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This article presents results for the last unknown two-loop contributions to the Z-boson partial widths 
and Z-peak cross-section. These are the so-called bosonic electroweak two-loop corrections, where 
“bosonic” refers to diagrams without closed fermion loops. Together with the corresponding results 
for the Z-pole asymmetries Al, Ab , which have been presented earlier, this completes the theoretical 
description of Z-boson precision observables at full two-loop precision within the Standard Model. The 
calculation has been achieved through a combination of different methods: (a) numerical integration 
of Mellin–Barnes representations with contour rotations and contour shifts to improve convergence; 
(b) sector decomposition with numerical integration over Feynman parameters; (c) dispersion relations 
for sub-loop insertions. Numerical results are presented in the form of simple parameterization formulae 
for the total width, �Z, partial decay widths �e,μ, �τ , �ν, �u, �c, �d,s, �b , branching ratios Rl, Rc, Rb and 
the hadronic peak cross-section, σ 0

had. Theoretical intrinsic uncertainties from missing higher orders are 
also discussed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The number of Z bosons collected at LEP in the 1990s, 
1.7 × 107, together with SLD data made it possible to deter-
mine electroweak pseudo-observables (EWPOs) with high preci-
sion: the Z -boson mass MZ, its decay width �Z, branching ratios 
R , forward–backward and left-right asymmetries (or equivalently 
A f or sin2 θ f

eff) [1]. At that time, theoretical calculations, which 
included complete one-loop Standard Model corrections, selected 
higher order QCD corrections, and partial electroweak two-loop 
results with intricate QED resummations, were accurate enough 
to go hand-in-hand with experimental demands [2,3]. However, 
up to 5 × 1012 Z -boson decays are planned to be observed at 
projected future e+e− machines (ILC, FCC-ee, CEPC) running at 
the Z -boson resonance [4–7]. These statistics are several orders of 
magnitude larger than at LEP and would lead to very accurate ex-
perimental measurements of EWPOs. Limitations will come from 
experimental systematics, but they are in many cases estimated to 
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be improved by more than an order of magnitude compared to the 
LEP experiments [4–7]. This raises a new situation and theoretical 
calculations must be much more precise than assumed before [8,
9]. The improved precision will provide a platform for deep tests 
of the quantum structure of nature and unprecedented sensitivity 
to heavy or super-weakly coupled new physics.

As an important step towards that goal, this article reports on 
the completion of the two-loop corrections to Z -pole observables 
in the Glashow–Weinberg–Salam gauge theory, known as the Stan-
dard Model (SM) [10–12]. This work extends and complements 
previous results for the full electroweak two-loop contributions to 
the leptonic [13–15] and b-quark [16] effective weak mixing an-
gles.

The first non-trivial study of electroweak (EW) loop effects was 
the calculation of the large quadratic top quark mass contribution 
to the Z and W propagators at one-loop order [17]. A few years 
later, the on-shell renormalization scheme as it is used today [18]
and the notion of effective weak mixing angles [19] were intro-
duced, and the scheme was used for calculations of the W ± and 
Z boson masses [20]. The complete one-loop corrections to the Z
decay parameters were derived in Refs. [21–24], and those to the 
W ± width in Refs. [23,25,26]. Through the years of LEP and SLC 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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studies, the effects of EW quantum corrections became visible in 
global fits of the SM parameters [1–3,27]. Global fits to EW preci-
sion measurements allowed to predict the mass of the top quark 
and the Higgs boson prior to their discoveries at Tevatron in 1995 
[28,29] and at the LHC in 2012 [30].

At future e+e− colliders, EWPOs will again play a crucial role. 
These include the total and partial widths of the Z boson and the 
Z -boson couplings. The latter can be extracted from measurements 
of the cross-section and polarization and angular asymmetries of 
the processes e+e− → (Z) → f f̄ . Here f stands for any SM lepton 
or quark, except the top quark, whereas the notation (Z) is sup-
posed to indicate that the amplitude is dominated by the s-channel 
Z -boson resonance, but there is contamination from photon and 
two-boson backgrounds.

Already for the precision achieved at LEP and SLC, the calcula-
tion of loop corrections beyond the one-loop order was necessary 
to keep theory uncertainties under control. Specifically, these in-
cluded two-loop O(ααs) [31–35] and fermionic O(α2) [36–50]
corrections to the Fermi constant, which can be used to predict 
the W -boson mass, and to the Z -pole parameters. Here α refers 
to an electroweak loop order, whereas “fermionic” denotes contri-
butions from diagrams with at least one closed fermion loop. In 
addition, leading three- and four-loop results, enhanced by powers 
of the top Yukawa coupling yt, were obtained at order O(αtα

2
s )

[51,52], O(α2
t αs), O(α3

t ) [53,54], and O(αtα
3
s ) [55–57], where 

αt = y2
t /(4π).

For the EW two-loop corrections, the calculation of the fermi-
onic contributions was a natural first step, since these are nu-
merically enhanced by the numbers of flavors and colors and by 
powers of yt. Moreover, the fermionic two-loop diagrams are rel-
atively simpler than the full set. For example, the latter includes 
non-planar vertex topologies, which are absent in the former. The 
remaining bosonic two-loop corrections to the Fermi constant and 
the leptonic effective weak mixing angle, sin2 θ	

eff, have subse-
quently been presented in Refs. [13–15,58–61], and more recently 
also for the weak mixing angle in the bb̄ channel [16].

While the numerical effects of the bosonic two-loop corrections 
are relatively small compared to the current experimental preci-
sion from LEP and SLC, their inclusion will become mandatory 
for future e+e− colliders. Thus the computation of the full two-
loop corrections for all Z -pole EWPOs is an important goal. This 
article completes this goal by presenting the remaining bosonic 
O(α2) contributions to the Z -boson total and partial widths, and 
the hadronic Z -peak cross-section within the SM. This has been 
achieved by using the numerical integration methods discussed in 
Ref. [16], with some technical improvements.

The paper is organized as follows. After a brief review of the 
field theoretic definition of the relevant observables in section 2, 
the technical aspects of the two-loop calculation are described in 
section 3. The numerical impact of the bosonic EW two-loop cor-
rections is demonstrated in section 4. In particular, results for the 
total and partial Z widths, several commonly used branching ra-
tios, and the hadronic Z -peak cross-section are given in terms of 
simple parameterization formulae, which provide an accurate de-
scription of the full results within the currently allowed ranges of 
the input parameters. Finally, the theory uncertainty from missing 
three- and four-loop contributions is estimated in section 5, before 
concluding in section 6.

2. Definition of the observables

The amplitude for e+e− → f f̄ near the Z pole, 
√

s ≈ MZ, 
can be written in a theoretically well-defined way as a Lau-

rent expansion around the complex pole s0 ≡ MZ
2 − iMZ�Z (see 

Refs. [62–65]),
A[e+e− → f f̄ ] = R

s − s0
+ S + (s − s0)S ′ + . . . , (1)

where MZ and �Z are the on-shell mass and width of the Z boson, 
respectively. According to eq. (1), the approximate line shape of 
the cross-section near the Z pole is given by σ ∝ [(s − MZ

2
)2 +

MZ
2
�Z

2]−1. It is important to note that this differs from the line 
shape ansatz used in experimental analyses, which for historical 
reasons is of the form σ ∝ [(s − MZ

2)2 + s2�Z
2/MZ

2]−1. As a result, 
the parameters in eq. (1) differ from the experimental mass MZ

and width �Z from LEP by a fixed factor [66]:

MZ = MZ
/√

1 + �2
Z/MZ

2 ,

�Z = �Z
/√

1 + �2
Z/MZ

2 . (2)

Numerically, this leads to MZ ≈ MZ − 34 MeV and �Z ≈ �Z −
0.9 MeV.

The total width, �Z, can be extracted from the condition that 
the Z propagator has a pole at s = s0, leading to

�Z = 1

MZ
Im 
Z(s0), (3)

where 
Z(s) is the transverse part of the Z self-energy. Using the 
optical theorem, it can also be written as [49,50]

�Z =
∑

f

� f , (4)

� f = N f
c MZ

12π

[
R f

V F f
V +R f

A F f
A

]
s=MZ

2 . (5)

Here the sum runs over all fermion types besides the top quark, 
f = e, μ, τ , νe, νμ, ντ , u, d, c, s, b, and N f

c = 3(1) for quarks (lep-
tons). The radiator functions RV,A capture the effect of final-state 
QED and QCD corrections. They are known up to O(α4

s ) and 
O(α2) for massless external fermions and O(α3

s ) for the kine-
matic mass corrections [67–69]. For the results shown in this arti-
cle, the explicit form given in the appendix of Ref. [50] has been 
used.

The remaining radiative corrections are IR finite and contained 
in the form factors F f

V,A. These include massive EW corrections 
as well as mixed EW–QCD and EW–QED corrections. The bosonic 
two-loop contributions, which are of interest for this article, con-
tribute according to [50]:

F f
V(2) = 2 Re (v f (0)v f (2)) + |v f (1)|2

− v2
f (0)

[
Re 
′

Z(2) − (Re
′
Z(1))

2]
− 2 Re (v f (0)v f (1)) Re
′

Z(1) , (6)

F f
A(2) = 2 Re (a f (0)a f (2)) + |a f (1)|2

− a2
f (0)

[
Re 
′

Z(2) − (Re 
′
Z(1))

2]
− 2 Re (a f (0)a f (1)) Re 
′

Z(1) , (7)

where v f and a f are the effective vector and axial-vector cou-
plings, respectively, which include Z f f̄ vertex corrections and Z –γ
mixing contributions. 
′

Z denotes the derivative of 
Z, and the 
loop order is indicated by the subscript (n).

It should be pointed out that v f , a f and 
Z as defined above 
include γ –Z mixing contributions, i.e.
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v f (s) = vZ
f (s) − vγ

f (s)

γ Z(s)

s + 
γγ (s)
, (8)

a f (s) = aZ
f (s) − aγ

f (s)

γ Z(s)

s + 
γγ (s)
, (9)


Z(s) = 
ZZ(s) − [
γ Z(s)]2

s + 
γγ (s)
. (10)

Here vZ
f and aZ

f are the one-particle irreducible Z f f̄ vector- and 
axial-vector vertex contributions, respectively, whereas vγ

f and aγ
f

are their counterpart for the γ f f̄ vertex. Furthermore, 
V 1 V 2 de-
notes the one-particle irreducible V 1–V 2 self-energy.

Another important quantity is the hadronic peak cross section, 
σ 0

had, which is defined as the total cross section for e+e− → (Z) →
hadrons for s = MZ

2, after removal of s-channel photon exchange 
and box diagram contributions, as well as after the de-convolution 
of initial-state and initial-final interference QED effects [1,2]. The 
impact of the bosonic two-loop vertex corrections on σ 0

had is given 
by [49,50]

σ 0
had(2) =

∑
f =u,d,c,s,b

12π

MZ
2

[
�e(0)� f (2) + �e(2)� f (0)

�Z
2
(0)

− 2
�e(0)� f (0)

�Z
2
(0)

�Z
2
(2)

]
. (11)

The form factors F f
V,A are understood to include appropriate coun-

terterms such that they are UV finite. Throughout this work, the 
on-shell renormalization scheme is being used, which defines all 
particle masses in terms of their (complex) propagator poles and 
the electromagnetic coupling in terms of the photon-electron ver-
tex in the Thomson limit. A more detailed discussion of the rele-
vant counterterms can be found in Ref. [44].

As a consequence of this renormalization scheme, the EW cor-
rections are organized as a series in the electromagnetic coupling 
α, rather than the Fermi constant Gμ . Instead, Gμ will be used to 
compute MW within the SM, including appropriate two-loop and 
partial higher-loop corrections. After this step, the remaining in-
put parameters for the prediction of the Z coupling form factors 
are MZ, MH, mt, Gμ , α, αs and �α. Here �α captures the running 
of the electromagnetic coupling induced by light fermion loops. It 
is defined through α(MZ

2) = α(0)/(1 − �α), where α(q2) is the 
coupling at scale q2. The contribution from leptons to �α can 
be computed perturbatively and is known at the three-loop level 
[70], �αlept(MZ) = 0.0314976. On the other hand, the quark con-
tribution is non-perturbative at low scales and thus is commonly 
derived from experimental data. For recent evaluations of �α

(5)

had, 
see Refs. [71–73]. As a reference value, �α

(5)

had = 0.02750 is used in 
this work.

Additionally, �Z and �W are needed as inputs to convert MZ
and MW to the complex pole scheme, see eq. (2). Furthermore, 
the radiator functions R f

V,A depend on mb
MS, mMS

c and mτ to ac-
count for kinematic fermion mass effects in the final state, whereas 
the masses of electron, muon, neutrinos, and u/d/s quarks can 
be taken as zero to very good approximation. In contrast to all 
other masses in this work, the MS masses are used for the bottom 
and charm quarks, since their on-shell counterparts are poorly de-
fined.

3. Calculation of two-loop vertex corrections

For the calculations we followed the strategy developed in 
Ref. [16], where the two-loop bosonic corrections to the bottom 
quark weak mixing angle, sin2 θb
eff, were obtained. In fact, the Zbb̄

vertex is the technically most difficult case due to the larger num-
ber of mass scales in that problem compared to other flavors. 
Details are described there and also in [74–76]. On the other hand, 
for the computation of the Z width we are faced not only with ra-
tios v f (2)/a f (2) , but also with sums of powers of v f (2) and a f (2) , 
see (6) and (7). This leads to the occurrence of extra integrals 
which cancel out in the ratios v/a.

The complete set of two-loop diagrams required for this cal-
culation has been generated with the computer algebra pack-
age FeynArts 3.3 [77]. They can be divided into several cat-
egories. The renormalization counterterms require two-loop self-
energies with Minkowskian external momenta, p2 = M2

i + iε, Mi =
MW, MZ. In addition, there are two-loop vertex integrals with 
one non-vanishing external momentum squared, s = MZ

2 + iε. 
The two-loop self-energy integrals needed for the renormaliza-
tion procedure and the vertex integrals with self-energy sub-loops 
have been computed using the dispersion relation technique de-
scribed in Refs. [14,78,79]. The remaining bosonic two-loop dia-
grams amount to about one thousand integrals with a planar or 
non-planar vertex topology.

We did not try to reduce these integrals to a minimal set of 
master integrals, except for trivial cancellations of numerator and 
denominator terms. This means that tensors of rank R ≤ 3 were 
calculated directly. For this purpose, two numerical approaches 
were used. Firstly, sector decomposition (SD) [80] was applied, 
with the packages SecDec [81,82] and FIESTA 3 [83]. Secondly, 
Mellin Barnes (MB) representations [84–86] were derived and eval-
uated with the MBsuite, consisting of software packages avail-
able at the MBtools webpage in the hepforge archive [87]:
MB [88], MBresolve [89], AMBRE 1 [90], barnesroutines
(D. Kosower) and PlanarityTest [91], AMBRE 2 [92] and AM-
BRE 3 [93], as well as MBsums [94], which are available from 
the AMBRE webpage [95]. The numerical package MBnumerics is 
being developed since 2015 [96]. It is of special importance for 
Minkowskian kinematics as encountered here. For the numerical 
integrations, MBsuite calls the CUHRE routine of the CUBA li-
brary [97,98].

Some new classes of integrals compared to the sin2 θb
eff case are 

met. They are simpler from a numerical point of view than those 
solved in Ref. [16]. For instance, there are various one- and two-
scale integrals with internal W propagators, which improves the 
singular threshold behavior of integrals with only Z propagators. 
There are altogether about one hundred integrals of this kind with 
different permutations of propagators, including the tensor inte-
grals. As an example of one of the most difficult cases, the SD 
method for integrals from Fig. 1 in [16] gives an accuracy of up 
to four relevant digits. Using the MB method, these diagrams are 
equivalent to up to 4-dimensional MB integrals, which can be cal-
culated efficiently with eight relevant digits by MBnumerics.

In selected cases, like those described above, the MB approach 
is uniquely powerful. This statement applies to several hundred 
integrals. In the majority of integrals, though, the SD method is 
presently more efficient than the MB approach, mainly due to the 
smaller number of integration variables. For our semi-automatized 
calculation of massive 2-loop vertices the availability of two com-
plementary numerical methods with a large overlap was cru-
cial.

4. Numerical results

In this section, numerical results for bosonic two-loop correc-
tions are compared to and combined with all other known correc-
tions to the Z f f̄ vertices. These are
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Table 1
Input parameters used in the numerical analysis, from 
[105], except for �α, for which a value close to sev-
eral recent evaluations [71–73] has been chosen.

Parameter Value

MZ 91.1876 GeV

�Z 2.4952 GeV

MW 80.385 GeV

�W 2.085 GeV

MH 125.1 GeV

mt 173.2 GeV

mb
MS 4.20 GeV

mMS
c 1.275 GeV

mτ 1.777 GeV

me,mμ,mu ,md,ms 0

�α 0.05900

αs(MZ) 0.1184

Gμ 1.16638 × 10−5 GeV−2

• Complete one-loop EW contributions [21] (which have been 
re-evaluated for this work) and fermionic O(α2) contributions 
[49,50];

• Mixed QCD-EW corrections to internal gauge-boson self-
energies of order O(ααs) [31–35] (where again we use our 
own re-evaluation of these terms);

• Higher-loop corrections in the large-mt limit, of order O(αtα
2
s )

[51,52], O(α2
t αs), O(α3

t ) [53,54], and O(αtα
3
s ) [55–57], where 

αt ≡ y2
t /(4π) and yt is the top Yukawa coupling;

• Final-state QED radiation and, for quark final states, QCD radi-
ation up to O(α2), O(ααs) and O(α4

s ) [67–69]; incorporated 
through the radiator functions RV,A in (6) and (7);

• Non-factorizable O(ααs) vertex contributions [99–104], which 
cannot be written as a product of EW form factors FV,A and 
final-state radiator functions RV,A, but instead are added sep-
arately to the formula in (5).

These are applied to a range of EWPOs: The partial Z widths, 
� f ≡ �(Z → f f̄ ), as well as total width, �Z, various branching ra-
tios, and the hadronic peak cross-section σhad. The full electroweak 
two-loop corrections for the leptonic and bottom-quark asymme-
tries have been published previously [13–16] and are not repeated 
here. Nevertheless, as a cross-check we reproduced the result for 
the leptonic asymmetry and found agreement with Refs. [13,15]
within intrinsic numerical uncertainties. Moreover, with the meth-
ods described here we can produce results for the bosonic two-
loop corrections to sin2 θ	

eff with four robust digits of precision, 
which exceeds the accuracy obtained with asymptotic expansions 
as in Ref. [13].

As discussed above, the gauge-boson mass renormalization has 
been performed in accordance with the complex-pole scheme in 
eq. (1). However, for the sake of comparison with the wider liter-
ature, the numerical results below are presented after translating 
to the scheme with an s-dependent width. In other words, results 
are shown for un-barred quantities, such as �Z in eq. (2).

Light fermion masses m f , f 
= t , have been neglected through-
out, except for a non-zero bottom quark mass in the O(α) and 
O(ααs) vertex contributions, as well as for non-zero mb, mc and 
mτ in the radiators RV,A. The numerical input values used in this 
section are listed in Table 1.

4.1. Partial widths

Let us begin by presenting results for a fixed value of MW as 
input, instead of calculating MW from Gμ . This more clearly il-
lustrates the impact of the newly completed O(α2
bos) corrections. 

Table 2 shows the contributions from different loop orders to the 
SM prediction of various partial Z widths. As is evident from the 
table, the two-loop EW corrections are significant and larger than 
the current experimental uncertainty (2.3 GeV for �Z [1]). The 
newly calculated bosonic corrections O(α2

bos) are smaller but still 
noteworthy. They amount to half of all known leading three-loop 
QCD corrections O(αtα

2
s , αtα

3
s , α2

t αs, α3
t ), even though the latter 

are enhanced by powers of αs, αt and N f .
Table 3 shows the SM predictions obtained if one uses Gμ as an 

input to compute MW, based on the results of [43,44,58–61]. Each 
line of the table adds an additional order of perturbation theory to 
the previous line, using the same order for the Z f f̄ vertex correc-
tions and the calculation of the W mass.1

The O(α2
bos) correction to �Z, corresponding to the difference 

between the last two rows in Table 3, amounts to 0.34 MeV, which 
is more than three times larger than its previous estimation [50]. 
An updated discussion on how this knowledge changes the intrin-
sic error estimations will be given in section 5.

4.2. Ratios

The experimental results from LEP and SLC are typically not 
presented in terms of partial widths for the different final states. 
Instead, this information is captured in the form of various branch-
ing ratios. The most relevant ones are

R	 ≡ �had/�	, Rc ≡ �c/�had, Rb ≡ �b/�had, (12)

where �	 = 1
3 (�e + �μ + �τ ), and �had is the partial width 

into hadronic final states, which at the parton level is equivalent 
to 

∑
q �q (q = u, d, c, s, b). In addition, the hadronic peak cross-

section (11) is, to a good approximation, defined as a ratio of 
partial widths and the total Z width.

Numerical results for σ 0
had and the ratios in (12) are given in 

Table 3 and Table 4, respectively, again broken down to different 
orders of radiative corrections. These quantities are less sensitive 
to higher loop effects than �Z, since there is a partial cancella-
tion between the corrections in the numerators and denominators 
of the ratios. Thus the influence of the new bosonic corrections 
on all branching ratios R	, Rc, Rb and on σ 0

had is about 0.02% or 
less, which is far below the current experimental errors: R	 =
20.767 ± 0.025, Rc = 0.1721 ± 0.0030, Rb = 0.21629 ± 0.00066, 
and σ 0

had = 41.541 ± 0.037 nb [1]. However, these are at the level 
of sensitivity of proposed measurements of Rb at future e+e− col-
liders [4–7].

4.3. Parameterization formulae

While the tables above only contain numbers for a single 
benchmark point, the results for a range of input values can be 
conveniently expressed in terms of simple parameterization for-
mulae. The coefficients of these formulae have been fitted to the 
full calculation results on a grid that spans the currently allowed 
experimental ranges for each input parameter. Here the full calcu-
lation includes all higher-order corrections listed at the beginning 
of section 4 for the partial widths, branching ratios and the peak 

1 Note that the value in the next-to-last line of Table 3 differs slightly from 
Ref. [49]. This is because in Ref. [49] the “best value” prediction of MW was car-
ried with the full (fermionic plus bosonic) EW two-loop predictions included. Here, 
however, we are interested in a clear distinction of fermionic and bosonic two-loop 
terms in all contributions, including the MW prediction.
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Table 2
Contributions of different orders in perturbation theory to the partial and total Z widths. A fixed 
value of MW has been used as input, instead of Gμ . N f and N2

f refer to corrections with one and 
two closed fermion loops, respectively, whereas α2

bos denotes contributions without closed fermion 
loops. Furthermore, αt = y2

t /(4π). In all rows the radiator functions RV,A with known contributions 
through O(α4

s ), O(α2) and O(ααs) are included.

�i [MeV] �e �ν �d �u �b �Z

Born 81.142 160.096 371.141 292.445 369.562 2420.19

O(α) 2.273 6.174 9.717 5.799 3.857 60.22

O(ααs) 0.288 0.458 1.276 1.156 2.006 9.11

O(αtα
2
s , αtα

3
s , α2

t αs, α3
t ) 0.038 0.059 0.191 0.170 0.190 1.20

O(N2
f α

2) 0.244 0.416 0.698 0.528 0.694 5.13

O(N f α
2) 0.120 0.185 0.493 0.494 0.144 3.04

O(α2
bos) 0.017 0.019 0.059 0.058 0.167 0.51
Table 3
Results for �Z and σ 0

had, with MW calculated from Gμ using 
the same order of perturbation theory as indicated in each 
line. In all cases, the complete radiator functions RV,A are 
included.

�Z [GeV] σ 0
had [nb]

Born 2.53601 41.6171

+ O(α) 2.49770 41.4687

+ O(ααs) 2.49649 41.4758

+ O(αtα
2
s , αtα

3
s , α2

t αs, α3
t ) 2.49560 41.4770

+ O(N2
f α

2, N f α
2) 2.49441 41.4883

+ O(α2
bos) 2.49475 41.4896

Table 4
Results for the ratios R	 , Rc and Rb , with MW calculated from Gμ to 
the same order as indicated in each line. In all cases, the complete 
radiator functions RV,A are included.

R	 Rc Rb

Born 21.0272 0.17306 0.21733

+ O(α) 20.8031 0.17230 0.21558

+ O(ααs) 20.7963 0.17222 0.21593

+ O(αtα
2
s , αtα

3
s , α2

t αs, α3
t ) 20.7943 0.17222 0.21593

+ O(N2
f α

2, N f α
2) 20.7512 0.17223 0.21580

+ O(α2
bos) 20.7516 0.17222 0.21585

cross-sections, and with MW calculated from Gμ to the same pre-
cision.2 For all EWPOs reported here, the same form of parameter-
ization formula is utilized:

X = X0 + c1LH + c2�t + c3�αs + c4�
2
αs

+ c5�αs�t + c6�α + c7�Z, (13)

LH = log
MH

125.7 GeV
, �t =

( mt

173.2 GeV

)2 − 1,

�αs = αs(MZ)

0.1184
− 1, �α = �α

0.059
− 1,

�Z = MZ

91.1876 GeV
− 1.

As before, MH, MZ, mt and �α are defined in the on-shell scheme, 
using the s-dependent width scheme for MZ (to match the pub-
lished experimental values), while αs is defined in the MS scheme. 
The dependence on mb, mc and mτ is negligible within the allowed 
ranges for these quantities.

2 Fit formulae for the leptonic and bottom-quark asymmetries can be found in 
Refs. [13,14,16].
The fit values of the coefficients for the different EWPOs are 
given in Table 5. With these parameters, the formulae provide 
very good approximations to the full results within the ranges 
MH = 125.1 ±5.0 GeV, mt = 173.2 ±4.0 GeV, αs = 0.1184 ±0.0050, 
�α = 0.0590 ±0.0005 and MZ = 91.1876 ±0.0042 GeV, with max-
imal deviations as quoted in the last column of Table 5. As can be 
seen from the latter, the accuracies of the fit formulae are suffi-
cient for the forseeable future.

5. Error estimates

In addition to the dependence on the input parameters, the 
accuracy of the results presented here is limited by unknown 
three- and four-loop contributions. The numerically leading miss-
ing pieces are the O(α3), O(α2αs), O(αα2

s ) and O(αα3
s ) correc-

tions beyond the known leading yn
t terms from Refs. [51–57].

Following Refs. [50,106], the size of these terms may be esti-
mated by assuming that the perturbation series approximately is a 
geometric series. In this way one obtains

O(α3) −O(α3
t ) ∼ O(α2) −O(α2

t )

O(α)
O(α2),

O(α2αs) −O(α2
t αs) ∼ O(α2) −O(α2

t )

O(α)
O(ααs),

O(αα2
s ) −O(αtα

2
s ) ∼ O(ααs) −O(αtαs)

O(α)
O(ααs),

O(αα3
s ) −O(αtα

3
s ) ∼ O(ααs) −O(αtαs)

O(α)
O(αα2

s ),

(14)

where the known leading large-mt approximations have been sub-
tracted in the numerators. For the example of the total Z width, 
these expressions lead to

�Z : O(α3) −O(α3
t ) ∼ 0.20 MeV,

O(α2αs) −O(α2
t αs) ∼ 0.21 MeV,

O(αα2
s ) −O(αtα

2
s ) ∼ 0.23 MeV,

O(αα3
s ) −O(αtα

3
s ) ∼ 0.035 MeV.

(15)

An additional source of theoretical uncertainty stems from the un-
known O(α5

s ) final-state QCD corrections and three-loop mixed 
QED/QCD final-state corrections of order O(αα2

s ) and O(α2αs). 
In [50] they were found to be sub-dominant, and the estimates 
can be taken over from there without change. Combining these 
findings with eqs. (15) in quadrature, the total theory error adds 
up to δ�Z ≈ 0.4 MeV. Compared to the previous theory error es-
timate δ�Z ≈ 0.5 MeV [50] one observes a slight decrease due to 
the knowledge of the bosonic corrections calculated in this work.
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Table 5
Coefficients for the parameterization formula (13) for various observables (X ). Within the ranges MH = 125.1 ±5.0 GeV, 
mt = 173.2 ± 4.0 GeV, αs = 0.1184 ± 0.0050, �α = 0.0590 ± 0.0005 and MZ = 91.1876 ± 0.0042 GeV, the formulae 
approximate the full results with maximal deviations given in the last column.

Observable X0 c1 c2 c3 c4 c5 c6 c7 max. dev.

�e,μ [MeV] 83.983 −0.061 0.810 −0.096 −0.01 0.25 −1.1 286 < 0.001

�τ [MeV] 83.793 −0.060 0.810 −0.095 −0.01 0.25 −1.1 285 < 0.001

�ν [MeV] 167.176 −0.071 1.26 −0.19 −0.02 0.36 −0.1 504 < 0.001

�u [MeV] 299.993 −0.38 4.08 14.27 1.6 1.8 −11.1 1253 < 0.002

�c [MeV] 299.916 −0.38 4.08 14.27 1.6 1.8 −11.1 1253 < 0.002

�d,s [MeV] 382.828 −0.39 3.83 10.20 −2.4 0.67 −10.1 1470 < 0.002

�b [MeV] 375.889 −0.36 −2.14 10.53 −2.4 1.2 −10.1 1459 < 0.006

�Z [MeV] 2494.74 −2.3 19.9 58.61 −4.0 8.0 −56.0 9273 < 0.012

R	 [10−3] 20751.6 −7.8 −37 732.3 −44 5.5 −358 11696 < 0.1

Rc [10−3] 172.22 −0.031 1.0 2.3 1.3 0.38 −1.2 37 < 0.01

Rb [10−3] 215.85 0.029 −2.92 −1.32 −0.84 0.032 0.72 −18 < 0.01

σ 0
had [pb] 41489.6 1.6 60.0 −579.6 38 7.3 85 −86011 < 0.1
Table 6
Theory uncertainty estimates for the partial and total Z widths and 
branching ratios from missing 3-loop and higher orders. See text for de-
tails.

�e,μ τ 0.018 MeV �u,c 0.11 MeV R	 6 · 10−3

�ν 0.016 MeV �b 0.18 MeV Rc 5 · 10−5

�d,s 0.08 MeV �Z 0.4 MeV Rb 1 · 10−4

In addition to the elimination of an uncertainty associated with 
the previous unknown O(α2

bos) corrections, the values in the first 
and second rows of (15) also shifted since the full O(α2) correc-
tions used in (14) were not available before. These shifts conspire 
to result in a reduction of the uncertainty estimate for these two 
error sources.

The corresponding error estimates for the partial widths are 
shown in Table 6. For the ratios (R	 , Rc and Rb), the theory un-
certainty has been estimated from the partial widths using simple 
Gaussian error propagation.

The theory uncertainty for the hadronic peak cross-section 
is dominated by a non-factorizable contribution stemming from 
the imaginary part of the Z -boson self-energy [50]. This non-
factorizable term does not receive any bosonic two-loop correc-
tions, so that its error estimate can be taken from Ref. [50] without 
change:

σ 0
had : O(α3) ∼ 3.7 pb, O(α2αs) ∼ 4.2 pb. (16)

Adding these in quadrature leads to the overall uncertainty esti-
mate of δσ 0

had ≈ 6 pb.

6. Summary

In this work the bosonic two-loop electroweak corrections, 
O(α2

bos), to Z boson production and decay parameters are pre-
sented for the first time. These corrections are comparable in 
size to the leading three-loop corrections of O(αtα

2
s ), O(αtα

3
s ), 

O(α2
t αs), O(α3

t ). This is especially pronounced for �b , see Table 2, 
and for σ 0

had , see Table 3. The bosonic corrections shift the value 
of �Z by 0.51 MeV when using MW as input and 0.34 MeV when 
using Gμ as input, which is large from the point of view of future 
colliders. Similarly, the bosonic corrections are important for Rb , 
see Table 4. Due to the high accuracy of the numerical loop inte-
grations, the results obtained here are stable enough even in the 
context of potential future experimental precisions.
Updated theory error estimations are given, which are slight-
ly reduced due to the newly available full two-loop corrections. 
We expect that the numerical integration methods used here can 
be extended to compute the full three-loop and possibly part of 
the four-loop corrections to Z-pole EWPOs. These improvements 
will require substantial technical work and ingenuity, but the chal-
lenges are well understood and thus could in principle be over-
come. The ultimate achievable precision is limited by two factors: 
(a) the complexity of the analytic properties of multi-loop diagram 
topologies and their translation into well-defined numerical inte-
grals, and (b) the numerical precision with which these integrals 
can be evaluated. If these can be driven to allow the computation 
of mixed EW/QCD and leading EW 4-loop topologies with at least 
two digits precision, theory uncertainties will not be a limiting fac-
tor for future e+e− experiments. For a more detailed discussion of 
future projections, see Ref. [8,9].

It should be noted that the O(α2
bos) correction for the total 

Z decay width appears to be relatively large compared to previ-
ous estimates based on the knowledge of the lower order result 
O(αbos). A similar observation concerns the bosonic two-loop cor-
rections to Ab . This means that all estimations at this level of 
accuracy should be taken with a grain of salt. Therefore, explicit 
calculations are important even for contributions that were previ-
ously estimated to be subdominant.

At this point we should mention that we did not consider the 
theoretical efforts needed to unfold the large QED corrections from 
the measured real cross sections in the Z peak region and to ex-
tract the EWPOs studied here in detail. For LEP, this was based on 
tools such as the ZFITTER package [107–109] and was discussed 
carefully e.g. in Refs. [1,2,110]. The correct unfolding framework 
for extracting 2 → 2 observables at accuracies amounting to about 
1/20 of the LEP era certainly has to rely on the correct treatment of 
Laurent series for the Z line shape as is discussed e.g. in [111–114].

The 1-loop corrections to the Z boson parameters were deter-
mined in the 1980s [21]. Today, 33 years later, while the present 
study finalizes the determination of the electroweak two-loop cor-
rections to the Z -boson parameters, we are already faced with the 
need of more precision in the future.
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