements of the position observable,
in the semiclassical Boolean contexts, refer to the random forcing. Thus,
as shown in [6], the (random) measure forcing has to be present when ap-
proaching the classical geometric limit emerging from the quantum scales.
Let us analyze some consequences of this fact.

3. Forcing in cosmology: the CC problem

Suppose that, indeed, the shift from the Planck era to the GR-based era
of the evolution of the Universe refers to different models of ZFC. Denoting
the model in the Planck era by M , we use M [G] for the shifted one. Thus,
there corresponds the shift RM → RM [G] of the real numbers parameterizing
the physical content of the epochs. The description of nowadays large scale
structure is based on the full real line R, since the diffeomorphism invariance
of GR enforces it.

Now, given a particle of massm, the zero-point contribution to the energy
density is formally calculated as

E

V
=

∫
d3k

(2π)3

√
k2 +m2

2
. (1)

This expression is not Lorentz-invariant and is quartically divergent. Im-
posing any ultraviolet cut-off ΛUV on the momentum integration, one can
obtain the finite value. However, the cut-offs induce the loss of validity of a
theory for very big momenta. Instead, working in our forcing-based model,
let us evaluate this integral without using any cut-offs.

To this end, let us observe that in the case of random forcing, the set RM
(of real numbers in M) is a meager subset of the full real line: RM ⊂ R [4].
Moreover, RM is Lebesgue non-measurable and has the lower measure zero

2 The measure algebra of (X,µ) is the quotient of the Borel measurable subsets of X
algebra modulo the ideal of null sets (subsets of X that have measure 0).
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and the full outer measure: µ∗(RM ) = 0, µ∗(RM ) = 1. Let µ(S) denote
the Lebesgue measure of a set S. Then, the following elementary property
holds true:

Lemma 1. Every Lebesgue measurable subset S of the non-measurable set
A with the inner measure zero (µ∗(A) = 0) fulfills µ(S) = 0.

Proof. Since S is measurable, there is µ(S) = µ∗(S). Let us assume that
µ(S) > 0. Then, we have µ∗(S) > 0. Since A = S ∪ (A \ S) and the inner
measure is additive, there is µ(A) > 0. But A is non-measurable — a con-
tradiction. Hence µ(S) = 0. �

Note also that the Lebesgue integral of an integrable function f over the
set of measure zero vanishes even if the set is uncountably infinite (which is
the case here)3.

In the considered cosmological scenario, the Planck era is described by
the tools of some model M of ZFC, hence the zero-modes of quantum fields
contributing to the vacuum energy too. In particular, physical quantities
are described with respect to the real numbers from RM . Recall that the
change of the model M forcing−→ M [G] refers to the random forcing, according
to Sec. 2. Then, RM has lower measure 0 as a meager subset of RM [G] (and
hence of R) and the Lemma 1 can be applied here.

The description of spacetime at the present epoch requires, according
to GR, the differentiable manifold built on the full real line R. This is
why we evaluate the integral (1) from the nowadays perspective of the GR-
scale-based observer. The zero-point energies lie in the model M , so the
integration is taken over the non-measurable subset4 R3

M ⊂ R3

E

V
=

∫
R3
M

d3k

(2π)3

√
k2 +m2

2
. (2)

Although such Lebesgue integral does not exist in general, we can evalu-
ate the contributions given by the integration over all measurable subsets

3 The Lebesgue integral of a simple function s =
∑n

j=1 αjχAj , where χAj is the char-
acteristic function of Aj , reads∫

E

sdµ =

n∑
j=1

αjµ (E ∩Aj) .

If µ(E) = 0, then µ(E ∩ Aj) = 0 for all j, hence
∫
E
sdµ = 0. The Lebesgue integral

of any non-negative function f is the supremum of integrals of all simple functions s
such that 0 ≤ s ≤ f . Since all these integrals are 0, the supremum is 0 too.

4 In the model M , the real numbers RM parametrize both x and k coordinates.
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of R3
M . But, by Lemma 1, all such contributions vanish and the value of

the integral (2) calculated this way is zero. Thus, the model of the evo-
lution of the Universe based on set theory has mechanism which allows us
to neglect the contributions from the zero-modes of quantum fields. The
measure-theoretic argumentation is universal and represents the solution of
this part of the CC problem.

Moreover, one can assign the forcing between the models of ZFC to the
inflationary epoch so that the real line RM becomes rarefied in RM [G] and R.
However, such quantitative approach to the cosmic inflation requires the use
of the non-standard (exotic) geometries on S3 × R or R4 [9].

4. Discussion

We proposed the model in which, during the evolution of the early Uni-
verse, the change of a model of set theory took place. Such change is encoded
by the forcing on the measure algebra of R3 and leads to the change of the
real line. It is shown that the vanishing of the contributions of the zero-
modes of quantum fields to the cosmological constant is the consequence of
such forcing-based evolution. This is only a partial success of the proposed
model. Namely, the following question remains to be answered (which is
the part of the CC problem): why the value of density ρΛ is non-zero and
so small? As shown in [9], the answer can be based on the 4-dimensional
nontrivial curved geometries emerging during the shift M → M [G] at the
primordial era. Thus, the curvature is the source for the correct energy
density and the shape of the inflation potential. The forcing origins of such
geometries will be discussed elsewhere.
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