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Abstract

In this thesis the results of theoretical calculations for the electron-positron
annihilation into hadrons and photons are presented. The wide range of the
subjects is covered with the emphasis on the calculations of the radiative
corrections and its implementation in the PHOKHARA Monte Carlo event
generator. The important part of this thesis constitutes the modeling of the
interactions of hadrons with photons.
The subjects important from the point of view of the discrepancy between

experimental value and the Standard Model predictions of the the anomalous
magnetic moment of the muon are presented. One of them is modeling of
the two-photon pseudoscalar mesons transition form factors, which have an
impact for determination of the hadronic light-by-light contribution. The
second, calculations of the next-to-leading-order radiative corrections for the
pion pair production cross section, which are important input for the data
analysis of the BABAR and KLOE measurements, where one observes the
discrepancy.
The another subject considered in this thesis, is connected with the pho-

ton radius puzzle. The modeling of the nucleon form factors is the first step in
calculation of the complete radiative corrections to the electron-proton scat-
tering as the two-photon contributions to this reaction involve knowledge of
the proton transition form factors.
The last subject covers the production of the states with even charge

conjugation and parity. The model for electronic widths of the χc1 and χc2 is
presented. A reaction is proposed, where the resonant signal of these states
could be observed through the interference with the radiative return back-
ground.



Streszczenie

W pracy tej zostały przedstawione wyniki teoretycznych obliczeń dla pro-
cesów anihilacji elektron-pozytron do hadronów+fotony. Został poruszony
szeroki zakres tematów ze szczególnym uwzglȩdnieniem obliczeń poprawek
radiacyjnych i ich implementacji w generatorze Monte Carlo PHOKHARA.
Ważna̧ czȩść tej pracy stanowi modelowanie oddziaływań hadronów z foto-
nami.
Przedstawione sa̧ istotne tematy z punktu widzenia niezgodności pomiȩdzy

eksperymentalna̧, a przewidywana̧ w ramach Modelu Standardowego warto-
ścia̧ anomalnego momentu magnetycznego mionu. Jednym z nich jest mode-
lowanie dwufotonowych form faktorów dla mezonów pseudoskalarnych, które
sa̧ istotne dla wyznaczenia wkładów od hadronowego rozpraszania światło-
światło. Drugim jest obliczenie poprawek radiacyjnych wyższego rzȩdu dla
przekroju czynnego na produkcjȩ pary pionów, które stanowia̧ istotny wkład
do analizy danych wykonywanej w eksperymentach BABAR i KLOE, których
pomiary nie zgadzaja̧ siȩ pomiȩdzy soba̧.
Kolejny rozważany w tej pracy temat jest zwia̧zany z niezgodnościami

jakie obserwuje siȩ w przypadku pomiaru promienia protonu przy użyciu róż-
nych metod eksperymentalnych. Modelowanie form faktorów nukleonowych
jest pierwszym krokiem w celu obliczenia pełnych poprawek radiacyjnych dla
procesu rozpraszania elektron-proton. Obliczenie wkładów od wymiany dwu-
fotonowej dla tego procesu wymagaja̧ znajomości form faktorów opisuja̧cych
przejścia pomiȩdzy różnymi stanami.
Ostatni temat porusza kwestiȩ zwia̧zane z produkcja̧ stanów o dodat-

nich wartościach własnych operatorów sprzȩżenia ładunkowego i parzystości.
Przedstawiony jest model na elektronowe szerokości połówkowe χc1 i χc2 oraz
zaproponowana jest reakcja w której ich obserwacja byłaby możliwa poprzez
interferencjȩ z tłem pochodza̧cym od amplitud dla powrotu radiacyjnego.
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Chapter 1

Introduction

During the last years enormous progress in our understanding of the funda-
mental interactions has been done. The systematic comparisons of the precise
experimental data with the theory predictions give us a better constraints on
the experimental observables and set a very strict limits for the new physics
phenomena. Despite the big success of the Standard Model and the discovery
of the Higgs boson [1] there are still a few observables, which measurements
exhibits disagreements and could indicate that there is physics beyond the
Standard Model. Moreover, the phenomena like dark matter, which are not
described within the Standard Model, indicate that it is not a fundamen-
tal theory of nature. Precision tests of the Standard Model requires mutual
work of the experimental collaborations and theory groups [2]. As the exper-
imental measurements are performed with the higher and higher accuracy,
testing the Standard Model, from the theory side, involves calculations and
implementation of the higher order radiative corrections in the Monte Carlo
event generators as well as the precise knowledge of the input parameters as
masses and couplings.
One of the most important observable in particle physics is the hadronic

cross section. Its value governs the running of the electromagnetic coupling
constant at low energy up to the mass of Z0 boson and it is therefore very
important for precision analysis of the electroweak interaction. It constitutes
the crucial input for determination of strong coupling constant, quark masses,
Z0 mass and its width and low energy quantities like pion or nucleon form
factors. Furthermore the hadronic cross section is very important for a precise
determination of the muon anomalous magnetic moment (g−2)µ. The quan-
tity, where one observes the discrepancy between experimental data and the
Standard Model predictions, which exceed 3σ [3,4]. The error of this discrep-
ancy is dominated by the hadronic contributions [3,4], which cannot be calcu-
lated perturbatively with a desired precision. One of the crucial contribution
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to the hadronic part comes from the hadronic vacuum polarization diagrams.
This contribution can be calculated using dispersive integral approach, which
relates the HVP contribution to the measured value of the e+e− → hadrons
cross section. The second crucial contribution, the hadronic light-by-light
(HLbL) is mainly calculated using effective models. Since the tensor struc-
ture of the (HLbL) contributions is quite complicated and there is not enough
precise experimental data, only recently some progress in application of the
dispersive integral approach to HLbL part of the (g − 2)µ has been done [5].
The dominant contribution to the HVP part and its uncertainty comes from
the pion pair production cross section. Its precise determination is limited
by the observed discrepancy between BABAR and KLOE measurements. As
this discrepancy might have originated partly from the missing radiative cor-
rections, including of the higher order effects in the data analysis may help
to resolve this issue. For HLbL part the biggest contribution to its value and
uncertainty comes from the exchange of the neutral pseudoscalar mesons.
Its precise determination involve modeling of the pseudoscalar-two-photon
transition form factors in the space-like region. Since the form factors in the
space-like and the time-like regions are connected via analyticity, the tran-
sition form factors can be tested in the electron-positron collisions giving
access to the production of different resonance states.
The low energy form factors for the nucleons play important role for re-

solving the proton radius puzzle [6]. The observed discrepancy between two
different measurements using muonic hydrogen and electronic hydrogen can
be resolved by the more precise measurements of the ratio of proton elec-
tric and magnetic form factors in the scattering e−p → e−p. To obtain the
high precision data including higher order radiative corrections is indispens-
able. As the knowledge of the proton transition form factors is necessary
to calculate this corrections, the modeling of the nucleon form factors can
constitute the first step in including complete radiative corrections to the
reaction e−p→ e−p.
The production of the narrow resonances in electron-positron annihilation

up to now has been observed experimentally only for states with negative
charge and parity (JCP = J−−). This states are produced by ordinary anni-
hilation through one photon. The possibility to observe the resonances with
even charge conjugation and parity (JCP = J++) are strongly suppressed.
As these states have a different quantum numbers from photon, their pro-
duction at the lowest order go through two photons or neutral current (only
1++state). Since the production rate for J++ states is tiny the only possible
way of observing this states is through the interference process. Small pro-
duction rate can be compensated by the high luminosity. The observation of
the resonant signal is within the range of the experiments as BES-III.
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The layout of this thesis is the following. Chapter 2 presents the results
for modeling the nucleon form factors and calculation of the final state radia-
tive corrections to the proton-antiproton cross section. Chapter 3 describes
modeling of the electronic widths of the χc1 and the χc2 and application
of this results to the reaction e+e− → χc1,2 → γJ/ψ(→ µ+µ−). Chapter 3
presents the Lagrangian approach to the modeling the two-photon transition
form factors for pseudoscalar mesons and analysis of the size of the radiative
corrections in the pseudoscalar photon production cross section. In Chapter
5 the procedure for calculation of the next-to-leading order radiative correc-
tions is presented and analysis of their size in the context of the BABAR and
KLOE discrepancy is performed. In the Chapter 6 the final conclusions are
presented. The thesis is based on the publications [7–13], with my coauthor-
ship.

5



Chapter 2

Nucleon form factors and final

state radiative corrections to

the reaction e+e−→ pp̄(γ)

2.1 Motivation

The electromagnetic structure of the nucleons is described by the electric and
magnetic form factors, which describe the distribution of the charge inside
nucleus as a function of the transferred momentum Q2. During the past years
a lot of effort have been done to extract electric and magnetic form factors
in electron-proton scattering experiments. Two methods were developed for
this purpose. First of them is the Rosenbluth technique [14], which base on
the formula of unpolarized differential cross section for elastic scattering.

dσ

dΩ
= σMott

[
G2E(Q

2) + τG2M (Q
2)

1 + τ
+ 2τG2M tg

2(θ/2)
]
, (2.1)

with

σMott =
α2 cos2(θ/2)

eE2 sin4(θ/2)

E ′

E
, (2.2)

where, GE and GM are electric and magnetic form factors, τ = Q
2/4M2N ,MN

is nucleon mass, θ is electron scattering angleQ2 = (p′−p)2 = 4EE ′ sin2(θ/2),
where p, p′ and E, E ′ are incoming and scattered electron momenta and
energies. One can define the reduced cross section

σR =
dσ

dΩ

ǫ(1 + τ)

σMott

= τG2M(Q
2) + ǫG2E(Q

2), (2.3)
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where ǫ−1 = 1 + 2(1 + τ) tg2(θ/2). The GE can be extracted from the slope
of the reduced cross section and τGM from the intercept of the σR with the
ǫ axis.
The second method is the recoil polarization technique [15]. It is based

on the fact that the polarized elastic electron-proton scattering is sensitive to
different combinations of electric and magnetic form factors. The ratio of the
form factors GE/GM is related to the components of the recoil polarization
through [16]

GE

GM
= −Pt

Pl

(E + E ′) tg(θ/2)

2MN
, (2.4)

where Pt and Pl are the longitudinal and the transverse components of the
final proton polarization.
The electron-proton scattering experiments give information about the

form factors in the space-like region, where one can separate the electric
and magnetic form factors by analysis of the angular distribution of the
scattered particles. On the other hand, a measurement of the cross section
of the reaction e+e− → pp̄ gives access to a specific combination of the
form factors in the time-like region, where the separation of electric and
magnetic contributions can be done by analysis of the angular distributions.
The measured values of the ratio of electric and magnetic form factors of
the proton using the Rosenbluth separation exhibited large discrepancies [17]
with the measurements using the recoil polarization technique. Theoretically,
this inconsistency is now mainly understood in terms of two-photon exchange
effects, which have a strong impact on the result of the Rosenbluth separation
but affect a polarization technique only minimally. These two-photon effects
were not taken into account in the first analyses. The impact of the two-
photon exchange diagrams have been shown using two calculations, one in the
partonic framework and the second using a single hadronic intermediate state
[18–20]. Experimental verification of the size of the two-photon effects, which
will help in better understanding of the nucleon form factors structure is
necessary. Since the form factors in the space-like and the time-like region are
connected by the analyticity, the measurement of the proton-antiproton cross
section may give more important information about the nucleons structure.
The cross section for proton-antiproton production can be measured via

the radiative return method. The BABAR collaboration, which measured
that cross section using the radiative return method [21], argued that the
final state emission was negligible. If one can obtain an independent data
set with higher precision, the size of the final state corrections have to be
re-examined.
This part of my thesis is based on the work presented in [7]. The modeling
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of the nucleon form factors and the final state radiative corrections to the
proton-antiproton pair production were also the subject of my master thesis,
which results were partly shown in [22]. The model of the nucleon form factors
presented here, which has an impact on the size of the final state radiative
corrections is modified as compared to my master thesis. In addition the cross
section e−p→ e−p was considered.
The layout of this Chapter is the following. In Section 2.2 the general

information about nucleon form factors is presented and the modeling of
the new form factor model is described together with the procedure used
to determine the model parameters [7]. Section 2.3 contains the information
about final state radiative corrections to the reaction e+e− → pp̄γ and de-
scribes new development in this subject. In Section 2.4 the impact of the final
state radiative corrections on the pp̄γ cross section is investigated. Section
2.5 contains conclusions.

2.2 Nucleon form factors

The most general hadronic current of the nucleon-antinucleon interaction
with a photon, which is conserved and preserves parity (P), charge conjuga-
tion (C) and time reversal (T) symmetries has the following form:

Jµ = −iev̄(p2)
[
FN
1 (Q

2)γµ − FN
2 (Q

2)

4MN

[γµ, /Q]
]
u(p1), (2.5)

where Q2 = (p1 + p2)
2, p1, p2 are the proton and antiproton momenta, F

N
1

and FN
2 are Dirac and Pauli form factors for the nucleon N . The electric and

magnetic form factors written in terms of Dirac and Pauli form factors have
the following form:

GN
E (Q

2) = FN
1 (Q

2) + τFN
2 (Q

2), (2.6)

GN
M(Q

2) = FN
1 (Q

2) + FN
2 (Q

2). (2.7)

(2.8)

At Q2 = 0 the electric form factor is normalized to the electric charge,
while the magnetic form factor is normalized to the magnetic moment of the
nucleon:

Gp
E(0) = 1 Gp

M(0) = µp, (2.9)

Gn
E(0) = 0 Gn

M(0) = µn. (2.10)
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2.2.1 The model

The parameterization of the nucleon form factors [7] based on the generalized
vector meson dominance has been adopted. The Dirac and Pauli form factors
are represented as combination of isoscalar and isovector contributions:

F p
1,2(Q

2) = F s
1,2(Q

2) + F v
1,2(Q

2), (2.11)

F n
1,2(Q

2) = F s
1,2(Q

2)− F v
1,2(Q

2), (2.12)

where F s
1,2 and F

v
1,2 refer to isospin zero and isospin one contributions respec-

tively. The following parameterization of the isoscalar and isovector parts has
been used:

F s
1 (Q

2) =
1

2

∑4
n=0 c

1
nBWωn(Q

2)
∑4
n=0 c

1
n

, (2.13)

F v
1 (Q

2) =
1

2

∑4
n=0 c

2
nBWρn(Q

2)
∑4
n=0 c

2
n

, (2.14)

F s
2 (Q

2) = −1
2
b

∑4
n=0 c

3
nBWωn(Q

2)
∑4
n=0 c

3
n

, (2.15)

F v
2 (Q

2) =
1

2
a

∑4
n=0 c

4
nBWρn(Q

2)
∑4
n=0 c

4
n

, (2.16)

where ci0 = 1 for i = 1, 2, 3, 4, a = µp − µn − 1 and b = −µp − µn + 1, where
µp and µn are magnetic moments of proton and neutron. In the model of
the form factors the Zweig rule is applied and thus the φ contributions are
neglected. The Breit-Wigner function has the following form:

BWi(Q
2) =

m2i
m2i −Q2 − imiΓiθ(Q2)

, (2.17)

where θ(Q2) is a step function, which sets the meson width to zero for the
space-like region. Similarly, the complex coupling constants cji can be rewrit-
ten using real parameters in the following way cji = cjRi + ic

jI
i θ(Q

2), which
ensures that for the space-like region the imaginary parts do not contribute
to the cross section. Above the proton-anti-proton production threshold the
constant meson widths is used. The high energy asymptotic behavior of the
form factors predicted by the perturbative chromodynamics is imposed [23]

F1 ∼
1

(Q2)2
, F2 ∼

1

(Q2)3
. (2.18)

This allows to limit the number of independent complex parameters to be
determined by experimental data to six. The asymptotic behavior, Eqs. 2.18,
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is enforced by choosing

c14 = −
1

m2ω4

3∑

n=0

m2ωnc
1
n, (2.19)

c24 = −
1

m2ρ4

3∑

n=0

m2ρnc
2
n, (2.20)

c33 =

∑2
n=0mωnc

3
n(m

2
ωn −m2ω4 + i(mω4Γω4 −mωnΓωn))

m2ω3(m
2
ω4 −m2ω3 + i(mω3Γω3 −mω4Γω4))

,

c34 = −
1

m2ω4

3∑

n=0

m2ωnc
3
n, (2.21)

c43 =

∑2
n=0mρnc

4
n(m

2
ρn −m2ρ4 + i(mρ4Γρ4 −mρnΓρn))

m2ρ3(m
2
ρ4 −m2ρ3 + i(mρ3Γρ3 −mρ4Γρ4))

,

c44 = −
1

m2ρ4

3∑

n=0

m2ρnc
2
n. (2.22)

(2.23)

The masses and widths of the meson resonances and nucleons have been
fixed according to [24] with the exception of ρ3,4 and ω3,4 for which masses
and widths have not been measured. For these states the model of masses
and widths has been adopted from [25, 26]. The model postulates the fol-
lowing relation between masses of the resonances, m2ρ(ω)n = m2ρ(ω)0(1 + 2n),
and a linear relation between the masses and the widths of given resonance
Γρ(ω)n = γρ(ω)mρ(ω)n . γρ(ω) are derived from the lowest laying mesons. Using
this model one obtains the following values for masses and widths, which
were not measured:

mρ3 = 2.12 GeV, Γρ3 = 0.3 GeV, (2.24)

mρ4 = 2.32647 GeV, Γρ4 = 0.4473 GeV, (2.25)

mω3 = 2.0707 GeV, Γω3 = 1.03535 GeV (2.26)

mω4 = 2.32647 GeV, Γω4 = 0.4473 GeV. (2.27)

The remaining coupling constants of nucleon-antinucleon to vector mesons
have been fitted to the experimental data.

2.2.2 Determination of the model parameters

The model parameters have been fitted to the ratio of the proton electric
and magnetic form factors in the space-like [27–31] and the time-like region
[21, 32], the ratio of the neutron electric and magnetic form factors in the
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space-like region [33,34], and the cross sections for the reactions e+e− → NN̄
[21, 35–41], pp̄→ e+e− [32, 42–46] and e−p→ e−p [47]. The formulae for the
cross section used in the fit have the following forms:

σe+e−→NN̄ =
2πα2β

3s

(
2|GN

M(Q
2)|2 + |G

N
E (Q

2)|2
τ

)
, (2.28)

where N = p, n, N̄ = p̄, n̄ and β =

√
1− 4M

2
N

Q2
.

dσpp̄ → e+e−

d cos θ∗
=
πα2

2βs

(
|Gp

M(Q
2)|2(1 + cos2 θ∗) + |G

p
E(Q

2)|2
τ

sin2 θ∗
)
, (2.29)

where θ∗ is the angle between electron and antiproton.

dσe−p→e−p
dΩ

=
α2 cos2(θ/2)

4E2 sin4(θ/2)

E ′

E


G

2
E(Q

2) + τG2M (Q
2)

1 + τ
+ 2τG2M tg

2(θ/2)


,

(2.30)
where E and E ′ are the initial and the final electron energies, and θ is the
scattering angle of the electron.
For the e−p → e−p cross section only one data set [47] has been used,

which covers the wide range of energies and angles. Furthermore the experi-
mental value of this cross section contain non-negligible contribution coming
from the two-photon exchange. The theoretical prediction for this contribu-
tion involves the knowledge of the proton transition form factors. This issue
is not addressed in this thesis. To take into account the missing corrections
and to allow the electron-proton scattering cross section data to accommo-
date well into the model, the errors have been enlarged to 10% of the cross
section in the fitting procedure.
The fit to all experimental data leads to unacceptable results, χ2 = 214 for

177 data points and 20 parameters. The reason is that the data measured by
the experiment PS170 for the pp̄→ e+e− cross section and the data collected
by the DM2 experiment for the e+ e− → pp̄ cross section are in conflict with
the measurements performed by BABAR experiment. The model fit very
well, when one excludes PS170 and DM2 data (χ2 = 124 for 150 data points)
or BABAR data (χ2 = 107 for 133 data points). In this thesis I will only refer
to the first fit, where PS170 and DM2 data were not included. The table 2.1
contains the values of the χ2 for particular experiments. The values of the
fitted parameters are presented in the table 2.2.
Fig. 2.1a shows the comparison of the experimental data with the model

fit results for the cross section of the reaction e+e− → pp̄ as a function of
the scattering energy

√
s. Individual measurements are represented by points
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Experiment nep χ2 Experiment nep χ2

BaBar cs [21] 38 30 BaBar r [21] 6 0.6
PS1701 cs [32] 8 109 PS170 r [32] 5 16
PS1702 cs [42] 4 4 PS1703 cs [43] 4 52
E760 cs [44] 3 0.5 E8351 cs [45] 5 1
E8352 cs [46] 2 0.03 DM2 cs [35, 36] 7 26
BES cs [37] 8 10 CLEO cs [38] 1 0.4
FENICE cs [39] 5 5 DM1 cs [40] 4 0.7
JLab 05 r [27] 10 16 JLab 02 r [28] 4 1
JLab 01 r [29] 13 10 JLab 10 r [30] 3 6
MAMI 01 r [31] 3 2 JLab 03 r [33] 3 6
BLAST 08 r [34] 4 6 FENICE cs [39] 4 0.6

SLAC cs [47] 32 27

Table 2.1: The chi-squared values for particular experiments; nep- number of
experimental points; cs - cross section; r- ratio of the electric and magnetic
form factors.

fit
CLEO

BES
Adone

DM1
DM2

FENICE
BaBar

√
s (GeV)

σ
(
e
+
e
−
→
p̄
p
)

(
p

b
)

4.543.532.52

10000

1000

100

10

1

0.1

(a)

fit
exp

no.

σ
(
e
−
p
→
e
−
p
)

d
Ω

(
n

b
)

35302520151050

100

10

1

0.1

0.01

0.001

0.0001

1e− 05

(b)

Figure 2.1: The experimental data compared to the model fit results. (a)
Cross section of the reaction e+e− → pp̄, (b) Cross section of the reaction
e−p→ e−p.

with error bars, while the solid black line represents the results obtained from
the fit. One can observe that all data fitted very well and that this model
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c1R1 -0.45(1) c1I1 -0.54(2) c
1R
2 -0.27(1) c

1I
2 0.18(1)

c1R3 0.42(2) c1I3 0.37(2) c2R1 -0.12(1) c
2I
1 -3.06(2)

c2R2 0.16(1) c2I2 2.53(1) c2R3 -0.32(1) c
2I
3 -0.17(1)

c3R1 -8.03(5) c3I1 3.28(2) c3R2 10.6(1) c3I2 0.2(3)
c4R1 -0.845(1) c

4I
1 0.364(1) c

4R
2 0.427(1) c

4I
2 -0.305(1)

Table 2.2: Parameters of the nucleons form factor obtain from the fit to
experimental data. The errors, given in brackets are the parabolic errors
calculated by procedure Minos of the MINUIT package [48].

cannot accommodate simultaneously BABAR and DM2 data sets. Fig. 2.1b
shows the comparison of the experimental data with the model fit results for
the cross section of the reaction e−p→ e−p, where on the horizontal axis the
entry number is presented, which corresponds to the order of experimental
points in Table III from [47]. Each experimental point was obtained for dif-
ferent scattering energy and it corresponds to different scattering angle and
the value of the transferred momentum. In that case almost all experimen-
tal points (pink) are well described by theoretical model (green points). The
exception is only one point (9th), where one can observe small shift from
the measurement. On the plots from Fig. 2.2 the comparison of the exper-
imental data with the model fit results for the cross section of the reaction
pp̄→ e+e− as a function of a square of beam energy s is presented. Individ-
ual measurements are represented by points with error bars, while the fitted
model predictions are represented by black points. On this plots each point
represents the cross section integrated in different range of polar angles. The
plot 2.2a shows this comparison for the experiments E760 and E835, which
were included in the fit. In that case all data fitted very well. The compar-
ison of the theoretical model with the PS170 measurement, which was not
included in the fit is shown on the plot from Fig. 2.2b. Here one can observe
a big discrepancy between experimental points and model predictions, which
is caused by the fact that these data are in contradiction with the BABAR
measurement of the ratio of the proton electric and magnetic form factors in
the time-like region. The plots from Fig. 2.3 show the ratio of the electric and
magnetic form factors in the space-like (Fig.2.3a) an the time-like (Fig.2.3b)
regions. In both cases the individual measurements are represented by points
with error bars, while the solid black line represents the results obtained from
the fit. For the space-like region all data are well described by the model,
while for the time-like region one can observe that there is no possibility to
fit BABAR and PS170 data simultaneously. The plots from Fig. 2.4 show
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the comparison of the experimental data with the model fit results for the
neutron-antineutron production cross section (Fig.2.4a) and ratio of the elec-
tric and magnetic neutron form factors in the space-like region (Fig.2.4b).
On both plots, individual measurements are represented by points with error
bars, while solid black line represents the results obtained from the fit. The
neutron data are well described by the fitted model but one can notice that
the current measurements do not give a strict constraints on the model pa-
rameters, in particular in the case of neutron-antineutron production cross
section.

fit
E8352
E8351
E7601

s (GeV)

σ
(
p
p̄
→
e
+
e
−
)

(
n

b
)

15141312111098

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

−0.001

(a)

fit
PS1703
PS1702
PS1701

s (GeV)

σ
(
p
p̄
→
e
+
e
−
)

(
n

b
)

4.24.143.93.83.73.63.5

80

70

60

50

40

30

20

10

0

(b)

Figure 2.2: The experimental data compared to the model fit results. Cross
section of the reaction pp̄→ e+e−.

14



fit
JLab 10

MAMI 01
JLab 01
JLab 02
JLab 05

Q2 (GeV2)

µ
p
G
p E
/
G
p M

9876543210

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

(a)

fit
BaBar
PS170

√

Q2 (GeV)

|G
p E
|/
|G

p M
|

32.82.62.42.22

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

(b)

Figure 2.3: The experimental data compared to the model fit results. Ratio of
the electric and magnetic proton form factors in space-like (a) and time-like
(b) regions.
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Figure 2.4: The experimental data compared to the model fit results.
Neutron-antineutron production cross section (a) and ratio of the electric
and magnetic neutron form factors in space-like region (b).
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2.3 Final state radiative corrections

e−

e+

p

p̄
a)

e−

e+

p

p̄
b)

Figure 2.5: Representative diagrams for leading order amplitudes for the
reaction e+e− → pp̄γ.

At the leading-order (LO) the amplitude for the reaction e+e− → pp̄γ
can be written in the following form:

MLO =M1ISR +M1FSR, (2.31)

where M1ISR is the amplitude with the emission of one photon from the
initial state, presented in Fig. 2.5a, and M1FSR is the amplitude with the
emission of one photon from the final state, presented in Fig. 2.5b. The sum
of this two contributions constitutes the Born amplitude for the radiative
return process.
At the next-to-leading order (NLO) the amplitude consist of the contri-

bution with two hard photons, virtual corrections and soft photon radiation.
The amplitude for 2 hard photon emission can be written in the following
form:

M2γ =M2ISR +M2FSR +M1ISR,1FSR, (2.32)

where the individual contributions are represented by diagrams from Fig.
2.6. The virtual corrections are represented by the diagrams from Fig. 2.4
and soft photon contributions can be obtained from diagrams from Fig. 2.6
by imposing a condition that one of the photons have energy Eγ < Eγ,min.
The virtual corrections at the NLO contribute only through the interference
with the Born amplitude.
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Figure 2.6: The next-to-leading order amplitudes with photons emissions for
the reaction e+e− → pp̄γ (permutations are omitted).

a) b)

c) d)

Figure 2.7: Representative classes of diagrams for virtual corrections at the
NLO.

2.3.1 The implementation of the FSR corrections

The previous [49] version of the PHOKHARA (PHOKHARA 7.0) Monte
Carlo event generator allows to simulate the reaction of e+e− → pp̄γ at the
next-to-leading order, where only the initial state radiative corrections were
included. The amplitudes included in that version of the code are the emission
of one photon from the initial state presented in Fig. 2.5a, emission of two
photons from the initial state presented in Fig. 2.6a, and the virtual+soft
corrections to the initial state represented by the diagram from Fig. 2.7a.
The calculation of the ISR, even if it is not simple, is the straightforward
application of the Feynman rules of the Quantum Electrodynamics (QED).
The situation is more complicated, when one has to deal with the final state
corrections, where a composite object as proton radiates photons. The real
radiation from the proton (antiproton) in the simplest model can be treated
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with a good approximation as the emission from the point-like objects. This
was adopted in [7], where the proton form factors enter only the vertex with
the coupling of the virtual photon to proton-antiproton pair. For the virtual
final state corrections one cannot adapt the point-like corrections from the
muon case [50]. Since an additional term in the hadronic current, proportional
to the Pauli form factor, is present, the corrections are not the same. There
is also no reason for the corrections proportional to F1 and F2 to be the
same. Moreover, the model described by the interaction Lagrangian, which
produces the hadronic current given in the Eq. 2.5 is non-renormalizable even
for constant form factors, in case F2 is present. To overcome these difficulties
a general strategy to include only the corrections, which should appear in
any model, was adopted. This is done by including the modified Coulomb
factor in the following form:

C(Q2) = f(πα/β)− f(πα) + 1, (2.33)

where

f(x) =
x

1− exp(−x) , β =

√√√√1− 4m
2
p

Q2
, (2.34)

where Q2 is invariant mass of the proton-antiproton pair. The C(Q2) at small
proton velocities reproduces resummation of the leading radiative corrections
and for Q2 →∞ goes to one. The above Coulomb factor multiply zero, one
and two photon emission parts. In a Coulomb factor CF

CF (Q
2) = f(πα/β). (2.35)

Second universal correction comes from soft virtual+real emission and reads:

∆FSR =
2α

π

[
1 + β2

2β
log

Q2(1 + β2)

4m2p
− 1

]
log 2w, (2.36)

where w = Eγ,min/
√
s is a separation parameter between the soft and the

hard part of the photon phase space. Including the ∆FSR is indispensable
to cancel the infrared divergences, which come from the integration of the
photon emission with energy Eγ > Eγ,min. The form of this correction ensures
also the independence of the total cross section on the separation parameter
w. The virtual correction to the initial state have the following form [51]:

∆ISR =
2α

π

[(
log

( s

m2e

)
− 1

)
log 2w +

3

4
log

( s

m2e

)
− 1 + π2

]
. (2.37)

Interferences of virtual corrections with LO amplitudes, which are in-
cluded in the current version of the PHOKHARA Monte Carlo generator for
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the reaction e+e− → pp̄γ [7], are presented in Fig. 2.8. The newly added
part consist of the interference of the initial state virtual corrections with
the LO FSR (Fig. 2.7b) and the interference of the final state virtual cor-
rections with the LO ISR (Fig. 2.7c). The charge-odd combinations of the
amplitudes, which could lead to the asymmetries have not been included in
this work. For the photon radiation, the amplitudes included in the current
version of the code contain full LO FSR with the ISR× FSR interference and
NLO diagrams with emission of one photon from the initial state and one
photon from the final state (Fig. 2.6c). The size of the contributions from the
diagrams with the emission of two photons from the final state is expected
to be negligible. For muons the corrections were calculated in [52] and the
results show that they are at the per mille level. The effect of a similar size,
or smaller, should be observed for the pp̄γ cross section.
To calculate the amplitudes for the real radiation from the final states,

the helicity amplitude formalism developed in [53, 54] has been used, where
the Dirac γ matrices are used in the Weyl representation. The calculation of
the LO and NLO amplitudes is described in the Appendix A.

×

a)

×

b)

×

c)

Figure 2.8: Interferences of virtual corrections with LO amplitudes, which
were taken into account at NLO.
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2.4 Monte Carlo simulations

The plot from Fig. 2.9a shows the relative difference between the ISR and
the FSR cross section at the NLO. The plot from Fig. 2.9b shows the relative
difference between cross section with complete FSR corrections and the cross
section with FSR corrections, where only Coulomb factor CF is included.
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Figure 2.9: Relative difference between Q2 distributions calculated at NLO
with and without FSR radiative corrections (a) and between the implemented
FSR corrections and FSR corrections, where only Coulomb factor is included
(b).

The event selection has been chosen to be close to the one used by
BABAR. As one can observe the dominant contribution of the FSR comes
from the Coulomb factor and can achieve up to 12% in the region close to
the threshold for production of proton-antiproton pair. The typical size of
the remaining FSR corrections beyond the Coulomb factor is of the order
of 1%. The same differences for the event selection close to the one used by
BES are presented on the plots from Fig. 2.10. The influence of the Coulomb
factor is even bigger than in the case of the BABAR and its size can achieve
up to 16% for low proton-antiproton invariant masses. The size of the FSR
corrections, which are not included in the Coulomb factor are up to 1%.
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Figure 2.10: Relative difference between Q2 distributions calculated at NLO
with and without FSR radiative corrections (a) and between the implemented
FSR corrections and FSR corrections where only Coulomb factor is included
(b).

2.5 Conclusions

The model of the nucleon form factors, developed in [7], quite well describes
most of the experimental data. Yet there is still room for improvements. Since
the PS170 and DM2 data are in conflict with the BABAR data it is quite
unlikely that any model can accommodate all of them at the same time. In
the light of this discrepancy it will be highly desirable to confirm BABAR
data by an independent measurement with a similar precision.
The effect of the final state radiative corrections on the proton-antiproton

cross section, except the Coulomb factor is small for typical experimental cuts
and it is of the order of 1%. The measurable difference between ISR NLO cross
section and the cross section with the final state radiative corrections comes
from the Coulomb factor, which is big close to the threshold for production
of proton-antiproton pair.
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Chapter 3

Production of states with even

charge conjugation in electron -

positron annihilation

3.1 Motivation

The formation of resonances with even charge conjugation (C = +1) in
electron-positron annihilation have not been observed so far. The production
of these states is only possible through the neutral current (JCP = 1++)
or through higher order electromagnetic reaction (JCP = 1++ and JCP =
2++). Both possibilities are strongly suppressed comparing to the ordinary
annihilation through one photon (JCP = 1−− state). The production of these
states through these mechanisms for charmonium resonances (χcJ for J =
1, 2) in the frame of non-relativistic quarkonium model has been suggested
long time ago in [55, 56]. Because of the small resonant enhancement of the
cross section for production of these states there were no attempts to verify
the predictions. Now the situation has changed and the observation of these
resonances seems to be possible in experiment like BES-III. The proposed
reaction to observe the resonant signal is e+e− → χcJ → γJ/ψ, with the
subsequent decay of J/ψ into pair of muons [8,9]. In the case of this reaction
an important role plays the interference with the non-reducible background,
which comes from the radiative return reaction e+e− → γJ/ψ(→ µ+µ−).
This gives rise to the interesting interference pattern and makes possible the
observation of χci states through the interference with the background. The
proposed reaction could serve as a tool for a determination of the electronic
widths of χc1,2 states, which due to their smallness, have not been measured
yet.
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The layout of this Chapter is the following. In Section 3.2 the calculations
of the amplitudes for a coupling of χc1,2 states to two photons and a neutral
current is presented. In Section 3.3 it was demonstrated that the model for
calculation of electronic widths in terms of the short distance approxima-
tion presented in [56] has to be extended to include at least binding energy
corrections. In that Section the model for electronic widths, which combine
short and long distance results was also presented. Section 3.4 contains the
amplitudes for the reaction e+e− → γJ/ψ(→ µ+µ−), which can be used to
extract electronic widths of χc1,2 . The results for the cross section of this re-
action obtained using the Monte Carlo simulations are presented in Section
3.5. Section 3.6 contains conclusions.

3.2 Amplitudes for couplings χcJ states to two

photons and to the neutral current

The amplitude describing the annihilation of free fermion and antifermion
into two photons can be written in the following way [56]:

Af = v̄(f̄ , s̄)Ou(f, s), (3.1)

where f , f̄ and s, s̄ are momenta and spins of a fermion and an antifermion.
The operator O a LO has the following form:

O = 1
i

[
(−ie/ǫ2)

i

6f − /p1 −m
(−ie/ǫ1) + (−ie/ǫ1)

i

6f − /p2 −m
(−ie/ǫ2)

]
, (3.2)

where p1, p2, ǫ1, ǫ2 are momenta and polarization vectors of photons and m
is the fermion (antifermion) mass. In the non-relativistic approximation, the
amplitude for fermion and antifermion in a bound state is given by a linear
superposition of the amplitudes for free particles weighted by the bound state
wavefunction ψss̄(k). In the bound state rest frame the amplitude reads [56]:

A =
√
1

m

∫
dk

(2π)3/2
ψss̄(k)v̄(f̄ , s̄)Ou(f, s), (3.3)

where the following relations hold:

f − f̄ = 2k = (0, 2k), (3.4)

f + f̄ = P = (M, 0), (3.5)
∑

ss̄

∫
dk|ψss̄(k)|2 = 1. (3.6)
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M is the bound state mass. Converting the matrix element v̄(f̄ , s̄)Ou(f, s)
into a trace of γ matrices and considering the singlet and triplet states, one
gets [56]:

∑
ss̄ v̄(f̄ , s̄)Ou(f, s) 〈1

2
, s;
1

2
, s̄|S, Sz〉 =

1√
Ef̄ +m

1√
Ef +m

Tr
[
(m− f̄)O(m+ f)1 + γ0

2
√
2
ΠSSZ

]
, (3.7)

with Π00 = −γ5 and Π1,SZ = −/ǫ(Sz), where ǫ(Sz) is the spin part of the
wavefunction. Expanding Eq. 3.7 up to terms linear in k one gets:

1√
Ef̄ +m

1√
Ef +m

Tr
[
(m− f̄)O(m+ f)1 + γ0

2
√
2
ΠSSZ

]
=

Tr
[(
(M +

1

2
b)O0 + {O0, /k}+ (M +

1

2
b)k · O

)
1 + γ0

2
√
2
ΠSSZ

]
, (3.8)

where b = 2m−M is a binding energy and:

O0 ≡ O|k=0

=
−e2

[1
2
(p1 − p2)]2 −m2 + iǫ

[/ǫ2/ǫ1/p1 − /p1/ǫ1/ǫ2], (3.9)

Oµ ≡
∂

∂kµ
O|k=0

=
−e2

[1
2
(p1 − p2)]2 −m2 + iǫ

[p1 · p2ǫ1µ/ǫ2 − p1µǫ1 · ǫ2/p1 + /ǫ2ǫ · p2

−/ǫ1p1 · ǫ2].
(3.10)

The terms proportional to the binding energy in Eq. 3.8 break the gauge
invariance and thus should not be taken into account. For P -waves, which
describe χcJ states, only terms linear in k contribute. From the orbital part
one gets: √

1

m

∫
dk

(2π)3/2
kµψss̄(k) = −aǫ(m)µ , (3.11)

with a ≡
√
1
m

√
3
4π
φ′(0), where φ′(0) is the derivative of the radial wavefunc-

tion at the origin and ǫ(m)µ is the orbital part of the wavefunction. Collecting
all these results together one obtains the following expression for the ampli-
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tude for annihilation of 3PJ states into two photons:

A
3PJ =

a

2
√
2
Tr
[
/ǫ(SZ)ǫ(m)µ Oµ(M + /P ) + 2O0ǫ(m)µ ǫµ

(SZ ) +O0
/P

M
{/ǫ(SZ), /ǫ(m)}

〈1, 1, SZ , m|J, JZ〉
]
. (3.12)

The following relations hold [56]:

ǫ(SZ )µ ǫ(m)ν 〈1, 1, SZ , m|0, 0〉 =
√
1

3

(
gµν −

PµPν
M2

)
,

ǫ(SZ )µ ǫ(m)ν 〈1, 1, SZ , m|1, 0〉 = −
i√
2M

ǫαβµνP
αǫβ ,

ǫ(SZ )µ ǫ(m)ν 〈1, 1, SZ , m|2, 0〉 = ǫµν , (3.13)

where ǫµ and ǫµν are polarization vector and tensor of the bound states.
Inserting relations 3.13 into formula 3.12 one obtains the amplitudes for
coupling of two virtual photons to χcJ states:

Aαβ0 (p1, p2)ǫ
1
αǫ
2
β =

√
1

6
c
2

Mχc0

{[(ǫ1ǫ2)(p1p2)− (ǫ1p2)(ǫ2p1)][M2χc0 + (p1p2)]

+(ǫ1p2)(ǫ2p2)p
2
1 + (ǫ1p1)(ǫ2p1)p

2
2 − (ǫ1ǫ2)p21p22 − (ǫ1p1)(ǫ2p2)p1p2},

(3.14)

Aαβ1 (p1, p2, ǫ)ǫ
1
αǫ
2
β = ic{p21(ǫ, ǫ1, ǫ2, p2) + p22(ǫ, ǫ2, ǫ1, p1)
+ǫ1p1(ǫ, ǫ2, p1, p2) + ǫ2p2(ǫ, ǫ1, p2, p1)},

(3.15)

Aαβ2 (p1, p2, ǫ)ǫ
1
αǫ
2
β =

√
2cMχc2

{(p1p2)ǫ1µǫ2ν + p1µp2ν(ǫ1ǫ2)
− p1µǫ

2
ν(ǫ1p2))− p2µǫ1ν(ǫ2p1))}ǫµν ,

(3.16)

where

c ≡ c((p1 + p2)
2, p21, p

2
2, m)

=
16παa√

m

1

((p1 − p2)2/4−m2 + iǫ)2
,

(3.17)
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From a number of independent Lorentz structures, which describe the inter-
action of χci states with two photons [56,57], only part of them contribute in
this specific model. For χc0 , there are two independent amplitudes but only
one of them contributes, for χc1 there are 3 independent amplitudes and only
one amplitude contributes and for χc2 from five allowed amplitudes only one
enters the model described in this Section.
For a coupling of the fermion-antifermion pair to the neutral current the

operator O has the following form:

O = −ig
2 cos θW

/εZ0(gV + gAγ5), (3.18)

where εZ0 is a polarization vector of the Z
0 boson, g is the electroweak

coupling constant, θW is the weak mixing angle and gV = t3 − 2Q sin2(θW ),
gA = −t3 are axial and vector coupling constants, where t3 and Q are third
component of isospin and the charge of given fermion. For charm quark t3 =

1
2

and Q = 2
3
. Inserting the operator O into the formula from Eq. 3.3 with the

use of equation 3.7 for a state with S = 1 and Sz = 0 and conserving only
terms proportional to k one gets the amplitude for coupling of the χc1 to the
neutral current. After performing trace and making use of the relation 3.13
one gets the following expression:

A(χc1−Z0) =
2aggAM

2
χc1√

2(Mχc1
/2 +m) cos θW

εµZ0εχc1µ

(
1 + 2

m

Mχc1

)
, (3.19)

where εχc1µ is the polarization vector of χc1 and Mχc1
is its mass. As one can

observe only the axial part of neutral current contribute to the amplitude
describing the coupling of χc1 −Z0. The amplitude for coupling of χc2 states
to Z0 boson is zero due to the conservation of angular momentum.

3.3 Electronic widths of χc1 and χc2

3.3.1 Short distance approximation and binding en-

ergy corrections

The contribution to the decay of the χcJ into e
+e− pair in the short dis-

tance approximation, where couplings of χci to other charmonium states are
neglected, is depicted in the diagram from Fig. 3.1. The amplitude can be
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χc

e
−

l−

e
+

l+

Figure 3.1: Diagram for decay widths Γ(χc0,1,2 → e+e−) in short distance
approximation.

written in the following form:

A(χcJ → e+e−) = ie2
∫

dp1
(2π)4

v̄(l+)γν 6 hγµu(l−)

1

h2
1

p21

1

p22
AµνJ (p1, p2, ǫ), (3.20)

where h = l− − p1, l± is the momentum of electron (positron) and AµνJ is
the amplitude, which describes the coupling of the χcJ state to two photons.
Inserting Eqs. 3.14, 3.15 and 3.16 into formula from Eq. 3.20 and neglecting
the electron mass the following expressions are obtained:

A(χc0 → e+e−) = 0, (3.21)

A(χc1 → e+e−) = −2ie2v̄(l+)γ5
{ ∫

d4p1
(2π)4

c

h2p21p
2
2

(
/ǫ[p21p

2
2

+
1

2
h2(p21 + p

2
2)]− ǫ · h/h(p21 + p22)

)}
u(l−), (3.22)

A(χc2 → e+e−) = −ie2
√
2Mv̄(l+)ǫ

µν
∫

d4p1
(2π)4

c

h2p21p
2
2

{
(l+ − l−)µγνh2

+ 2/hhµhν

}
u(l−). (3.23)

Here and in the following calculations M = Mχc1
for loop integrals involved

in calculation of the amplitude A(χc1 → e+e−) and M = Mχc2
for loop

integrals involved in calculation of the amplitude A(χc2 → e+e−).
Changing the integration variable from p1 → h and inserting the expres-
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sion from Eq. 3.17 for the function c one obtains:

A(χc1 → e+e−) =
−32ie2παa√

m
v̄(l+)γ5

{ ∫
d4h

(2π)4
1

h2p21p
2
2[(h− ll)2 −m2]2(

/ǫ[p21p
2
2 +
1

2
h2(p21 + p

2
2)]− ǫ · h/h(p21 + p22)

)}
u(l−), (3.24)

A(χc2 → e+e−) =
−16ie2παa

√
2M√

m
v̄(l+)ǫ

µν
∫

d4h

(2π)4
(3.25)

1

h2p21p
2
2[(h− ll)2 −m2]2

{
(l+ − l−)µγνh2 + 2/hhµhν

}
u(l−),

where ll =
l−−l+
2
, p1 = l−−h and p2 = l++h. The amplitudes A(χci → e+e−),

i = 1, 2 can be written in the following way:

A(χc1 → e+e−) =
−32ie2παa√

m
v̄(l+)γ5

(
/ǫI1 +

1

2
I2 − ǫµγνIµν3

)
u(l−),

(3.26)

A(χc2 → e+e−) =
−16ie2παa

√
2M√

m
v̄(l+)ǫ

µν
(
(l+ − l−)µγνI4 + 2γαIα5µν

)
.

(3.27)

The following notation for the loop integrals is adopted:

I1 =
∫
d4h

1

h2[(h− ll)2 −m2]2
, (3.28)

I2 =
∫
d4h

p21 + p
2
2

p21p
2
2[(h− ll)2 −m2]2

, (3.29)

Iµν3 =
∫
d4h

hµhν(p21 + p
2
2)

h2p21p
2
2[(h− ll)2 −m2]2

, (3.30)

I4 =
∫
d4h

1

p21p
2
2[(h− ll)2 −m2]2

, (3.31)

Iµνα5 =
∫
d4h

hµhνhα

h2p21p
2
2[(h− ll)2 −m2]2

. (3.32)

The procedure for calculation of these integrals and their analytic expressions
are presented in Appendix B.
The amplitudes for χcJ → e+e− can be cast in the following simple form:

A(χc1 → e+e−) = g1v̄(l+)γ5/ǫu(l−), (3.33)

A(χc2 → e+e−) =
g2
M2

v̄(l+)γ
µu(l−)ǫµν l

ν , (3.34)
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where g1,2 are the effective couplings, which come from loop integrals. In the
short distance approximation the exact result for g1,2 has the following form:

g1 =
16α2a√
mM2


 log

(
x

1 + x

)
(1− x)

−
(
log

(
x

1− x

)
+ iπ

)
(1 + x)


, (3.35)

g2 =
32
√
2α2a

3
√
mM2



(
1 + x

2
+

8

(1 + x)2

)
log(1− x)

+
3

2
(1 + x) log(1 + x)− 2

(
1 + x+

2

(1 + x)2

)
log(x)

− 8

(1 + x)2
log(2)− 1− iπ

2

(
1 + x+

8

(1 + x)2

)
,

(3.36)

where x = 4m
2

M2
, M = Mχc1

for g1 and M = Mχc2
for g2. In the limit b → 0

one recovers the leading order terms presented in [56] (up to factor 2 in the
case of g2 due to a misprint in [56]):

g1 = −
α2
√
2

M
5/2
χc1

32a log
2b1
Mχc1

, (3.37)

g2 =
α2

M
5/2
χc2

64a
[
log
2b2
Mχc2

+
1

3
(iπ + log 2− 1)

]
,

(3.38)

where binding energies bi = 2m−Mχci
, The electronic widths are given by:

Γ(χc1 → e+e−) =
1

3

|g1|2
4π

Mχc1
, (3.39)

Γ(χc2 → e+e−) =
1

5

|g2|2
8π

Mχc2
. (3.40)

The values of the electronic widths depend on two parameters m - the effec-
tive charm quark mass related to the binding energy and a, which is propor-
tional to the derivative of the χcJ radial wavefunction at the origin. Table 3.1
contains the comparison of the leading order approximation and the exact

29



Γ(χc1 → e+e−) Γ(χc2 → e+e−)
b = 0.5 GeV

Leading term 0.0226 eV 0.0243 eV
exact result 0.0317 eV 0.0159 eV

b = −0.5 GeV
Leading term 0.164 eV 0.0512 eV
exact result 0.141 eV 0.0731 eV

Table 3.1: Electronic widths for b = −0.5 GeV and b = 0.5 GeV

results for χc1 and χc2 electronic widths calculated for two different values
of the binding energy (b = ±0.5 GeV). The value |φ′(0)|2 = 0.1 GeV 5 was
assumed. As one can observe the electronic widths depend strongly on the
value of b and the binding energy corrections are significant. They can reach
up to 50% of the leading order terms. The sign of these corrections is posi-
tive for χc1, while for χc2 it is negative. The electron mass corrections, which
could be included in this calculation are negligible [58].

3.3.2 Short and long distance combined contributions

The model from the previous section, which describe coupling of the χcJ to
two-photons exhibits the appropriate leading logarithmic behavior. However,
as have been shown in the previous section, the other terms, which arise from
the binding energy corrections are comparable in size. Other terms, not in-
cluded in the model from the previous section, could also be of the same
order or even bigger. For this reason the model from the previous section
has been extended to describe appropriately the coupling of the χcJ to γγ,
γJ/ψ and γψ′. The diagrams describing the decay χcJ → γγ in this model
are presented in Fig. 3.2, while for the decay of χcJ → γJ/ψ and ψ′ → χcJγ
are presented in Fig. 3.3. According to Landau-Yang theorem [59] the χc1
does not decay to two real photons. The adopted model assumes that the
form of the χci-J/ψ-γ and χci-ψ

′-γ amplitudes is identical to the χci-γ-γ am-
plitudes. Only the couplings are different. There is not enough experimental
information, which allow to test this assumption in detail. For the non-zero
amplitudes this leads to the following expressions [9]:
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cγ = 4e2√
m
(a+ faJ

M2
J/ψ

+
f ′aψ′

M2
ψ′

) 1
(M2

χ/2+b
2/4+bMχ/2)2

+
χc

J/ψ
χc

+

ψ′

χc

Figure 3.2: Diagrams contributing to the decay widths Γ(χc0,1,2 → γγ).

cJ/ψ = 4eaJ√
m

1
(M2

χ/2+b
2/4+bMχ/2−M2

J/ψ
/2)2

J/ψ
χc

cψ′ =
4eaψ′

√
m

1
(M2

χ/4+m
2−M2

ψ′
/2)2

χc
ψ′

Figure 3.3: Diagrams contributing to the decay widths Γ(χc0,1,2 → γJ/ψ) and
ψ′ → χc0,1,2γ).

Aαβ1γJ/ψ(p1, p2, ǫ)ǫ
1
αǫ
2
β

∣∣∣∣∣
p21=0, p

2
2=M

2
J/ψ

= ic1J/ψ

{
p22(ǫ, ǫ2, ǫ1, p1) + ǫ1p1(ǫ, ǫ2, p1, p2)

+ǫ2p2(ǫ, ǫ1, p2, p1)
}
, (3.41)

Aαβ1γψ′(p1, p2, ǫ)ǫ
1
αǫ
2
β

∣∣∣∣∣
p21=0, p

2
2=M

2
ψ′

= ic1ψ′

{
p22(ǫ, ǫ2, ǫ1, p1) + ǫ1p1(ǫ, ǫ2, p1, p2)

+ǫ2p2(ǫ, ǫ1, p2, p1)
}
, (3.42)

Aαβ2γγ(p1, p2, ǫ)ǫ
1
αǫ
2
β

∣∣∣∣∣
p21=p

2
2=0

=
√
2c2γMχc2

{
(p1p2)ǫ

1
µǫ
2
ν + p1µp2ν(ǫ1ǫ2)

− p1µǫ
2
ν(ǫ1p2))− p2µǫ1ν(ǫ2p1))

}
ǫµν , (3.43)
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Aαβ2γJ/ψ(p1, p2, ǫ)ǫ
1
αǫ
2
β

∣∣∣∣∣
p21=0, p

2
2=M

2
J/ψ

=
√
2c2J/ψMχc2

{
(p1p2)ǫ

1
µǫ
2
ν + p1µp2ν(ǫ1ǫ2)

−p1µǫ2ν(ǫ1p2))− p2µǫ1ν(ǫ2p1))
}
ǫµν , (3.44)

Aαβ2γψ′(p1, p2, ǫ)ǫ
1
αǫ
2
β

∣∣∣∣∣
p21=0, p

2
2=M

2
ψ′

=
√
2c2ψ′Mχc2

{
(p1p2)ǫ

1
µǫ
2
ν + p1µp2ν(ǫ1ǫ2)

−p1µǫ2ν(ǫ1p2))− p2µǫ1ν(ǫ2p1))
}
ǫµν . (3.45)

In the case of the amplitudes Aiγγ , p1 and p2 are the momenta of photons,
and ǫ1 and ǫ2 are their polarization vectors. In the case of the amplitudes
AiγJ/ψ(ψ′), p1 is the photon momentum, ǫ1 is its polarization vector, p2 is the
J/ψ(ψ′) momentum and ǫ2 its polarization vector. The function cγ is the
χci − γ− γ form factor, whereas cJ/ψ(ψ′) is the χci − γ −J/ψ(ψ′) form factor.
The modified χci − γγ form factor, which takes into account γ-J/ψ and γ-ψ′
mixings has the following form:

ciγ ≡ (1 +
f · aJ
aM2J/ψ

+
f ′ · aψ′
aM2ψ′

)c(M2χci , 0, 0, m) =

16πα√
m
(a+

faJ
M2ψ′
+
f ′ · aψ′
M2ψ′

)
1

(
M2χci/2 + b

2
i /4 + biMχci

/2
)2 . (3.46)

The constants f and f ′ have been extracted from the electronic widths of
J/ψ and ψ′ calculated according to the diagram from Fig. 3.4. This constants
have the following form:

f =

√
3ΓJ/ψ→e+e−M

3
J/ψ

4πα2
, (3.47)

f ′ =

√
3Γψ′→e+e−M

3
ψ′

4πα2
. (3.48)

The χci − γ − J/ψ and χci − γ − ψ′ form factors have the following forms:

ciJ/ψ ≡
aJ
ae
c(M2χci , 0,M

2
J/ψ, m) =

4eaJ√
m

1
(
M2χci/2 + b

2
i /4 + biMχci

/2−M2J/ψ/2
)2 . (3.49)
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e+

e−

J/ψ(ψ′)
i

MJ/ψ(ψ′)

ef(f ′)

Figure 3.4: Diagram contributing to the decay width Γ(J/ψ(ψ′)→ e+e−).

ciψ′ ≡
aψ′

ae
c(M2χci , 0,M

2
ψ′, m) =

4eaψ′√
m

1
(
M2χci/2 + b

2
i /4 + biMχci

/2−M2ψ′/2
)2 . (3.50)

The couplings aJ and aψ′ are parameters, which can be related to the overlap
integral of the radial wavefunctions calculated in the framework of potential
models [60], but in this model they are treated as free parameters. The free
parameters a, aJ , aψ′ and the effective charm quark mass m have been fitted
to the experimental data. The observables used in the fit in the frame of
described model have the following form [9]:

Γ(χc1 → J/Ψγ) =
1

96π
|c1J/ψ|2M2J/ΨM3χc1 (1 + x1)(1− x1)

3, (3.51)

Γ(χc2 → γγ) =
1

160π
|c2γ|2M5χc2 , (3.52)

Γ(χc2 → J/Ψγ) =
1

80π
|c2J/ψ|2M5χc2 (1− x2)

3(1 + x2/2 + x
2
2/6), (3.53)

Γ(ψ′ → χc1γ) =
1

96πx̄1
|c1ψ′ |2M5Ψ′(1 + x̄1)(1− x̄1)3, (3.54)

Γ(ψ′ → χc2γ) =
1

288πx̄2
|c1ψ′ |2M5Ψ′(1− x̄2)3(1 + 3x̄2 + 6x̄22), (3.55)

where xi =M
2
J/ψ/M

2
χci
and x̄i =M

2
χci
M2ψ′ .

The extracted parameters of the model and experimental and theoretical
values of the fitted decay widths are presented in the Table 3.2. The fit of 4
parameters to 5 experimental points gives χ2 = 0.16. One can obtain another
minimum of the χ2 with a similar numerical value, where the parameter aψ′
is positive. That solution was not considered since according to the potential
models predictions [60] the aψ′ should be negative.
Within the described model the electronic widths of χcJ states are sums

of 3 contributions presented in Fig. 3.5. The part from Fig. 3.5a has been
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a[GeV5/2] |φ′(0)|2 [GeV5] m [GeV] aJ aψ′

0.0786 0.04 1.69 0.15 -0.07

widths [MeV] χc1 χc2

Γ(χ→ γγ)th - 5.288 · 10−4
Γ(χ→ J/ψγ)th 2.803 · 10−1 3.778 · 10−1
Γ(ψ′ → χγ)th 2.856 · 10−2 2.705 · 10−2

Γ(χ→ γγ)exp - 5.3(3) · 10−4
Γ(χ→ J/ψγ)exp 2.8(2) · 10−1 3.7(3) · 10−1
Γ(ψ′ → χγ)exp 2.8(1) · 10−2 2.7(1) · 10−2

Table 3.2: Parameters obtained in the fit (see text for details) and theoretical
(th), and experimental (exp) [61] values of Γ(χc1,2 → γγ, γJ/ψ) and Γ(ψ′ →
γχc1,2).

e−

l−

e+

l+

χc

(a)

J/ψ

e−

l−

e+

l+

χc

(b)

ψ′

e−

l−

e+

l+

χc

(c)

Figure 3.5: Diagrams for decay widths Γ(χc0,1,2 → e+e−).

calculated in Section 3.3.1. The remaining two parts from Figs. 3.5b and 3.5c
and the crossed diagrams have exactly the same structure, so it is sufficient
to calculate only one of them. The difference between contributions from Fig.
3.5b and Fig. 3.5c appears only in the structure of imaginary parts of the
scalar integrals, which enters the amplitudes since MJψ < Mχci

< Mψ′ , for
i = 1, 2. The amplitudes coming from diagrams 3.5b and Fig. 3.5c, which
contribute to the electronic widths of χcJ are given by the following loop

34



integrals:

Ā(χc1 → e+e−) =
−32ie2παa√

m
v̄(l+)γ5

{ ∫
d4h

(2π)4

1

h2p21p
2
2[p
2
2 −M2x ][(h− ll)2 −m2]2

(

/ǫ[p21p
2
2 +
1

2
h2(p21 + p

2
2)]− ǫ · h/h(p21 + p22)

)}
u(l−), (3.56)

Ā(χc2 → e+e−) =
−16ie2παa

√
2M√

m
v̄(l+)ǫ

µν
∫

d4h

(2π)4

1

h2p21p
2
2[p
2
2 −M2x ][(h− ll)2 −m2]2{

(l+ − l−)µγνh2 + 2/hhµhν
}
u(l−), (3.57)

where ax = aJ and Mx = MJ/ψ for J/ψ contribution and f
x = f ′, ax = aψ′

and Mx = Mψ′ for ψ
′. Crossing e− ↔ e+ in amplitude from Fig. 3.5a or

3.5b produces additional factor 2, which will be included in calculation of
the electronic widths. The integrals from Eqs. 3.56 and 3.57 can be split into
two contributions by making use of the following relation:

1

p22(p
2
2 −M2x)

= − 1
M2x

(
1

p22
− 1

p22 −M2x

)
. (3.58)

Inserting this expression into Eq. 3.56 and 3.57 results in the following ex-
pressions:

Ā(χc1 → e+e−) = − 1
Mx


A(e+e− → χc1)

+
32ie2παa√

m
v̄(l+)γ5

(
/ǫĪ1 +

1

2
Ī2 − ǫµγν Īµν3

)
u(l−)


,

(3.59)

Ā(χc2 → e+e−) = − 1
Mx


A(e+e− → χc2)

+
16ie2παa

√
2M√

m
v̄(l+)ǫ

µν
(
(l+ − l−)µγν Ī4 + 2γαĪ5µνα

)
.

(3.60)

The first term in the bracket inserted into Eq. 3.56 and 3.57 produces the
combination of the integrals (B.1-B.5). For the second term one obtains the
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following integrals to be calculated:

Ī1 =
∫
d4h

p22
h2[p22 −M2x ][(h− ll)2 −m2]2

, (3.61)

Ī2 =
∫
d4h

p21 + p
2
2

p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (3.62)

Īµν3 =
∫
d4h

hµhν(p21 + p
2
2)

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (3.63)

Ī4 =
∫
d4h

1

p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (3.64)

Īµνα5 =
∫
d4h

hµhνhα

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2

. (3.65)

The procedure for calculation of these integrals and analytic expressions for
them are presented in Appendix B.
The amplitudes describing decay of the χc1,2 into e

+e− pair are given
by Eqs. 3.33 and 3.34 with functions g1,2 coming from the loop integrals.
Combining the short and the long distance one gets:

g1,2 = g1,2γγ + g1,2J/ψγ + g1,2ψ′γ , (3.66)

where g1,2γγ are given by the functions g1,2 from Eqs. 3.35 and 3.36, and
g1,2J/ψγ (g1,2ψ′γ ) are given by the following formulae:

g1J/ψγ =
8α2aJf√
4παmM2M2J



(
log

(
x

1− x

)
+ iπ

)(
1 + x− y

2

)

+F0(x, y)−
1

4
(3 + x+ y)F1(x, y)

− y(4 + y)

2(2 + 2x− y)2F2(x, y) +
y(1 + y − x)
2(2 + 2x− y)F3(x, y)

−y
2
F4(x, y) +

y

2
(3− x)F5(x, y)


,

(3.67)
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g2J/ψγ =
16
√
2α2aJf

3
√
4παmM2M2J


2− log(2)

(
3− 16

(1 + x)2

)

+ log(x)

(
1− y + 2x+ 8

(1 + x)2

)

+ log(1− x)
(
1

2
+ y − 2x− 16

(1 + x)2

)

−3y
8
log

(
y

4

)
+ log

(
1− y

4

)(
−3
2
+
3y

8

)

+iπ

(
1− 11y

8
+ 2x+

8

(1 + x)2

)

−F0(x, y)−
(
1

2
+ y − x

4

)
F1(x, y)

+
−55− 123xy + 126x+ 93x2 − 94y + 38y2

16(2 + 2x− y)2 F2(x, y)

+
87− 5xy − 2y + 2y2 + 2x+ 3x2

2(2 + 2x− y) F3(x, y)

−3y
4
F4(x, y)−

3y

4
(1 + x)F5(x, y)


, (3.68)

where M =Mχc1
in g1; M =Mχc2

in g2; MJ ≡MJ/ψ in both; x ≡ 4m2/M2,
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y ≡ 4M2J/ψ/M2. The functions A(x, y) and Fi have the following form:

A(x, y) = arc tg
(
1− y + x
2r

)
− arc tg

(−1− y + x
2r

)
,

F0(x, y) =
1 + y − x
4

log(x/y)− rA(x, y),

F1(x, y) = log(x/y) +
1 + y − x

r
A(x, y),

F2(x, y) = 2 log(2)− x log(x) + y/2 log(y/2)
−(1− x) (log(1− x)− iπ)
+(2− y/2) (log(2− y/2)− iπ)

+
−1− x+ y
2

log(x) +
−1 + x− y
2

log(y)

−2rA(x, y),

F3(x, y) = −
3

2
log(x) + log(1− x)− iπ

+
1

2
log(y)− 1− x+ y

2r
A(x, y),

F4(x, y) = log(1− 2/y) log(y/2)− Li2(2/y)

+Li2

(
1− y/2
1 + x− y/2

)
− Li2

(
−y/2

1 + x− y/2

)

−Li2
(

1− y/2
(1− x)/2 + ir1

)
− Li2

(
1− y/2

(1− x)/2− ir1

)

+Li2

(
−y/2

(1− x)/2 + ir1

)
+ Li2

(
−y/2

(1− x)/2− ir1

)
,

F5(x, y) = −
1

1 + x− y/2 log
(
1 + x

x

)

+
−r1 + i(1 + y − x)/2
(1− x+ 2ir1)r1

log

(
(1− x+ y)/2 + ir1
(−1− x+ y)/2 + ir1

)

−r1 + i(1 + y − x)/2
(1− x− 2ir1)r1

log

(
(1− x+ y)/2− ir1
(−1− x+ y)/2− ir1

)

(3.69)

with
r =

√
x− (1− y + x)2/4, (3.70)

and
r1 =

√
x− (1 + y − x)2/4. (3.71)

As theMψ′ > Mχci
an additional imaginary part appear and to obtain g1,2ψ′γ

from g1,2J/ψγ one need to set MJ = M ′ψ, y = 4M
2
ψ′/M

2 and the following
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changes need to be done:

r1 = i
√
x− (1 + y − x)2/4, (3.72)

log(2− y/2) → log(y/2− 2) + iπ, (3.73)

log(1− y/4) → log(y/4− 1) + iπ. (3.74)

A(x, y) =
r

2r̃



 log

[
(1− y + x)/2− r̃
(1− y + x)/2 + r̃ − log

[
(−1− y + x)/2− r̃
(−1− y + x)/2 + r̃

]
,

(3.75)

where r̃ =
√
(1− y + x)2/4− x.

Table 3.3 presents the results obtained for the electronic widths of χc1
and χc2 containing the sum of short and long distance results calculated
according to the formulas from Eqs. 3.39 and 3.40. In the case of χc1 the
additional contribution from the neutral current has been taken into account
(see Section 3.2). The amplitude for coupling of χc1 to the neutral current
has the following form:

M(χc1 → Z0 → e+e−) = Jµe+e−DZ0µν(k)A
ν
(χc1−Z0) (3.76)

with Aν(χc1−Z0)
given by the formula from Eq. 3.19 and

Jµe+e− =
ig

4 cos θW
γµ
(
1− 4 sin2 θW − γ5

)
, (3.77)

DZ0µν =
−gµν + kµkν

M2Z

k2 −M2Z
, (3.78)

whereMZ is the mass of boson Z
0, g is electroweak coupling constant and θW

is electroweak mixing angle. The electronic decay width of χc1 with including
the neutral current contribution has the following form:

Γ(χc1 → e+e−) =
Mχc1

3π


 |g1|

2

4
(3.79)

+
aGF√
2mQ2

Re(g1)

+
a2G2F
mQ4


1− 4 sin2 θW + 8 sin4 θW




,

where GF is the Fermi constant. In Table 3.3 the column denoted by QED
represents the coherent sum of all contributions represented in Fig. 3.5. The
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,

QED γγ J/ψγ ψ′γ QED+Z0

Γ(χc1→e+e−) [eV] 0.43 0.10 0.008 0.094 0.41
Γ(χc2→e+e−) [eV] 4.25 0.042 1.41 0.45 -

Table 3.3: Electronic widths for χc1 and χc2.

individual contributions are presented in columns denoted by γγ, J/ψγ and
ψ′γ. The sum of electromagnetic and neutral current contributions for χc1
given in the last column is QED+Z0. As one can observe the sum of the
individual contributions is much smaller than the full result (QED). The
neutral current does not affect a lot the value of χc1 electronic width. It
can reach up a few percent of QED predictions. This result depends on the
value of phase and module of g1. For both states the values of electronic
widths are sufficiently large to be observed in BES-III scan experiment [62].
In comparison with other models [58,62,63] the obtained values of electronic
widths are much bigger. The verification of these predictions can be done at
the BES-III experiment.

3.4 The amplitudes for the reaction e+e− →
χcJ → γJ/ψ(→ µ+µ−)

The signal of the χc1 and χc2 can be observed in the reaction e
+e− → χcJ →

γJ/ψ(→ µ+µ−), which allows to extract the electronic widths of this states.
The Feynman diagrams, which were taken into account for this reaction are
depicted in Fig. 3.6. The circles represents the couplings g1,2 of the χci states
to e+e− calculated in Section 3.3.2 according to the diagrams from Fig. 3.5.
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l−

e+
l+

p1

χci

k

J/ψ

p2

µ+

q3

µ−
q4
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µ+
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(b)

e−
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µ+

q3
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q4
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Figure 3.6: Diagrams for the cross section of the reaction e+e− → χcJ →
γJ/ψ(→ µ+µ−).
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First two diagrams presented in Figs. 3.6a and 3.6b are production of χcJ
with its subsequential decay into J/ψγ and two photons respectively. The
diagram, with the subsequential decay of χci into ψ

′γ, which has the same
analytic structure as diagram from Fig. 3.6a was also taken into account. The
diagram from Fig. 3.6c represents non-reducible background to the signal
reaction and also has to be taken into account. This amplitude has been
already calculated in [25, 64].
The amplitudes for the signal reaction with decay of χcJ → J/ψγ within

the adopted model have the following form:

M1 =


g1v̄(l+)γ5γ

µu(l−)

+
2aGFM

2
χc1

f1f2
v̄(l+)

(
(1 + 2m/Mχc1

)γ5γ
µ

+(1− 4 sin2 θW + 2m/Mχc1

−8m/Mχc1
sin2θW )γ

µ
)
u(l−)





Πχc1µν (k) A
νβ
1 Π

J/ψ
βδ (p2) e ū(q3)γ

δv(q4),

(3.80)

M2 = g2v̄(l+)γ
µu(l−)(l

ν
+ − lν−)/Mχc2

Πχc2µναβ(k) A
αβγ
2 Π

J/ψ
γδ (p2) e ū(q3)γ

δv(q4), (3.81)

where f2 = (Mχc1
/2 + m)Mχc1

2
√
2, f1 =

√
mQ2. For χc1 the amplitude

for e+e− → Z0 → χc1 from Eq. 3.76 has been used to calculate the neutral
current contribution to the signal reaction. The amplitudes Aνβi can be found
in Appendix B of [56],

Aνβ1 = −i1
2
c(I11

νβ
+ I12

νβ
), (3.82)

Aαβγ2 = −c
√
2Mχc2

I2αβγ2 , (3.83)

and coincide with Eq.(3.15) and Eq.(3.16). The c ≡ ciJ/ψ is given by the

formula from Eq. 3.50. Here the contributions I11 , I
1
2 and I

2
2 are given by:

I11
νβ
= ǫµ̄ν̄βνF 1µ̄ν̄p

2
γ̄p
2γ̄ − ǫµ̄ν̄ᾱνF 1µ̄ν̄p2ᾱp2

β
, (3.84)

I12
νβ
= 0, (3.85)

I2αβγ2 = F 1αδ
(
gβγp2δ − gγδ p2β

)
, (3.86)
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where
F 1µν = ǫ

1
µp
1
ν − ǫ1νp1µ. (3.87)

The Π
J/ψ
βδ (p) has the following form:

Π
J/ψ
βδ (p) =

√√√√3ΓJ/ψ→e
+e−

α
√
p22

gβδ − pβpδ/M2J/ψ
p22 −M2J/ψ + iMJ/ψΓJ/ψ

, (3.88)

where p is momentum of J/ψ and the factor

√
3ΓJ/ψ→e+e−

α
√
p22
is the coupling of

J/ψ to two muons. The propagators of χc1 has the following form:

Πχc1µν (k) =
gµν − kβkδ/M2χc1

k2 −M2χc1 + iΓχc1Mχc1

, (3.89)

where k is the four-momentum of the χc1 . Mχc1
and Γχc1 are its mass and its

decay width respectively. The χc2 propagators Π
χc2 has the following form:

Πχc2µναβ(k) =
Bµναβ

k2 −M2χc2 + iΓχc2Mχc2

, (3.90)

where k is the four-momentum of the χc2 , Mχc2
and Γχc2 are its mass and its

decay width respectively. The tensor Bµναβ has the following form:

Bµναβ =
1

2
(PµαPνβ + PµβPνα)−

1

3
PµνPαβ), (3.91)

where Pµν = −gµν + kµkν/Mχc2
.

In the Monte Carlo generator PHOKHARA, the peak in the phase space,
which comes from J/ψ has been absorbed using standard change of variables
as it was done previously in implementation of narrow resonances [25].

3.5 Monte Carlo simulations

The plots from Figs. 3.7 and 3.8 show the cross section of the reaction e+e− →
µ+µ−γ, with (ISR+QED signal) and without (ISR background) including the
amplitude for the χc1,2 production. Additionally the influence of the neutral
current is presented for χc1 (ISR+QED signal+Z

0). The χc1,2 production cross
sections without including the interference with the background, denoted as
χc1,2 signal are also shown on the plots from Fig. 3.7 and 3.8. For χc1 on
a separate plot, because of the smallness of the cross section. The event
selections involve angular cuts on photon and muons. The range of the polar
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angles are 20o < θµ±,γ < 160
o. The range of the invariant mass of the muons

was limited to to the interval [MJ/ψ − 3ΓJ/ψ, MJ/ψ + 3ΓJ/ψ]. For this event
selections the contributions from the diagram from Fig. 3.6b and 3.6a, where
J/ψ is substituted by ψ′ are negligible. Since neutral current contribution is
tiny, the additional diagram similar to the one presented in Fig. 3.6c with γ
substituted with Z0, which contribute to the background is also very small
but nevertheless has been included in the simulations. The plots for the
cross section of the reaction e+e− → µ+µ−γ with the same event selections
except including angular cuts on photons are presented in Figs. 3.9 and 3.10,
where the χc1,2 production cross sections was not shown separately. A beam
spread distributed according the Gaussian function with 1 MeV per beam
was assumed.
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Figure 3.7: The cross section e+e− → µ+µ−γ.
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Figure 3.8: The cross section e+e− → µ+µ−γ.

A signal up to 13% for χc1 and up to 75% for χc2 of the radiative return
background can be observed in the case of event selections, where one impose
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Figure 3.9: The cross section e+e− → µ+µ−γ.
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Figure 3.10: The cross section e+e− → µ+µ−γ.

angular cuts on photon. Without including this cuts the cross section is bigger
but the relative difference between signal and background is smaller. For these
event selections the signal can reach up to 3% for χc1 and up to 16% for χc2.
As one can observe for the beam energy equal to the mass of χcJ resonances,
the signal cross section is close to zero for χc1, while for χc2 it can reach
only up to 50 % of total signal. This could be also inferred from the size of
χc1,2 production cross sections. The interference effects between the signal
and the radiative return background plays crucial role for both χc1 and χc2.
The main contribution to the χc1,2 production come from the interference
between signal and radiative return background amplitudes. In both cases
the interference enhance cross section below and above the threshold of the
production of χc1 and χc2 states. To verify the predictions of the model one
needs to perform energy scan in the vicinity of χc1 (χc2) mass. The size of
the signal is in the range of the sensitivity of the BES-III collaboration.
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3.6 Conclusions

In the framework of the adopted model the production of the χc1 and χc2
resonances in the electron-positron annihilation through two-virtual photons
can be measured by BES-III collaboration in the reaction e+e− → χcJ →
γJ/ψ(→ µ+µ−). The scan experiment in the vicinity of χc1 (χc2) should be
able to measure the cross section and extract the electronic widths of these
states if the model is correct. The important part of the signal is the interfer-
ence between the production amplitude and the radiative return background
amplitude, which lead to a measurable effect.
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Chapter 4

Modeling the interactions of

photons with pseudoscalar and

vector mesons and its

application to the reaction

e+e−→ Pγ(γ)

4.1 Motivation

The modeling of the interactions of photons and pseudoscalar mesons is nec-
essary to describe correctly many experimental data, which could be pre-
dicted from the interaction Lagrangians.
One of the outcome of this modeling are pseudoscalar transition form

factors. These form factors in the space-like region are necessary for a pre-
cise determination of the hadronic light-by-light contribution to the anoma-
lous magnetic moment of the muon. The modeling of these form factors in
the space-like region using Lagrangian formalism was described in [65]. This
model is extended to cover also the time-like region. It describes correctly
many other experimental data in the time-like region [10,11]. It can be then
used to make predictions for the cross section of the reaction e+e− → P (γ),
where P = π0, η, η′. The Lagrangian approach for modeling of the inter-
action of photons with vector and pseudoscalar mesons [11] presented here
might be compared with the similar approach, which is based on the hidden
local symmetry effective Lagrangian [66–68]. This comparison could enable
to study the model dependence of the obtained results.
In Section 4.2 the modeling of the pseudoscalar two-photon transition
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form factors using Lagrangian formalism is presented and comparison of the
theoretical model with experimental data is widely discussed. In Section 4.3
the application of the form factor model to the reaction e+e− → Pγ(γ) is
presented. Section 4.4 contains the result of the Monte Carlo simulations for
this reaction. Section 4.5 contains conclusions.

4.2 The transition form factors

4.2.1 The model

The developed phenomenological model of the transition form factors for
pseudoscalar mesons presented here is based on the chiral effective theory
with resonances [69–71]. The model described in this section is the minimal
possible way of an extension of the model presented in [65], which allows to
describe correctly all possible experimental data in the space-like and the
time-like regions. The SU(3) isospin symmetry, which was assumed in [65], is
explicitly broken by coupling constants. The number of vector meson octets
essential to accommodate data in the time-like region is three, while in the
case of the form factors in the space-like region two vector meson octets were
sufficient. The η−η′ mixing scheme was adopted from [72,73] with the values
of mixing parameters fitted to the new available experimental data.
Below, the Lagrangians necessary to model the pseudoscalar form fac-

tors are given. The Wess-Zumino Lagrangian [74,75] for interaction of pseu-
doscalar mesons with two-photons has the following form:

LγγP =
−e2Nc

24π2fπ
ǫµναβ∂µBν∂αBβ

[
π0 + η(

5

3
Cq −

√
2

3
Cs)

+ η′(
5

3
C ′q +

√
2

3
C ′s)

]
. (4.1)

The η-η′ mixing parameters Cq, C
′
q, Cs, C

′
s are given by the following formulae

[72]

Cq =
fπ√

3 cos (θ8 − θ0)

(
1

f8
cos θ0 −

1

f0

√
2 sin θ8

)
, (4.2)

Cs =
fπ√

3 cos (θ8 − θ0)

(
1

f8

√
2 cos θ0 +

1

f0
sin θ8

)
, (4.3)

C ′q =
fπ√

3 cos (θ8 − θ0)

(
1

f0

√
2 cos θ8 +

1

f8
sin θ0

)
, (4.4)

C ′s =
fπ√

3 cos (θ8 − θ0)

(
1

f0
cos θ8 −

1

f8

√
2 sin θ0

)
. (4.5)
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The γV mixing is described in terms of the following Lagrangian:

LγV = −e
3∑

i=1

fVi∂µBν

(
ρ̃i
µν +
1

3
Fωiω̃

µν
i −
√
2

3
Fφi φ̃

µν
i

)
, (4.6)

where Ṽµν ≡ ∂µVν − ∂νVµ, fVi is a dimensionless coupling for the vector
representation of the spin-1 fields in a given octet. The isospin symmetry is
broken here by introducing the coupling constants Fωi and Fφi , which are
different from 1 for first octet. For higher octets the SU(3) symmetry is kept
unbroken and Fωi = Fφi = 1 for i = 2, 3.
The Lagrangians that describe vector-photon-pseudoscalar and two vec-

tor mesons interaction with a pseudoscalar come from the extension of the
Lagrangians from [71], which were adopted in [65]. In terms of the physical
fields they read

LV γπ0 = −
n∑

i=1

4
√
2ehVi
3fπ

ǫµναβ∂
αBβ

(
ρµi + 3Hωiω

µ
i −
3√
2
Aπ0i φ

µ
i

)
∂νπ0 , (4.7)

LV γη = −
n∑

i=1

4
√
2ehVi
3fπ

ǫµναβ∂
αBβ

[
(3ρµi + ω

µ
i )Cq + 2φ

µ
i Cs

−( 5√
2
Cq − Cs)Aηi φµi

]
∂νη , (4.8)

LV γη′ = −
n∑

i=1

4
√
2ehVi
3fπ

ǫµναβ∂
αBβ

[
(3ρµi + ω

µ
i )C

′
q − 2φµi C ′s

−( 5√
2
C ′q + C

′
s)A

η′

i φ
µ
i

]
∂νη′ , (4.9)

LV V π0 = −
n∑

i=1

4σVi
fπ

ǫµναβ

[
1

Fωi
π0∂µωνi ∂

αρβi +
3(FωiHωi − 1− Aπ

0

φω,i)

2F 2ωi

π0∂µωνi ∂
αωβi +

3(Aπ0i − Aπ
0

φω,i/Fφi)

4Fφi
π0∂µφνi ∂

αφβi

− 3A
π0

φω,i√
2FωiFφi

π0∂µφνi ∂
αωβi

]
, (4.10)
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LV V η = −
n∑

i=1

4σVi
fπ

ǫµναβη
[
(∂µρνi ∂

αρβi +
1

Fωi
∂µωνi ∂

αωβi )
1

2
Cq

−9A
η
φωi

F 2ωi
∂µωνi ∂

αωβi −
1

Fφi
∂µφνi ∂

αφβi
1√
2
Cs −

9Aηφω,i
2F 2φi

∂µφνi ∂
αφβi

+
Aηi
6Fφi
(
15

2
Cq −

3√
2
Cs)∂

µφνi ∂
αφβi −

9
√
2Aηφω,i

FωiFφi
∂µφνi ∂

αωβi

]
, (4.11)

LV V η′ = −
n∑

i=1

4σVi
fπ

ǫµναβη
′
[
(∂µρνi ∂

αρβi +
1

Fωi
∂µωνi ∂

αωβi )
1

2
C ′q

+
1

Fφi
∂µφνi ∂

αφβi
1√
2
C ′s +

Aη
′

i

6Fφi
(
15

2
C ′q +

3√
2
C ′s)∂

µφνi ∂
αφβi

]
, (4.12)

where n = 3, Hωi, Fφi = 1 for i = 2, 3, A
P
φω,i 6= 0 only for i = 1.

{= +

+ +

Figure 4.1: Feynman diagrams contributing to the pseudoscalar transition
form factor. Double solid line represents vector meson and dashed line rep-
resents a pseudoscalar meson.

From the Lagrangians, Eqs.(4.1-4.12), one derives the P−γ∗−γ∗ coupling

M[P → γ∗(q1) γ
∗(q2)] = e

2ǫµναβq
µ
1 q

α
2Fγ∗γ∗P (t1, t2). (4.13)

The pseudoscalar transition form factor Fγ∗γ∗P (P = π0, η, η′) can be
represented by the sum of the diagrams from Fig. 4.1. These diagrams rep-
resent the allowed γ∗γ∗P transitions within the adopted model.
From the interaction Lagrangians and amplitude 4.13 one can extract the
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following expressions for Fγ∗γ∗P transition form factors:

Fγ∗γ∗π0(t1, t2) = −
Nc

12π2fπ

+
n∑

i=1

4
√
2hVifVi
3fπ

t1

(
Dρi(t1) + FωiHωiDωi(t1) + A

π0
i FφiDφi(t1)

)

+
n∑

i=1

4
√
2hVifVi
3fπ

t2

(
Dρi(t2) + FωiHωiDωi(t2) + A

π0
i FφiDφi(t2)

)

−
n∑

i=1

4σVif
2
Vi

3fπ
t1t2


Dρi(t2)Dωi(t1) +Dρi(t1)Dωi(t2)

+(Aπ0i Fφi − Aπ
0

φω,i)Dφi(t1)Dφi(t2) +
(
FωiHωi − 1− Aπ

0

φω,i

)

Dωi(t1)Dωi(t2) + A
π0

φω,i

(
Dφi(t1)Dωi(t2) +Dφi(t1)Dωi(t2)

)
 , (4.14)

Fγ∗γ∗η(t1, t2) = −
Nc

12π2fπ

(
5

3
Cq −

√
2

3
Cs

)

+
n∑

i=1

4
√
2hVifVi
3fπ

t1



(
3CqDρi(t1) +

1

3
FωiCqDωi(t1)

−2
√
2

3
CsFφiDφi(t1)

)
+
(
5

3
Cq −

√
2

3
Cs

)
AηiFφiDφi(t1)




+
n∑

i=1

4
√
2hVifVi
3fπ

t2



(
3CqDρi(t2) +

1

3
CqFωiDωi(t2)

−2
√
2

3
CsFφiDφi(t2)

)
+
(
5

3
Cq −

√
2

3
Cs

)
AηiFφiDφi(t2)




−
n∑

i=1

8σVif
2
Vi

fπ
t1t2



(
1

2
CqDρi(t1)Dρi(t2) +

1

18
FωiCqDωi(t1)Dωi(t2)

−Aηφω,iDωi(t1)Dωi(t2)−
√
2

9
CsFφiDφi(t1)Dφi(t2)

)

+
AηiFφi
6

(
5

3
Cq −

√
2

3
Cs

)
Dφi(t1)Dφi(t2)− Aηφω,iDφi(t1)Dφi(t2)

+Aηφω,i

(
Dφi(t1)Dωi(t2) +Dφi(t1)Dωi(t2)

)
 , (4.15)
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and

Fγ∗γ∗η′(t1, t2) = −
Nc

12π2fπ

(
5

3
C ′q +

√
2

3
C ′s

)

+
n∑

i=1

4
√
2hVifVi
3fπ

t1



(
3C ′qDρi(t1) +

1

3
FωiC

′
qDωi(t1)

+
2
√
2

3
C ′sFφiDφi(t1)

)
+
(
5

3
C ′q +

√
2

3
C ′s

)
Aη
′

i FφiDφi(t1)




+
n∑

i=1

4
√
2hVifVi
3fπ

t2



(
3C ′qDρi(t2) +

1

3
FωiC

′
qDωi(t2)

+
2
√
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3
C ′sFφiDφi(t2)

)
+
(
5

3
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√
2

3
C ′s

)
Aη
′

i FφiDφi(t2)




−
n∑

i=1

8σVif
2
Vi

fπ
t1t2



(
1

2
C ′qDρi(t1)Dρi(t2) +

1

18
FωiC

′
qDωi(t1)Dωi(t2)

+

√
2

9
C ′sFφiDφi(t1)Dφi(t2)

)
+
Aη
′

i Fφi
6

(
5

3
C ′q +

√
2

3
C ′s

)
Dφi(t1)Dφi(t2)


,

(4.16)

where the vector meson propagators DVi(Q
2) in the space-like region are

defined by:
DVi(Q

2) = [Q2 −M2Vi ]
−1. (4.17)

The propagators DVi(Q
2) in the time-like region have the following form:

DVi(Q
2) = [Q2 −M2Vi + i

√
Q2ΓVi ]

−1. (4.18)

The MVi is a vector meson mass and ΓVi is vector meson width. The form
factors fulfill the following high energy condition, which is predicted by per-
turbative Quantum Chromodynamics [23]:

lim
t1→±∞

Fγ∗γ∗P (t1, t2) = 0, (4.19)

which holds for any value of t2. That condition leads to the the following
asymptotic relations between coupling constants:

− Nc

4π2
+ 4
√
2

n∑

i=1

hVifVi(1 + FωiHωi + A
π0

i Fφi) = 0, (4.20)

√
2hVifVi − σVif 2Vi = 0, i = 1, .., n (4.21)
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− Nc

4π2
(
5

3
Cq −

√
2

3
Cs) + 4

√
2

n∑

i=1

hVifVi

[

(3Cq +
1

3
FωiCq −

2
√
2

3
CsFφi) + (

5

3
Cq −

√
2

3
Cs)A

η
iFφi

]
= 0 , (4.22)

− Nc

4π2
(
5

3
C ′q +

√
2

3
C ′s) + 4

√
2

n∑

i=1

hVifVi

[

(3C ′q +
1

3
FωiC

′
q +
2
√
2

3
C ′sFφi) + (

5

3
C ′q +

√
2

3
C ′s)A

η′

i Fφi

]
= 0 . (4.23)

Six parameters has been chosen σVif
2
Vi
(i = 1, 2, 3), hV3fV3 , A

η
2 and A

η′

2 to be
determined using the asymptotic relations. The remaining parameters have
been fitted to the experimental data. The Lagrangian approach allows also to
extract the amplitudes, which involve vector-pseudoscalar-photon couplings.
The V − P − γ∗ amplitudes have the following form:

M[V (P )→ P (V )(q1) γ
∗(q2)] = eǫµνβαq

ν
1q

α
2FV Pγ∗(t1)ǫ

µ
V ǫ

β
γ ,

where ǫµV and ǫ
β
γ are the polarization vectors of the vector meson and the

photon, and t1 = q22 and the form factor FV Pγ∗(t1) for the observables used
in the fit have the following form:

Fρπ0γ∗(t1) =
4
√
2hV1
3fπ

{
1− t1Dω1(t1)

}
, (4.24)

Fωπ0γ∗(t1) =
4
√
2hV1
fπ

{
Hω1 −

t1
Fω1

[
Dρ1(t1) +

(
Hω1Fω1 − 1− Aπ

0

φω,1

)

Dω1(t1) + A
π0

φω,1Dφ1(t1)
]}
, (4.25)

Fφπ0γ∗(t1) =
−4hV1
fπ

{
Aπ

0

1 −
Aπ

0

φω,1

Fφ1
t1Dω1(t1)

−
(
Aπ

0

1 −
Aπ

0

φω,1

Fφ1

)
t1Dφ1(t1)

}
, (4.26)

Fρηγ∗(t1) =
4
√
2hV1Cq
fπ

{
1− t1Dρ1(t1)

}
, (4.27)
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Fωηγ∗(t1) =
4
√
2hV1
3fπ

{
Cq

(
1− t1Dω1(t1)

)
+
18Aηφω,1t1

Fω1(
Dω1(t1)−Dφ1(t1)

)}
, (4.28)

Fφηγ∗(t1) =
4
√
2hV1
3fπ





[
2Cs −

(
5√
2
Cq − Cs

)
Aη1

][
1− t1Dφ1(t1)

]

+
9
√
2Aηφω,1
Fφ1

[
t1Dω1(t1)− t1Dφ1(t1)

]
 , (4.29)

Fρη′γ∗(t1) =
4
√
2hV1C

′
q

fπ

{
1− t1Dρ1(t1)

}
, (4.30)

Fωη′γ∗(t1) =
4
√
2hV1C

′
q

3fπ

{
1− t1Dω1(t1)

}
(4.31)

Fφη′γ∗(t1) =
4
√
2hV1
3fπ

[
− 2C ′s −

(
5√
2
C ′q + C

′
s

)
Aη
′

1

][
1− t1Dφ1(t1)

]
. (4.32)

4.2.2 The determination of the model parameters

The free parameters of the model were fitted to all available experimental
data, which can be described in terms of the interaction Lagrangians from
Eq.(4.1-4.12). The data in the space-like region consist of measurements of
the transition form factors for π0, η, η′ performed by BELLE [76], CELLO
[77], and CLEO [78] experiments and the measurements of the η, η′ transition
form factors done by BABAR [79]. The data in the time-like region include
the following list of observables:

• e+e− → π0(η, η′)γ cross section measured by SND [80,81], CMD2 [82]
and BABAR [83] experiments.

• time-like form factor Fγ∗γπ0 measured by A2 experiment in the decay
π0 → γe+e− [84].

• time-like form factor Fγ∗γη measured by A2 experiment in the decay
η → γe+e− [85].
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• time-like form factor Fγ∗γη′ measured BES-III experiment by in the
decay η′ → γe+e− [86].

• time-like form factor Fωπ0γ∗ measured by A2 experiment in the decay
ω → π0e+e− [85].

• time-like form factor Fφπ0γ∗ measured by KLOE-2 experiment in the
decay φ→ π0e+e− [87].

• time-like form factor Fφηγ∗ measured by KLOE-2 experiment in the
decay φ→ ηe+e− [88].

• differential partial decay width of η → π0γγ measured by A2 experi-
ment [89].

• two-body partial widths [90] of P → γγ V → e+e− (V = ρ, ω, φ),
V → π0γ, V → ηγ, φ→ η′γ, η′ → ργ and η′ → ωγ .

The formula for the e+e− → Pγ cross section used in the fit, where P denotes
π0, η or η′ has the following form

σe+e−→Pγ(s) =
(4πα)3

24πs

(
1− m2P

s

)(
s−m2P
2
√
s

)2

·|Fγγ∗P (0, s)|2 , (4.33)

where mP is the mass of a pseudoscalar and s is the Mandelstam variable.
The differential decay width η → π0γγ within adopted model is given by the
following formula:

dΓ
(
η(q) → π0(p)γ(k1)γ(k2)

)
=

1

4mη

|M |2dLips3(q; p, k1, k2) , (4.34)

with the amplitude given by

M =
∑

i,V

(
4
√
2ehVi
3fπ

)2
ǫµναβq

νkα1 ǫ
β(k1)g

µδ

DVi((p+ k2)
2)ǫδσδ′σ′p

σkδ
′

2 ǫ
σ′(k2)BVi

+
(
k1 ↔ k2

)
, (4.35)

where Bφi = − 3√2A
π0

i [2Cs − ( 5√2Cq − Cs)A
η
i ], Bρi = 3Cq, Bωi = 3HωiCq and

DVi is defined in Eq. (4.18).
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The 2-body partial decay widths in the adopted model are expressed as

Γ(P → γγ) =
m3Pπα

2

4
|FPγ∗γ∗(0, 0)|2, (4.36)

Γ(ρ→ e+e−) =
4πα2Mρf

2
V1

3
, (4.37)

Γ(ω → e+e−) =
4πα2Mωf

2
V1F

2
ω1

27
, (4.38)

Γ(φ→ e+e−) =
8πα2Mφf

2
V1
F 2φ1

27
, (4.39)

Γ(P → V γ) =
α

8
m3Pk

3
V |FV Pγ∗(0)|2, (4.40)

Γ(V → Pγ) =
α

24
M3V k

3
P |FV Pγ∗(0)|2, (4.41)

where kV = (1− m2P
M2V

)
, kP = (1− M2V

m2P

)
.

The model parameters have been fitted to the experimental data using
the MINUIT package [48]. Two fits have been performed to extract the model
parameters. In the first fit (fit1) the parameters θ8, θ0, f8, f0 and fπ, which
describe the η- η′ mixing and the π0 → γγ decay have been fixed to the
following values:

fπ = 0.092388 GeV, f0 = 0.11697 GeV, f8 = 0.10623 GeV,

θ0 = −0.14471, θ0 = −0.36516. (4.42)

The values of this parameters differ slightly from the ones presented in [65].
Since the precision of the measurement of P → γγ decay widths (P = π0, η,
η′) were improved, the values of this parameters have been extracted from
the new data [90]. In the second fit (fit2) all parameters of the model have
been fitted to the experimental data. In Tables 4.1 and 4.2 the values of the
χ2 for all experiments are given for the fit1 and the fit2 respectively.
The data from the BABAR measurement of the pion transition form

factor in the space-like region [91] has been excluded from both fits and
similarly the NA60 data [92] for the measurement of the η transition form
factor and the Fωπ0γ∗ form factor. All this measurements are in contradiction
with other experimental data, what can be observed on the plots from Fig.
4.2, 4.6 and 4.8. The smallest tension is between the η transition form factor
measurements of A2 [85] and NA60 [92] (see Figure 4.6) and in fact the data
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Experiment nep χ2,fit 1 Experiment nep χ2,fit 1
space-like form-factors
BELLE (π0) [76] 15 9.96 CLEO98(η) [78] 19 15.8
CELLO91(π0) [77] 5 0.34 BaBar(η′) [79] 11 5.4
CLEO98(π0) [78] 15 10.6 CELLO91(η′) [77] 5 0.73
BaBar(η) [79] 11 7.34 CLEO98(η′) [78] 29 25.1
CELLO91(η) [77] 4 0.16
e+e− cross sections
CMD2(π0γ) [82] 46 54.1 SND(ηγ) [80] 78 68.7
SND(π0γ) [81] 62 65.5 BaBar(ηγ, η′γ) [83] 2 0.18
CMD2 (ηγ) [82] 42 25.4
3-body decays

A2(π0 → γe+e−) [84] 18 0.32 A2(ω → π0e+e−) [85] 14 2.14
A2(η → γe+e−) [85] 34 10.2 KLOE-2(φ→ π0e+e−) [87] 15 4.33
A2 (η → π0γγ) [89] 7 26.6 KLOE-2(φ→ ηe+e−) [88] 92 95.1

BES-III(η′ → γe+e−) [86] 8 2.39
2-body decays
Γ(π0 → γγ) [90] 1 0.36 Γ(ρ→ π0γ) [90] 1 1.17
Γ(η → γγ) [90] 1 0.78 Γ(ω → π0γ) [90] 1 4.08
Γ(η′ → γγ) [90] 1 1.05 Γ(φ→ π0γ) [90] 1 0.08
Γ(η′ → ργ) [90] 1 3.0 Γ(ρ→ ηγ) [90] 1 3.32
Γ(η′ → ωγ) [90] 1 0.00 Γ(ω → ηγ) [90] 1 6.86
Γ(ρ→ e+e−) [90] 1 0.23 Γ(φ→ ηγ) [90] 1 1.63
Γ(ω → e+e−) [90] 1 0.56 Γ(φ→ η′γ) [90] 1 0.01
Γ(φ→ e+e−) [90] 1 0.69

Total 536 454

Table 4.1: The values of the χ2 for the experiments used in the fits described
in the text. ’nep’ means number of experimental points. Number of free
parameters in the fit is equal to 17.

are consistent within the experimental error bars. Yet, within the model,
which is presented here, there is no way to fit simultaneously SND [80] data
on e+e− → ηγ cross section, the differential width (η → π0γγ) measured
by A2 [89] and the partial widths V → ηγ [90] together with the NA60
measurements [92] of the η transition form factor in the time-like region.
In Table 4.3 the parameters obtained in fit1 and fit2 are presented. As

one can observe the fit is much better, when one allows to change of the η−η′
mixing parameters, which is obvious since the number of degrees of freedom
is in that case smaller. The fit2 is the way for a model dependent extraction
of the η − η′ mixing parameters.
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Experiment nep χ2,fit 2 Experiment nep χ2,fit 2
space-like form-factors
BELLE (π0) [76] 15 6.72 CLEO98(η) [78] 19 15.5
CELLO91(π0) [77] 5 0.24 BaBar(η′) [79] 11 3.70
CLEO98(π0) [78] 15 6.82 CELLO91(η′) [77] 5 0.56
BaBar(η) [79] 11 7.5 CLEO98(η′) [78] 29 24.4
CELLO91(η) [77] 4 0.16
e+e− cross sections
CMD2(π0γ) [82] 46 54.1 SND(ηγ) [80] 78 59.8
SND(π0γ) [81] 62 54.2 BaBar(ηγ, η′γ) [83] 2 1.57
CMD2 (ηγ) [82] 42 25.6
3-body decays

A2(π0 → γe+e−) [84] 18 0.34 A2(ω → π0e+e−) [85] 14 2.12
A2(η → γe+e−) [85] 34 11.1 KLOE-2(φ→ π0e+e−) [87] 15 4.33
A2 (η → π0γγ) [89] 7 19.5 KLOE-2(φ→ ηe+e−) [88] 92 95.1

BES-III(η′ → γe+e−) [86] 8 2.13
2-body decays
Γ(π0 → γγ) [90] 1 0.1 Γ(ρ→ π0γ) [90] 1 0.42
Γ(η → γγ) [90] 1 2.73 Γ(ω → π0γ) [90] 1 1.56
Γ(η′ → γγ) [90] 1 0.44 Γ(φ→ π0γ) [90] 1 0.06
Γ(η′ → ργ) [90] 1 0.77 Γ(ρ→ ηγ) [90] 1 6.8
Γ(η′ → ωγ) [90] 1 0.54 Γ(ω → ηγ) [90] 1 3.04
Γ(ρ→ e+e−) [90] 1 0.05 Γ(φ→ ηγ) [90] 1 1.17
Γ(ω → e+e−) [90] 1 0.73 Γ(φ→ η′γ) [90] 1 0.00
Γ(φ→ e+e−) [90] 1 0.46

Total 536 415

Table 4.2: The values of the χ2 for the experiments used in the fits described
in the text. ’nep’ means number of experimental points. Number of free
parameters in the fit is equal to 22.

The comparison of the data with the fit results are presented on the
following plots:

• In Fig. 4.2 the pseudoscalar transition form factors in the space-like re-
gion are presented. The old fit refers to the two-octet model described
in [65], which was consistent only with the space-like data. The asymp-
totic values of the form factors are marked by the horizontal lines on
the right side of the plots. The ’fit’ value refers to the value for the cur-
rent model and B-L to the Brodsky-Lepage high energy limit predicted
by perturbative QCD. This limit is given by 2fπ for pion form factor,
2fη = 2fπ/(

5
3
Cq−

√
2
3
Cs) for η form factor and 2fη′ = 2fπ/(

5
3
C ′q+

√
2
3
C ′s)
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Parameter fit 1 fit 2
hV1 0.0335(2) 0.0377(8)
fV1 0.2022(8) 0.2020(8)

fV2hV2 -0.0013(2) -0.0010(4)
hV2 0.00184(5) 0.0002(1)
hV3 -0.485(7) -0.30(4)
Hω1 1.160(11) 1.02(3)
Fω1 0.881(8) 0.88(1)
Fφ1 0.783(5) 0.783(5)

Aπ
0

1 -0.094(1) -0.083(2)

Aπ
0

2 -12.04(16) -15(6)

Aπ
0

3 0.08(3) -0.16(7)
Aη1 -0.041(4) -0.30(4)
Aη3 0.23(6) -0.06(8)

Aη
′

1 -0.039(7) -0.21(5)

Aη
′

3 -0.27(3) -0.56(6)

Aπ
0

φω,1 -0.23(4) -0.21(4)
Aηφω,1 -0.031(8) -0.028(7)
fπ 0.09239(fixed) 0.09266(8)
f0 0.117(fixed) 0.095(2)
f8 0.11(fixed) 0.17(1)
θ0 -0.14(fixed) -0.54(12)
θ8 -0.365(fixed) -0.446(17)

Table 4.3: The model parameters obtained in the fits. The errors, given in
brackets, are the parabolic errors calculated by procedure Minos of the MI-
NUIT package [48]

for the η′ form factor.

• In Figures 4.3 and 4.4 the cross sections σ(e+e− → Pγ) for P = π0, η
are presented.

• In Figures 4.5, 4.6 and 4.7 the π0, η and η′ transition form factors in
the time-like region are presented.

• In Figure 4.8 the form factor ωπ0γ in the time-like region is presented.

• In Figures 4.9 and 4.10 the form factor φπ0γ φηγ in the time-like region
are presented.
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• In Figure 4.11 the differential partial width of the decay η → π0γγ is
presented.

The plots with the comparison of the experimental data with the model fit
results are shown only for fit2. The results obtained for fit1 are very similar
and do not introduce new insight into this subject.
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Figure 4.2: The transition form factors γ∗γP in the space-like region com-
pared to the data [76–78,83, 91].
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Figure 4.4: The experimental data for σ(e+e− → ηγ) compared to the model
predictions [80, 82].
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Figure 4.5: The transition form factor γ∗γπ0 in the time-like region compared
to the data [84].
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Figure 4.6: The transition form factor γ∗γη in the time-like region compared
to the data [85].
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to the data [86].
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Figure 4.8: The form factor ωπ0γ in the time-like region compared to the
data [85].
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4.3 The modeling and the simulation of the

reaction e+e− → Pγ(γ)

4.3.1 Amplitudes describing the reaction e+e− → Pγ(γ)

The new model of the pseudoscalar transition form factors, presented in the
previous section, has been used in PHOKHARA (PHOKHARA 9.3) Monte
Carlo generator to make predictions for the cross section e+e− → Pγ(γ),
P = π0, η, η′. This reaction can be simulated in the scan mode, where the
invariant mass of the Pγ is fixed at the leading order (LO) and the radiative
return mode, where invariant mass of the final particles depends on the energy
of photon(s) emitted from the initial states. Fig. 4.12 shows the diagrams
taken into account in the calculations. The scan mode can be simulated at
the next-to-leading order (NLO), while the radiative return mode at the LO
only. The diagram from Fig. 4.12a is the LO amplitude for the scan mode.
The diagram from Fig. 4.12b represents the virtual contributions at the NLO
and the diagram from Fig. 4.12c is the NLO (LO) amplitude for the initial
state radiation in the scan (radiative return) mode. The photon phase space
was divided into soft and hard part. The soft part was added analytically to
the virtual part.

e+(p1)

e−(p2)
P (q1)

γ(k1)

a)
e+(p1)

e−(p2)
P (q1)

γ(k1)

b)
e+(p1)

e−(p2)
P (q1)

γ(k1)

γ(k2)

c)

Figure 4.12: Diagrams for the reaction e+e− → Pγ(γ). The blob indicates
that the γ∗γP coupling is modeled testing the form factor.

The next-to-leading order (NLO) cross section for the scan mode is given
by the following formula:

σNLO = σ1γ(1 + ∆soft,virt,1ph) + σ2γ , (4.43)

where σ1γ is implemented in terms of leptonic (Lµν) and hadronic (Hµν)
tensors. It is given by the following formula [51]:

σ1γ =
1

2s
L0µνH

µνdΦ2(s, q1, k1), (4.44)

where s is the Mandelstam variable and dΦ2(s, q1, k1) is the two particle phase
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space. The leptonic and hadronic tensors have the following form:

L0µν = 16πα
(
p1µp2ν − gµν

s

2
+ p1νp2µ

)
, (4.45)

Hµν = 16π
2α2|Fγ∗γP (s, 0)|2

(
gµν(k1.q1)

2 + k1µk1νm
2
P − k1µq1νk1.q1

− k1νq1µk1.q1

)
, (4.46)

where mP is the mass of the pseudoscalar meson of momentum q1 and p1, p2,
k1 are momenta of positron, electron and photon respectively. The soft and
virtual corrections have the following form [51]

∆soft,virt,1ph =
2α

π

(
log (2w)(log (s/m2e)− 1)+3 log (s/m2e)− 1+ ζ2

)
, (4.47)

where w = Emax
γ /
√
s is the soft photon cutoff, s = (p1 + p2)

2, Emax
γ is the

maximal energy of the soft photon in the e+e− CMS frame. The cross section
σ2γ written in terms of the invariant amplitudeM is given by the following
formula:

σ2γ =
1

2s

∣∣∣∣M
(
e+(p1)e

−(p2)→ π0(q1)γ(k1)γ(k2)
)∣∣∣∣
2

dΦ3(s, k2, q1, k1), (4.48)

where dΦ3(s, q1, k1, k2) is the infinitesimal element of the 3-body phase space.
For the square of the amplitude with two photons in the final state it is
convenient to write it in terms of leptonic and hadronic currents:

∣∣∣∣M(e+(p1)e−(p2)→ π0(q1)γ(k1)γ(k2))
∣∣∣∣
2

= Lν(k1)Hν(k2) + (k1 ↔ k2),

(4.49)

with
Hν(k2) = e

2ǫµναβq
µ
1k

α
2 ǫ
β
2Fγ∗γ∗P

(
(q1 + k2)

2, 0
)

(4.50)

and

Lν(k1) =
ie2

2p2 · k1
v̄(p1)γ

ν
(
2ǫ1p1 − k1ǫ1

)
u(p2)

+
ie2

2p1 · k1
v̄(p1)

(
ǫ1k1 − 2ǫ1p1

)
γνu(p2),

(4.51)

where ǫi, i = 1, 2 are polarization vectors of the photons with the four mo-
menta ki.
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4.3.2 The generation of the 3-body phase space

The 3-body phase space (Pγγ) can be written in the following form:

dΦ3(s, q1, k1, k2) =
1

2π
dQ2dΦ2(s;Q, k1)Φ2(Q; q1, k2). (4.52)

The general form of the 2-body phase space is the following:

dΦ2(P1, P2, P3) =
1

32π2

√
λ(P 21 , P

2
2 , P

2
3 )

P 21
d cos(θ3)dφ3, (4.53)

where θ3 and φ3 are polar and azimuthal angles of particle with momentum
P3 and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. (4.54)

For generation of the photons momenta the following procedure was used:

1. In the first step the 2-channel Monte Carlo is used to generate Q21 =
(k1+q1)

2 orQ22 = (k2+q1)
2 with equal probability. For the generated in-

variant once again a multi-channel Monte Carlo is used to absorb peaks
from the phase space regions into changes of variables. The function,
which approximate the behavior in the Q2i has the following form:

Fapprox =
(
fs(s−Q2i ) + fω

(
(Q2i −M2ω)2 +M2ωΓ2ω

)

+fφ
(
(Q2i −M2φ)2 +M2φΓ2ω

)
+ ffQ

2
i

)−1
. (4.55)

The following channels have been used:

• The channel to absorb the soft photon emission peak with the
following change of the variable:

y = fs log(s−Q2i ). (4.56)

• Two channels to absorb φ and ω narrow resonances peaks with
the following change of the variable:

y = fVMV ΓV arc tg


Q

2
i −M2V
MV ΓV


, (4.57)

where V = ω, φ.

• channel with Q2i generated linearly,
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where fi, for i = s, ω, φ, f , are constants, which values has been chosen
to increase the efficiency of the Monte Carlo.

2. When Q21 is generated the polar angle of the photon with momentum
k2 is generated in centre-of-mass system (CMS) of electron-positron,
otherwise (when Q22 is generated) the photon with momentum k1 is
generated in this frame of reference. For the photon generated in CMS
frame of initial particles the following change of the variables [93] is
used:

cos θi =
1

β
tgh(βt1), (4.58)

where β =
√
1− 4m2e/s. This change of the variables allows to absorb

the peaks in the phase space, which comes from the photons collinear
to electron and positron.

3. The polar angle of the second photon is generated flat in the rest frame
of Qi.

4. Azimuthal angles of both photons are generated flat. The cross section
do not have any narrow peaks in domain of azimuthal angles.

5. The momentum of one of the photon is calculated in the CMS of initial
particles.

6. The momentum of second photon is calculated in the rest frame of Qi.
Then the boost from ~Q = 0 frame to CMS is performed.

4.4 Monte Carlo simulations

The newly developed model of two-photon transition form factors for pseu-
doscalar mesons, which is consistent with the data in the time-like region,
allows to obtain reasonable predictions for the cross section of the reaction
e+e− → Pγ(γ) and to investigate the impact of the radiative corrections.
In the plots from Fig. 4.13 and 4.14 the leading order and the next-to-

leading order cross sections are presented for two versions of the form factors
model (fit1 and fit2). The cross sections were obtained for the event selection
close to the one used in BES-III experiment:

• At least one photon has to be observed with the energy Eγ > 0.5 GeV.

• Observed photon and pseudoscalar meson are within the range of polar
angles 20o < θP,γ < 160

o.
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As one can observe the radiative corrections are large. The reason is that the
form factors fall rapidly with the increasing value of the scattering energy.
In the leading order amplitude the form factor is always calculated at the
invariant s, while in the case of the next-to-leading order amplitude, which
involve two photons, the form factors calculated at Q21 = (q1 + k1)

2 and
Q22 = (q1 + k2)

2 enter the amplitude. The big difference between the LO and
NLO cross section is caused by the form factors calculated at values of Q21,2
much smaller than s, which is a result of the hard photon emission.
The differences between versions of the form factors models from fit1 and

fit2 are small up to energy 2 GeV, where the behavior of the form factors
is well constrained by the experimental data. Above this energy, where no
experimental measurements exist, the two versions of the form factors model
differ a bit more. The difference is mostly observed in the size of the φ3
meson resonance peak. The data from experimental measurements in the
energy range above 2 GeV could verify the model predictions and allow to
constraint better the high energy behavior of the two-photon-pseudoscalar
form factors.
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Figure 4.13: Comparison between LO and NLO cross sections for the reac-
tion e+e− → Pγ(γ). The comparison obtained for the form factors with the
parameters from fit1.
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Figure 4.14: Comparison between LO and NLO cross sections for the reac-
tion e+e− → Pγ(γ). The comparison obtained for the form factors with the
parameters from fit2.
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4.5 Conclusions

The newly developed model of the two-photon transition form factors for
pseudoscalar mesons is consistent with most of the experimental data in
the time-like and the space-like region. The excluded data sets are in evident
conflict with the rest of the measurements, which can be observed by a direct
comparison. The behavior of the pseudoscalar form factors in the time-like
region could be verified by a scan measurements of the cross section of the
reaction e+e− → Pγ. The radiative corrections for this reaction and event
selections close to the one used by BES-III experiment are large and have to
be taken into account in the future measurements. The results were obtained
using the upgraded version of PHOKHARA (PHOKHARA 9.3).
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Chapter 5

Next-to-leading order radiative

corrections to the reaction

e+e−→ π+π−γ

5.1 Motivation

The observed discrepancy between the Standard Model predictions and the
experimental value of the anomalous magnetic moment of the muon is domi-
nated by the hadronic contributions. The leading order hadronic vacuum po-
larization (HVP) contribution constitute alongside of the hadronic light-by-
light (HLbL) part the dominant source of this discrepancy [3,4]. The channel,
which gives the biggest contribution to the HVP part and its uncertainty is
the pion pair production. The measurements of the e+e− → π+π− cross sec-
tions have been performed by BABAR [94], KLOE [95] and BES-III [96] ex-
periments via the radiative return method and SND [97] and CMD-2 [98–100]
experiments using the scan method. There is a discrepancy between KLOE
and BABAR measurements of the invariant mass distributions of π+π− cross
section [95], which is about a few percent on the peak of the ρ resonance. It
even increases at higher energies. Both measurements are in good agreement
with the BES-III data [96] and data collected by the SND and CMD-2 via
scan method [95] but their experimental errors are not competitive with the
KLOE and BABAR errors. The KLOE and BABAR collaborations used the
approximate NLO e+e− → π+π−γ cross section predictions of the Monte
Carlo event generator PHOKHARA. To investigate the possible impact of
the missing radiative corrections on the pion pair production cross sections,
the complete NLO radiative corrections have been calculated [12] as the dis-
crepancy between KLOE and BABAR might have originated partly from
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the missing radiative corrections. The possible influence of the missing NLO
radiative corrections in the e+e− → µ+µ−γ cross section, which is also im-
portant for the precise determination of the pion pair production rate has
been investigated in [52]. The results for the muon pair show that the effect of
the NLO corrections is very small for typical experimental events selections
and that it cannot explain the BABAR and KLOE discrepancy.
In Section 5.2 the discussion of the NLO contributions to the e+e− →

π+π−γ cross section is performed. Section 5.2.1, 5.2.2 and Section 5.2.3 con-
tain presentation of the methods used to calculate particular classes of the
diagrams: pentabox contributions (Section 5.2.1), virtual final state radiative
corrections (Section 5.2.2), hard and soft photon emissions (Section 5.2.3).
In Section 5.3 the effect of the missing radiative corrections is discussed for
BABAR, KLOE and BES events selections. Section 5.4 contains conclusions.

5.2 The pions pair production at the NLO in

the radiative return

The full NLO cross section for the pion pair production via radiative return
can be written in the following form:

σNLO(e
+e− → π+π− + photons) = σ(e+e− → π+π− + γ)

+ σ(e+e− → π+π− + γγ), (5.1)

where the cross section σ(e+e− → π+π− + γ) includes:

• A contribution from the leading order amplitudes presented in Fig. 5.1.

• A contribution from the amplitudes with one hard and one soft photon,
which are represented by the diagrams from Fig. 5.2, where the energy
of one of the photon fulfills the condition Eγ < Emin.

• A contribution from the virtual corrections diagrams presented in Fig.
5.3, which at the NLO enter the σ(e+e− → π+π−γ) cross section only
through the interference with the leading order amplitudes.

The cross section σ(e+e− → π+π− + γγ) is calculated using the diagrams
from Fig. 5.2, where energies of both photons fulfill the condition Eγ >
Emin. Including the contribution from the two hard photons makes the σNLO
cross section independent of the energy cutoff Emin. The infrared divergences,
which arise from the virtual corrections, are canceled by their counterparts
from soft photon emission diagrams making the sum soft+virtual infrared
finite.
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a) b)

Figure 5.1: The classes of the diagrams at the leading order for the reaction
e+e− → π+π−γ. The blob indicates that the γ−π+−π− coupling is modeled
testing the form factor.

a) b) c)

Figure 5.2: The classes of the diagrams with emission of two photons for the
reaction e+e− → π+π−γ.The blob indicates that the γ − π+ − π− coupling
is modeled testing the form factor.

The version 7.0 of the Monte Carlo event generator PHOKHARA [101],
which was used by KLOE and BABAR in their analysis, includes the follow-
ing NLO amplitudes:

• The amplitude with an emission of two photons from the initial state
represented by the diagram from Fig. 5.2a.

• The part of amplitude with an emission of one photon from the initial
state and one photon from the final state represented by the diagram
from Fig. 5.2c, which cancel the infrared divergence from diagrams
presented in Fig. 5.3b and 5.3c.

• Virtual corrections to the initial state with the initial state radiation
represented by the diagram from Fig. 5.3a.

• Virtual corrections to the initial state with the final state radiation
represented by the diagram from Fig. 5.3b.

• Virtual corrections to the final state with the initial state radiation
represented by the diagram from Fig. 5.3c.
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a) b)

c) d)

e) f)

Figure 5.3: The classes of the diagrams at the next-leading-order for the
reaction e+e− → π+π−γ. The blob indicates that the γ − π+ − π− coupling
is modeled testing the form factor.

For each class of the virtual corrections the corresponding infrared divergent
diagrams with soft photon emissions have been included.
The missing NLO radiative corrections to the reaction e+e− → π+π−γ

include the following classes of diagrams:

• Pentabox and box diagrams with the initial state radiation presented
in Fig. 5.3e.

• Pentabox and box diagrams with the final state radiation presented in
Fig. 5.3f.

• Virtual corrections to the final state with the final state radiation rep-
resented by the diagram from Fig. 5.3d.

• The amplitude with emission of two photons from the final state rep-
resented by the diagram from Fig. 5.2b.

• The part of the amplitude represented by the diagram from Fig. 5.2c,
which was not included in the previous version of the code.
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The indispensable soft photon contributions to cancel infrared divergences
from the virtual parts presented in Fig. 5.3e, 5.3f and 5.3b contain:

• The interference of the diagram from Fig. 5.2a, where one of the photons
is soft with the diagram from Fig. 5.2c, where photon emitted from the
final state is soft. That contribution cancels the infrared divergences,
which arise from the interference of the pentabox ISR diagram (Fig.
5.3e) with the leading order amplitude with the ISR photon (Fig. 5.1a).

• The sum of the contribution, which comes from the interference of the
diagram from Fig. 5.2a, where one of the photons is soft with diagram
from Fig. 5.2b, where one of the photons is soft and the interference
of the diagram from Fig. 5.2c, where the photon emitted from the
initial state is soft with the diagram from Fig. 5.2c, where the photon
emitted from the final state is soft. That contribution cancels the sum of
infrared divergences, which arise from the interference of the pentabox
ISR diagram (Fig. 5.3e) with leading order amplitude with the FSR
photon (Fig. 5.1b) and the interference of the pentabox FSR diagram
from Fig. 5.3f with the leading order amplitude with the ISR photon
(Fig. 5.1a).

• The interference of the diagram from Fig. 5.2b, where one of the pho-
tons is soft with diagram from Fig. 5.2c, where the photon emitted
from the initial state is soft. That contribution cancels the infrared
divergences, which arise from the interference of the pentabox FSR
diagram (Fig. 5.3f) with the leading order amplitude with the FSR
photon (Fig. 5.1b).

• The square of the module of the diagram from Fig. 5.2b, where one of
the photons is soft, which cancel infrared divergence arising from the
interference of the diagram from Fig. 5.3d with the leading order FSR
amplitude.

• The interference of the diagram from Fig. 5.2b, where one of the pho-
tons is soft with diagram from Fig. 5.2c, where the photon emitted from
the final state is soft. This contribution cancel the infrared divergences,
which arise from the interference of the diagram from Fig. 5.3d with
the leading order amplitude with the ISR photon.

The cancelation of the infrared divergences between virtual and soft correc-
tions has been checked numerically by comparing coefficients multiplying the
1
ǫIR
poles.
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5.2.1 The pentabox contributions

In the framework of Scalar Quantum Electrodynamics (sQED) the virtual
corrections of the pentabox-type include the pentagon, the box and the tri-
angle diagrams. The triangle topology is a consequence of the two-photon
coupling to the scalar-antiscalar pair, which introduces an additional dia-
gram. All of the pentabox-type diagrams can be grouped into four gauge
invariant subclasses:

• The subclass, which includes pentagon and box diagrams with the ini-
tial state radiation, presented in Fig. 5.4. The diagrams, which can be
obtained by crossing the scalar and antiscalar lines are separately gauge
invariant and also have been taken into account in the calculations.

• The subclass, which includes box and triangle diagrams with the two-
photon-two-scalar vertex and photon emitted from the initial states,
presented in Fig. 5.5.

• The subclass, which includes pentagon and box diagrams with the final
state radiation, presented in Fig. 5.6. The diagrams, which can be ob-
tained by crossing the scalar and antiscalar lines are separately gauge
invariant and also have been taken into account in the calculations.

• The subclass, which includes triangle diagrams with the two-photon-
two scalar vertex and photon emitted from the final states, presented
in Fig. 5.7.

Figure 5.4: The gauge invariant class of scalar QED pentabox and box dia-
grams with the initial state radiation. Cross diagrams are not shown.

In the version 7.0 of the PHOKHARA Monte Carlo event generator [101]
the real radiation from pion (antipion) was modeled as the radiation from
the point-like particles and the amplitudes were calculated in the framework
of sQED with the pion form factor included only in the vertex with coupling
of the pion-antipion to the virtual photon. In the case of pentabox diagrams
the similar factorization of the pion form factor is used. The modeling of the
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Figure 5.5: The gauge invariant class of scalar QED box and triangle diagrams
with the initial state radiation.

Figure 5.6: The gauge invariant class of scalar QED pentabox and box dia-
grams with the final state radiation. Cross diagrams are not shown.

Figure 5.7: The gauge invariant class of scalar QED triangle diagrams with
the final state radiation.

pentabox-type virtual corrections for the pion-antipion pair can be presented
schematically in the following way:

M(e+e− → π+π−γISR) = Fπ(Q
2)MsQED(e

+e− → π+π−γISR), (5.2)

M(e+e− → π+π−γFSR) = Fπ(s)MsQED(e
+e− → π+π−γFSR), (5.3)

where M is the amplitude for the pentabox-type diagrams, Fπ is a pion
form factor, s is Mandelstam variable, Q2 invariant mass of the pions and
MsQED is the amplitude calculated within the scalar QED. In this model
the pentabox-type virtual corrections to the amplitudes are assumed to be
a product of the form factors, with parameterization adopted from [25] and
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the amplitude calculated within the scalar QED. For a real emission the
amplitudes are proportional to the pion form factor, which is calculated at
Q2 for amplitudes with the ISR photons and at s for amplitudes, which
involve only the FSR photons. The factorization of the form factors for the
pentabox diagrams provide that the interference terms of this contribution
with the born amplitude are proportional to the same combination of the
form factors as their counterparts with soft photons emission. This ensure
that the result, which include sum of virtual and soft corrections, is infrared
finite.
A Fortran code for the pentabox-type contributions have been prepared

using a special Mathematica code, which used the trace method to calculate
the necessary interference terms. The tensor integrals are calculated using the
method described in [102, 103], which has been extended to include 5-point
functions according to convention presented in [104]. The scalar one-loop
integrals are calculated using QCDLoop library [105]. The pentabox-type
diagrams are infrared divergent (IR) and ultraviolet (UV) finite. This diver-
gence has been regularized using dimensional regularization scheme [106] and
canceled by the appropriate soft photon contributions. The analytic expres-
sions for the amplitudes are rather long (about 3000 lines of the FORTRAN
code) and will not be presented in this thesis.
To assure necessary precision of the calculations and numerical stability of

the code, the combined double and quadruple precision is used. The one-loop
scalar integrals are calculated in double precision, while all other calculations
are held in quadruple precision. The code, where only double precision is used,
does not ensure numerical stability. The numerical cancellations, which occur
for some specific points of the phase space cause loss of all significant digits
of the result.
The following tests of the implementation of the amplitudes and check of

the stability of the code have been performed:

• An independent code has been prepared, which was generated using
FeynCalc [107], where a different method is used for calculating of the
tensor integrals. Both the scalar and the tensor integrals were calculated
in quadruple precision using LoopTools library [108]:

– A perfect agreement between both codes has been observed for
the kinematic points far from soft and collinear regions.

– An agreement at the level 10−5 between both codes has been ob-
served for soft and collinear regions.

• The implemented scalar integrals in double precision has been checked
numerically using quadruple precision routines for different kinematic
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points. The agreement at the level 10−15 has been observed for each
scalar integral.

• Numerical test of the cancelation of the infrared divergences between
the virtual and the soft parts has been performed. For the sum vir-
tual+soft perfect cancelation of the divergences was found.

• Analytical and numerical tests of the gauge invariance have been per-
formed. The substitution ε(k)→ k, where ε is the polarization vector of
the photon with momentum k, in the amplitudes within the previously
defined gauge invariant classes gives zero analytically. Numerically, no
result different than numerical zero has been observed.
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5.2.2 Virtual final state radiative corrections

In the frame of sQED the diagrams for the final state virtual corrections
with the final state radiation, which were included in the calculations, are
presented in Fig. 5.8. These diagrams include vertex correction and pion
(antipion) self energy corrections. The diagrams with self energy corrections,
where pion (antipion) is on mass shell have been omitted since after the
renormalization procedure they will vanish (see Appendix C). The additional
diagrams, which contain triangle and bubble topologies presented in Fig. 5.9,
with three or two pion propagators cancel between themselves in the sum
of these contributions. The full amplitude for the virtual corrections is the
product of sQED amplitude and the pion form factor calculated at s.

Figure 5.8: Diagrams for virtual final state radiative corrections with final
state radiation contributing to the e+e− → π+π−γ amplitude within scalar
QED.

A Fortran code for the virtual final state radiative corrections has been
prepared using the same method as in the case of pentabox contributions
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Figure 5.9: The classes of bubble and triangle diagrams, which do not con-
tribute to the e+e− → π+π−γ amplitude within scalar QED.

(see Section 5.2.1). These corrections contain infrared (IR) and ultraviolet
(UV) divergences, which have been regularized dimensionally. The infrared
divergences have been removed by including the appropriate soft photon
contributions and the ultraviolet divergences by including the counter-terms
amplitudes. The procedure for determination of the renormalization coupling
constants is presented in the Appendix C. As in the case of the pentabox
contributions, the analytic expression for the virtual final state radiative
corrections is quite long (about 1500 lines of the FORTRAN code) and will
not be presented in this thesis.
For this part of the code, the use of the double precision was sufficient

to ensure numerical stability. The following tests of the code have been per-
formed to check the implementation of the amplitudes and the stability of
the code:

• An independent code has been prepared. It was generated using Feyn-
Calc [107], where a different method is used for calculating the tensor
integrals. Both the scalar and the tensor integrals were calculated in
quadruple precision using LoopTools library [108].

– A perfect agreement between both codes has been observed for
the kinematic points far from the soft and the collinear regions.

– For soft and collinear regions only loss of a few digits was observed
in double precision routine.

• The implemented scalar integrals has been checked numerically using
quadruple precision routines for different kinematic points. The agree-
ment at the level of 10−15 has been observed for each of the scalar
integrals.

• A numerical test of the cancelation of the infrared divergences between
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the virtual and the soft parts has been performed. For the sum vir-
tual+soft perfect cancelation of the divergences was found.

• A numerical test of the cancelation of the ultraviolet divergences be-
tween the virtual and the counter-term amplitudes has been performed.
The ultraviolet divergence for the virtual FSR amplitudes has been sep-
arated from the infrared divergence and the resulting terms have been
compared numerically with the UV counter-terms. The sum of the both
UV parts canceled exactly.

• A numerical test of the gauge invariance has been performed. No result
different from numerical zero has been observed.
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5.2.3 The hard and the soft photon emissions

The diagrams with two photons emitted from the final state in the framework
of sQED, which are presented in Fig. 5.10 represent the following reaction:

e+(p1) + e
−(p2)→ π+(q1) + π

−(q2) + γ(k1) + γ(k2) (5.4)

The amplitude for the two-photon emission can be written in the following
form:

M2FSR = M1(k1, k2) +M2(k1, k2) +M3(k1, k2) +M4(k1, k2)

+M5(k1, k2) +
1

2
M6(k1, k2) +

1

2
M7(k1, k2) + (k1 ↔ k2), (5.5)

where k1 and k2 are photons momenta and Mi with i = 1, ..., 7 are the
amplitudes for the diagrams presented in Fig. 5.10. The amplitude for the
emission of two hard photons from the final state written in terms of leptonic
(Lµ) and hadronic (Jµ) currents has the following form:

M2FSR = LµJµ, (5.6)

where Lµ = −iev̄(p1)γµu(p2) and hadronic current has the following form:

Jµ = ie3Fπ(s)
(
Akµ1 +Bk

µ
2 + Cq

µ
1 + Eε

µ
1 + Fε

µ
2

)
, (5.7)

where s is Mandelstam variable, Fπ is the pion form factor and ε
µ
i ≡ εµ(ki)

is the polarization vector of the photon with momentum ki. The scalar coef-
ficients in hadronic current have the following form:

A = 2(f2 + f3), B = 2(f3 + f4), C = 2(f1 + f2 + f3 + f4),

E =
2q1.ε2
k2.q1

− 2q2.ε2
k2.q2

, F =
2q1.ε2
k2.q1

− 2q2.ε2
k2.q2

,

f1 =
2ε1.ε2
Dk1k2q2

− 2q2.ε1(k1.ε2 + q2.ε2)
k1.q2Dk1k2q2

− 2q2.ε2(k2.ε1 + q2.ε1)
k2.q2Dk1k2q2

,

f2 =
q1.ε1q2.ε2
k1.q1k2.q2

,

f3 =
2ε1.ε2
Dk1k2q1

− 2q1.ε1(k1.ε2 + q1.ε2)
k1.q1Dk1k2q1

− 2q1.ε2(k2.ε1 + q1.ε1)
k2.q1Dk1k2q1

,

f4 =
q2.ε1q1.ε2
k1.q2k2.q1

,

Dkikjql = (ki + kj + ql)
2 −m2π, (5.8)

where mπ is the pion mass. The amplitudes for two photons emission from
the final state have been implemented using the helicity amplitude formalism
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developed in [53, 54]. The full amplitude for the two photons emission from
the final state is the product of sQED amplitude and the pion form factor
calculated at s.

M1 M2 M3

M4 M5 M6

M7

Figure 5.10: Diagrams with two photons emitted from the final state within
scalar QED.

The cross section for the emission of one hard and one soft photon, which
include the initial state radiation, the final state radiation and the interfer-
ence can be written in the following form:

σ1h,1s = σ1h
−α
4π

∫

0¬|k|¬Emax

d3k

Ek


 p1
p1 · k

− p2
p2 · k

+
q1
q1 · k

− q2
q2 · k



2

, (5.9)

where p1, p2, q1, q2 and k are momenta of positron, electron, pion, antipion
and photon, σ1h is the cross section for emission of one hard photon and Emax
is maximal energy of soft photon. The infrared divergence, which appears in
the integrals from Eq. 5.9 have been regulated using photon mass regulator
λ. To calculate soft photon integrals the method described in [109] has been
used. The relation between dimensional regularization and photon mass reg-
ulator scheme, which allows to relate infrared divergences from soft part to
the one from the virtual part is given by the following formula [52]:

log


λ
2

s


→ ∆ = (4π)ǫ

ǫΓ(1− ǫ)


µ
2

s



ǫ

(5.10)
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The following tests of the part of the code for the hard and the soft
photons emissions have been performed:

• The independent code for hard photon emission has been prepared,
which is based on trace method. The numerical comparison between
the code, which is based on the helicity amplitude method and the
trace method has been done, which checked the implementation of the
amplitudes in the PHOKHARAMonte Carlo event generator. A perfect
agreement was found.

• A test of the independence of the total cross section (soft+hard) on the
cutoff parameter (w), which separates the regions of the phase space for
soft and hard photons have been performed. The agreement between
the cross sections calculated with two different values of w was a the
level of 10−5.

• A numerical test of the gauge invariance for the amplitudes with emis-
sion of two hard photons have been performed. No result different than
numerical zero has been observed

5.3 Monte Carlo simulations

The plots from Fig. 5.11, 5.12 and 5.13 show the relative size of the pentabox
contributions with respect to the old PHOKHARA result [101] as a function
of invariant mass of the pions pair. The typical experimental events selections
have been used for KLOE, BES-III and BABAR experiments. The details
can be found in Appendix D.
The size of the pentabox contributions is very small for typical experi-

mental cuts and can reach up to few per mille of the result of PHOKHARA
version used by the KLOE, BES-III and BABAR collaborations. The size of
the virtual final state radiative corrections is presented on the plot from Fig.
5.14 for KLOE event selections. These corrections are of the similar size as it
was observed in the case of pentabox contributions and can reach up to one
per mille for the invariant mass of the pions close to 1 GeV. These corrections
are even smaller for the BES and the BABAR event selections. The reason
is that the virtual FSR corrections are proportional to the pion form factor
calculated at the nominal energy of the experiment, which decreases with
the increasing energy [25]. The size of these corrections for the BES event
selections is 10 times smaller and for the BABAR event selections even 100
times smaller than the corrections for KLOE event selections.
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KLOE 2008
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Figure 5.11: The size of the pentabox contributions for KLOE event selec-
tions.

BES 2016
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Figure 5.12: The size of the pentabox contributions for BES event selections.

Despite the relative smallness of the missing radiative corrections for the
event selections used by KLOE, BES-III and BABAR the corrections are not
negligible in the general case. The size of radiative corrections depends on the
events selections and has to be analyzed for every specific experimental setup.
In the plot from Fig. 5.15 the relative size of the pentabox contributions with
respect to the PHOKHARA 7.0 version result [101] as a function of invariant
mass of the pions pair for the following event selections is presented:

• √s = 1.02 GeV
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BABAR 2012
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Figure 5.13: The size of the pentabox contributions for BABAR event selec-
tions.
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Figure 5.14: The size of the FSR radiative corrections for KLOE event selec-
tions.

• Pions and one of the photon polar angle: 20o < θπ±,γ < 160
o

• q2 ∈ (0.35, 0.95)

For this event selections the relative size of the pentabox contributions is at
the percent level and cannot be neglected in the analysis. In the plot from
Fig. 5.16 the relative size of the virtual final state radiative corrections with
respect to the PHOKHARA 7.0 version result [101] is presented. The event
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Figure 5.15: The size of the pentabox contributions for the event selections
given on the plot.

selections are the same as in the plot for the pentabox contributions presented
in Fig. 5.15. The size of the FSR corrections is bigger than it is observed for
KLOE event selections but still at the per mille level.
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Figure 5.16: The size of the FSR radiative corrections for event selections
given on the plot.
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5.4 Conclusions

The missing NLO radiative corrections have been included in the new ver-
sion of the PHOKHARA Monte Carlo event generator (PHOKHARA 10.0).
The obtained results for the experimental events selections used by KLOE,
BABAR and BES-III show that this corrections are negligible at the current
sensitivity of the experiments. Thus the observed discrepancy between KLOE
and BABAR measurements of the pions invariant mass distribution in the
reaction e+e− → π+π−γ cannot be explained by missing NLO corrections.
Together with the result of [52] it means that the source of the difference can
only be of the experimental origin.
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Chapter 6

Final conclusions

In Chapter 2 the model of the nucleon form factors [7] were presented, which
well describe most of the experimental data. The analysis show that the
effect of the final state radiative corrections beyond the Coulomb factor on
the proton-antiproton cross section are small for typical experimental event
selections.
In Chapter 3 the production of the χc1 and the χc2 states in the electron-

positron annihilation was considered [9]. The results show that if the model
of the electronic widths is correct the observation of these states should be
possible e.g. in the BES-III experiment through the reaction e+e− → χcJ →
γJ/ψ(→ µ+µ−) as the interference with the radiative return background.
Chapter 4 presents the results of modeling the two-photon transition form

factors of the pseudoscalar mesons [11]. Excluding the data, which are in
evident conflict, the model exhibit good agreement with all experimental
measurements in the time-like and the space-like region. Analysis of the size
of the radiative corrections in the case of BES-III events selections shows that
they are large and need to be taken into account in future measurements.
The result presented in Chapter 5 for the missing radiative corrections to

the reaction e+e− → π+π−γ [12] show that they are small for KLOE, BABAR
and BES-III event selections. Thus the observed discrepancy between KLOE
and BABAR measurements of the pions invariant mass distribution in the
reaction e+e− → π+π−γ cannot be explained by missing NLO corrections.
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Appendix A

Calculation of the FSR

amplitudes at the LO and the

NLO in the reaction e+e− → pp̄γ

The FSR at the LO consists of two amplitudes, one with the emission of the
photon from the proton (M1), and one with the emission of the photon from
the antiproton (M2). The amplitudes read:

M1 =
−ie3
s

v̄(p2)γ
µu(p1)ū(p3)/ǫ

∗(k)
/p3 + /k +mp

2p3 · k
Fµ(P )v(p4),

(A.1)

M2 =
−ie3
s

v̄(p2)γ
µu(p1)ū(p3)Fµ(P )

− /p4 − /k +mp

2p4 · k
/ǫ∗(k)v(p4),

(A.2)

where p1, p2, p3, p4 and k are momenta of positron, electron, proton, an-
tiproton and photon, P = p1 + p2 and ǫ is polarization vector of photon and
v̄(p2) ≡ v̄(p2, λe+), u(p1) ≡ u(p1, λe−), ū(p3) ≡ ū(p3, λp̄), v(p4) ≡ u(p4, λp)
and ǫ∗(k) ≡ ǫ∗(k, λγ), where λi are helicities of given particle. The four-vector
Fµ(P ) has the following form:

Fµ(P ) = F
p
1 (P

2)γµ −
F p
2 (P

2)

4mp
[γµ, /P ]. (A.3)

Using two dimensional representations of spinors and and γ matrices from [93]
one can transform leptonic parts and the amplitudes take the following form:

M1 =
−ie3
s

(
v†Iσ

µ
−uI + v

†
IIσ

µ
+uII

)
J1µ (A.4)

M2 =
−ie3
s

(
v†Iσ

µ
−uI + v

†
IIσ

µ
+uII

)
J2µ, (A.5)
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where J1µ and J
2
µ are the hadronic parts of the amplitudesM1 andM2 and

vI,II ≡ vI,II(p2, λe+), uI,II ≡ uI,II(p1, λe−) and σ± = (I,±σi), where σi,i = 1,
2, 3 are the Pauli matrices and:

u(p) =

(
uI
uII

)
, v(p) =

(
vI
vII

)
(A.6)

and

a± = aµσ
µ
± =

(
a0 ∓ a3 ∓(a1 − ia2)
∓(a1 + ia2) a0 ± a3.

)
(A.7)

After making use of the anticommutation relation of γ matrices and Dirac
equation the hadronic currents J1,2µ can be rewritten in the following form:

J1µ = ū(p3)
2ǫ∗(k) · p3 + /ǫ∗(k)/k

2p3 · k
Fµ(P )v(p4), (A.8)

J2µ = ū(p3)Fµ(P )
−2ǫ∗(k) · p4 − /k/ǫ∗(k)

2p3 · k
v(p4). (A.9)

Inserting two dimensional representation of spinors and γ matrices one ob-
tains:

J1µ =
1

2p3 · k

[
F1(s){u†I(2ǫ∗ · p3 + ǫ∗−k+)σ−µ vI + u†II(2ǫ∗ · p3 + ǫ∗+k−)σ+µ vII}

− F2{u†II(2ǫ∗ · p3 + ǫ∗+k−)(σ+µ P− − P+σ−µ )vI
+ u†I(2ǫ

∗ · p3 + ǫ∗−k+)(σ−µ P+ − P−σ+µ )vII}
]
, (A.10)

J2µ =
−1
2p4 · k

[
F1(s){u†Iσ−µ (2ǫ∗ · p4 + k+ǫ∗−)vI + u†IIσ+µ (2ǫ∗ · p4 + k−ǫ∗+)vII}

− F2{u†II(σ+µ P− − P+σ−µ )(2ǫ∗ · p4 + k+ǫ∗−)vI
+ u†I(σ

−
µ P
+ − P−σ+µ )(2ǫ∗ · p4 + k−ǫ∗+)vII}

]
, (A.11)

(A.12)

where ǫ = ǫ∗(k) and vI,II ≡ vI,II(p4, λp̄), uI,II ≡ uI,II(p3, λp).
The amplitudes with the definite helicities of incoming and outgoing

fermions can be written in the following form:

M1,2(λe−, λe+, λp, λp̄) =
−ie3
s

[
v†IJ
1,2
− (λp, λp̄)uI + v

†
IIJ
1,2
+ (λp, λp̄)uII

]
.

(A.13)
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In the electron-positron center mass system (CMS) with the choice of the z
axis along the positron momentum this formula simplifies further into:

M1,2(+,+, λp, λp̄) = me

(
[J1,2− (λp, λp̄)]2,2 − [J1,2+ (λp, λp̄)]2,2

)
, (A.14)

M1,2(−,−, λp, λp̄) = me

(
[J1,2− (λp, λp̄)]1,1 − [J1,2+ (λp, λp̄)]1,1

)
, (A.15)

M1,2(+,−, λp, λp̄) = −(Ee + |p̄e|)[J1,2− (λp, λp̄)]2,1

+
m2e

(Ee + |p̄e|)
[J1,2+ (λp, λp̄)]2,1, (A.16)

M1,2(−,+, λp, λp̄) =
−m2e

(Ee + |p̄e|)
[J1,2− (λp, λp̄)]1,2

+(Ee + |p̄e|)[J1,2+ (λp, λp̄)]1,2, (A.17)

where [A]i,j is i, j matrix element and Ee, p̄e are energy and length of the
momentum vector of electron (positron) in their CMS frame.
The amplitude at the NLO with an emission of one photon from initial

and one photon from the final state can be written in the following form:

M1FSR,1FSR =Ma(k1, k2)+Mb(k1, k2)+Mc(k1, k2)+Md(k1, k2)+(k1 ↔ k2),
(A.18)

where k1 and k2 are photons momenta. Individual amplitudes denoted by a,
b, c and d have the following form:

Ma(k1, k2) =
ie4

q21
v̄(p2)γ

µ /p1 − /k1 +me

−2p1 · k1
/ǫ∗1u(p1)

ū(p3)/ǫ
∗
2

/p3 + /k2 +mp

2p3 · k2
Fµ(q1)v(p4), (A.19)

Mb(k1, k2) =
ie4

q21
v̄(p2)γ

µ /p1 − /k1 +me

−2p1 · k1
/ǫ∗1u(p1)

ū(p3)Fµ(q1)
− /p4 − /k2 +mp

2p4 · k2
/ǫ∗2v(p4), (A.20)

Mc(k1, k2) =
ie4

q21
v̄(p2)/ǫ

∗
1

/k1 − /p2 +me

−2p2 · k1
γµu(p1)

ū(p3)/ǫ
∗
2

/p3 + /k2 +mp

2p3 · k2
Fµ(q1)v(p4), (A.21)

Md(k1, k2) =
ie4

q21
v̄(p2)/ǫ

∗
1

/k1 − /p2 +me

−2p2 · k1
γµu(p1)

ū(p3)Fµ(q1)
− /p4 − /k2 +mp

2p4 · k2
/ǫ∗2v(p4), (A.22)
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where q1 = p1 + p2 − k1. The hadronic parts are known from the LO ampli-
tudes, so now it is sufficient to take care only of the leptonic parts. After some
simplifications and inserting two dimensional representation of spinors and
γ matrices for an arbitrary hadronic current (J̃) one obtains two different
amplitudes:

M̃1 =
1

2p1 · k1

{
v†I J̃
−(−2p1 · ǫ∗1 + k+1 ǫ∗1−)uI + v†II J̃+(−2p1 · ǫ∗1 + k−1 ǫ∗1+)uI

}
,

(A.23)

M̃2 =
1

2p2 · k1

{
v†I(2p2 · ǫ∗1 − k+1 ǫ∗1−)J̃−uI + v†II(2p2 · ǫ∗1 − k−1 ǫ∗1+)J̃+uI

}
.

(A.24)

The above amplitudes with the definite helicities have the following form:

M̃1(λe−, λe+, λp, λp̄) =
−ie3
s

[
v†IA1(λp, λp̄)uI + v

†
IIB1(λp, λp̄)uII

]
,

(A.25)

M̃2(λe−, λe+, λp, λp̄) =
−ie3
s

[
v†IA2(λp, λp̄)uI + v

†
IIB2(λp, λp̄)uII

]
,

(A.26)

with

A1(λp, λp̄) = J̃−(λp, λp̄)(−2p1 · ǫ∗1 + k+1 ǫ∗1−), (A.27)

B1(λp, λp̄) = J̃+(λp, λp̄)(−2p1 · ǫ∗1 + k−1 ǫ∗1+), (A.28)

A2(λp, λp̄) = (2p2 · ǫ∗1 − k+1 ǫ∗1−)J̃−(λp, λp̄), (A.29)

B2(λp, λp̄) = (2p2 · ǫ∗1 − k−1 ǫ∗1+)J̃+(λp, λp̄). (A.30)

(A.31)

In the electron-positron center mass system (CMS) with the choice of the z
axis along positron momentum the amplitudes M̃1 and M̃2 take the following
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form:

M̃1,2(+,+, λp, λp̄) = me

(
[A1,2(λp, λp̄)]2,2 − [B1,2(λp, λp̄)]2,2

)
, (A.32)

M̃1,2(−,−, λp, λp̄) = me

(
[A1,2(λp, λp̄)]1,1 − [B1,2(λp, λp̄)]1,1

)
, (A.33)

M̃1,2(+,−, λp, λp̄) = −(Ee + |p̄e|)[A1,2(λp, λp̄)]2,1

+
m2e

(Ee + |p̄e|)
[B1,2(λp, λp̄)]2,1, (A.34)

M̃1,2(−,+, λp, λp̄) =
−m2e

(Ee + |p̄e|)
[A1,2(λp, λp̄)]1,2

+(Ee + |p̄e|)[B1,2(λp, λp̄)]1,2, (A.35)
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Appendix B

Loop integrals for calculation of

χcJ electronic widths

B.1 Loop integrals involved in the short dis-

tance approximation

The integrals to be calculated in the short distance approximation have the
following form:

I1 =
∫
d4h

1

h2[(h− ll)2 −m2]2
, (B.1)

I2 =
∫
d4h

p21 + p
2
2

p21p
2
2[(h− ll)2 −m2]2

, (B.2)

Iµν3 =
∫
d4h

hµhν(p21 + p
2
2)

h2p21p
2
2[(h− ll)2 −m2]2

, (B.3)

I4 =
∫
d4h

1

p21p
2
2[(h− ll)2 −m2]2

, (B.4)

Iµνα5 =
∫
d4h

hµhνhα

h2p21p
2
2[(h− ll)2 −m2]2

, (B.5)

where ll =
l−−l+
2
. The following relation allows to simplify the square of

[(h− ll)2 −m2] in the denominator:

[(h− ll)2 −m2]−2 =
∂

∂m2
[(h− ll)2 −m2]−1. (B.6)
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The scalar integrals I1, I2 and I4, after applying the relation B.6, take the
following form:

I1 = = iπ
2 ∂

∂m2
B0(l

2
l , 0, m

2), (B.7)

I2 = i2π2
∂

∂m2
B0(l

2
k, 0, m

2), (B.8)

I4 = iπ2
∂

∂m2
C0(l

2
k, 4l

2
k, 0, m

2, 0), (B.9)

where lk = − l−+l+
2
and in the scalar 2-point and 3-point functions the fol-

lowing convention is used

B0(q
2, m1, m2) =

µ4−n

iπ2

∫
d4k

1

[k2 −m21][(k − q)2 −m22]
, (B.10)

C0(q
2
1, q
2
2, m

2
1, m

2
2, m

2
3) =

µ4−n

iπ2

∫
d4k

1

[k2 −m21][(k − q1)2 −m22][(k − q1 − q2)2 −m23]
.

(B.11)

The tensor integral I3µν , which is symmetric under the permutation of indices
can be written as:

I3µν = gµνA+ (l
+
µ l
−
ν + l

+
ν l
−
µ )B + l

+
µ l
+
ν C + l

−
µ l
−
ν D, (B.12)

where coefficients A, B, C and D are scalar functions of the external mo-
menta. Only constant A contributes to the integral I3µν because other parts
after contracting with the external momenta and the metric tensor, and after
making use of Dirac equation are proportional to the electron mass (see. Eq.
3.22 or 3.24). The solution for A has the the following form:

A =
1

2
I3µν

(
gµν − 4l

+µl−
ν

M2

)
. (B.13)

The algebraic manipulations were performed using FORM [110]. Inserting
the expression for A into Eq. B.12 the following formula is obtained:

I3µν = gµν

∫
d4h




1
2
− h·l+

M2

p21[(h− ll)2 −m2]2
+

1
2
+ h·l−

M2

p22[(h− ll)2 −m2]2

+
1
4
+ m2

M2

h2[(h− ll)2 −m2]2
+
1

M2
1

h2[(h− ll)2 −m2]
− 1
M2

1

[(h− ll)2 −m2]


.

(B.14)
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In the first two integrals the changes of integration variables h→ l−− h̄ and
h → h̄ − l+ are done. Then, after some simplification the following result is
obtained:

I3µν = gµν

∫
d4h


1
2

1

p21[(h− ll)2 −m2]2
+
1

2

1

p22[(h− ll)2 −m2]2

−
3
4
+ m2

M2

h2[(h− lk)2 −m2]2
− 1
M2

1

h2[(h− lk)2 −m2]
+
1

M2
1

[(h− lk)2 −m2]2

+
1
4
+ m2

M2

h2[(h− ll)2 −m2]2
+
1

M2
1

h2[(h− ll)2 −m2]
− 1
M2

1

[(h− ll)2 −m2]2


,

(B.15)

where in the integrals over d4h̄, h̄→ h has been renamed. Using the relation
B.6 and the notation for scalar integrals from Eqs. B.10 and B.11 I3µν has
the following:

I3µν = iπ2gµν

(
1

M2
B0(l

2
l , 0, m

2)− 1
M2

B0(l
2
k, 0, m

2) +
1

4

∂

∂m2
B0(l

2
l , 0, m

2)

+
m2

M2
∂

∂m2
B0(l

2
l , 0, m

2) +
1

4

∂

∂m2
B0(l

2
k, 0, m

2)− m2

M2
∂

∂m2
B0(l

2
k, 0, m

2)
)
.

(B.16)

The tensor loop integral I5µνα which is symmetric under the permutation of
indices can be written as:

I5µνα = l−α l
−
µ l
−
ν A+ l

+
α l
+
µ l
+
ν B + (l

−
α l
+
µ l
+
ν + l

−
ν l
+
α l
+
µ + l

−
µ l
+
ν l
+
α )C

+ (l+α l
−
µ l
−
ν + l

+
ν l
−
α l
−
µ + l

+
µ l
−
ν l
−
α )D + (lkαgµν + lkνgαµ + lkµgνα)E

+ (llαgµν + llνgαµ + llµgνα)F , (B.17)

where coefficients A, B, C, D, E and F are scalar functions of invariants
created from the external momenta. Since terms with A, B, C and D are pro-
portional to the electron mass after contraction with the external momenta
and the metric tensor, and use of the Dirac equation only terms proportional
to E and F contribute. The following solutions for E and F are obtained:

E =
1

M2
Iµνα5

(
gµαl−ν −

4

M2
l+ν l−µl−α

)
, (B.18)

F =
1

M2
Iµνα5

(
gµαl+ν −

4

M2
l−αl+µl+ν

)
, (B.19)

Tensor integral I5µνα enters the amplitude A(χc2 → e+e−) through the con-
traction with the term ǫµνγα. Inserting the expressions for E and F to the
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equation for I5µνα one gets:

v̄(l+)ǫ
µν
∫

d4h

(2π)4
1

h2p21p
2
2[(h− ll)2 −m2]2

/hhµhνu(l−) =

v̄(l+)γµ(l
ν
+ − lν−)u(l−)ǫµν

∫ d4h

(2π)4
1

h2p21p
2
2[(h− ll)2 −m2]2(

− h2 + p21 + p
2
2

2

)(
−M2 − h2 − p21p

2
2

h2
+ p21 + p

2
2

)
, (B.20)

Coming back to integral I5µνα, using the derived result and changing the
integration variable h→ h̄+ ll one obtains:

I5µνα = 2(llαgµν + llνgαµ + llµgνα)
∫

d4h̄

(2π)4

( 4(ll·h̄)2
M4
− 1
4

(lk − h̄)2(lk + h̄)2(h̄2 −m2)2

+
−ll·h̄
M4
+ 1
4M2

(lk − h̄)2(h̄2 −m2)2
+

−ll·h̄
M4
+ 1
4M2

(lk + h̄)2(h̄2 −m2)2
−

m2

M4
+ 1
4M2

(h̄2 −m2)2(h̄+ ll)2

+
1

M4
1

(h̄2 −m2)2 −
1

M4
1

(h̄2 −m2)(h̄+ ll)2
)
, (B.21)

The integral, which has (ll · h)2 term in the numerator is only a function of
lk, and can be written in the general form:

T µν = gµνA+ lµk l
ν
kB, (B.22)

where T µν represents arbitrary tensor integral, which is a function of lk, and
scalar coefficients A and B depend only on l2k. After contracting with g

µν and
lµk l

ν
k the following results for A and B coefficients are obtained:

B =
4

M2
(Tµνg

µν − 4A), (B.23)

A =
1

M2
Tµν(l

µ
k l
ν
k −

M2

4
gµν). (B.24)

Contracting the expression for T µν with lµllν lead to the following relation:

(h̄ · ll)2 = −
M2

12
h̄2 +
1

3
(lk · h̄)2. (B.25)

This relation allows to simplify the 2nd order tensor integral. The remaining
1st order tensor integrals, which contain first power of ll · h̄ in the numerator
depend only on lk and can be written as T

µ = Alµk but since lk is orthogonal
to ll the terms proportional to ll · h̄ give zero. The result for I5 after making
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use of the relation B.6 and introducing notation from Eqs. B.10 and B.11 is
the following:

I5µνα = iπ22(llαgµν + llνgαµ + llµgνα)


 1
M4

B0(l
2
l , 0, m

2)

− (m
2

M4
− 1

4M2
)
∂

∂m2
B0(l

2
l , 0, m

2) +
1

3M4
B0(l

2
k, 0, m

2)

+ (
m2

3M4
+
7

12M2
)
∂

∂m2
B0(l

2
k, 0, m

2) +
2

3M4
∂

∂m2
A0(m

2)

− 1

3M2
C0(l

2
k, 4l

2
k, 0, m

2, 0)− (1
4
+

m2

3M2
)
∂

∂m2
C0(l

2
k, 4l

2
k, 0, m

2, 0)


,

(B.26)

where A0(m
2) = µ4−n

iπ2

∫
d4k 1

[k2−m21]
.

B.2 Loop integrals involved in long distance

calculations

The loop integrals involved in the calculations of long distance contributions
have the following form:

Ī1 =
∫
d4h

p22
h2[p22 −M2x ][(h− ll)2 −m2]2

, (B.27)

Ī2 =
∫
d4h

p21 + p
2
2

p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (B.28)

Īµν3 =
∫
d4h

hµhν(p21 + p
2
2)

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (B.29)

Ī4 =
∫
d4h

1

p21[p
2
2 −M2x ][(h− ll)2 −m2]2

, (B.30)

Īµνα5 =
∫
d4h

hµhνhα

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2

. (B.31)

Canceling the p22 in the numerator of integrals Ī1 and Ī2 and then making
use of the relation B.6, the scalar integrals Ī1, Ī2 and I4 can be written in
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the following form:

Ī1 = iπ2M2
(

∂

∂m2
B0(l

2
l , 0, m

2) + 2M2x
∂

∂m2
C0(l

2
k, 0, m

2, 0,M2x)
)
,

(B.32)

Ī2 = iπ2M2
(

∂

∂m2
B0(l

2
k, 0, m

2) +
∂

∂m2
B0(l

2
k,M

2
x , m

2)
)

+ M2x
∂

∂m2
C0(l

2
k, 4l

2
k, m

2, 0,M2x), (B.33)

Ī4 = i2π2
∂

∂m2
C0(l

2
k, 4l

2
k, m

2, 0,M2x), (B.34)

The tensor integral Ī3µν can be reduced in the same way as it was done for
integral I3µν from Eq. B.3. After making use of Eqs. B.12 and B.13 with
substitution I3µν → Ī3µν one gets the following:

Ī3µν = gµν

∫
d4h


M

2
x

M2
4h · l+h · l−

p21h
2[(h− ll)2 −m2]2[p22 −M2x ]

+
1

M2
4h · l+h · l−

p21h
2[(h− ll)2 −m2]2

− M2x
p21[(h− ll)2 −m2]2[p22 −M2x ]

− 1

p21[(h− ll)2 −m2]2
+
1

M2
4h · l+h · l−

h2[(h− ll)2 −m2]2[p22 −M2x ]

− 1

[(h− ll)2 −m2]2[p22 −M2x ]


. (B.35)

This could be further simplified by canceling the double scalar products l± ·h
in the numerator by some of the denominators. After this, the remaining
tensor integrals contain only first powers of l± · h. Changing the integration
variables h → h̄ + ll one can rewrite l± in terms of ll and lk. After this
procedure the only tensor integral that is left depends on lk. For this integrals
the tensor reductions leads to the terms in the numerator proportional to
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ll · lk = 0. Using the relation B.6 one obtains:

Ī3µν = iπ2gµν

(
− 1
2
M2yC0(l

2
k, 0, m

2, 0,M2x)−
1

4
M2yC0(l

2
k, 4l

2
k, m

2, 0,M2x)

− (1
2
M2M2x +

1

2
m2M2y)

∂

∂m2
C0(l

2
k, 0, m

2, 0,M2x)

− 1

4
(3M2M2x +m

2M2y −M2M2xy)
∂

∂m2
C0(l

2
k, 4l

2
k, m

2, 0,M2x)

+ B0(l
2
k, 0, m

2) +
1

4
(4m2 −M2 +M2y) ∂

∂m2
B0(l

2
k, 0, m

2)

− 2B0(l2l , 0, m2)−
1

2
(4m2 +M2)

∂

∂m2
B0(l

2
l , 0, m

2) + B0(l
2
k,M

2
x , m

2)

+
1

4
(4m2 −M2 +M2y) ∂

∂m2
B0(l

2
k,M

2
x , m

2)
)
. (B.36)

The tensor integral Ī5µνα is simplified by making use of the following relation:

v̄(l+)ǫ
µν
∫

d4h

(2π)4
1

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2

/hhµhνu(l−) =

v̄(l+)γµ(l
ν
+ − lν−)u(l−)ǫµν

∫
d4h

(2π)4
1

h2p21[p
2
2 −M2x ][(h− ll)2 −m2]2(

− h2 + p21 + p
2
2

2

)(
−M2 − h2 − p21p

2
2

h2
+ p21 + p

2
2

)
, (B.37)

Applying this relation to the integral Ī5µνα after some algebraic manipulations
one obtains the following result:

Ī5µνα = 2(llαgµν + llνgαµ + llµgνα)
∫
d4h




1

M4
−2h · llM2x + 4h · llM2 + 8(h · ll)2
p21[(h− ll)2 −m2]2[p22 −M2x ]

− 1
M4

2h · ll
p21[(h− ll)2 −m2]2

1

M4
4h · lkm2 − h · lkM2 + 4h · llm2 + h · llM2

h2[(h− ll)2 −m2]2[p22 −M2x ]

+
1

M2
4h · lk − 2h · ll

[(h− ll)2 −m2]2[p22 −M2x ]
+
1

M4
4h · lk + 4h · ll

[h2(h− ll)2 −m2]2[p22 −M2x ]


.

(B.38)

Performing a shift of integration variable (h → h̄ + ll) the term (h̄ · ll)2 is
rewritten using the relation from Eq. B.25. Further algebraic manipulation
allows to reduce the integral Ī5 to the form, where h appear in the numerator
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only through the scalar product h · ll in first power. The tensor integrals,
which are contracted with ll do not depend on it. The only momenta, which
is involved in this integrals is lk, so the tensor reduction can produce only
terms proportional to ll · lk, which is zero. Using the relation from Eq. B.6
one obtains the following:

Ī5µνα =
iπ2

M4

(
− 2M2xC0(l2k, 0, m2, 0,M2x)

+(
3

3
m2 +

2

3
M2x −M2)C0(l2k, 4l2k, m2, 0,M2x)

−(2M2xm2 −
1

2
M2M2x)

∂

∂m2
C0(l

2
k, 4l

2
k, m

2, 0,M2x)

+(−13
24
M4 − 2

3
m4 +

2

3
M2xm

2 −M2m2 + 2
3
M2M2x)

∂

∂m2
C0(l

2
k, 0, m

2, 0,M2x) +
4

3

∂

∂m2
A0(m

2)

+(
2

3
m2 +

2

3
M2)

∂

∂m2
B0(l

2
k, 0, m

2) +
2

3
B0(l

2
k, 0, m

2)− 2
3
B0(4l

2
k, 0,M

2
x)

−(2m2 + 1
2
M2)

∂

∂m2
B0(l

2
l , 0, m

2)− 2B0(l2l , 0, m2) +
2

3
B0(l

2
k,M

2
x , m

2)

+(
2

3
m2 +

4

3
M2x +

2

3
M2)

∂

∂m2
B0(l

2
k,M

2
x , m

2)
)
. (B.39)

B.3 Analytic expressions for scalar loop inte-

grals

A0(m
2) = m2

(
∆+ 1− log

(
m2
))
, (B.40)

B0(l
2
l , 0, m

2) = ∆−
(
log(l2k)− iπ +

m2

l2l
(log(m2/l2k) + iπ)

+
l2l −m2
l2l
(log

(
m2 − l2l
l2k

)
+ iπ))− 2

)
, (B.41)

B0(l
2
k, 0, m

2) = ∆−
(
log(l2k) +

m2

l2k
log(m2/l2k)

+
l2k −m2
l2k
(log

(
m2 − l2k
l2k

)
− iπ)− 2

)
, (B.42)
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B0(4l
2
k, 0,M

2
x) = ∆−

(
log(4l2k) +

M2x
4l2k
log(

M2x
l2k
)

+ (1− M2x
4l2k
)(log(1− M2x

4l2k
)− iπ)− 2

)
, (B.43)

B0(l
2
k,M

2
x , m

2) = ∆ + log(1− y1)(y1− 1) + log(1− y2)(y1− 2)
−y1 log(−y1)− y2 log(−y1)− log(l2k) + 2, (B.44)

C0(l
2
k, 4l

2
k, 0, m

2, 0) = log(1−m2/l2k)

 1
l2k
− 2

m2 + l2k

+ log(m2/l2k)
(
− 1
l2k
+

1

m2 + l2k

)
+

2

m2 + l2k
log(2)

+iπ(
1

l2k
+

1

m2 + l2k
)


, (B.45)

C0(l
2
k, 0, m

2, 0,M2x) =
4

M2(2 + 2x− y)



2 log 2− x log(x) + y/2 log(y/2)

−(1− x)(log(1− x)− iπ) + (2− y/2)(log(2− y/2)− iπ)

+
−1− x+ y
2

log(x)− 1− x+ y
2

log(y)

−2r

 arc tg

(
1− x+ y
2r

)
− arc tg

(−1− x+ y
2r

)



, (B.46)

C0(l
2
k, 4l

2
k, m

2, 0,M2x) =
−1− x+ y
2

log(x) +
3 + x− y
2

log(2 + 2x− y)

−2 + 2r1

 arc tg

(−1− x+ y
2r1

)
− arc tg

(
− 3 + x− y

2r1

)
,

(B.47)

where ∆ = 1
ǫ
− γE + log(4π), l2k =M2/4, x = 4m

2

M2
, y = 4m

2

M2x
and

y1,2 =
l2k +M

2
x −m2 ±

√
(l2k +M

2
x −m2)2 − 4M2x l2k

2l2k
, (B.48)
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r =
√
x− (1− y + x)2/4, (B.49)

r1 =
√
x− (1 + y − x)2/4. (B.50)
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Appendix C

Counter-terms and

renormalization constants for

virtual FSR corrections

The renormalization constants are extracted from the vertex correction and
self-energy correction to the pion line. The one particle irreducible amplitude
for the self-energy correction of the pion presented in he Fig. C.1 has the
following form:

A1PI =
α

4π3

∫
d4q

(P − q)2
(q2 −m2π)(q + P )2

, (C.1)

where P is a pion momentum and mπ is a pion mass. The integral, after
Passarino-Veltman reduction takes the following form:

A1PI =
α

4π


− A0(m2π) + 2B0(P 2, 0, m2π)

(
P 2 +m2π

)
, (C.2)

where A0 and B0 are scalar integrals defined according to the notation from
[109].
The counter-term amplitude to the pion propagator has the following

form:
APc = P 2δ4 − δm, (C.3)

where δ4 is the pion field renormalization constant and δm is the pion mass
renormalization constant.The on mass shell renormalization scheme is adopted.
The renormalization conditions for the renormalized one particle irreducible
amplitude Ā1PI = A1PI +APc have the following form:

Ā1PI |P 2=m2π = 0, (C.4)

dĀ1PI
dP 2
|P 2=m2π = 0. (C.5)
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self energy correction:

counter-term:

P P
q

q+P

P P

Figure C.1: Self energy correction to the pion line and propagator counter-
term.

From the above conditions one obtains the following expressions for renor-
malization constants δ4 and δm:

δm = m2πδ4 −
α

4π


A0(m2π)− 4m2πB0(m2π, 0, m2π)


, (C.6)

δ4 = −
α

π


m2π

dB0(P
2, 0, m2π)

dP 2
|P 2=m2π +

1

2
B0(m

2
π, 0, m

2
π).


. (C.7)

The pion-antipion-photon vertex corrections are represented by three dia-
grams from Fig. C.2. The amplitudes for this contributions have the following
form:

Av1µ =
iαe

4π3

∫
d4q
(2q − k + k′)µ(q + 2k)ν(q − 2k′)ν
q2[(q + k)2 −m2π][(q − k′)−m2π]

, (C.8)

Av2µ =
i2αe

4π3

∫
d4q

(q − k′)µ
[q2 −m2π][q + k′]2

, (C.9)

Av3µ =
i2αe

4π3

∫
d4q

(q − k)µ
[q2 −m2π][q + k]2

, (C.10)

Avµ = Av1µ +Av2µ +Av3µ, (C.11)

where k and k′ are momenta of the pion and antipion. The amplitude Av af-
ter Passarino-Veltman reduction and some simplifications take the following
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vertex corrections:

counter-term:

k

k′

q

k

k′

q

k

k′

q

k

k′

Figure C.2: Vertex corrections to the pion-antipion-photon interaction and
vertex counter-term.

form:

Avµ =
i4αe

π(4m2π − s)
kµ


− sB0(m2π, 0, m2π) + (2m2π − s)

(
− 2B0(s,m2πm2π)

+ (4m2π − s)C0(m2π, s,m2π, 0, m2π, m2π)
)
, (C.12)

where s = (k + k′)2, B0 and C0 are scalar integrals defined according to the
notation from [109]. The counter-term to the pion-antipion-photon vertex is
also presented in Fig. C.2. It has the following form:

Avcµ = ie
(
δA
2
+ δe + δ4

)
kµ, (C.13)

where δA is a renormalization constant of photon field and δ3 is the renor-
malization constant of the charge. The renormalization condition for the
renormalized vertex function Āv = Av +Avc has the following form:

Āv|s=0 = 0. (C.14)

The above condition leads to the following expression for the combination
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δA + 2δe, which enters the counter-term:

δA + 2δe =
α

π


B0(0, m2π, m

2
π)− C0(m2π, 0, m2π, 0, m2π, m2π) +B0(m2π, 0, m2π)

+2m2π
dB0(P

2, 0, m2π)

dk2
|k2=m2π


. (C.15)

The separate expressions for δA and δe are not needed since the only com-
bination of the renormalization constants, which is needed is the one given
by the equation above. To obtain expressions for δA and δe separately one
should include also the corrections to the self-energy of the photon, which is
not considered in this thesis.
The scalar loop integrals A0, B0 and C0, which are involved in the calcu-

lations of the renormalization constants have the following form:

A0(M
2) = M2


∆UV + 1− log


M

2

µ2




, (C.16)

B0(0,M
2,M2) = ∆UV − log


M

2

µ2


, (C.17)

B0(M
2, 0,M2) = ∆UV + 2− log


M

2

µ2


, (C.18)

C0(M
2, 0,M2, 0,M2,M2) =

1

2M2
(4π)ǫIR

ǫIRΓ(1− ǫIR)


 µ2

M2



ǫIR

, (C.19)

dB0(Q
2, 0,M2)

dQ2
= − 1

Q2


1 +

1

2

(4π)ǫIR

ǫIRΓ(1− ǫIR)


 µ

2

Q2



ǫIR



, (C.20)

where ∆UV =
1

ǫUV
− γE + log(4π).
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Appendix D

Experimental event selections

for the reaction e+e−→ π+π−γ

KLOE:

• √s = 1.02 GeV

• Pion tracks: 50o < θπ± < 130
o, |pzπ± | > 90 MeV

• Missing photon angle: | cos θγ | > cos 15o

• q2 ∈ (0.35, 0.95)

• Track mass: mtrk > 130 MeV.

mtrk =

√√√√ a2 − |~q1|2|~q2|2
2a+ |~q1|2 + |~q2|2

, (D.1)

a =
1

2

(
(|~q1 + ~q2| −

√
s)2 − |~q1|2 − |~q2|2

)
, (D.2)

where q1 and q2 are the pion and the antipion momenta.

BES:

• √s = 3.773 GeV

• Pion tracks: 22.9o < θπ± < 157.1
o, |pTπ± | > 300 MeV

• Minimal photon energy: Eγ > 400 MeV

• Missing photon angle: | cos θγ | < 0.8 or 0.86 < | cos θγ | < 0.92

• q2 ∈ (0.35, 0.95)
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BABAR:

• √s = 10.56 GeV

• Pion tracks: 20o < θπ± < 160
o, |pTπ± | > 300 MeV

• Minimal photon energy: Eγ > 3 GeV

• Missing photon angle: 20o < θγ < 160
o

• |q1| > 1 GeV (π−) and |q2| > 1 GeV (π+)

• q2 ∈ (0.35, 0.95)

116



Bibliography

[1] Georges Aad et al. Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC.
Phys. Lett., B716:1–29, 2012.

[2] S. Actis et al. Quest for precision in hadronic cross sections at low en-
ergy: Monte Carlo tools vs. experimental data. Eur. Phys. J., C66:585–
686, 2010.

[3] Alexander Keshavarzi, Daisuke Nomura, and Thomas Teubner. Muon
g − 2 and α(M2Z): a new data-based analysis. Phys. Rev.,
D97(11):114025, 2018.

[4] Michel Davier, Andreas Hoecker, Bogdan Malaescu, and Zhiqing
Zhang. Reevaluation of the hadronic vacuum polarisation contribu-
tions to the Standard Model predictions of the muon g-2 and alpha(mZ)
using newest hadronic cross-section data. 2017.

[5] Gilberto Colangelo, Martin Hoferichter, Bastian Kubis, Massimiliano
Procura, and Peter Stoffer. Towards a data-driven analysis of hadronic
light-by-light scattering. Phys. Lett., B738:6–12, 2014.

[6] Randolf Pohl, Ronald Gilman, Gerald A. Miller, and Krzysztof
Pachucki. Muonic hydrogen and the proton radius puzzle. Ann. Rev.
Nucl. Part. Sci., 63:175–204, 2013.

[7] Henryk Czy, Johann H. Khn, and Szymon Tracz. Nucleon form fac-
tors and final state radiative corrections to e+e− → pp̄. Phys. Rev.,
D90(11):114021, 2014.

[8] Szymon Tracz and Henryk Czyż. χc1 and χc2 Production in e
+e− An-

nihilation. Acta Phys. Polon., B46(11):2273, 2015.

[9] Henryk Czyz, Johann H. Khn, and Szymon Tracz. χc1 and χc2 produc-
tion at e+e− colliders. Phys. Rev., D94(3):034033, 2016.

117



[10] Henryk Czyż, P. Kisza, and S. Tracz. Two-photon Transition Form
Factors of Pseudoscalar Mesons in the PHOKHARA and the EKHARA
Generators. Acta Phys. Polon., B48:2197, 2017.

[11] Henryk Czy, Patrycja Kisza, and Szymon Tracz. Modeling interac-
tions of photons with pseudoscalar and vector mesons. Phys. Rev.,
D97(1):016006, 2018.

[12] F. Campanario, H. Czyż, J. Gluza, T Jeliński, G. Rodrigo, S. Tracz,
and D. Zhuridov. Complete NLO radiative corrections to the reaction
e+e− → π+π−γ and their implementation in the Monte Carlo event
generator PHOKHARA(in preparation).

[13] Henryk Czyż, Patrycja Kisza, and Szymon Tracz. Monte Carlo gen-
erators for hadron physics: updates on PHOKHARA and EKHARA
generators. EPJ Web Conf., 142:01010, 2017.

[14] M. N. Rosenbluth. High Energy Elastic Scattering of Electrons on
Protons. Phys. Rev., 79:615–619, 1950.

[15] A. I. Akhiezer and Mikhail.P. Rekalo. Polarization phenomena in elec-
tron scattering by protons in the high energy region. Sov. Phys. Dokl.,
13:572, 1968. [Dokl. Akad. Nauk Ser. Fiz.180,1081(1968)].

[16] Norman Dombey. Scattering of polarized leptons at high energy. Rev.
Mod. Phys., 41:236–246, 1969.

[17] J. Arrington. How well do we know the electromagnetic form-factors
of the proton? Phys. Rev., C68:034325, 2003.

[18] Carl E. Carlson and Marc Vanderhaeghen. Two-Photon Physics in
Hadronic Processes. Ann. Rev. Nucl. Part. Sci., 57:171–204, 2007.

[19] M. Vanderhaeghen. Two-photon physics. Few Body Syst., 41:103–115,
2007.

[20] Marc Vanderhaeghen. Overview of nucleon structure studies. Nucl.
Phys., A805:210–220, 2008.

[21] J. P. Lees et al. Study of e+e− → pp̄ via initial-state radiation at
BABAR. Phys. Rev., D87(9):092005, 2013.

[22] Szymon Tracz and Henryk Czyż. FSR Corrections to the Process
e+e− → p̄pγ. Acta Phys. Polon., B44(11):2281–2287, 2013.

118



[23] G. Peter Lepage and Stanley J. Brodsky. Exclusive Processes in Per-
turbative Quantum Chromodynamics. Phys. Rev., D22:2157, 1980.

[24] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev.,
D86:010001, 2012.

[25] Henryk Czyż, Agnieszka Grzelinska, and Johann H. Kühn. Narrow
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