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A NOTE ON BROWKIN'S AND CAOS CANCELLATION ALGORITHM

UWAGI O ALGORYTMIE SITOWYM BROWKINA 1 CAO

Abstract

In this paper, we follow our generalisation of the cancellation algorithm described in our previous paper
[A. Tomski, M. Zakarczemny, On some cancellation algorithms, NNTDM. 23,2017, p. 101-114]. For f
being a natural-valued function defined on N*, s >1we remove the divisors of all possible values of fin the
points in which the sum of coordinates is less than or equal to n. The least non-cancelled number is called
the discriminator Df(n) We find formulas, or at least an estimation for this discriminator, in the case of
abroad class of sequences.

Keywords: discriminator, sequence, congruence, odious numbers, Thue-Morse sequence

Streszczenie

Kontynuujemy badania nad generalizacja algorytmu sitowego Browkinai Cao, [A. Tomski, M. Zakarczemny,
On some cancellation algorithms, NNTDM. 23,2017, p. 101-114]. Niech f bedzie funkeja o wartosciach
w zbiorze liczb naturalnych, okreslona na N*,s>1 Usuwamy dzielniki wszystkich mozliwych wartosci
funkeji f; w punktach, w ktérych suma wspolrzednych nie przekracza n. Najmniejsza niewykreslona
liczbe naturalna nazywamy dyskryminatorem Df(n). W artykule uogélniamy pojecie dyskryminatora.
Znajdujemy jawne wzory lub oszacowania na dyskryminator dla szerokiej klasy ciagow.

Stowa kluczowe: dyskryminator, ciag, kongruencja, liczby wstretne, ciag Thue-Morse’a




1. Introduction

Let
D, (n):=min{meN:g(1),g(2),.., g(n) are different modulo m} (1)

for some special injective function g:N—N.

The problem is to find D (n) for an at least sufficiently large ne N.

We call D (n) the dlscrlmmator of the function g as it gives the least modulus which
discriminates the exact value of g ie. the n numbers g(1), g(2), ..., g(n) are pairwise
incongruent modulo Dg( n).

This idea was first introduced in [1] in the case of g(n) = n* and through the years has
remained an object of interest for many number theorists. The authors of [2] solved the
problem for g(n) = W where j€N and nis sufficiently large. In [S], the Dickson discriminator
problem was considered - this is to find Dg(n) for a Dickson polynomial of degree j > 1,
which is defined by the following formula:

[j/2] j -
g(x)= z [ j (—a)'a™,

for some integer number a. Afterwards, [6] and [13] provided an asymptotic characterisation
ofD (n) for some special g €Z[x]including cyclic polynomials. In turn, Zhi-Wei Sun found
such examples of g that for any #, the value of D (n) is a prime.

Example 1.1. Let g(n) =n - (-1)"where g:N— N. Then D ()= 2|:n+1},n22.
2

Proof. By straightforward verification, we get Dg(Z) =2and Dg(3) =4,

Let us assume thatn > 3.

If2m < n, then g(2m + 1) =g(1) (mod 2m) and both 1,2m + 1€{1,2, ..., n},
so2m=#=D (n) If2m+ 1 < n,theng(2m + 1) =g(2) (mod 2m + 1) and both
22m+1e{12 ,n},soZm+1¢D(n) Hence,

b n,if niseven,
>
g(n)_ n+1,if nis odd.

‘We have two cases.
L nisodd. Ifthere existn,n, € {1,2, ..., n}, n <n, such that

g(n,)=g(n,) (modn+1),then g(n,) =g(n,) (mod2),n,=n (mod2),

thus, g(n,) - g(n,) = n_ - n. Therefore n+1|n, —n,, which is not possible.
We have shown that g(1), g(2), ..., g(n) are different modulo n + 1.
Thus, Dg(n) < n+ 1 and in this case, we have Dg(n) =n+1.



II. n is even. Analogically, if there exist n, n, € {1, 2, ..., n}, n, < n, such that
g(n,) =g(n,) (modn), then n|n2 —n, and we obtain contradiction again.

We have shown that g(1), g(2), ..., g(n) are different modulo .

Thus, Dg(n) < n, so in this case, we have Dg(n) =n.

+1
To summarise, we obtain: D (n)= Z[n—}
2

Browkin and Cao [3] reformulated the problem (1) in terms of the following cancellation
algorithm. For n > 2 define the set:

Ag(n)::{g(s)—g(r):lﬁr<sSn}z{g(k+l)—g(l):k+l$n; k,leN}. (2)

Cancel in N all numbers from the set:

{deN:d|aforsomeaeAg(n)},

we are then interested in finding the least non-cancelled number.
To generalize, let f:N™ — N,m>1be an arbitrary function and define the sets:

V,(n)={f(n,ny,n,):n +n,---+n, <n}, (3)
Af(n)={deN:d‘aforsomeaer(n)}. (4)

Definition 1.1. We define bf(n) as the least number in the set N\A, (n) being called
the set of all non-cancelled numbers.
Remark. We would like to stress that for any n €N, the definitions of Dg(n) and b f(n) are

not equivalent. To be precise, if g:N— N is an injective function, to find Dg(n) is the same
task as to find bf(n) with f(n,n,) = g(n, +n,) — g(n ), see [3].

However, the question is whether, for some given function f having fixed number of
variables, there is any injective function g, such that f(n, n,) = g(n, +n,) — g(n).

In this case, we have bf(n) = Dg(n).

Note that the sets of the divisors for both of the values

g(n, +n,) —g(n) and |g(n, +n,)—g(n,)| are the same.
Therefore, if for some n,,n, €N, g(n, +n,)—g(n,) <0,
we can then take f(n,,n,)=|g(n, +n,)—g(n,)|.

For example, in the case g(n) = n - (~1)", we take
)=y =y + (1) (1)

instead of n, —n, +(—1)" —(-1)".

The following table shows the connections between these two concepts.
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Table 1. Examples showing that bf(n) generalises Dg(n)

b, (n) with function f Dg(n) with function g
f("u”z):(nl_""z)z_nlz g(r):rz
f("u”z):(”1+"z)k_”f g(r)=rk,k€N

flnymy)=k""" —k™ g(r)=k,keN

f(”l!”z): ny—n, +(_1)n2 _(_1)"1 g(V) =r- (_l)r
fln) =n* -

flnn,)=n’+n} -

Flny,ny,ny)=nd+n) +n; _

ftnyny, ..yn)=n ..n,seN -

fln,n,)=o0d(n +n)-od(n,) g(r) =od(r)

Browkin and Cao considered standard linear and quadratic functions.

Tomski and Zakarczemny [11] and Zakarczemny [12] investigated the problem mainly
in the case of various quadratic and cubic polynomials and also in the case of the products
of some linear functions. Now, we provide the formula for b (n) for new classes of functions.

Haque and Shallit found Dg(n) for so-called ‘evil’ or ‘odious’ numbers (see [14]);
additionally, they counted the number of finite n-sequences which are their own discriminators.

2. f(a) =a!
Theorem. Let f:N—N, f(a)=a!., We have b(3) = 4 and:

bf(n) = min{p:p > n, p is a prime number} if n = 3. (5)

Proof. By straightforward verification, we may assume that n > 9. Let g, p be consecutive
prime numbers such that g < n < p. By Bertrand’s postulate, we have 2q > p.

We note that pjn!, hence p is not cancelled.

It is sufficient t6 show that any natural m < p is cancelled. All the numbers 1,2, ..., n are
cancelled. If we take any n < m < p, then m is a composite number.

Let m = kl, where k, | > 1. We investigate two special cases:

I. Letk=1Iandkbe a prime number, sop > k*>>n>9,s0 k> 5. We have:

1 1
2k<=k*<=p<g<n. (6)
AL

As k < 2k < n, we get that 2k” |n!, s0 m|n! and m is cancelled.



II. Inany other case, we may assume that m = kI, k > 1> 1. We have:
>q>—p>kizk (7)
n —p>—ki>k.
1 2 b 2

As < k < nwe obtain kl|n!, ) m|n! and m is cancelled.

3. f(a) =a!
Theorem. Let f:N—N, f(a)=a!l. We have bf(7) = bf(8) =9and:

by (n)=min{m:m>n,m=porm=2p, pisa prime number} (8)
ifn#7,.8.
Proof. By straightforward verification, we may assume that n > 25. Let:

T={m:m=porm=2p,pisaprime number} (9)
Let (,),_, be an increasing sequence of elements of T. There exists i € N such that:
t_ <n<t,. (10)
For i > 1, the following inequality holds:
t <2t . (11)

Equation (11) follows from Bertrand’s postulate, which states that for every x > 1 every
interval (x, 2x) contains at least one prime number. We may assume that t>26.

It is sufficient to show that any natural number m < ¢ is cancelled.

Let us observe that m|m!!, so all the numbers m < n are cancelled.

If we take any m such that n < m <t , thenm € (tH, ti), som ¢ T and m is a composite
number. Let m = kI, where k, [ > 1. We investigate two special cases:

L. Letk=Iland kbe a prime number, so t. > k* > n>25, so k > 7. We have:

1, 1
3k<—k*<—t,<t,_, <n. (12)
2 2

As k < 3k < n, we obtain 3k* |n!! if nis odd or 3k’ |(n—1)!! if nis even.

Therefore, m

n!! or m|(n—l)!! and m is cancelled.

II. Inany other case, we may assume that m = kl, k> [> 1.
We have the following cases:
a) Ifmisoddor 4|m , then we can assume that k=] (mod2). Thus, we have:

1
n>t  >ie s ik (13)
2 2

Asl< k< n,we obtain kl|n!! if k=I=n(mod 2) or kl|(n—1)!! if k=I=n—1(mod 2).
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Therefore m|n!! or m|(n—1)!! and m is cancelled.
(b) Ifm=2handhis odd, then his not a prime since m ¢ T. Thus, h=ab,a>b>3.
We can take k = 2a and [ = b. For [ > 5, we have:

1 1
n>t_ >—t >=kl>k. (14)
2 2

As 2] < 2k < n, we obtain 4kl|n!!if n is even or 4kl|(n—1)!! if nis odd.
For [ = 3, we have:

1 1
n>t_ >—t,>=kl>k. (15)
2 2

Since 3k = kI > n > 25, we may assume that k > 6. As 6 < k < n, we get that 6k|n!! if nis
even or 6k|(n —1)!!if nis odd. Therefore, in both cases m|n!! or m|(n —1)!" and mis cancelled.

To sum up, any n < m < t is cancelled, so bf(n) =t forn>28.

4. f(a) = a2°
Theorem 4.1. Let f:N— N, we take the function f(a) = a2,
Then
n+1 .
bf(n)=2{T}+1=mm{meN:m>n,(m,2):1}. (16)

Proof. Let ke Nandne{2k—1,2k}. If (2k+1)|f(a),then (2k+1)|a,
so n+1<2k+1<a,thusa>nand 2k+1is not cancelled. Therefore,

b, (n)<2k+1. (17)

If 1<h<n,then h|f(h), h<n, so his cancelled and bf (n)=n+1.
We consider two cases:

1) Ifn=2k,thenbf(n)=n+1=2[n7+1}+l.

2) If n=2k-1,thenb;(n)e{n+1,n+2}.Ifh=n+1then

h=2k,h‘f(k),k=%h=%(n+1)£n, so his cancelled and
n+1

b.(n)=n+2=2| — |+1.

(n)=ns2=2) 2

We generalise this theorem to the following form.



Theorem 4.2. Let f:N— Nand we fix be N. We take the function f(a) = ab".
Then:
b;(n)=min{meN:m>n,(m,b)=1}, (18)
ifn>b.
Proof. Let my =min{meN:m>n,(m,b)=1}.

If m, ‘f(a), thenm,

a,son+1<m, <a,thusa>nand m_ is not cancelled.

Therefore, bf(n) <m,

Let assume that n > b. From Bertrand’s postulate, it follows that we can find a prime
number p such that n < p < 2n. Because p > b and p is a prime number, we obtain (p, b) = 1, so
m, <p < 2n. Thus, m < 2n-1.

If 1 <h <n,then h|f(h),h£n, so h is cancelled.

Ifn+1<h<m,then (hb)=d>1.

Let h = dl, where [ > 1, then h f(l),lzédlﬁ%dlz%hﬁ%(mo +1)<n, so h is cancelled
and bf(n) > m,. Therefore, bf(n) =m,

Remark 4.3.

Let f:N— Nand for all natural n we have f(n) eN, then bf(n) > 1.
n

Indeed, if 1 <k <n, then h|f(h), h<n, so his cancelled. Therefore, bf(n) > 1.

S.fln,n,.,n)=nn-..n,s>2

Let {p, },-, be an increasing sequence of the prime numbers.
Our aim in this chapteris to find an algorithm which gives only prime numbers.

Theorem 5.1.Let f:N*'—>N,s>2, f(n,,n,,..,n)=nn,-....n.. We have:

by(1)=1,b,(2)=1,..,b;(s=1)=1,b,(s) =2 (19)

and if n > s, then bf(n) =p,, where t > 1 is chosen in such a way that p, | <n—s+1<p,.

Proof. By a straightforward verification, we get (19).

Let n>s. We assume that p, | <n—s+1<p,,t>1.

We have to prove that p, is non-cancelled, but any natural number & < p, is cancelled.

First, let p, |n1n2 ~...n for some n,,n,,..,n, € N. Thus, there exists a natural j <, such that
p,|n; . Since 1,1y ,.yn, Z1and 2 p,, ny+n, +--++n 2 p, +s—1>n. Therefore, a numberp,
is non-cancelled.
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We now assume that & < p,. To show that  is cancelled, we need to consider two cases
separately.
a) Ifh = P where jeNand j<t-1,
then we take n, =p;,n, =1,..,n =1and geth|n1n2 el
with n, +n, +---+n, :s—1+pj <s—1+p, , <n. Thus, his cancelled.

b) Ifh=klwhere k,I>1, k,leN,wehave(k—2)(l—2)20.Thus,k+l£%kl+2.
We take n, =k,n, =I,n, =1,..,n, =1land gethjnn, -... n,.

From Bertrand’s postulate, we have p, <2p, | fort >1. Therefore,
1 1
ny+ny +-4n, =k+l+s—2£zkl+szzh+sﬁ

1 1
E(pt _1)+5:z(pt +1)+5—1£pt_1+5—1Sn.

Thus, h is cancelled.

To summarise, we have shown that every h < p_is cancelled and this is the end of the
proof.

Remark §.2. The set {bf (n):n>s—1,ne N} is the set of all prime numbers.

6.f(n,n,) =od(n +n,) - od(n, ), where od(n) denotes n-th odious number

The ‘odious’ numbers are the numbers (od(n)), ., from the sequence AO00069 in [14],

1,2,4,7,8, 11,13, 14, 16, 19,21, 22, 25, 26, 28...

and this sequence contains consecutive natural numbers with an odd number of digit ‘1’ in
their binary representation.

Remark 6.1. Note that f(1,n)=f, =od(n+1) — od(n) gives the Thue-Morse ternary
sequence: 1,2,3,1,3,2,1,2,3,2,1,3,1,2,3,1, ...
The idea behind the construction of this sequence is based on the following recursive
definition ([14]):
1. Startwithf =1,f =2.
2. For any keN, we will give a procedure describing how to construct the values
fyoyre fyen tarting from the values f,, ..., f,::
a) Write: f, fyyon fy 4= fis 4= for 4= fyr.
b) Transform the value of 4 — f,: according to the rule:
replace 3 with 2, replace 2 with 1, leave 1 unchanged.
c) After transformation, we get the sequence f;, ..., fz" , f2k+1,..., fzk“'



Theorem 6.2. Let f:N> — N, we take the function f(n,,n,)=0d(n, +n,)—od(n,).
Then
by (n)=min{2°:2° >n}. (20)
Proof. We have:
Vf(n)z{od(nl+n2)—0d(n1):n1+n2Sn}z (21)
={od(r)—od(s):1<s<r<n}.

By definition, b (n) is the least natural number m in the set
N\{deN:d|a forsome aeV,(n)}. Thus,b(n) istheleast natural number m that discriminates

the numbers 0d(1), 0d(2), .., od(n). Taking into account the differences in the definitions of
discriminator Dg(n)and bf(n), we obtain (20) from Theorem 5 [4].

3 -3 S [(-)n —(-1) ]

7. f("u"z):i

Remark 7.1. The sequence u(r) ::i(s’ —5(—1)") was first investigated by Sabin Siljan
[15]. Note that f(nl,n2)=|u5 (n, +n2)—u5(n1)|.
Theorem 7.2. Let f:N* — N, we take the function:

3 =3 =S = (=) ], (22)

1
f(”u”z)zz
Then

bf(n)zmin{Ze,Sf :2°>n,5 Zin}. (23)

Proof. Note that this theorem is an obvious corollary from Browkin’s Conjecture,
confirmed by Ciolan and Moree Theorem 2 in [15]. We have:

ol

{Jug (r)—ug(s)|:1<s<r<n}.

3nth _3h —5':(—1)"‘”2 —(=1)" ]‘ ny +n, Sn}: (24)

By definition, b (n) is the least natural number m in the set
N\{deN:d|a for some aeV (n)}. Therefore, b(n) is the least natural number that
discriminates the numbers u5(1 , uS(Z), - us(n). We obtain (22) from Theorem 1 [15].

161 i'(
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8. f(nly nz)zznﬁnz -2,

In most cases, one can find a discriminator for some special types of functions. There is
still lack of an algorithm for any larger class of mappings, for example, all polynomials or all
exponential functions. However, now we will describe a simple, general idea of how to find at
least an estimation for the discriminator. More accurately, if for any ne N we find the set Z_
such that by (n)¢Z,, then we have the lower bound of bf(n) in the form:

b;(n)=min{m:meZ,,meN}.
Obviously, Z,=N\{b, (n)} satisfies the condition b (n)gZ,, but the aim is use
properties of fto find Z, = N\{b(n)} such that
min{m:meZn,meN}zmin{m:meN\{bf(n)},meN}zbf(n).
Below, we will follow this line of reasoning for the function
f(ny,n,)= 2" =M,
We recall that ¢(n) = |{m eN:m<n,(m,n)= 1}|

Theorem 8.1. Let f:N* — N, we take the function:

f("1:”2):2n1+n2 —2". (25)
Then:
bf(n)Zmin{m:(p(m)Zn,meN},fornZZ. (26)

Proof. We assume that n > 2. Let Z :={m:p(m)<n—1,meN}.

Since {1,2,..,n}cZ,,then Z #0. We will show thatifm € Z , then m is cancelled. Let
m=2'm , where m_ isan odd number, s> 0.

We take n, =max{s,1}and n, =¢@(m, ), then

ny +n, =max{s, 1} +@(m, ) <0(2°) +o(m,) < (2° )p(m, ) +1=(m) +1<n.
Thus, 2" —2" e V(). Note that me A (n).Indeed, by Euler’s theorem:

pntm _pm = pflmrmatel) _pmatoly _pmadslh50tm) _1)= 0 (mod m),some N\ Ay (n).
Thus, m is cancelled. Therefore, b (n) ¢ Z, and (p(bf (n)) >n, which implies (25).

Comment. Now we are going to prove the theorem which allows us to rewrite (25) in
a simpler form. However, the proof depends on some conjecture still waiting to be proved.



Remark. We will recall Sierpinski’s conjecture, which states that for every integer

x > 1 there is at least one prime number in (x* — x, %), see [9]. However, many similar-
sounding conjectures have appeared over the years. Oppermann [19] stated the conjecture
that for every natural x > 1, the interval (x? — 2x + 1, x*) contains a prime. Cramer [21] stated
the conjecture that for every n-th prime number p ,wehave p,,, —p, =0((log p,)*). Baker,
Harman and Pintz proved that for sufficiently large real number x, there is at least one prime
number in [x — x*%%, x], see [ 18]. For a brief review of other theorems and conjectures about
p,., - P, we refer the reader to paper [16].

Conjecture 8.2.
min{m:@(m)>n,meN}=min{p: p>n, pisa prime number}. (27)
Theorem. If Sierpiniski’s conjecture is true, then (27) is also true.
Proof. First, we will prove an inequality without using any conjecture.
min{m:@(m)>n,meN}<min{p: p>n, pisa prime number}. (28)
If p is a prime number such that p > n, then ¢(p) =p - 12 n.
Let k=min{p: p>n, pisa prime number}.
Hence, ¢(k)>n,soke{m:@(m)>n,meN}and
min{p: p>n, pisaprime number}>min{m:@(m)>n,meN}.
Secondly, we will prove the opposite inequality using Sierpinski’s conjecture.
min{m:@(m)>n,meN}>min{p: p>n,pisa prime number}.
We start this proof using the fact that for every composite number m, we have (see [8]):
o(m)<m—-Jm. (29)

Suppose that m; =min{m:@(m)>n,me N} is a composite number.
If Sierpinski’s conjecture is true, then there exists prime number p such that

n<@(my)<my—\/m, <p<m,.

Therefore, by (28) we get p>min{m:@(m)>n,me N} =m,,whichleads to the contrary.
It means that m is a prime, so m, >min{p: p >n, pisa prime number}.

9. The Fibonacci numbers F,
Theorem 9.1. For the Fibonacci numbers F , we take a function F: N — N such that F(a) =F .

Then b, (6n)>n+1,if nis a natural number.
Proof. We have V(n)={F,:a<n}and A,(n)={d € N:d|a for some aeV,(n)}.
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It has been proven (see [17]) that for any natural number m the sequence (F, modm);”,
is periodic with its length being not greater than 6m. Thus, for every natural number k > 1
there exists a natural number i < 6k such that k|E . Therefore:

keA,(6k), (30)
Thus:

{1,2,..,n}c A (6n). (31)

However, by the definition b, (6n)& A, (6n). Thus, b, (6n)>n+1.

10. b(n) = f(n) + 1 for surjective, non-decreasing natural-valued arithmetic f

Theorem 10.1. Let f:N—N, such that fis a surjective, non-decreasing function.
Then, forall ne N we have b, (n)=f(n)+1.

Proof. We will prove that V; (n)= A (m)={f(1),.., f(n)}, b, (n)=f(n)+1.

We proceed by induction on n. Observe that when n = 1, we have
f(l)zlrvf(l)zAf(l):{1}:bf(1)=2~

Assume that the proposition holds for n — 1, where n > 2, i.e.

V,(1-1)= A (n=1) ={ V), (=1} b, (1=1) = f(n—1)+1.

If f(n)=f(n—1),thenV,(n)=V,(n-1)=A (n=1)=A(n),b;(n)=b;(n-1)=
f(n=1D+1=f(n)+1

If f(n)=f(n=1)+1,then V, (n) =V, (n=1) UL f(n)} = {f 1), f(n—D), ()},

Ay (m)=A,(n=1)U{deN:d|f(n)} ={f(1), ... f(n-1), f(n)}.
andb(n)= f(n)+1.

Thus, the proposition holds for # and this completes the proof.

We would like to thank the referee for providing useful comments which serve to improve the paper, especially Theorem 9.1.
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