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NOISE-ASSISTED C U R R EN T S IN A CYLIND ER-LIKE 
SET OF M ESO SCO PIC  RINGS*

J .  D A JK A a , M . K O STU Rb , J .  ŁlJCZKAa , M . SzO PA a , AND E . Z lP P E R a

in s titu te  of Physics, University of Silesia 
Uniwersytecka 4, 40-007 Katowice, Poland 

bDepartment of Physics, University of Maine 
5709 Bennet Hall, Orono, ME 04469, USA

(Received December 16, 2002)

We study magnetic fluxes and currents in a set of mesoscopic rings 
which form a cylinder. We investigate the noiseless system as well as the 
influence of equilibrium and non-equilibrium fluctuations on the proper­
ties of selfsustaining currents. Thermal equilibrium Nyquist noise does not 
destroy selfsustaining currents up to temperatures of the same order as 
the critical temperature for selfsustaining currents. For temperatures be­
low the critical temperature, randomness in the distribution of parity of 
the coherent electrons can lead to disappearing of selfsustaining currents 
and inducing new metastable states. For temperatures above the critical 
temperature, it causes a creation of new metastable states with non-zero 
currents.

PACS numbers: 05.40.-a, 73.23.Ra, 02.50.Ey

1. In tro d u ctio n

Q uan tum  phenom ena m anifested  a t th e  mesoscopic level have a ttra c te d  
m uch experim ental and  theore tical a tten tio n . P hase  coherence and  persis­
ten t cu rren ts can be m entioned as exam ples. P ersisten t cu rren ts of th e  so 
called coherent electrons are a d irect m anifesta tion  of th e  A haronov-B ohm  
effect a t th e  mesoscopic level. T hey  were p red ic ted  as early  as in 1938 [1] 
and  have been observed experim entally  only since 1990 [2]. In th e  paper 
we s tu d y  th e  stead y  s ta te  m agnetic fluxes and curren ts in mesoscopic rings 
under conditions when dissipation  and  fluctuations can play an im p o rtan t 
role [3]. O ur system  consists of a set of concentric one dim ensional rings 
which form  a cylinder. I t is expected  [4] th a t  in such a system  selfsustaining 
curren ts can occur in th e  absence of th e  ex ternal flux. In th e  ground s ta te , a t
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T  =  0, only coherent electrons are presen t in th e  system  and th e  persisten t 
cu rren t hows w ithou t d issipation . T he non-zero tem p era tu re  T  >  0 reduces 
th e  am plitude of th e  persisten t cu rren t and som e electrons becom e “norm al” 
(i.e. non-coherent). T hen  coherent and  norm al electrons coexist.

In th e  system  a t tem p era tu re  T  >  0 th ere  are various sources of noise 
and  h u ctua tions. T here  are so-called universal conductance h u c tu a tio n s [5] 
th a t  arise from  th e  random  q u an tu m  interference betw een m any electron 
p a th s  which con tribu te  to  th e  conductance in th e  diffusive regime. These 
h u c tu a tio n s  decay algebraically  w ith  tem p era tu re  and can be  neglected a t 
higher tem p era tu res  [5]. Inelastic tran sitio n s in th e  ring cause ano ther kind 
of h u ctua tions. However, th ey  do n o t destroy  p ersisten t cu rren ts b u t reduce 
th e ir am plitude [6 ]. T here  is also a p a r t of th e  curren t noise which is called 
sho t noise [3], th e  spec tra l density  of which is p roportional to  m ean cur­
ren t. T his noise can be reduced by increasing th e  size of rings [7]. T herm al 
m otion of charge carriers in any conducto r is a source of N vquist noise [3]. 
T his th erm al equilibrium  noise is universal and is p resent in any conductor. 
M oreover, th is  noise increases w ith  tem p era tu re  and  induces h u c tu a tio n s 
of cu rren t. We consider such conditions th a t  universal conductance h u c tu ­
ations and  shot noise can be  neglected. Let us notice th a t  th e  system  is 
characterized  by param eters  which qualita tively  and  q u an tita tiv e ly  change 
th e  tra n sp o r t p roperties. As an  exam ple let us consider th e  p a rity  of the  
coherent elec tron ’s num ber in th e  curren t channel. T h e  change of th e  parity  
changes th e  response of th e  system  for th e  applied m agnetic h ux  from  para- 
to  d iam agnetic  and  vice versa. In th e  p ap er we propose a m ethod  of deal­
ing w ith  th is  sensitivity. We consider th e  p robab ility  of an  even num ber of 
coherent electrons in a single curren t channel to  be  e ither s tochastic  process 
(sym m etric dichotom ic process) or quenched noise (random  variable). T he 
role of N vquist noise and o ther sources of h u c tu a tio n s is th e  m ain  sub ject 
of th e  paper.

2. T h e m od el

We consider a collection of rings, so called cu rren t channels, which form  
a cylinder w ith  N z channels in d irection  of th e  cylinder axis and N r in the  
d irection  of th e  cylinder rad ius. We assum e th a t  th e  thickness of th e  cylinder 
wall is m uch sm aller th en  th e  rad ius. T h e  curren t in one ring, via m utual 
inductance, induces h ux  and  curren t in o ther rings and  so on. T he effective 
in teraction  [8 ] betw een th e  ring curren ts, considered in th e  selfconsistent 
m ean field approxim ation , resu lts in th e  m agnetic h ux  <f> = L I tot felt by all 
electrons, w here L  is th e  cylinder inductance and 7tot is th e  to ta l cu rren t in 
a cylinder. T he inductance of a cylinder of th e  rad ius r  and th e  height lz 
reads [9]

27TV
l  =  r  „ V ,  (i)



where po is th e  perm eab ility  of th e  free space. A t tem p era tu re  T  > 0, the  
cu rren t I COh((f>-,T) of th e  coherent electrons in a set of N  = N r x N z curren t 
channels form ing th e  cylinder is e ither param agnetic  [4]

for an  even num ber of coherent electrons in each single channel or d iam ag­
netic

I c o h Y T )  =  J o 4 ,T )  =  Jeven(</ +  4 / 2 ,  T )  (3)

for an  odd num ber of coherent electrons. T he u n it curren t

J0 :=  he N e/ (2 l2xm e) ,

w here lx is th e  circum ference of th e  cylinder, fcp is th e  Ferm i m om entum  
and N e is th e  num ber of coherent electrons in a single cu rren t channel. T he 
am plitude

a tm\ ex p ( - n T / T * )A n(T) = — — ----------- -—^ m /rTi , cos(nk-plx ) . (4)
v '  irT* 1 -  e x p ( - 2 n T / T * )  1 '  v ;

T h e  charac teristic  tem p era tu re  T* is given by th e  re la tion  kpT* =  A p/27r2, 
w here fcp is th e  B oltzm ann constan t and  Zip is th e  energy gap a t th e  Fermi 
surface. For tem p era tu res  T  <  T* th e  coherent cu rren t flows in such a 
cylinder w ithou t d issipation  b u t its am plitude (4) is reduced [10]. O n the  
o ther hand , a t tem p era tu re  T  >  0, norm al electrons occur and  th e ir flow is 
dissipative. T he m otion of norm al electrons is random , like th e  m otion of 
electrons in a norm al conductor and  it generates random  currents.

Since th e  current-flux characteristics for th e  coherent electrons is ex trao r­
d in ary  sensitive to  a change of p arity  of th e  coherent carriers num ber [1 0 ] we 
take into account th e  possible difference of p a rity  in th e  rings and  consider 
th e  cu rren t of coherent electrons as th e  average

¿cohY T )  = p I e(cf>,T) +  ( l - p ) I 0(<f>,T) , (5)

where p € [0 , 1 ] is th e  p robab ility  of th e  even num ber of coherent electrons 
in a given channel.

T he curren t com ing from  th e  norm al electrons can be induced by e.g.
th e  change of th e  m agnetic  flux <f>. From  th e  L enz’s rule and th e  O h m ’s law
one infers th a t  [1 1 ]

= (6) 
where R  is th e  effective resistance of th e  system  [6 ].



</ =  </ext +  L ( /coh(</>,T) +  / n or(0 ) ) ,  ( 7 )

i.e. it is a sum  of th e  ex ternal flux <f>ext and  th e  flux com ing from  th e  to ta l 
curren t.

Now, we assum e th a t  th e  only source of fluctuations is equilibrium  noise 
induced by th e  resistance R . T h e correlation function  of th is source of 
fluctua tions is assum ed to  be given by th e  N vquist re lation. If we take into 
account (5 )-(7 ) and add th e  te rm  describing cu rren t fluctuations th en  we 
o b ta in  th e  equation  (see th e  A ppendix)

I  * = ~ z (^  ■ ^ e x t ) + + v ^ F r { t )  ’ (8)

w here F(t)  is G aussian  w hite noise m odeling N vquist equilibrium  curren t 
noise. T his equation  takes th e  form  of a classical Langevin equation  and is 
our basic evolution equation.

T he dim ensionless variables are in troduced  in th e  following way. In the  
Langevin equation  (8 ), th e  basic q u an tity  is th e  m agnetic flux <f> =  < f > ( t ) .  

T h e n a tu ra l u n it of th e  flux is th e  flux q u an tu m  (f>o =  h/e .  Accordingly, 
th e  flux is scaled as x  =  </>/</>o- To identify  th e  charac teristic  tim e to, let us 
consider a p articu la r case of (8 ), nam ely, w hen th e  persisten t cu rren t and 
th e  ex ternal flux are zero. T hen

^  =  - | (/ » + y 2 i ? f e T r ( i ) .  (9)

From  th is  equation  it follows th a t  th e  m ean value

(0 (*)> =  (0 (0)) exp(—i / r 0) , (10)

where

r 0 =  L / R  (11)

is th e  re laxation  tim e of th e  averaged norm al curren t. Therefore, tim e is 
scaled as t  =  t / r q.  In th is  case, Eq. ( 8 ) can be transfo rm ed  into its  dim en­
sionless form

x  = - V ' ( x )  + y / 2 D r ( i ) ,  ( 1 2 )

where th e  d o t denotes a derivative w ith  respect to  th e  rescaled tim e t  and 
th e  prim e denotes a derivative w ith  respect to  x . T h e generalized po ten tia l



where A =  />ext//>o is th e  rescaled ex ternal flux. T he p refactor ¿0 =  NLIo/<f>o 
is a coupling constan t characterizing th e  in teraction  betw een ring curren ts 
(it is th e  rescaled am plitude of th e  flux created  by th e  curren t —  it leads to  
selfsustaining curren ts). T he function

F(x)  = F ( x , p , T )  = J  f ( x , p ,  T)d,x (14)

characterizes th e  coherent electrons and

f ( x , p , T )  = pfe(x ,  T )  +  (1 — p ) fo ( x ,T )  , (15)

where

and

/e (* ,T )  =  £  A n (T) s ’m(2mrx)  (16)
71 =  1

f o ( x ,T )  = f e(x  +  | , T ) . (17)

T h e  dim ensionless in tensity  D  of rescaled G aussian  w hite noise T( t)  =  
y/ro F(T0t) is a ra tio  of th erm al energy to  th e  elem entary  energy stored  
up in th e  inductance,

D = ^ k BT / e 0 , e o : = | | .  (18)

Let us observe th a t  th e  resistance R  does n o t en ter in to  th e  rescaled equation  
( 12).

In order to  evaluate th e  m agnitudes of th e  param eters  appearing  in our 
equations let us notice th a t  th e  rescaled coupling constan t

■ m C N N ,
*° =  J i + q q  ■ (19)

We assum e th a t  th e  cylinder has th e  rad ius r  =  3 x 104A and th e  height 
lz =  IOOA. It consists of a set of N  ~  50 curren t channels [1 2 ] in a wall 
of w id th  m uch sm aller th an  th e  rad ius. If th e  num ber of electrons in each 
channel is Nr 2 • 105 th en  ¿0 ~  1- T he energy gap a t th e  Ferm i surface 
Zip =  H2N e/ ( 2 m er 2) gives th e  rescaled noise am plitude

k n T * =  /r0 e2 N e
2eq 16-7T3m e lz

For th e  above values of param eters  th e  diffusion coefficient D  ~  0.001 T / T * . 
Below, unless s ta ted  otherw ise, th e  param eters  are fixed so th a t  ¿0 =  A 
D =  0.001 T / T *  and  th e  p ro d u c t kFlx =  0.1 in th e  form ula for th e  coherent 
curren t.



3. A n a lysis

In th is  section th e  properties of system  described by Eq. (12) are an­
alyzed. We consider in details two special cases. In th e  noiseless case, 
we neglect th e  influence of N vquist noise. It is a justified  approxim ation  
for very sm all in tensity  of noise. Formally, it can be neglected only when 
tem p era tu re  T  =  0 (see Eq. (8 )) and, consequently, we should p u t T  =  0 
in I COh((f), T) .  However, first we w ant to  analyze th e  determ in istic  system  
which corresponds to  th e  case F(t)  =  0  in (1 2 ) and nex t to  investigate in­
fluence of N vquist noise. As follows from  (7), th e  to ta l cu rren t is linearly 
re la ted  to  th e  m agnetic flux <f> (or th e  rescaled flux x).  In a consequence, the  
p roperties and behavior of th e  cu rren t are identical to  th e  properties and 
behavior of th e  m agnetic  flux. Therefore, below we use equivalently  these 
two characteristics of th e  system .

3.1. Selfsustaining currents

F irs t, let us consider th e  determ in istic  case of th e  Langevin stochastic  
equation  (12) form ally neglecting th e  N vquist noise te rm  F(t) ,  i.e.,

x  = - V ' ( x ) .  (2 1 )

T h e  s ta tio n a ry  solutions x s of (21), for which x s =  0, correspond to  ex trem a 
of th e  generalized p o ten tia l (13),

V ' ( x B) = x B- X - i 0f ( x B,p ,T )  = 0.  (22)

T h e solutions x s of th e  g rad ien t differential equation  (21) are stab le  provided 
th ey  correspond to  a m inim um  of th e  generalized po ten tia l (13) and they  
are u nstab le  in th e  case of a m axim um  [13]. In th e  following we investigate 
p roperties of solutions x s w ith  respect to  four independent param eters: the  
tem p era tu re  T , th e  coupling constan t ¿o which characterizes th e  m ean-field 
in teraction  betw een rings, th e  p robab ility  p  of th e  occurrence of th e  channel 
w ith  an  even num ber of coherent electrons and th e  ex ternal flux À.

3.1.1. T  and ¿o-dependence

T he dependence of th e  po ten tia l (13) on th e  tem p era tu re  for À =  0, 
*o =  l  and  th e  p robab ility  p =  1 /2  is shown in Fig. 1. In high tem pera tu res, 
only one stab le  solution, corresponding to  zero s ta tio n a ry  flux x s =  0  and 
zero curren t, exists. If tem p era tu re  decreases, a b ifurcation  occurs —  the 
p o ten tia l becom es b istab le  and  two non-zero sym m etric  m inim a appear a t
x s =  ± æ m. T hey  correspond to  two stab le  s ta tio n a ry  solutions. Physically,
it m eans th a t  below som e critical tem p era tu re  Tc th e  spontaneous f lux [14]



Fig. 1. The dimensionless generalized potential V(x)  is shown as a function of the 
dimensionless magnetic flux x  for two values of the scaled temperature T¡T*.  The 
scaled amplitude *o = 1 and scaled external magnetic flux A = 0.

appears and  non-zero s ta tio n a ry  cu rren t flows in th e  system . T his critical 
tem p era tu re  Tc is defined by th e  condition th a t  V " ( x s =  0) =  0. T he 
corresponding d iagram  is shown in Fig. 2. T h e  phenom enon is analogous to  
th e  continuous phase transition in m acroscopic system s, and  appears here 
as a resu lt of th e  in teraction  of ring curren ts. T he central m axim um  x s = 
x u  =  0, corresponds to  th e  u n stab le  s ta tio n a ry  solution of (21). M ore 
generally, one can notice th a t  th e  s ta tio n a ry  solutions occur w here th e  linear 
p a r t x  — A of (22) is equal to  its  periodic p a r t i o f ( x , p , T ) .  In th e  lim it of 
¿0 ^ 0  (very sm all, or no in teraction  of ring curren ts), regardless T , the

T/T

Fig. 2. Bifurcation of the stable stationary magnetic flux x s with respect to tem­
perature for a fixed external magnetic flux A =  0.



only stationary  solution of (22) is the external flux x s =  A. For interm ediate 
*o (typical interaction of mesoscopic rings) two stable non-zero stationary 
states can exist below Tc and this number of solutions is preserved in the limit 
T  —y 0. As one can infer from (13)—(17), decreasing tem perature enhances 
the periodic part of (22) but only to  a maximal value defined by T  — 0. 
Further enhancement of the periodic part is possible only by increasing the 
coupling constant As a result of th a t, the critical tem perature Tc increases 
with ¿o- Therefore, if % is sufficiently large (very strong interaction of rings), 
even more stationary  states can occur. The number of stationary  states 
below Tc and for p  =  1/2 can, in general, be equal to 4k  — 1, (fc =  1,2...) but 
only 2k  of them  of stable states. Lowering the tem perature below Tc results 
then in a cascade of bifurcations. The first bifurcation takes place a t T  =  TC. 
W ith further lowering the tem perature a t T  =  T Cl < Tc two additional pairs 
of stationary  solutions appear and so on. There is one m etastable and one 
unstable solution in every pair. The m etastable solutions correspond to  the 
so called flu x  trapped in the cylinder. Notice th a t in the limit T  — 0 and 
typical *o >  0 there are always spontaneous flux solutions whereas the flux 
trapped  solutions can be obtained only for sufficiently large %•

3.1.2. T h e  p -dependence

In the following part of this section the tem perature is set below Tc. 
If the probability p  =  1 we have an even number of coherent electrons 
and param agnetic current in each channel. The potential possesses two 
minima corresponding to spontaneous fluxes (Fig. 3). Decreasing p, the

x
Fig. 3. The dimensionless generalized potential V(x)  is shown as a function of the 
dimensionless magnetic flux x  for characteristic values of the probability p.  The 
amplitude *o =  1 and A =  0.



probability 1 — p  of finding odd channels with diam agnetic currents increases 
and the spontaneous flux solutions x s decrease to coalesce finally into a single 
absolutely stable solution at x s =  0. The ratio p  a t which the coalescence 
occurs decreases with decreasing tem perature. Now, for sufficiently large io, 
five stationary  states exist. Note th a t apart from the stable fluxless solution 
x s =  0 there are two m etastable solutions a t ^ <  |a;s | <  1 and two unstable 
solutions. The m etastable solutions correspond to  the flux trapped  in the 
cylinder. In realistic devices they are hardly accessible due to  the value of 
the necessary param eters. The value of p  has a im portant impact on the 
properties of persistent currents. The case when p  is a fixed determ inistic 
quantity  is studied in [15].

3.1.3. T h e  A -dependence

There are three different types of the generalized potential. First is a 
symm etric double well potential which appears for X =  k / 2  with integral 
k.  The stable solutions x s are then always around the external flux 0 < 
|ars — A| <  For the values of A close but not equal to k / 2  the solutions 
remain in th a t range but the double-well potential becomes asymm etric — 
one of the stable solutions becomes m etastable. For the values of external 
flux far from half integer values k / 2  one obtains the potential with only a 
single stable solution. All the mentioned types of potentials are accessible 
for 0 <  A <  1/2 indicating a kind of the ‘structural periodicity’ with respect 
to  the external flux. An interesting feature of the x  — A characteristic is the 
occurrence of the hysteresis loop (Fig. 4). W ith increasing A, at its certain 
value, the system undergoes discontinuous jum p of x.  Decreasing then the 
value of A, the opposite jum p of x  occurs at lower A producing a hysteresis

Fig. 4. The hysteretic behavior of the stationary flux with respect to the external 
flux. The part of the graph with negative slope corresponds to unstable x s. The 
amplitude *o =  1.



loop. It is a hallm ark of the f ir s t order phase transition. The transition 
can occur only below the critical tem perature Tc. Due to  the ’structural 
periodicity’ the hysteresis loop is repeated with the period A =  1/2 what 
results in the formation of a family of loops.

3.2. N oise-assisted se lf susta in ing currents

In this section we discuss the inhuence of both equilibrium and non­
equilibrium perturbations on the properties of the hux in the mesoscopic 
cylinders. F irst we discuss the therm al noise and later the system  for which 
the probability of the given parity of coherent electrons in the channel is a 
random  process.

3.2.1. N yqu is t noise

Noise and huctuations are ubiquitous in real systems and idealization of 
the noiseless systems is sometimes not justified. In the following, we will 
focus on the system (12) subjected to Nyquist noise. From the m athem at­
ical point of view, the Langevin equation (12) defines a Markov diffusion 
process. Its probability density p(x ,  t) obeys the Fokker-Planck equation in 
the form [16]

r\ r\

t) =  — V f(x)p(x,  t) +  D  Q f f P Í x , t) (23)

with the natural boundary condition lim ^i^ O0p ( x , t )  =  0. The stationary 
solution p s(x)  is asym ptotically stable [17] and takes the form

p s(x) =  N 0e - y W D (24)

with a normalization constant

OO
N f l =  J  q- Y A / d  d x  _ (25)

— OO

Let us first consider the case of absence of the external hux, A =  0. If in the 
noiseless case the system possesses only one stationary solution x s =  0, the 
probability density (24) has maximum at x  =  0 and the mean value of the 
hux (x) = 0 .  If in the noiseless case the system possesses three stationary 
states, the probability density (24) has three extrem al points: two symm et­
ric m axima which correspond to the spontaneous fluxes and one minimum 
at x  =  0 which corresponds to the unstable stationary  sta te  (see Fig. 5). 
Because the potential is reflection-symmetric, V ( x )  =  V ( —x),  the mean
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Fig. 5. The stationary probability density for the system subject to Nyquist noise. 
The amplitude *o =  1 and D = 0.001 T/T*.

value of any odd function of the flux is zero. In particular, the mean value 
of the flux (x) =  0 and the mean value of the current is zero as well. Prom 
this point of view, properties of stationary  states are trivial and non-zero 
fluxes and currents are impossible. However, in some situations the sta tis­
tical moments are not good characteristics of the system because much in­
form ation is lost when an integration is performed calculating the statistical 
moments [18]. The relevant quantity  is a stationary  probability distribution 
which contains much more information about the system. Is any reasonable 
m ethod to determine the critical value of tem perature Tc in this case? One 
possibility is to  define the phase transition in the following way [18,19]: the 
phase transition point is a value of the relevant param eter 7  of the system at 
which the profile of the stationary  distribution function changes drastically 
(e.g. if a number of m axima of the distribution function changes) or if a 
certain most probable point xq begins to  change to an unstable state . In 
some cases, it is indeed a good ‘order param eter’ of the system. For exam­
ple, from the measurements of the laser experiment (see e.g. [20]), one can 
obtain the stationary  probability distribution of the laser intensity and one 
can observe a phase transition according to the above definition. In the case 
considered here, for sufficiently low tem peratures, therm al fluctuations are 
small and one expects the experimental results to  be accumulated around 
the m ost probable values of the stationary  probability distribution. It follows 
from (24) th a t the most probable values of the flux correspond exactly to 
the stationary  states (22) of the system (21). In this sense, the properties of 
the system are the same as discussed in the previous subsection. We want to 
emphasize th a t it is correct for low tem peratures because then the residence 
tim e in a stable sta te  is long. For higher tem perature T , therm al fluctuations



become larger. In turn , fluctuations of the magnetic flux around the most 
probable value become larger and larger and the residence tim e in a stable 
sta te  becomes shorter. One can guess th a t the spontaneous current should 
vanish a t tem perature To which is lower than  the critical tem perature Tc in 
the noiseless case. This is because of influence of Nvquist fluctuations. The 
argum entation is the following. If the potential is m ultistable then one can 
introduce characteristic tim e scales of the system. The first characteristic 
tim e ra =  1 / V ”(xs) describes decay within the a ttrac to r x s =  ±æm of the 
potential V ( x ) .  The second characteristic tim e is the escape tim e r e from 
the well around ±æm. This tim e is related to  the mean first passage time 
from the minimum of the potential to  the maximum. If these tim e scales 
are well separated, i.e. if r e > >  ra then the description based on the most 
probable value seems to  be correct. Otherwise, this description fails and we 
should characterize the system by averaged values of relevant variables. In 
the noiseless case, for ¿0 =  1 and D  =  0.001 T / T * ,  from Eq.(13) we esti­
m ated the critical tem perature Tc «  1.66T*. We observed th a t roughly for 
tem peratures T  < 0.9TC, the characteristic tim e ra is more than  one order 
of m agnitude less than  r e. Both tim e scales are well separated and selfsus­
taining currents are long-living states. In this sense, they are not destroyed 
by Nvquist noise.

The stationary  flux variance or mean-squared deviation a  =  ( x2) — (x )2 =  
( x2) is a non-monotonic function of tem perature (Fig. 6): For T  =  0 the 
variance a  =  x 2, where x s is a stationary  solution of (21). As the tem pera­
ture increases, a  diminishes attaining a minimal value a t some tem perature 
T\ .  The tem perature T\  seems to  be always larger than  Tc what has been 
confirmed by numerical studies. A further increase of tem perature leads to 
an increase of the variance. In the high tem perature limit, the dependence 
is linear as for the Gaussian distribution. Indeed, below the critical tem per­
ature, the distribution (24) possessing two peaks is clearly non-Gaussian. 
However, for higher tem peratures the probability density is one-peaked. For 
this case, the kurtosis

K u r t = I ?  - 1  ( 2 6 )

measures the relative flatness of the distribution (24) to the Gaussian dis­
tribution. The kurtosis is negative and it means th a t the distribution (24) 
is flat. It approaches zero in the high tem perature limit and then the distri­
bution (24) approaches the Gaussian distribution.

The behavior of the second moment ( x2) has a simple explanation in 
term s of the average energy stored in the m agnetic field, i.e.



Fig. 6. Averaged magnetic energy (E) / eo given by Eq. (27) vs scaled temperature 
for two values of io, fixed A =  0 and D = 0.001T¡T * .

where Eq is given in (18). For low tem peratures, fluctuations are small 
and the main contribution to  the energy comes from the determ inistic part 
cj)2 / 2 L .  Because the m agnetic flux <f> decreases as tem perature increases 
(cf . Fig. 2), hence {E ) decreases as well. On the other hand, for high tem ­
perature the stationary  probability density approaches the Gaussian distri­
bution and in consequence the main contribution to the average magnetic 
energy comes from therm al energy, (E)  cx k T  which obviously increases 
when T  grows. The com petition between these two mechanisms leads to 
the minimal value of (E)  for a certain value of tem perature T\ .  At this 
tem perature, fluctuations of the current are minimal.

The influence of the external field on the properties of the stationary 
density (24) may be deduced from Fig. 3. Finally, let us consider the limit 
of a very weak coupling between the ring currents corresponding to  a very 
small value of to- The selfsustaining stable solutions are non accessible. The 
solutions of Eq. (21) correspond then to the persistent currents driven by the 
external field. The stationary  density forms a family of one peak curves with 
the most probable values given by A. We conclude th a t even in the weak 
coupling limit the presence of Nvquist noise does not destroy the persistent 
currents.

3.2.2. R an d om  p a rity  o f  coheren t electrons

The value of p  is not a fixed param eter for the systems at tem peratures 
T  > 0 when the energy gap at the Fermi surface becomes smaller. There are 
then coherent electrons which can become normal and vice versa, there are 
normal electrons which may become coherent. In such a case the probability 
p  itself is a random  function of time. Further we limit our discussion to



th e  tran sitio n s p =  0 c r  p =  1. T hey  correspond to  th e  change from  
even to  odd num ber of coherent electrons in every cu rren t channel in the  
cylinder. T h e  tran sitio n s satisfy  th e  following assum ptions: first, th e  change 
ev enerodd  occurs sim ultaneously  and  im m ediately  (i.e. it takes no tim e) in 
every channel and  second, th e  num ber of electrons changing th e ir “fluid” is 
sm all enough to  keep *o fixed in th e  transition . T h e  dynam ics of flux in the  
absence of th e  ex ternal field can be m odeled by th e  following equation

x  =  — x  +  f +( x )  +  f Y ( x ) ( ( t )  +  v/2D r ( t ) , (28)

w here f± ( x )  :=  io( fe(x) ±  fo (x ) ) /2  and  f ( t )  =  { — 1 , 1 } is a zero-m ean, 
exponentially  correlated  dichotom ic process of th e  correlation tim e r  [21]. If 
f ( t )  =  1 th en  th ere  is an  even num ber of coherent electrons and  if f ( t )  =  — 1 

th en  th ere  is an  odd num ber of coherent electrons.
W ith  th e  random  process Eq. (28), which is clearly non-M arkovian, 

we associate th e  two dim ensional process {x ( t ) , ( ( t ) } ,  which is M arkovian. 
T h e  p robab ility  densities p+(x, t) :=  p(x ( t ) , ( ( t )  =  1) and p - ( x , t )  :=  
p (x ( t ) , ( ( t )  =  —1 ) satisfy  th e  m aster equation  [2 1 ]

d  d
—xp+(x, t )  = [~x + f+(x)  + f - ( x ) ] p + ( x , t )

1 d2
[p+OM) - P - ( x , t ) \  +  D ~offP+{x Y  >

d ~ d
—j p Y x f f )  = - — [ - x  + f + ( x )  -  f - ( x ) ] p - ( x , t )

1  d2
- —  [p-(x , t )  - p + ( x , t ) ]  +  D - ^ p ^ ( x , t ) . (29)

T h e s ta tio n a ry  s ta te  is described by th e  s ta tio n a ry  reduced p robab ility  den­
sity  p(x)  =  lim ¡ ^ 00p (x , t )  =  lim t-_^0 0 [p+ (æ, t) + p - (x , t ) } .  An analy tical form  
of th e  s ta tio n a ry  solution of (29) is known when D =  0, i.e. when tem p er­
a tu re  T  =  0. If T  > 0 th en  we should consequently  assum e th a t  D > 0. 
In th is  case, an  analy tical form ula for p(x)  can be  derived for th e  lim iting 
case t  —y oo (ad iabatic  noise). In a general case, one should num erically  
solve Eq. (29) w ith  zero left hand  sides. We have applied th e  F in ite  E lem ent 
M ethod [22]. T h e  resu lts are presented  in Figs. 7 and 8 . For tem p era tu re  
below th e  critica l tem p era tu re  (Fig. 7), dichotom ic noise of a sho rt correla­
tion  tim e does n o t influence th e  system : th ere  are two stab le  and sym m etric 
s ta te s  of non-zero selfsustaining curren ts (the  double-peaked density  for the  
case r  =  0.0259294 in Fig. 7). If th e  correlation  tim e r  increases th en  the  
s ta te s  of non-zero curren ts d isappear. T he s ta te  of zero cu rren t is s tab le  and 
two new m etastab le  s ta tes  of non-zero curren ts occur (the  trip le-peaked  den­
sity  for th e  case r  =  0.239503). For tem p era tu re  above th e  critical tem p era­
tu re  (Fig. 8 ), dichotom ic noise of a sho rt correlation tim e does no t influence



 x=0.0259294
 1=0.0923671
 1=0.126896
 1=0.239503

T/T =0.5, D=0.001T/T

Fig. 7. The stationary probability density for the system with dichotomic fluctua­
tions of p  for several values of their correlation time r. The amplitude ia = I and 
T  = 0.5 l i ­

the system: the single-peaked density for the case t =  0.0672336 in Fig. 8 
corresponds to zero-current case. For long correlation times, dichotomic 
noise can induce new m etastable states which correspond to non-zero cur­
rents (the triple-peaked density for the case t =  3.0392). In both cases, the 
noise-induced m etastable states are located in the neighborhood of zeros of 
the ‘diffusion function’

D( x )  =  / 2 ( t)  — ( f +(x)  — x ) 2 . (30)

Fig. 8. The stationary probability density for the system with dichotomic fluctua­
tions of p. The amplitude ia = I and T  = 2Tc.



The model Eq. (28) is clearly a simplification of the realistic one which should 
incorporate both the Nvquist noise and the possibility of independent tran ­
sitions in each channel. Such an independent transitions can be described 
by a vector stochastic dichotomic process / f  :=  (£ i,£2, . . . ,  £#) where N  is 
the number of channels in the cylinder and ^  are independent of each other 
dichotomic processesydescribed above. Further we assume th a t D  % 0 and 
the configuration of £ is quenched i.e. the probability of the even number of 
coherent electrons in a single current channel is a random  variable uniformly 
distributed on the interval [0,1]. The stationary probability density of the 
flux is now expressed as

l

PM )  = f p { A N u ,  P i)
0

where the conditional probability distribution

p(x \ z )  =  N q(z ) e x p ( —V ( x ,  z ) / D)  (32)

with V ( x , z )  :=  —x  +  i o z f e( x , T )  +  *o(l — z ) f o ( x , T )  and the normaliza­
tion constant N q(z ). The stationary  probability density (31) is plotted in
Fig. (9) for several values of the tem perature. Its profile is very different if 
compared with the case p  =  1/2. First, one should note th a t the density is 
not very sensitive for the changes of tem perature and second the maxima 
for non-zero selfsustaining fluxes are dom inated by the maximum appearing 
at zero. It means th a t even relatively small therm al fluctuations destroy the 
selfsustaining currents in the system.

Fig. 9. The stationary probability density for the system of randomly distributed 
p  for several values of T/T*.  The amplitude *o = 1 and D = 0.001 T/T*.



4. Sum m ary

P ersisten t and  selfsustaining curren ts are beau tifu l m anifesta tion  of 
q u an tu m  coherence in mesoscopic system s. T he n a tu ra l question  is how 
do th ey  behave in th e  presence of random ness and fluctuations. A ssum ing 
th e  two fluid m odel for mesoscopic system  we have investigated  th e  influence 
of N vquist noise and non-equilibrium  fluctua tions of one of th e  param eters  
(parity  of th e  coherent electrons num ber). O ur discussion is lim ited  to  s ta ­
tio n ary  s ta te s  of th e  m agnetic flux and  cu rren t although  th e  proposed m odel 
of th e  flux dynam ics can be, in principle, applied to  s tu d y  tim e dependent 
problem s. T he general conclusion is th a t  N vquist noise preserves th e  selfsus- 
tan in g  curren ts, i.e. for som e param eters  th ere  are s ta tes  of th e  long-living 
non-zero flux and curren t. In th e  case of fixed p  th e  properties of th e  s ta ­
tio n ary  flux are determ ined  by th e  generalized p o ten tia l V(x) .  A ssum ing 
non-equilibrium  (dichotom ic) fluctua tions of th e  num ber of coherent elec­
tro n s in th e  channel we conclude th a t  noise of sufficiently large correlation 
tim e can induce non-zero flux s ta te s  determ ined  by m axim a of th e  probab il­
ity  density  a t x  % 0. In th e  case of p  being th e  uniform ly d is trib u ted  random  
variable th e  long-living curren ts are observable a t low tem p era tu res . In th a t 
sense th e  quenched random ness of p  destroys selfsustaining curren ts m uch 
m ore th a n  equilibrium  fluctuations.

A p p en d ix

For th e  p ap er to  be self-contained, we rem ind one of th e  form  of the  
flu c tu a tio n -d issip a tio n  theorem  and th e  N vquist re la tion  exploited in our 
basic Eq. (8 ). T he Brow nian m otion of a p artic le  of m ass m  in a fluid of 
tem p era tu re  T  is described by a Langevin equation  [16]. According to  the  
fluctuation-d issipation  theorem  [16], its  form  for th e  velocity v = v ( t ) reads

mi) +  j v  = Y 2 j k BT  r ( t ) , (33)

w here a d o t denotes a derivative w ith  respect to  tim e, 7  is th e  friction 
coefficient, kB is th e  B oltzm ann constan t and L( t)  is th e  zero-m ean and 
D irac ¿-correlated  G aussian  stochastic  process (w hite noise),

( r ( t ) )  =  0, ( r ( t ) r ( s ) )  = 5(t -  s ) . (34)

Mutatis mutandis,  th e  Langevin equation  for th e  cu rren t I  =  I (t )  in th e  R L  
circuit takes th e  form  [23]

L i  + R I =  Y 2R k BT  T(t) .  (35)

It is one of th e  form  of th e  N vquist re lation . In th e  case when



it can be  rew ritten  as

1 ,!4 1 /2 k BT
i L « + U  =  V n r r ( i ) ' (37)

which justifies th e  p refactor of th e  noise te rm  in Eq. (8 ).

J .D . th an k s Joachim  A nkerhold for his helpful rem arks. T he work was 
su p p o rted  by th e  Polish S ta te  C om m ittee for Scientific Research (KBN) 
G ran t 5P03B 0320.
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