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In this paper, we discuss three physically relevant problems concerning 
the normal grain growth process.These are: Infinite vs finite size of the 
system under study (a step towards more realistic modeling); conditions 
of fine-grained structure formation, with possible applications to thin films 
and biomembranes, and interesting relations to superplasticity of materials; 
approach to log-normality, an ubiquitous natural phenomenon, frequently 
reported in literature. It turns out that all three important points men
tioned are possible to be included in a Mulheran-Harding type behavior of 
evolving grains-containing systems that we have studied previously.

PACS numbers: 05.40.-a, 64.60.-i, 81.10.Jt

1. In tro d u ctio n

Normal grain growth (NGG) is often considered as a final stage of the re- 
crvstallization process [1 ], and both  the processes belong, according to  some 
physical m etallurgy classification scheme due to Christian, to the so-called 
nucleation-and-growth phase transform ations. Speaking more specifically, 
they represent a class of the heterogeneous phase transform ations, i.e. they 
are therm ally activated, in contrast with some other ones which are not, 
e.g. the spinodal decomposition; they are term ed, in turn , the homogeneous 
phase transform ations [2,3].

* Presented a t the  XIV M arian Smoluchowski Symposium on Statistical Physics, 
Zakopane, Poland, September 9-14, 2001.



By performing this study we wish to  embark upon three particular tasks 
th a t arose while modeling the grain growth mostly of a normal type. Before 
revealing, however, what we have in mind, let us sta te  explicitly what do 
we mean by the normal grain growth. For this purpose we may rewrite 
accordingly a definition proposed by Weaire and M cMurry in a review paper
[4]. T ha t somewhat verbal definition looks now like [4]:

•  the NGG is said to be a steady sta te  of the recrvstallization process [5] 
in which a cellular system emerges;

•  grain boundaries (GBs) do accumulate a positive surface energy;

•  GBs perform a kind of motion towards lowering their energy;

•  the overall grain structure evolves self-similarlv with tim e as to aug
ment grain size.

Notice by the way th a t from the above definition it immediately follows 
th a t grain growth as well as other related processes, like soap froth forma
tion or evolution of bubbles-containing systems (foams), can by modeled 
by the same means. (There exists, in fact, a long-living analogy between 
polvcrvstals and soap froths, which has been invoked in various contexts, cf.
[3]-j

Inspecting more closely the mechanism of normal grain growth one no
tices its basic signatures. They can be summarized as follows: The GBs try  
to  perform a determ inistic motion towards their centers of curvature, caused 
by a pressure difference (capillarity), bu t the motion is somehow perturbed 
by presence of internal topological constraints imposed on the m aterial as a 
grains-containing system. Thus it is also assumed to be of stochastic char
acter, i.e. it is subjected to internal noise. This is at least a certain picture 
emerging from pretty  complex but, no doubts, readily experimentally sup
ported scenarios of the grain growth, in particular of a normal type [6 ]. Such 
a stochastic picture is strongly advocated by several authors [7,8]. Another 
almost equally popular picture can be named a statistical picture of the 
process. It uses (sometimes overuses) a well-established concept called log- 
normality, which appears to  be a quite ubiquitous feature of a good number 
of stochastic processes m et in nature [9,10]. It takes into account a law 
of proportionate effects which tells us th a t any relative change of physical 
quantities, as for example in the grain diam eter, is proportional to  a random 
fraction (number), cf. [1 1 ] and references therein, or can be readily thought 
of as a stochastic (Wiener) memorvless process [12].

As it was already mentioned, in this paper we are going to  refer to  three 
quite particular subjects, being in our opinion, of prior im portance while 
studying the NGG phenomenon. The first topic we would like to consider is



going to  be a step towards reality in our modeling which is simply a discus
sion on possibility of treating our system  as composed exclusively of grains 
of finite volume. In this way we hope to  remove a certain dichotomy th a t 
appeared while studying the normal grain growth based on the M ulheran- 
Harding model (M II) [13], see Section 4. This model will be outlined in the 
next section (Section 2), and its extension will also be presented (Section 3).

Next, we will try  to  convince the reader th a t some other extension of the 
modeling of M II type is worth doing. It is based on the assumption, th a t 
for certain obvious reasons (robustness) and /o r because of some physically 
justified circumstances expected (stresses, crvstallographic misfits between 
contiguous grains, impurities, defects) there could firmly appear a situation 
during the m aterial growth in which a fine-grained structure formed will not 
disappear, bu t rather will a tta in  a long period of living circumstances. (In 
a technological process it can in principle also be kept in such a stage of 
long duration, ju st for obtaining a refined m aterial structure.) Therefore, 
we have to solve first a simple determ inistic model with a correction due 
to  curvature towards incorporating the so-called Tolman length [14,15]. It 
seems reasonable because, as was said above, the NGG process is a kind 
of steady state, so th a t appearance of the therm odynam ical quantity  taken 
from the equilibrium therm odynam ics rather cannot make someone disap
pointed. This is thus our address to  the second topic mentioned above, with 
a hope on possible future applications to  biomembranes, interfaces and thin 
films which are usually exposed to various strain-stress fields as well as other 
internal perturbations (for instance, pinning) causing enhanced curvature ef
fects. The above will constitute the body of Section 5. Further, we would 
like to  address our th ird  task. Namely, we wish to  make a constructive com
parison between the M II type of modeling th a t we have presented quite 
recently [16], and the statistical models by K urtz-C arpav and Pande lead
ing to log-normal behavior [9,10], cf. Section 6 . In this section we will also 
underscore the fact th a t the log-normal solutions are solutions characteristic 
for the geometric Brownian motion [12]. A concluding address (Section 7) 
will be the last main section of the present paper.

2. M u lh e ra n -H a rd in g  m odel: A sh o rt overview

The M II model [13] is a sort of a Random Walk (RW)-like model where 
the RW is to  be realized with a random  “jum p” th a t is not done in a position 
space but rather in the space of grain sizes [16]. Thus, it describes the size- 
and tim e-dependent rearrangem ent of a polycrvstalline system by means of 
the following evolution equation [16]



where v is the volume of a grain, D  is a constant reflecting a RW behavior in 
grain growth, to  be named a diffusion-migration reference constant, f ( v , t )  
is the distribution function of grains a t tim e t  (having the meaning of the 
number density), i.e., f ( v , t ) d v  is a relative number of grains of size in the 
volume range [v, v +  dv] and the param eter a  depends on dimension of the 
system, and reads [16]

for systems of dimension dr, notice th a t for d =  1  one provides a  =  0 , so th a t 
it is hoped th a t the approxim ation invented does work effectively for d > 1 , 
and in this work is confined to d-s being of integer value. The param eter a  
reflects the fact th a t the net flux of the particles wandering across the grain 
boundaries is proportional to  the area of the surface s cx v 2P  of grains of 
volume v (for three-dimensional systems), and to the length I cx s 1/ 2 of the 
circumference of crystallites of area s [13,16] for two-dimensional systems. 
Moreover, note th a t for f ( v , t )  no normalization condition holds, so th a t 
it is not a probability density function which is in tu rn  the case of the 
conventional RW realized in a position space. The flux j ( v , t )  in Eq. (1), cf. 
( 1 ), is rew ritten as [16]

which means th a t it is decomposed into two parts. These are respectively: 
The drift and the diffusion terms. Let us realize th a t the determ inistic 
drift term  is proportional to  curvature 1 / i?  of the grains, where i? is the 
grain radius. It is so indeed because it is proportional to  %rl !d, bu t clearly 
v is proportional to  R d. Certainly, after Kelvin, Young and Laplace the 
curvature-driven part is proportional to the surface tension associated with a 
GB [3]. The diffusional term , in turn , takes the form of the phenomenological 
1st Fick’s law, with an appropriate modification, however, namely th a t the 
flux is proportional to the area of a grain. In other words, grains change 
their volume by gaining or losing atoms (molecules; simply, entities) and 
the ra te  of attachm ent/detachm ent is closely related to the grain surface 
m agnitude and to the gradient of the density function f ( v , t ) .

As to solve E q .(l) we have to complete (1) bv suitable initial and bound
ary conditions (IBCs). These are [13,16]:

(2 )

d
j ( v , t )  = —D a v a^ l f ( v , t )  — D v a — f ( v , t ) (3)



(A) The initial condition (IC),

/ ( M  =  0) =  fo(v),  (4)

where fo(v)  is a given initial distribution of grains.

(B) The boundary conditions (BCs),

f ( v =  0, t) =  0 f ( v  = oo , t)  =  0. (5)

The physical interpretation of the boundary conditions makes no further 
hesitation: The number of grains of zero volume v =  0 as well as of infinite 
volume v =  oo equal zero a t any time. The la tter is often anticipated to 
be a landm ark of the NGG phenomenon [5]. Some violation of the BCs in 
tu rn  causes to classify a process under consideration to  be anomalous or 
abnormal, so th a t for such a reason we may also speak of an anomalous 
grain growth (AGG), ju st in contrast with the NGG.

The goal of this section as well as of the subsequent sections is not to 
provide the reader with both  the m ethod of solution as well as the main 
results obtained for the evaluated physical quantities of interest. They can 
be found elsewhere [16, 17]. We may summarize here the main findings 
concerning (1)—(5):

(%) In the long-time limit, kinetics of the process under consideration de
pend very weakly on the IC applied.

(ii) The principal physical quantities (inferred from the central statistical 
moments of the process): The number of grains, n(t),  as well as the 
mean grain radius, r mn =  rmn(t), follow a power-like tim e asymptotics, 
inverse and direct, respectively; this is also the case of the fluctuations, 
ffmn2 =  ffmn2{t), around the mean grain size (direct power law time 
asymptotics).

(Hi) The to ta l hvpervolume V(t )  of the system, evaluated from the first 
central moment of the statistical process under study is conserved; 
note th a t it autom atically imposes a question about possibility of a t
taining an arb itrary  large value of the volume v of the individual grain 
whereas the to ta l volume of the m aterial, being ju st a t a tim e instant 
t  chosen the sum of n(t)  single volumes, is the same as a t tim e t  =  0 .

(iv) The formal solution to  the problem can be recast by using the operator 
m ethod, utilizing a separation ansatz as well as solving an ordinary 
differential equation of Bessel type, cf. [17] and refs, therein.



Let us now think of a clear and physically reasonable differentiation of 
the term s involved in the flux j ( v , t ) .  Thus, let us postulate an extension of 
Eq. (3), namely,

i ( v  t )  = - F ( v ) f ( v ,  t) -  D v a F f ( v ,  t ) ,  (6 )

where F(v)  is a determ inistic part which takes into account various mecha
nisms of the growth process. The simplest extension is

j ( v ,  t) = - c 7 v a ~ l f ( v ,  t) -  D v a F f ( v ,  t), (7)

where now a  and D  can be independent param eters. It means th a t the 
surface tension mechanism of growth is independent of the mechanism of 
the m igration of particles through boundaries of grains.

One can take into account the curvature effect on the surface tension 
[18-20]. Then the next extension reads

j ( v , t )  =  - K " 1 + 7 « 2(a- 1)] / ( M  -  D v a - ^ f ( v , t ) ,  (8)

where the term  with the param eter 7  describes the Tolman curvature cor
rection 1 / i ? 2 [14].

Clearly, by doing so we want to  tell the reader th a t the two above in 
principle concurrent processes (convectional and diffusional) ought to be 
realized with different dynamics. A reflection of this fact we see is just 
to  introduce the above independence among various param eters. We are 
of the opinion th a t such an extension given by assuming explicitly th a t 
F(v) = a v a^ 1 + y v ‘2('a^ 1) can also be anticipated as a reasonable step towards 
proposing a comprehensive statistical theory of the form ation of superplastic 
m aterials, see Section 7. As is known, superplasticitv is a physicochemical 
phenomenon readily promoted by a microcrvstalline structure, i.e. up to 
a certain rather small grain size, and manifested tru ly  in high tem perature 
limit, bu t these are by the way basic assum ptions of our modeling.

A certain quite im portant underlying physics which stays behind the 
quadratic correction in curvature due to Tolman, in spite of being valid for 
crystals of sufficiently small size rather, is inevitably and above all connected 
with sign of the param eter 7 , cf. Eq. (8 ). As can be learned from [20] when 
7  >  0  one may solely expect some additional enhancement of the growth 
rate, form the one hand, bu t also a sym m etry breaking between the interiors 
and exteriors of the grains enters, on the other, what can be a meaningful



elucidation of the crvstallographic misfits, or different crvstallographic mis- 
orientations between a grain and its very surroundings [3,5,7]. W hen 7  <  0, 
in tu rn , one may expect th a t a very small solid crystal will be going to melt 
back, so th a t a problem of unstable bubble-like nucleus appears [20]. This 
situation will, however, discourage a formation of tough fine-grained (su
perplastic) polycrvstals in the modeling proposed, so th a t will be of minor 
im portance from practical viewpoint. Prom [20] it follows as well th a t some 
higher order term s, like K 3 and /o r the Laplacian of K  (smoothening out 
the surface tension effects), can be om itted since they specifically describe 
fingered or dendritic growth, which are by the way not the growing processes 
under study.

As is seen from point (in) of Section 2, it would be useful to  consider 
the model of NGG in which presence of an arbitrary  large volume v of the 
individual grain is forbidden, contrary to what we may find in [13] or in our 
former studies [16,17]. It is worth inventing since it could have been a quite 
large step towards a more realistic NGG-modeling, a type of modeling which 
is still of very practical im portance in many technological processes [3,5-7]. 
It is obvious th a t the volume v of the individual grain cannot be larger than  
the to ta l volume of the m aterial. It means th a t the phase space in (1) is 
not the unbounded space [0 , 0 0 )} but should be replaced
by the bounded space Qy0 =  {v : v € [0 , Vo]}, where Vq <  0 0  is a maximal 
volume of the individual grain. In other words, we will be willing to  replace 
the second BC from (5) by the following one

where Vo cannot exceed the value of the to ta l volume of the m aterial V  =  
V (t)  [16], 0 <  Vq < V ( t)  <  0 0 . It can be inferred from the relation for the 
to ta l volume of all grains, namely,

and not from the very analogous but improper integral of the same kind [17].
There is a serious difference between unbounded and bounded Qy0 

phase spaces of the system. As was shown in our previous studies [16], 
in the former case the spectrum  of the corresponding eigenvalue-problem is 
continuous and takes positive values. In the case of the bounded phase space, 
the spectrum  is discrete and also positive [21]. For the model (1) with (7),

4. V olum e asp ec ts

f ( v  = V0,t)  = 0, (9)

( 10 )

0



the spectrum  can be found explicitly and the eigenvalues are proportional 
to  the square of the positive zeros of the Bessel function J v (x) [21].

In the M II model, the to ta l volume V (t)  is conserved. It can easily be 
shown by use of the evolution equation (1). Let us consider this problem in 
the case (8 ) calculating the time-derivative

We substitu te  the right-hand side of (1) with the flux (8 ), integrate by parts 
and obtain

are “negative fractional statistical moments” in the volume space. If the 
phase space is unbounded then the first term  on the right-hand side of for
m ula (12) is equal to  zero. For the bounded phase space, it need not be 
zero.

We can change the integration variable v ^  R  using the relation v = 
B R d, where the constant B  > 0 is a geometrical factor which takes into 
account the shape of grains. Then

( 11 )

o

f a = D v «m A A ^ ° + { a D  _  a ) m )  _  i m ) ( 12 )

where

(13)
o

and

(14)
o

Ro
(15)

0

and

o



where p (R , t)  = f ( v  = B R d,t)  and Rq is determined by the relation Vq =  
BRq.  It is obvious th a t these two integrals exist for the case d =  3. For the 
case d =  2, the first integral exists as well. The only problem can concern 
the second integral for d =  2  because then i ? d “ 3 =  i ? “ 1 and the integral can 
diverge. However, because of the first boundary condition in (5), for small 
v the distribution function f ( v , t )  ~  v £ and e >  0. Hence, p (R ,t)  ~  R 2e 
for small R  and R ^ l p (R ,t)  ~  R  1 ' 2 Such a function is integrable in 
the neighborhood of zero and in consequence the integral converges. More
over, the functions F\(t)  >  0 and F2(t) >  0 since these are integrals of 
non-negative functions. For the unbounded phase space and for 7  =  0, the 
to ta l volume of the specimen increases in tim e if a D  > a  and decreases if 
a D  < a. For the M II model, a D  = a  and this is why the to ta l volume is 
conserved, V(t)  =  F (0 ). If we add the curvature-corrected term , i.e. 7  % 0, 
the to ta l volume can be non-monotonic  function of time. For the bounded 
phase space, Qy0, the volume conservation problem is much more compli
cated because d f ( v ,  t ) /d v  |„=y0 can be different from zero (can be negative). 
Nevertheless, also in this case V (t)  can be a non-monotonic function of time. 
Physically, it means th a t the ju st recognized features can be anticipated as 
some first signatures of a plastic (nonconservative) behavior of the model 
m aterial under study.

5. C u rv a tu re  co rrec tio n s  as a  s te p  to w ard s  
su p e rp la s tic  b eh av io r o f m a te ria l

Volumetric aspects considered thoroughly in Section 4 led to  the con
clusion th a t for the phase space Qy0 (%) the overall volume of the system 
cannot be conserved (in general); (it) the to ta l volume can also change in 
course of time, which means th a t the m aterial can expand or shrink during 
the form ation of a polycrvstal (or a foam, see remarks in Section 1, and a 
discussion after Eqs (8 ) and (11) in Sections 3 and 4, respectively). Such a 
behavior can be recognized as a signature of plastic deformation of a body, 
too. To guarantee somehow, in the framework of our modeling, however, a 
superplastic end product, we have to assure a b it more: We should find a 
possibility for evolution of the fine-grained structure ju st mentioned in the 
preceding sections. Let us then develop our argum entation beneath in a 
system atic way.

A key point of our considerations here will be some exploration of the 
GB m otion towards its center of curvature with a speed proportional to 
the curvature what is inherently involved in the modeling of M II type 
[22,24]. Let us then s ta rt from Eq. (7) bu t drop for a while the second 
diffusive term  by requiring D  =  0. Applying the reasoning coming after 
Eq. (3) (accepting formally for the moment th a t a  =  aD ),  and utilizing an



efficient approxim ation th a t j ( v , t ) =  vgT x f ( v , t ) ,  for the velocity of the 
grain boundary, one gets immediately

dR  1

=  dT “  j j  ( 1 7 )

for an arb itrary  grain radius R. Notice th a t the formula (17) is also pre
sented by Mullins in his paper on two-dimensional motion of idealized GBs 
as well as in a stochastic modeling of grain growth by Pande, where the 
so-called internal noise, designated there by T  is equal to zero, th a t means 
in determ inistic case (though unfortunately taken from Hillert with negative 
prefactor preceding the term  proportional to  1/i?) [8 ]. If we go further and 
wish to  compare the model by Pande with ours we have to  accept th a t they 
are well comparable in the sense th a t the role of Pande’s internal topological 
noise, T , is played in our model by the Fickian diffusive term , denoted by 
j D(v,t)

j D(v,t)  = - D v a - ^ f ( v , t ) ,  (18)

which suffers also a kind of topological constraints by having incorporated 
the prefactor D v a which is proportional to i?d_1, and which reflects somehow 
a surface effect, see Section 2.

Let us continue along this line and ask a question concerning the curvature- 
driven m otion of an arb itrary  GB: Is there really so th a t under all possible 
physical circumstances met (or, expected) a GB is only driven by the mag
nitude of its curvature, K ?  In other words: M ust the pressure difference, 
expanded in K ,  be wrenched off on the first linear term , presumed th a t
the pressure difference A P  is the main driving force for the m aterial ex
change between two contiguous crystallites (objects)? Certainly, it does
not [18,20]. We claim, for instance, th a t under certain more subtle circum
stances (account of fluidity; softness; strain-stress suitable context; surface 
tension molecular weight dependence of GBs in macromolecular polvcrvs- 
tals [23]; pinning; specific interactions due to existence of crvstallographic 
misfits between contiguous grains, and so on) one has to  expand A P  like 
th a t [15]

A (19)

where a  =  2ao, and 7  =  2aodo, cf. Eq. (8 ), and where 0 0  and Sq stand for 
the surface tension of the planar GB surface (practically, for a very large 
grain) and for the Tolman length [15] (see below), respectively. We thus 
postulate the mechanism like

J D

Vgr = ~ d t = q ' A/>' ^



where q serves for adjustm ent of the physical units in the above equation, 
having, however, the meaning of the flux passing through a GB unit surface. 
The solution to  Eq. (20) is given in an implicit form

R 2(t) -  i?2(0) +  50 R(t)  -  R ( 0) +  Sq2 In =  ^ t .  (21)
fi(0) q

Somebody would like to pose another question: W hy do we insist on 
solving this particularly simple determ inistic model with the first correction 
to  curvature K  ~  1/R?  We do answer this question by saying th a t we 
have solved such an auxiliary model ju st to get an intuition whether is 
this reasonable to include such a correction of K 2 in our main statistical- 
physical model of M II type. So, we may now response th a t by looking at 
the Eq. (21) we see some chances mostly for the second term  of the left-hand 
side of it ju st to  survive, see our discussion on superplasticity above and in 
Section 7. Therefore, it could be worth doing, bu t the explicit integration 
of the problem meets serious technical difficulties and up to now remains 
unsolved.

Let us, however, comment a bit more on Eq. (21) and its relations to 
known models [3,8,9].

F irst, let us sta te  explicitly th a t the correction of K 2 causes appearance 
of two additional term s in the solution, which in absence of such a correction 
reads

R 2(t) -  R 2{0) oc t. (22)

The two additional term s are: The term  expressed by So[R(t) — i?(0)] and the 
logarithmic term . Starting from the la tte r we wish to  say only th a t the loga
rithm ic term  often appears to be relevant either in an early stage of growing 
process or in low-tem perature regime. (We may consider both the regimes 
to  be of a certain relevance for us [25], though the low-tem perature behavior 
is of no special interest when embarking readily on superplasticity.) Second, 
the Tolman length Sq which is involved in So[R(t) — ¿2(0)], and also in the 
logarithmic term  mentioned, is an interesting statistical-therm odynam ical 
param eter per se. It reads [14,15]

—kCo
0q — -------- , (23)

where oo, to be expected quite small for superplastic polycrystals, is defined 
above and k  is the rigidity constant for bending (being generally of m oder
ate value), proportional to  the so-called Gaussian curvature [26], while Cq, 
being either of positive or negative sign [18], and to  be expected quite large 
for superplastic polvcrvstals, stands for the spontaneous curvature, respec
tively. Now, it is clear why we enjoy the presence of the middle term  in



the left-hand side of Eq. (21). It should be also visible why we assign the 
context to  biomembranes, interfaces as well as thin layers interacting with 
their solid supports [3,7,26]. (By the way, notice here th a t our treatm ent of 
polycrystals by such means is not in a very distinction with treating drop- 
wise condensation, for example [15,28]. This makes thus another possible 
comparison: We cannot exclusively compare polycrystals and bubbles [4] 
bu t also there should appear a comparison between the polycrystals and the 
droplets.)

Completing the m aterial of this section we wish to sta te  only th a t in
corporation of the second term  ( K 2) should certainly change the overall 
system behavior investigated in the framework of our statistical-physical 
model proposed. Such a change will probably be manifested both in the 
initial stages of the evolution as well as for a low-tem perature regime which 
always gives a distinct resistance to growth [3,7,17]. Generally speaking, 
such a behavior can be possible to rationalize when polycrystals manifest 
slow or very slow dynamics, comparable to  th a t characteristic for ceramics 
(relaxer m aterials) or glasses, the dynamics of which shows up a Gaussian 
logarithmic behavior [29], cf. the next section. If we neglect, however, the 
ju st anticipated presence of possible low-tem perature limit we come back to 
the mentioned tendency towards superplasticity of polycrvstalline as well as 
bubbles-containing model bodies.

Finishing this section in comparative m anner let us try  to foresee th a t 
so as the internal noise term  T  introduced in Pande’s model, together with 
an additional factor standing on the left-hand side of kinetic equation (pro
portional to R v , i.e. going to  mimic the surface area term ) would and does 
change the overall kinetic bu t asym ptotic characteristics, like r mn vs t  in a 
way [8]

r mn ~  i 1/(2+,/) (24)

with some v, where v  >  0, so does our diffusive term  which appears in the 
m aterial flux (8). Moreover, notice th a t for v  =  0 the diffusive solution
(22) can be recovered, bu t otherwise one gets non-diffusive solutions. Note, 
however, th a t in Section 2 of [8] (cf. Eq. (17)) another m isprint appears 
which is now corrected by (24) given above. Interestingly th a t the model 
proposed by Pande [8] conforms well to ours when in Eq. (24)

v = d -  1, (25)

i.e. v  is d-dependent [27]. For d =  1 one recovers again a characteristic 
diffusive behavior, or in other words, the M II behavior in d =  1, first 
explained by Louat [32]. For d > 1 one provides other non-diffusive cases as 
for example the so-called Ostwald ripening mentioned in [7,8] to  be obtained 
formally for d =  2 [28].



6. L og-norm ality

After a very thorough study by Kurtz and Carpav [9] some doubts about 
appearance of a log-normal distribution of the grain sizes in a polycrvstalline 
m aterial have probably been thrown away, bu t again some renewed doubts 
appeared about eight years later [10], and concerned with other very ex
act fits to  experimentally got distributions of crystallites. Before, however, 
looking more closely into the m aterial ju st signalized above, let us define the 
subject in question, th a t means the log-normality.

The origin of log-normality in grain growth, possibly of normal type, 
can quantitatively be explained in the following. Namely, let us take a 
continuous picture and assume th a t a grain is located in sufficiently high 
topological class, i.e. it is considered to be large enough, cf. [9]. This means 
th a t it is able to augment its volume and /o r surface area, designated by A(t),  
ju st a t the expense of the contents of its neighbors. (Note tha t, in general, 
there is nothing against dealing with A  as the area of a (d — l)-dim ensional 
hvpersurface of d-dimensional hvpervolume.) A probably most natural way 
of reflecting this fact is to  write down a determ inistic equation responsible 
for the growing process, with a change dA(t)  proportional to the m agnitude 
of A(t), namely

dA(t)  =  fiaA ( t)d t , (26)

which shows an exponentially fast growth with a drift constant equal to  p a. 
In language of discrete processes one has to see th a t a mechanism staying 
unavoidably behind the exponential (natural and perennially alive) growth 
may readily look like

A(t) = A( 0 ) ( l  + F ) n (27)
V n  /

w hat for n  —y oo yields a solution in the form

A (t) =  A (0)exp(//ai), (28)

which is formally a solution to  Eq. (26). But life would be very simple if 
the above scenario happened to a real process like for example formation 
of poly crystals, which suffers a sufficient account of the internal topological 
noise,' T , '  cf. [7,8].

As to achieve a formal description much closer to experimental reality 
[3,5,6], one has to complete Eq. (26) by some additional term , possibly of
noisy character [7]. It is thoroughly proposed [12] to  make it by adding
a kind of memorvless Markov process called the W iener process W (t)  [30]



which would account for random  changes of the surface area m agnitude A ( t ) .  
Now, the suitable equation looks like

d A ( t )  = fiaA ( t ) d t  +  aaA ( t)d W  (t), (29)

where aa measures the surface area fluctuations. This is a stochastic equa
tion given in the Ito representation [12,30], and it is equivalent to [12]

d\n[A(t)} = [fia — (aa2/2)}dt + aadW (t) .  (30)

In the above equation a signature of logarithmic behavior appears for the
first time, in spite of th a t trivial m athem atical solution which comes by
solving Eq. (26), see Eq. (28).

Knowing the Fokker-Planck equation, corresponding to (29), it is also 
possible to  calculate the transition probability from a sta te  (A ' , t ') to (A ,t) ,  
denoted by p(A, t \ A ' , t') which reads [12]

p ( A , t  | A ' , t ' )  =  [2n(aaA ) 2( t ^ t ' ) ] - U 2

x e x p  j [ l n ( A / A ')  — ( f i a — ( a a 2 / 2 ) ) ( t  -  t ' ) ] 2 / 2 a a 2 ( t  -  / ' ) }  •

(31)

The corresponding mean value A  and the variance X a2 read [12]

A  = A 1 exp[g,a(t -  t %  E a2 = ( Á ) 2 exp[2g,a(t -  *')][exp[cra2(i -  t1)} -  1].
(32)

From Eq. (32) it follows th a t both  A  and X a2 grow nonlinearlv (exponen
tially) with tim e t. This is somehow comparable with another our model [31] 
which is based, however, on slightly different physical foundations (no pro
nounced role of surface tension was assumed) [16] and in which for instance 
the to ta l hvpervolume is not conserved, cf. Eq. (32), and the quantity  A  
defined in there. (Because the model served to describe a recrvstallization 
(Re) process [31], for the purpose of the present work we will call it the 
Re-model.) It looks also like our present case, modeled in the finite phase 
space, since, as is mentioned in Section 4, the to ta l volume (or, hvpervolume) 
cannot be readily conserved.

It could then be argued th a t the ju st discussed log-normalitv-based model 
differs from both the models before studied by us [17,31], though it remains 
close, and as expected, can reproduce the main landm ark of both  the mod
els mentioned, bu t thoroughly studied in the infinite phase space, namely 
whether the to ta l hvpervolume is conserved or not. Namely, for —> 0 one 
provides th a t A  — A(0) =  const (A = A(t)), what is very characteristic of



the NGG-model, whereas for fia <C 1, one expands exp(fiaz) ~  1 +  fiaz  for 
small z, and then one can reproduce a linear-in-time growth of the hvper- 
volume for the Re-model bu t in the limit of d —> oo, i.e. more pronounced 
for high-dimensional Euclidean spaces [31]. In such a limit fluctuations amn2 
involved in the NGG [16], cf. Section 2, coincide well with I7a2 stated  in
(32), bu t still while taking another limit fia —> 0, as already performed 
above. Summing up, let us recall th a t there are both  differences as well 
as quite striking similarities between the log-normalitv-based grain growth 
model [3,10,33] and both the invoked models studied previously [17], so th a t 
there is practically no chance to get the NGG-behavior (or, Re-behavior) 
outside the limits ju st mentioned. It may lead to  a conclusion th a t the 
log-normal behavior is a typical non-steadv sta te  behavior [28], and would 
serve better to describe an abnorm al growth (see Section 1), or perhaps a 
real recrvstallization process [1,2,5-7]. Moreover, the unconserved to ta l vol
ume appearing in the modeling performed in the space Qy0 suits be tter to 
log-normal characteristics A  and I7a2.

7. C o n c lu d in g  a d d re s s

In our previous studies [16,17] we have ascertained more or less th a t (i) 
the influence of the initial condition may sometimes be more pronounced, cf. 
the initial sta te  in the form of a Weibull function of v [16], fo(v), which favors 
some possible application of the proposed modeling, mostly towards design
ing a fine-grained material; (ii) if the to ta l volume of the system  does not 
remain conserved, one may expect abnormalities, and an AGG-phenomenon 
instead of the NGG can occur. A prophetic meaning of the la tte r has quite 
exhaustively been proved in Section 4, dealing with volume aspects. The for
mer, in turn , has been explored in sufficient detail in Section 3 and mainly 
in Section 5, showing an interesting physical consequence of our modeling, 
which one may see as some consideration on how to form a model fine-grained 
(superplastic) m aterial [34], with a certain attractive theoretical possibility 
of modeling superplastic behavior of ceramic nanocrvstals, inter met allies, 
metallic alloys and polvcrvstals [34].

It would be instructive to  offer a reader some thought experiment inter
connecting the (kinetic) final result of our modeling, i.e. the mean grain 
radius [16,27], r mn, cf. Eqs (24)—(25), taken certainly for large enough time 
instants, t  >> 1, and the stress m agnitude, designated by ohp, where some 
presence of an internal ohp in the m aterial seems unquestionable [35,36]. 
Namely, let us consider a H all-Petch (H -P) relation of both  direct and in
verse types [34,35]

cthp ex (2r mn)R, (33)

where p  can be a m easurable exponent [34,35] of negative (direct H -P: low



tem perature non-superplastic regime) or positive (inverse H -P: high tem 
perature superplastic regime) values. We see then th a t for the superplastic 
behavior to occur we need to  have small enough grain radius and not too 
small tem perature of the process (to assure respective fluidity of the m ate
rial), th a t means under, in some sense, extra-conditions to  be achieved. For 
the non-superplasticitv, in turn , one cannot go below a certain quite large 
grain radius value, not forgetting, however, th a t any variation in tem pera
ture towards higher values is undesirable, cf. Section 5. Moreover, one has 
to  take really care about the possible variations in to ta l volume (see, [27]) 
of the m aterial under study (Section 4), and the boundary conditions as a 
whole [37], not avoiding if possible statistics based on counting the frequency 
of appearance/disappearance of grains of a certain size, and how they con
form to the model log-normal pattern , see Section 6. By the way, someone 
should not feel embarrassed to th ink over the log-normal behavior as a kind 
of Brownian motion, called the geometric Brownian m otion [12], where the 
surface m agnitude is the m ajor geometric constraint and /o r kinetic obstacle, 
see Sections 2-3, because it is ju st in the spirit of the presented study.

In a final word, let us go back to  relation (33), which after combining it 
with Eqs (24) and (25) reads for a sufficiently large processing tim e rp

<jhp oc TpYG+A (34)

From the above it can be seen why the polycrystalline m aterial (or a foam 
even) is strengthening in very m ature stages of the grain growth (p >  0, 
<jh p  grows with tp ), whereas it is going to  weaken when p  <  0 because 
ohp decreases with rp, which means th a t a brittle  structure emerges, see
[35]. This final conclusion should justify internal robustness of the fine
grained and non-brittle superplastic structure under examination. Moreover, 
this robustness depends upon the geometrical dimension d, in the sense 
th a t Eq. (25) holds. Notice th a t relation (34) is often recognized to be a 
m anifestation of anomalous relaxation behavior of the system, driven by 
fractional dynamics, cf. [35,38], and references therein, and recall Eqs (13) 
and (14) in Section 4. This kind of relaxation conforms also very much to 
a relaxation mechanism which proceeds effectively via the GBs as well as 
their junctions, being im portant accumulation spots for the stress field. It 
can be seen as a thorough m anifestation of dispersive kinetics in condensed 
media [39].

The authors wish to dedicate this paper to  the memory of Professor 
Andrzej Plonka, whose invaluable insight into dispersive kinetics in con
densed m atter systems has stim ulated enormously our studies on nucleation 
and growth and related phenomena discussed throughout the paper.
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