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Abstract. This paper is intended to provide conditions for the stability of
the strong uniqueness of the optimal solution of a given linear semi-in�nite
optimization (LSIO) problem, in the sense of the maintaining of the strong
uniqueness property under su¢ ciently small perturbations of all the data.
We consider LSIO problems such that the family of gradients of all the
constraints is unbounded, extending earlier results of Nürnberger for con-
tinuous LSIO problems, and of Helbig and Todorov for LSIO problems with
bounded set of gradients. To do this we characterize the absolutely (a¢ nely)
stable problems, i.e., those LSIO problems whose feasible set (its a¢ ne hull,
respectively) remains constant under su¢ ciently small perturbations.
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1 Introduction

This paper deals with linear semi-in�nite optimization (LSIO) problems in Rn
of the form

� : Inf c0x s.t. a0tx � bt; t 2 T; (1)

where T is a �xed arbitrary (possible in�nite) set, a : T ! Rn and b : T ! R
are functions, and x 2 Rn: It is focussed on the identi�cation of those LSIO
problems which have a strongly unique (or just unique) optimal solution and
this desirable property is stable in the sense that it is preserved by su¢ ciently
small perturbations of the cost vector c and the functions a and b. For short,
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we will say "(strong) uniqueness" to mean "uniqueness of the (strong) unique
optimal solution" of an LSIO problem.

The problem (1) will also be denoted by � = (a; b; c) ; and by � = (Rn � R)T�
Rn we will denote the linear space of all these kind of problems (the n decision
variables and the index set T are �xed), i.e., the result of arbitrary pertur-
bations of the nominal problem � preserving n and T . In the next section we
shall introduce a topology on �; which will be called space of parameters.

The pioneering work on uniqueness in linear programming (LP), due to Dantzig
(1963, [5]), was completed by Mangasarian (1979, [18]), who provided char-
acterizations not involving optimal basis. Uniqueness and strong uniqueness
are no longer equivalent in LSIO, where strong uniqueness plays a crucial role
in numerical analysis (together with some regularity conditions it implies su-
perlinear convergence of multiple exchange methods, see [16] - [15]) as well as
in sensitivity analysis (it characterizes those problems for which the optimal
value is a linear function of the costs on some neighborhood of c; as shown
in [7]). The literature about uniqueness and strong uniqueness in LSIO up
to 1995 was surveyed in [9]. One of the characterizations of the uniqueness
in LP included in [18] consists of maintaining the uniqueness under arbitrary
but su¢ ciently small perturbations of the cost vector. The �rst works on sta-
ble (strong) uniqueness are due to Nürnberger ([19] - [20]) and Strauss ([21]);
Nürnberger considered the case of continuous LSIO problems and continuous
perturbations of the whole triple (a; b; c) (� is a continuous LSIO problem
if T is a compact Hausdor¤ space and the coe¢ cient functions a and b are
continuous); while Strauss allowed only perturbations of the RHS function b:.
In this last setting, Cánovas et al. (2007, [3]) have recently shown that Nürn-
berger condition ([19, Condition (2) in Thm. 1.4]) turns out to be equivalent
to the metric regularity of the inverse of the optimal set mapping. In 1998,
Helbig and Todorov ([14]) characterized the stable (strong) uniqueness for
LSIO problems such that the set of the LHS coe¢ cients of the constraints is
bounded by means of a suitable Nürnberger-type condition. Under the same
assumption on the boundedness of the LHS coe¢ cients, Goberna, López and
Todorov (2003, [12]) proved that the set of problems with strongly unique
optimal solution contains an open and dense subset of the set of solvable
problems. This is a generic result and in view of it we can say that most (in
a topological sense) solvable problems satisfying this boundedness condition
have a strongly unique optimal solution.

In this paper we analyze the stable (strong) uniqueness of problems which
are not upper bounded in the sense of [14], but satisfy a suitable property,
e.g., positive distance from the origin to the set of LHS coe¢ cients, or ab-
solutely stability in the sense that the feasible set remains constant under
su¢ ciently small perturbations. In the �rst case we adapt to our purpose the
idea (already used in 1965 by Charnes, Cooper and Kortanek ([4]) in the con-
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text of duality in LSIO) of improving the properties of a given program by
means of suitable reformulations: dividing each nontrivial constraint a0tx � bt
by k((at; bt))k (called canonical normalization of �), aggregating redundant
constraints until the set of coe¢ cients of the constraints is compact (regular-
ization), and eliminating variables in order to get an equivalent problem with
full dimensional feasible set (dimension reduction). Here, we use dimension
reduction and scaling (not necessarily canonical normalization), not only for
the nominal problem � (as in [4]) but for the problems in some neighborhood
of �. In doing this we show a very interesting characterization of the lower
semicontinuity of the feasible set mapping at � : the a¢ ne hull of the feasible
set remains constant on some neighborhood of �; that is � is a¢ nely stable.
Finally, it is important to remark that the strong uniqueness property is a
geometric property essentially related to the shape of the feasible set F and
the relative position of the gradient vector c, while the stability of the strong
uniqueness is related to the representation of the set F:

In Section 2 we de�ne a topology on � and state some necessary de�nitions;
Section 3 gives the de�nition of the extended Nürnberger condition, and re-
calls some known results about it. In Section 4 we characterize the a¢ ne
stability and apply it to reduce the dimension of �: These two sections con-
tain Nürnberger-type necessary conditions for stable strong uniqueness based
on Theorem 4.1 in [14]. Section 5 gives Nürnberger-type su¢ cient conditions
when � =2 �UB; by applying the extended Nürnberger condition to suitable
reformulations of �: Finally, Section 6 characterizes the absolutely stable prob-
lems and the subclass of stably strongly unique problems; we also provide a
generic result about the absolutely stable problems which are uniquely solv-
able.

2 Preliminaries

We represent by F the feasible set and by F � the optimal set of �: The problem
� is consistent if F 6= ; and solvable if F � 6= ;:

bx 2 F is a strong Slater element for � if there exists " > 0 such that a0tbx � bt+"
for all t 2 T: In this case � is said to satisfy the strong Slater condition (SSC).
In the particular case that � is a continuous LSIO problem the strong Slater
elements are the Slater points.

� has a unique solution if there exists some x 2 F such that F � = fxg, this
optimal solution being strongly unique if there exists � > 0 such that

c0x � c0x+ � kx� xk for all x 2 F;

where k�k stands for the Chebyshev norm. (We will always considerRn equipped
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with the Chebyshev norm).

We say that � is LHS-positively lower bounded if inf fkatk ; t 2 Tg > 0 (i.e.,
fat; t 2 Tg does not intersect some neighborhood of the null vector 0n). In the
same fashion, � is LHS-upper bounded if sup fkatk ; t 2 Tg < +1 (with an
analogous interpretation, just replacing the origin by the point at in�nity).
Moreover, we say that � is absolutely stable if its feasible set is nonempty and
remains constant under arbitrary but su¢ ciently small perturbations of all
the data (a; b; c) : In Example 1 of [8], it is shown, for any in�nite index set
T , that � admits a reformulation in � (with the same objective function, and
feasible set assumed to be bounded) which is absolutely stable.

We consider the following subsets of parameters:

�C = f� 2 � : � is consistentg ;

�SS = f� 2 � : � satis�es the strong Slater conditiong ;

�U = f� 2 � : � has a unique solutiong ;

�SU = f� 2 � : � has a strongly unique solutiong ;

�PLB = f� 2 � : � is LHS-positively lower boundedg ;

�UB = f� 2 � : � is LHS-upper boundedg ;

and

�AS = f� 2 � : � is absolutely stableg :

Obviously, �SU � �U � �C and �SS � �C : On the other hand, it is well-
known that � 2 �SS if and only if � is stable with respect to consistency ([10,
Thm. 6.1]). Thus, �AS � �SS:

Notice that, if � 2 �UB \ �SS; then F contains interior points, i.e., F is
full dimensional. In fact, if � := sup fkatk ; t 2 Tg and a0tx � bt + " for all
t 2 T; then the ball centered at x with radius "

n�
is contained in F by the

Cauchy-Schwartz inequality.

For the next de�nitions we will make use of the following notation for a given
set X :
� If X is a nonempty subset of Rn, a�X, convX; coneX and dimX denote
its a¢ ne hull, its convex hull, its convex conical hull containing 0n; and the
dimension of a�X, respectively.
� If X is a convex cone in Rn, its positive polar is denoted by X0 and its
lineality space by linX.
� If X is convex in Rn and x 2 X; we denote by D (X;x) the (convex) cone

4



of feasible directions of X at x:
� If X is a nonempty subset of either Rn or �, intX, clX and bdX represent
its interior, closure, and boundary, respectively.

The data set of the constraint system of � is

D :=

( 
at
bt

!
; t 2 T

)
;

whereas the characteristic cone of � is

K := cone

( 
at
bt

!
; t 2 T ;

 
0n
�1

!)
:

Let a 2 Rn and b 2 R: The nonhomogeneous Farkas lemma establishes that
a0x � b is a consequence of the consistent system fa0tx � bt; t 2 Tg if and only
if (a; b) 2 clK:

Given x 2 F; the constraint a0tx � bt is active at x if a0tx = bt: We de-
note by T (x) the set of active indexes at x, T (x) = ft 2 T : a0tx = btg : The
cone of active constraints at x is cone fat; t 2 T (x)g. The KKT condition
c 2 cone fat; t 2 T (x)g is su¢ cient for x 2 F � and it is also necessary if some
constraint quali�cation holds (e.g., � is a continuous LSIO problem satisfying
the Slater condition). The condition c 2 int cone fat; t 2 T (x)g is su¢ cient
for x 2 F to be a strongly unique optimal solution of �, and it is also nec-
essary under some constraint quali�cation (see [10, Theorems 7.1 and 10.6]).
We say that a0x � b is an implicit active constraint at x 2 F if a0x = b
and (a; b) 2 clD; in which case a0x � b for all x 2 F . Each implicit active
constraint a0x � b is characterized just by the vector a; in this fashion the set

A (x) :=

(
a 2 Rn :

 
a

a0x

!
2 clD

)

will be called the set of implicit active constraints at x. Obviously, fat; t 2 T (x)g �
A (x) and the equality holds if D is closed (e.g., if � is continuous). Moreover,
if � 2 �UB; then A (x) is bounded for all x 2 F:

From the topological side, we consider � equipped with the pseudometric
of the uniform convergence, i.e., given two parameters �1 = (a1; b1; c1) and
�2 = (a

2; b2; c2) ;

d (�1; �2) := max

(c1 � c2 ; supt2T

 
a1t
b1t

!
�
 
at
bt

!
)
;

we use the same symbol to mark a perturbation of the nominal problem � and
its associated objects.
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It is immediate to prove that �UB; �PLB and �AS are open cones, that �UB
is closed and that �PLB is dense in �: In fact, given " > 0; replacing in � each
constraint a0tx � bt such that katk < 2"

3
by another one ( a1t )

0
x � bt such that

"
6
< ka1tk < "

3
; maintaining b and c; we get a perturbed problem �1 2 �PLB

such that d (�1; �) < ". The only relationship between these three sets is that
�UB \ �AS = ; (this will be a consequence of Theorem 6.1).

To analyze the stability of the LSIO problems which have a strongly unique
(or just unique) solution is to determine the topological interiors of �SU (�U ;
respectively). Since int�SU � int�U � �SS only the elements of �SS are
relevant in this paper.

3 Extended Nürnberger condition and known results

According to [19], given a continuous LSIO problem � satisfying the Slater
condition, strong uniqueness holds in a neighborhood of � (in the topological
subspace of � formed by the continuous problems) if and only if there exists
x 2 F that satis�es:

(a) there exists
n
d1; :::; dn

o
� fat; t 2 T (x)g such that c 2 cone

n
d1; :::; dn

o
;

and

(b) for any set fd1; :::; dng � fat; t 2 T (x)g such that c 2 cone fd1; :::; dng ; all
the subsets of cardinality n of fc; d1; :::; dng are linearly independent.

Condition (a) means that x 2 F � (by the optimality theorem and Carathéodory�s
theorem) and both conditions together imply that c 6= 0n: A simple algebraic
argument shows that (b) can be replaced in the above Nürnberger condition
by the following geometric one:

(b�) If fd1; :::; dng � fat; t 2 T (x)g and c 2 cone fd1; :::; dng ; then c 2 int
cone fd1; :::; dng :

Nürnberger theorem can be extended from continuous to general LSIO prob-
lems by replacing the set of active constraints fat; t 2 T (x)g by the enlarged
set of implicit active constraints at x, A (x) ; and strengthening the Slater
condition by considering the strong Slater condition (SSC).

De�nition 3.1 � 2 � satis�es the Extended Nürnberger condition at x 2 F
if there exists

n
d1; :::; dn

o
� A (x) such that c 2 cone

n
d1; :::; dn

o
and c 2

int cone fd1; :::; dng for any set fd1; :::; dng � A (x) such that c 2 cone fd1; :::; dng :
We say that � 2 � satis�es the Extended Nürnberger condition (ENC for
short) if � satis�es this condition at some x 2 F .
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Observe that
c 2 cone

n
d1; :::; dn

o
� coneA (x)

implies that x 2 F � by Corollary 5.5 in [11]. This means that only the points
x 2 F � (contained in bdF if c 6= 0n) have to be considered when checking
ENC.

The next key result is proved in Theorem 4.1 of [14].

Theorem 3.2 Given � 2 �UB\�SS; the following statements are equivalent:
(i) � 2 int�SU :
(ii) � 2 int�U :
(iii) � satis�es ENC.

Observe that (i)-(iii) fail if c = 0n because, in this case, � 2 �UB \�SS entails
that F � = F is an in�nite set, i.e., � =2 �U : The next two examples show that
the assumption � 2 �UB in Theorem 3.2 is not super�uous.

Example 3.3 Here we present a problem � 2 �SS��UB that does not satisfy
ENC even though � 2 int�SU , showing that the implications (i) =) (iii) and
(ii) =) (iii) do not hold. Let n = 3; T = Z; and consider the problem

� : Inf x 2

s.t. x 1 + x 2 + kx 3 � 0; k � 0;

�x 1 + x 2 + kx 3 � 0; k < 0:

Its feasible set is F = fx 2 R3 : �x1 + x2 � 0; x3 = 0g ; and its optimal set is
F � = f03g : We have � =2 �UB and � 2 �SS \�SU : The data set D is discrete
(and so it is closed), thus

A (03) =

(
a 2 Rn :

 
a

0

!
2 D

)
= fat; t 2 Tg :

Since c = (0; 1; 0) 2 bd cone fa�1; a0; a1g ; ENC fails at 03. Now, for any �1
such that the d (�1; �) is small enough, dimF1 = dimF = 2 (because �; �1 2
�SS). The nonhomogeneous Farkas lemma implies that x3 � 0 and �x3 � 0
are consequences of the constraints of �1: Therefore, a� F1 = fx 2 R3 : x3 = 0g
(see also Theorem 4.1 below). Then there exists � > 0 such that d (�1; �) < �
implies that F1 can be expressed as the set of points of the form (x1; x2; 0)

such that x2 � sup
n
�1rx1 + �

1
r; r 2 N; 1rx1 + �1r; r 2 N

o
; for some �1r < �1

2

and 1r >
1
2
for all r 2 N; so that �1 2 �SU : We conclude that � 2 int�SU :

Example 3.4 This example shows that both implications (iii) =) (i) and
(iii) =) (ii) in the previous theorem are not valid in general when � 2
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�SS��UB. Consider the problem in R2,

� : Inf x 2 s.t. x1 + x2 � 0;�x1 + x2 � 0; and kx2 � �1; k 2 N;

with F � = f02g and A (02) = f(1; 1) ; (�1; 1)g. Then, � 2 �SS��UB satis�es
ENC and it is not (strongly) unique stable. Indeed, for each � > 0; the problem

�1 : Inf x 2 s.t. x1 + x2 � ��;�x1 + x2 � ��, and kx2 � �1; k 2 N;

is such that d (�; �1) = � and F �1 = f(x1; 0) : jx1j � �g :

The proof of (ii) =) (iii) in Theorem 3.2 given in [14] remains valid by
replacing the condition � 2 �UB by the weaker one that the set of implicit
active constraints at its optimal solution x; A (x) ; is bounded. So we can
state the following Nürnberger-type necessary condition for stable (strong)
uniqueness:

Theorem 3.5 If � 2 int�U ; with F � = fxg ; and A (x) is bounded, then �
satis�es ENC.

4 Dimension reduction and Nürnberger-type necessary conditions

As shown in the next section, the full dimension of the feasible set is a desirable
property in order to check the stable strong uniqueness of �: Here we show
that, given an LSIO problem � satisfying SSC and such that 0 < dimF < n,
it is possible to reformulate � in a lower dimensional space in such a way that
the equivalent problem (in a sense to be made precise later) possesses a full
dimensional feasible set. In doing that we need a new characterization of the
stable consistency of �:

Theorem 4.1 � 2 �C satis�es the strong Slater condition if and only if there
exists " > 0 such that a� F1 = a� F for all �1 2 � with d (�1; �) < ":

Proof. Let � 2 �C : Given a 2 Rn and b 2 R, by the Farkas Lemma, a0x = b
for all x 2 F if and only if � (a; b) 2 clK if and only if (a; b) 2 lin clK:
Accordingly,

a� F = fx 2 Rn : a0x = b for all (a; b) 2 lin clKg : (2)

Now we assume that � 2 �SS: By the argument of (ii))(vii) in [10, Theorem
6.1], there exists " > 0 such that

lin clK1 = lin clK (3)
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for all �1 2 � such that d (�1; �) < ": Combining (2) and (3) we get the
conclusion.

Conversely, if a� F1 = a� F for all �1 2 � such that d (�1; �) < "; then
� 2 int�C = �SS: �

Remark 4.2 Observe that � 2 �SS and dimF = 0 implies that dimF1 = 0
for any �1 in some neighborhood of �, and hence � 2 int�SU .

A reduced problem. Assume that � satis�es SSC and that dimF = d;
1 � d � n � 1: Let " > 0 be such that a� F1 = a� F if d (�1; �) < ":
Since the translation of the feasible sets preserves all the properties of the
corresponding problems, we can assume without loss of generality that V :=
a� F � Rn is a linear subspace of dimension d. Let e�1 2 �C be the problem
obtained by replacing in �1 the cost vector c1 by its orthogonal projection on
V; say ec1: Obviously, eF �1 = F �1 : Without loss of generality we can assume that
xd+1; ::::; xn are linear combinations of x1; :::; xd for all x = (x1; :::; xn) 2 V: Let
(xd+1; ::::; xn)

0 = R (x1; :::; xd)
0 ; where R is a (n� d)�d matrix. The equation

x =M (x1; :::; xd)
0, with M =

h
Id
R

i
; where Id represents the d� d unit matrix,

provides the full dimensional problem equivalent to �1; say �1; called reduced
problem of �1:

�1 : Inf
�
e1
�0
(x1; :::; xd) s.t.

�
d1t
�0
(x1; :::; xd) � bt; t 2 T;

where e1 =M 0ec1 and d1t =M 0a1t for all t 2 T:We denote by � the parameter
space corresponding to index set T and d variables.

It is easy to prove that � 2 �SU (� 2 �U) if and only if � 2 �SU (� 2 �U ;
respectively) and that bx is a strong Slater element for � if and only if (bx1; :::; bxd)
is a strong Slater element for �: Moreover,

d (�; �1) �
�p
n kMk+ 1

�
d (�; �1) : (4)

It is also obvious that � 2 �UB implies that � 2 �UB because

sup fkdtk ; t 2 Tg �
p
n kMk sup fkatk ; t 2 Tg :

However, the LHS-positive lower boundedness of � is not inherited by �; e.g.,
for n = 2; if the constraint system is

1

k
x1 + kx2 � �1;

1

k
x1 � kx2 � �1; k 2 N;

for which F = f(x1; 0) : x1 � �1g, then � 2 �PLB \ �SS but its reduced
problem � =2 �PLB: Observe also that � =2 �UB whereas � 2 �UB:
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Proposition 4.3 Let � 2 �SS be such that 1 � dimF � n� 1 and let � 2 �
be its reduced problem: Then, � 2 int�SU if and only if � 2 int�SU :

Proof. Let � > 0 be such that a� F1 = a� F for all �1 2 � with d (�1; �) < �:
Suppose that " is such that 0 < " < � and �1 2 �SU for any �1 2 � with
d (�1; �) < ": For any �1 2 � such that d (�1; �) < "

2
there exists �1 2 � such

that �1 is the reduced problem of �1 and d (�1; �) < ": Since �1 2 �SU ; �1 2
�SU : Now assume that � 2 int�SU and let 0 < " < � be such that �1 2 �SU
if d (�1; �) < ": According to (4), if �1 2 � satis�es d (�1; �) < "p

nkMk+1 ; then
d (�1; �) < "; and this yields �1 2 �SU : �

Let us revisit Example 3.3, where dimF < n = 3:Here a� F = fx 2 R3 : x3 = 0g
and the full dimensional equivalent problem is

� : Inf x2 s.t. � x1 + x2 � 0; t 2 T1 and x1 + x2 � 0; t 2 T2;

where T1 = Z� [ ft2g and T2 = Z+ [ ft1g : Since � 2 �UB \�SS and satis�es
ENC at 02, we conclude that � 2 int�SU :

Proposition 4.4 Let � 2 �SS be such that 1 � dimF � n� 1 and let � 2 �
be its reduced problem. If � 2 int�SU and the set of implicit active constraints
at the optimal solution of � is bounded, then � satis�es ENC.

Proof. It is an immediate consequence of Theorem 3.2, applied to �; and of
Proposition 4.3. �

5 Upper bounding scaling and Nürnberger-type su¢ cient condi-
tions

In order to get su¢ cient conditions for � 2 int�SU when � =2 �UB we appeal
to suitable scalings of the constraint systems. We say that a mapping ' : �!
�UB is an upper bounding (UB in short) scaling when ' (�1) has the same
objective function and the same feasible set as �1; so that the optimal set
of ' (�1) also coincides with F �1 for all �1 2 �: Thus ' (�) belongs to �SU
(�U ; �C) if and only if � belongs to �SU (�U ; �C ; respectively). Examples of
UB-scaling mappings are the canonical normalization (divide each nontrivial
constraint a0tx � bt by k((at; bt))k) referred to in Section 1, and the mappings
� and ! which associate with �1 = (a1; b1; c1) 2 � the problems

� (�1) = �
�
1 : Inf c

0
1x s.t.

�
a1 �t

�0
x � b1 �t ; t 2 T;
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with �
a1 �t ; b

1 �
t

�
=

8><>:
�

a1t

ka1tk ;
b1t

ka1tk

�
; if a1t 6= 0n;

(a1t ; b
1
t ) ; otherwise,

and

! (�1) = �
!
1 : Inf c

0
1x s.t.

�
a1!t

�0
x � b1!t ; t 2 T;

with

�
a1!t ; b

1!
t

�
=

8><>:
�

a1t

ka1tk ;
b1t

ka1tk

�
; if ka1tk > 1;

(a1t ; b
1
t ) ; otherwise,

respectively (we use the same symbol to mark the image of a problem �1 by a
given UB-scaling mapping and its associated objects). These two UB-scalings
are useful due to the properties shown in the next result.

Proposition 5.1 (i) � is continuous at any � 2 �PLB: Moreover, �� 2 �SS
if dimF = n and no at is null.
(ii) ! is continuous. Moreover, �! 2 �SS if � 2 �SS and dimF = n:

Proof. (i) Let � 2 �PLB and � > 0 be such that katk > � for all t 2 T .
Consider any sequence f�rg � � such that �r ! � 2 �PLB: Given 0 < " <
�=2; there exists r0 2 N such that d (�r; �) < " for all r � r0. Then, for each
t 2 T and r � r0, we have art 6= 0n and

 atkatk � art
kartk

= kkartk at � kartk art + kartk art � katk artkkatk kartk

� ka
r
tk kat � artk+ jkartk � katkj kartk

katk kartk

� kat � a
r
tk+ jkartk � katkj
katk

<
2"

�
;

so that  atkatk � art
kartk

 < 2"

�
: (5)

Analogously, ����� btkatk � brt
kartk

����� < 2"

�
: (6)

From (5) and (6) we conclude that d (��r ; �
�) � 2"

�
whenever r � r0: Hence, �

is continuous at �:
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Now, assume that � 2 �; dimF = n; and at 6= 0n for all t 2 T: The feasible
set of �� is F� = F: Since �� 2 �PLB \ �UB; dimF� = n if and only if ��

satis�es SSC ([11, Proposition 2.1]). Thus �� satis�es SSC.

(ii) Next we prove that ! is continuous at an arbitrary � 2 �:

Consider f�rg � � such that �r ! �: Let " > 0 and take r0 2 N such that
d (�r; �) < " for all r � r0: Let t 2 T and take r � r0: Four cases can arise:

(a) katk ; kartk � 1: Since (ar !t ; br !t ) = (art ; brt ) and (a!t ; b!t ) = (at; bt) ; we have
0B@ ar !t
br !t

1CA�
0B@ a!t
b!t

1CA
 � d (�r; �) < ":

(b) katk ; kartk > 1: Then (ar !t ; br !t ) = (ar �t ; br �t ) and (a!t ; b!t ) = (a�t ; b�t ) ; and
we get the aimed conclusion from (5) and (6).

(c) katk � 1 < kartk : On one hand,

kartk = kat + art � atk � katk+ kart � atk < 1 + ":

Thus, 0 � kartk � 1 < "; which gives artkartk � at
 = kart � kartk atk

kartk
� kart � kartk atk

= kart � at + (1� kartk) atk

� kart � atk+ (kartk � 1) katk

< 2":

An analogous argument shows that

����� brtkbrtk � bt
����� < 2": Hence d (�!r ; �!) � 2":

(d) kartk � 1 < katk : The proof is similar to the previous one.

Finally, assume that � 2 �SS and dimF = n: Then �� 2 �SS by (ii). Letbx; x 2 Rn; � > 0; and � > 0 be such that a0tbx � bt + � and (a�t )0 x � b�t + �
for all t 2 T: Two cases are possible for any t 2 T :

If katk � 1; (a!t ; b!t ) = (at; bt) ; so that (a!t )
0 bx � b!t + �:

If katk > 1; (a!t ; b!t ) = (a�t ; b�t ) ; so that (a!t )
0 x � b!t + �:

Thus, (a!t )
0
�bx+x

2

�
� b!t + 1

2
min f�; �g :

12



We conclude that �! 2 �SS: �

Observe that for any �� 2 �UB \ �PLB with bounded fbtgt2T ; the sequence
�r := r

�1��; r = 1; 2; ::; converges to the null parameter whereas ��r = ��� for
all r 2 N: Thus � is not continuous on the whole space �: On the other hand,
� 2 �SS (the general assumption in any test of stable strong uniqueness) does
not guarantee that �� ; �! 2 �SS:

Example 5.2 Consider an LSIO problem � of a single variable with con-
straint system fkx � �1; k 2 N;�kx � �1; k 2 Ng ; whose solution set is f0g :
Obviously, � 2 �SS: Now, the constraint system of �� ; and of �!; is given byn
x � 1

k
; k 2 N;�x � � 1

k
; k 2 N

o
; whose unique solution, 0; is not a strong

Slater element. Thus �� ; �! =2 �SS:

Theorem 5.3 Let � 2 �SS and let ' be a UB-scaling mapping continuous at
� such that ' (�) 2 �SS: If ' (�) satis�es ENC, then � 2 int�SU :

Proof. Since ' (�) 2 �UB\�SS and ' (�) satis�es ENC, then ' (�) 2 int�SU :

Assume now that � =2 int�SU : Let f�rg � ���SU be such that �r ! �:
Since � 2 �PLB \ �SS and this set is open, �r 2 �PLB \ �SS for r large
enough. By the continuity assumption, ' (�r)! ' (�) 2 int�SU : This implies
that ' (�r) 2 �SU for r large enough, i.e., �r 2 �SU for r large enough, in
contradiction with f�rg � ���SU : �

Example 5.4 Example 3.4 shows that the EN property is not inherited by
' (�) ; even in the case that ' is continuous at � and the feasible set has full
dimension. In fact,

�� : Inf x2 s.t.
x1 + x2p

2
� 0; �x1 + x2p

2
� 0, and x2 � �1=k; k 2 N;

is in �UB \ �SS and does not satisfy ENC.

The next example shows that the converse statement of Theorem 5.3 is not
true, at least for ' = � and ' = !:

Example 5.5 Consider the problem

� : Inf x1 + x 2

s.t. kx1 � �1; k 2 N;

kx2 � �1; k 2 N;

kx1 + kx2 � �1; k 2 N;

�kx1 � kx2 � �k � 1; k 2 N:

13



We have F = conv f(0; 0) ; (1; 0) ; (0; 1)g ; F � = f02g ; � 2 �PLB \ �SS; and
� 2 int�SU (the last statement will be justi�ed after Theorem 6.2). Neverthe-
less, the sets of implicit active constraints at 02 relative to � and �� = �! are
; and f(1; 1) ; (1; 0) ; (0; 1)g ; respectively. Thus neither � nor �� = �! satisfy
ENC.

Corollary 5.6 Let � 2 �PLB \ �SS be such that dimF = n: If �� satis�es
ENC, then � 2 int�SU :

Corollary 5.7 Let � 2 �SS be such that dimF = n: If �! satis�es ENC,
then � 2 int�SU :

Corollary 5.8 Let � 2 �SS be such that 1 � dimF � n� 1 and let � 2 � be
its reduced problem. If ' is a UB-scaling mapping continuous at � such that
' (�) 2 �SS and ' (�) satis�es ENC, then � 2 int�SU :

6 Absolute stability

In this section we need to consider the feasible set mapping F : � � Rn,
which is the multivalued function that associates with each �1 2 � its feasible
set F1. The following concepts are due to Bouligand and Kuratowski (see [1,
Section 1.4], or [2]).

F is lower semicontinuous at � 2 � (lsc, in brief) if, for each open setW � Rn
such that W \ F(�) 6= ;, there exists an open set V � �, containing �, such
that W \ F(�1) 6= ; for each �1 2 V . Obviously, F is lsc at � =2 domF and
� 2 int domF if F is lsc at � 2 domF :

It is well-known that the feasible set mapping F is lower semicontinuous at
� if and only if � 2 �SS ([10, Thm. 6.1]), which is also equivalent to � being
stable with respect to consistency.

F is upper semicontinuous at � 2 � (usc, in brief) if, for each open set
W � Rn such that F(�) � W , there exists an open set V � �, containing
�, such that F(�1) � W for each �1 2 V . If F is usc at � =2 domF ; then
� 2 int(�� domF).

F is closed at � 2 domF if for all sequences f�rg � � and fzrg � Rn
satisfying zr 2 F(�r) for all r 2 N, �r ! �; and zr ! z, one has z 2 F(�). If F
is usc at � 2 domF and F(�) is closed, then F is closed at �. Conversely, if F
is closed and locally bounded at � 2 domF (i.e., if there exists a neighborhood
of �, say V , and a bounded set in Rn containing F(�1) for every �1 2 V ),
then F is usc at �.

14



F is lsc (usc, closed) if it is lsc (usc, closed) at � for all � 2 �.

Finally, recall that � is absolutely stable (in the feasible set sense) if there
exists � > 0 such that F(�1) = F for all �1 2 � with d (�1; �) < �: This is the
strongest conceivable form of stability of the feasible set mapping F : �� Rn.

The following result gives necessary and su¢ cient conditions for � being ab-
solutely stable when the feasible set F is bounded.

Theorem 6.1 Let � 2 �C. If � is absolutely stable then there exists a positive
scalar " such that:
(i) a0tx � bt + " for all t 2 T and for all x 2 F; and
(ii) for each x =2 F there exists some t 2 T such that a0tx < bt � ":
Conversely, (i) and (ii) are su¢ cient conditions for � being absolutely stable
if F is bounded.
Moreover, � absolutely stable implies that � 2 �SS��UB; and that F is
bounded if, in addition, � =2 �PLB and at 6= 0n for all t 2 T:

Proof. Assume that � is absolutely stable and let � > 0 be such that F1 = F
if d (�1; �) < �. Put " = �=2 and consider the problems �1 and �2 with
a1t = at; b

1
t = bt + "; and a2t = at; b

2
t = bt � "; for t 2 T , respectively. Then

F1 = F2 = F 6= ;. Hence, by taking any x 2 F = F1, (i) is satis�ed. Moreover,
if x =2 F then x =2 F2, which yields (ii).
Suppose now that F is bounded and that there exists " > 0 satisfying (i) and
(ii). F is upper semicontinuous at � by the boundedness of F ([10, Corollary
6.2.1]). Let �;  > 0 be such that F1 is contained in the open ball centered at
0n with radius �; B (0n; �) ; if d (�1; �) < :
Put

� =
1

2
min

n
" (n+ 1)�1=2 (�+ 1)�1 ; 

o
> 0:

If x 2 B (0n; �) and �1 satis�es d (�1; �) < �; we have
 
x

�1

! � �+ 1
and so, by the Cauchy-Schwartz inequality,�����

" 
a1t
b1t

!
�
 
at
bt

!#0  
x

�1

!����� � � (n+ 1)1=2 (�+ 1) < ": (7)

If x 2 F , given any t 2 T;
�
at
bt

�0� x
�1

�
� " by assumption (i); hence (7) yields�

a1t
b1t

�0� x
�1

�
> 0; so that x 2 F1: Thus F � F1:

In the case x =2 F , take t 2 T such that a0tx < bt � "; i.e.,
�
at
bt

�0� x
�1

�
< �":
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Reasoning as before we get
�
a1t
b1t

�0� x
�1

�
< 0; so that x =2 F1: Hence F1 � F:

Therefore F1 = F .
Now, if � is absolutely stable, then � 2 int�C = �SS. Moreover, there exists
� > 0 such that F1 = F2 for all �1; �2 2 � with d (�1; �) < � and d (�2; �) < �:
Then, according to Proposition 4.1 in [13], the set fkatk ; t 2 Tg cannot be
bounded. In particular the index set T is in�nite.
Suppose, additionally, that � =2 �PLB and at 6= 0n for all t 2 T: Let � > 0 be
such that F1 = F if d (�1; �) � �: Let t1; s1; :::; tn; sn be non repeated elements
of T such that katik < �

2
and kasik < �

2
; i = 1; :::; n: Let �1 be the problem

obtained by replacing a0tix � bti by
�
2
xi � bti and a

0
si
x � bsi by � �

2
xi � bsi ;

i = 1; :::; n: Since d (�1; �) � �; any x 2 F = F1 satis�es 2
�
bti � xi � �2

�
bsi ;

i = 1; :::; n; i.e., F is contained in a box. �

Observe that condition (i) in Theorem 6.1 can be seen as a uniform strong
Slater condition. The problem � in R with the unique constraint 0x � �1
satis�es conditions (i) and (ii), but it is not absolutely stable; its feasible set F
is unbounded. Notice that the feasible set mapping F is upper semicontinuous
at � because n = 1, so the condition "F is bounded" can not be substituted
by "F is upper semicontinuous at �".

The characterization of stable strong uniqueness for absolutely stable problems
is quite simple. The next result can be seen as the LSIO counterpart of the
Mangasarian characterization of uniqueness in LP in terms of perturbations
of the cost vector.

Theorem 6.2 Let � 2 �AS: Then � 2 int�SU if and only if � 2 �SU :

Proof. Let � > 0 be such that F1 = F if d (�1; �) < �: Assume that � 2 �SU
and let x 2 F be the strongly unique optimal solution of �: This happens if
and only if c 2 intD (F ;x)0 ([10, Theorem 10.5]). Thus, there exists � > 0
such that B (c; �) � D (F ;x)0 : Let " = min f�; �g : Then d (�1; �) < " implies
c1 2 intD (F ;x)0 = intD (F1;x)0 ; so that �1 2 �SU : �

Consider again Example 5.5, where � 2 �SU and

F = conv f(0; 0) ; (1; 0) ; (0; 1)g =
n
x 2 R2 : x1 � 0; x2 � 0; x1 + x2 � 1

o
:

(8)
By Theorem 6.2, � 2 int�SU provided � 2 �AS: Since (0; 0) ; (1; 0) ; and (0; 1)
satisfy a0tx � bt + 1 for all t 2 T; condition (i) in Theorem 6.1 hods with
" = 1: Moreover, if x =2 F at least one of the three constraints in (8) fails.
Assume, e.g., that x1 + x2 > 1: In this case there exists r 2 N such that
r (x1 + x2 � 1) > 2; and so condition (ii) also holds with " = 1 (the other two
cases, x1 < 0 and x2 < 0; are similar). Thus � 2 �AS; which implies that
� 2 int�SU :
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Now consider that � 2 �AS: Observe that, according to Corollary 5.5 in [11],
if there exists x 2 F such that c 2 int coneA (x) ; then x is a strongly unique
solution of � and so � 2 int�SU : On the other hand, if n = 2; c = (0; 1) ;

and F = cl conv
n�
�1
r
; 1
r2

�
; r 2 N

o
; we have � 2 �U� (int�U) : Thus, it is

not possible to replace �SU by �U in Theorem 6.2. Finally we give a generic
result.

Theorem 6.3 Let � 2 �AS and let W be a neighborhood of � where F is
constant. Then there exists a dense and G� subset of W formed by problems
which have at most one optimal solution.

Proof. Suppose that F is the feasible set of �. For each c 2 Rn; consider
the parametric problem P (c) : Inf c0x subject to x 2 F . The property will
follows by showing that there exists a dense and G� subset A of Rn such that
the optimal set of P (c) ; F � (c), satis�es jF � (c)j � 1 for all c 2 A. Given
m 2 N, let Fm := F \ clB (0n;m), which is nonempty for m large enough,
say m � m0. Consider the problem Pm (c) : Inf c

0x subject to x 2 Fm and its
optimal set mapping F�

m : Rn � Rn. This mapping F�
m is uniformly bounded

and closed, so it is usc and Fort�s theorem ([6], [17]) implies that it is also lsc
on some dense and G� subset Am of Rn. The set A := \m�m0Am is dense and
G� because Rn is a Baire space. Now we will prove that jF � (c)j � 1 for any
c 2 A. Suppose on the contrary that there exist c 2 A; and x�; y� 2 F � (c),
x� 6= y�. Taking m > max fkx�k ; ky�kg, it follows that x�; y� 2 F �m (c).
Consider " > 0 small enough so that (y� � x�)0 (z � x�) > 0 for all z 2
B (y�; "). Put ck := c+ 1

k
(y� � x�) and observe that, for any z 2 F \B (y�; ") ;

�
ck
�0
(z � x�) = c0 (z � x�) + 1

k
(y� � x�)0 (z � x�) > 0:

Hence
�
ck
�0
z >

�
ck
�0
x� and so z =2 F�

m

�
ck
�
, a contradiction with F�

m being
lsc at c, because F�

m (c) \B (y�; ") 6= ;. �

The �nal example shows that we cannot replace "unique" by "strongly unique"
in Theorem 6.3. It also shows that (int�SU) \ �SS & (int�U) \ �SS; so that
int�SU & int�U :

Example 6.4 Let n = 2; and T = N� [0; 2�] : If c is any non null vector
in R2; a(m;�) = � (m cos�;m sin�) and b(m;�) = �m � 1 for all (m;�) 2 T:
Obviously, � 2 �PLB \ �SS: Since

a(m;�) = m; a�(m;�) = � (cos�; sin�) and
b�(m;�) = �1� 1

m
; we have

F = F� =
1\
m=1

�
x 2 R2 : x21 + x22 �

�
1 + 1

m

�2�
= fx 2 R2 : x21 + x22 � 1g
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and f�; ��g � �U��SU : Since A� (x) = f�xg for all x 2 bdF; �� does not
satisfy ENC. Nonetheless we will show that � is absolutely stable. In fact, given
x 2 F and t = (m;�) 2 T; we have

a0tx� bt = 1 +m [1� ((cos�)x1 + (sin�)x2)] � 1;

and given x =2 F; there exists � 2 [0; 2�] such that (cos�)x1 + (sin�)x2 > 1:
Then there exists m 2 N such that m [(cos�)x1 + (sin�)x2 � 1] > 2; i.e.,

(�m cos�)x1 + (�m sin�)x2 < � (m+ 1)� 1:

Hence conditions (i) and (ii) in Theorem 6.1 hold for " = 1: On the other
hand, since c1 6= 0n in some neighborhood of � we conclude that � 2 int�U :
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