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1 Abstract

Statistical inference for unknown distributions of statistics or estimators may

be based on asymptotic distributions. Unfortunately, in the case of dependent

data the structure of such statistical procedures is often ineffective. There are

different reasons that, e.g. too small a number of observations, the unknown

form of the asymptotic distribution or too slow convergence to the asymptotic

distribution. In the last three decades we can observe an intensive development

the of so-called resampling methods.

Using these methods, it is possible to directly approximate the unknown dis-

tributions of statistics and estimators. The idea of resampling is simple, i.e. we

calculate the estimator replications and the replications determine the empirical

distribution called resampling distribution. A problem that needs to be solved

during the study of the resampling procedures is their consistency, i.e. whether

the resampling distribution is close enough to the true one? There are many

resampling methods.

Their consistency for independent observations has been extensively studied.

The case of the stationary data with strong mixing dependence structure has also

been well investigated. Resampling for time series with a specific non-stationarity,

i.e. the periodic and almost periodic also been the subject of research. Recent

research on resampling methods focus mainly on the time series with the weak

dependency structure, defined by Paul Doukhan.

The thesis presents a time series model with specific features i.e.: long memory,

heavy tails (stable or GED) and periodic structure. Such a model can be naturally

used in many areas like energy, vibromechanics, telecommunications, climatology

and economics.

The objective of this thesis is to present several consistency theorems for

the resampling method for the estimator of the mean function in the above-

mentioned time series. Only one of the resampling techniques can be used for

the long-range dependent data. This method is subsampling. It involves selecting

from the observation all possible subsequences of a some length and calculate the

estimator on these subsequences.

In the thesis,we introduce and prove theorems that are necessary to establish

consistency of resampling. Moreover, a brief overview of the previous results in

inference for non-stationary time series is presented.

Key words: resampling methods, subsampling, periodically correlated time

series, strong mixing, weak dependence, consistency of subsampling, heavy tails,

long range dependence
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2 Streszczenie

Wnioskowanie statystyczne dla nieznanych rozk ladów statystyk lub estyma-

torów można oprzeć na rozk ladach asymptotycznych. Niestety, w przypadku da-

nych zależnych, takie procedury statystyczne sa̧ niejednokrotnie nieefektywne.

Różne sa̧ tego przyczyny, np. zbyt ma la liczba danych, nieznana postać rozk ladu

asymptotycznego, zbyt wolna zbieżność do rozk ladu asymptotycznego. Od pocza̧tku

lat osiemdziesia̧tych ubieg lego wieku intensywnie prowadzone sa̧ badania nad roz-

wojem tzw. metod resamplingowych ([30], [80]). Za pomoca̧ tychże metod można

bezpośrednio przybliżać nieznane rozk lady statystyk i estymatorów.

Idea resamplingu jest prosta. Obliczamy replikacje estymatora i z tych repli-

kacji wyznaczamy rozk lad empiryczny tzw. rozk lad resamplingowy.

Problem, z którym trzeba siȩ zmierzyć badaja̧c procedury resamplingowe to ich

zgodność, tzn. czy rozkad resamplingowy jest bliski prawdziwemu rozk ladowi?

Metod resamplingowych jest wiele. Ich zgodność w przypadku obserwacji nieza-

leżnych zosta la dog lȩbnie zbadana ([30]). Przypadek danych stacjonarnych ze

swoista̧ struktura̧ zależności tzn. silnie mieszaja̧cych także zosta l zbadany ([61],

[62], [71]). Przedmiotem intensywnych prac badaczy by l również resampling dla

niestacjonarnych szeregów czasowych ze specyficzna̧ forma̧ niestacjonarności tzn.

okresowych i prawie okresowych ([19], [27], [66], [67], [68], [77]). Ostatnie badania

nad metodami resamplingowymi koncentruja̧ siȩ g lównie na szeregach czasowych

ze zdefiniowana̧ przez Paula Doukhana s laba̧ zależnościa̧ ([25]).

W niniejszej pracy zosta l przedstawiony model dla szeregów czasowych, które

maja̧ bardzo specyficzne w lasności tzn.: posiadaja̧ d luga̧ pamiȩć ([7]), ciȩżkie

ogony (stabilne lub GED) ([55], [89], [90], [92]) oraz strukturȩ okresowa̧ ([3],

[36], [37], [47]). Taki model może mieć naturalne zastosowanie w wielu dziedzi-

nach np.: energetyce, wibromechanice, telekomunikacji, klimatologii jak również

w ekonomii.

Celem pracy jest pokazanie twierdzeń dotycza̧cych zgodności estymatora jed-

nej z metod resamplingowych dla funkcji średniej we wspomnianych powyżej

szeregach czasowych. Okazuje siȩ, że jedyna̧ metoda̧ resamplingowa̧, która̧ można

zastosować do danych z d luga̧ pamiȩcia̧ jest subsampling. Polega ona na wyborze

z obserwacji wszystkich możliwych podcia̧gów o pewnej d lugości i wyznaczaniu

estymatora na tych podcia̧gach. W pracy sformu lowano i udowodniono centralne

twierdzenia graniczne, niezbȩdne do udowodnienia zgodności subsamplingu. Po-

nadto przedstawiony zosta l przegla̧d dotychczasowych rezultatów dotycza̧cych

metod resamplingowych w szeregach czasowych.

S lowa kluczowe: metody resamplingowe, subsampling, szeregi czasowe okre-
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sowo skorelowane, w lasność s labego mieszania, zgodność subsamplingu, ciȩżkie

ogony, d luga pamiȩć
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3 Introduction

Possibility to construct sampling distributions of estimators for time series

is very important in statistical studies. Traditional statistical inference based on

asymptotic distributions does not always lead to effective statistical procedures.

There are several reasons for this, e.g.:

• the convergence of the estimator to the asymptotic distribution is slow

and often requires a large collection of observations. In practice, there is

not always the possibility to receive enough data because of the costs or

technical restrictions.

• The asymptotic distribution is often very complicated and depends on the

unknown parameters, which in the case of dependent data is difficult to

estimate.

In such situations, the resampling methods are helpful. Moreover, in many cases

these methods are the only effective technique. Resampling methods include:

jackknife, bootstrap methods, subsampling and model based resampling, e.g. sieve

bootstrap. These methods allow us to approximate the unknown distributions (or

characteristics) of the statistics and estimators without a reference to the form

of the distribution. These approximations are used to construct the confidence

intervals for the parameters and testing statistical hypothesis.

The development of resampling methods started in the eighties of the last century

from the Efron’s [30] work, dedicated to independent data.

The main idea of resampling is based on sampling from some distribution P̂

that corresponds to data. In the case of i.i.d. observations the most popular

resampling technique is the nonparametric bootstrap for which P̂ is simply an

empirical distribution function. For dependent data, however, the construction of

P̂ is more complicated involving blocks of data.

Consistency of subsampling means that the method generates valid quantiles

for confidence intervals in non-stationary models. One can compute the confi-

dence intervals and critical values from the subsampling distributions instead of

the asymptotic distributions.

In the nineties of the last century the research was focused on stationary time

series. At the present time, the efforts of researchers are concentrated on the non-

stationary series, with discrete and continuous time [27], [34], [49], [66], [87].

One of the specific form of non-stationarity is periodicity. Gladyshev [36] initiated

the development of research on periodicity in time series and stochastic process.

In 2006 Gardner et al. [35] have provided a general overview of research on pe-
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riodicity and time series, considering over 1500 published papers on the topic.

It was shown that the models with periodic structure are widely applicable e.g.

in communication, signal processing, vibromechanics, econometrics, climatology

and biology.

The resampling methods for periodic time series is an open research area, where

many fundamental properties have yet to be proven.

In the thesis, we will deal only with one form of resampling - subsampling, since

we will work with long memory time series.

The attention will be focused on the class of time series which simultaneously

deals with three features: periodic structure, heavy tails and long memory. The

motivation for this approach comes from the fact that in many applications of

time series one is confronted with large probabilities of extremal events i.e. heavy

tailed behavior.

The heavy-tailed random variables are variables with distributions whose extreme

values are ”more probable than normal”. Examples of such distributions are the

Generalized Error Distribution (GED) distributions or stable distributions. Both

classes will be discussed in this thesis. Additionally, in real data sets one has to

deal with long range dependence as well.

The presence of long range dependence in time series means that there exists

dependence between observations which are distant in time from each other.

In 2007 Politis and McElroy [75] have proposed the model, based on sub-

Gaussian vectors [89], that was the combination of the two features: heavy tails

and long memory. This particular model was the starting point for studies in-

cluded in this thesis.

It is obvious that among the observations of the time series there is a relation-

ship - the dependence. Over the years, the most popular way for studying this

dependence have been the mixing conditions like:

• strong mixing (α−mixing) - the most popular condition of all mixing con-

ditions, introduced by Rosenblatt [83],

• absolute regularity (β−mixing) introduced by Volkonski and Rozanov [91],

• uniform mixing (φ−mixing) introduced by Ibragimov [52] .

The fact is that under natural restrictions on the process parameters, many pro-

cesses of interest fulfill mixing conditions [24]. On the other hand, there is a large

class of processes for which mixing properties do not hold. It turned out that

mixing conditions are, in many cases, too strong to define dependence in time

series.
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Simple example of such a time series is a stationary AR(1) process:

Xt = aXt−1 + εt,

where the innovations are independent with P (εt = 1) = P (εt = −1) = 1/2 and

0 < |a| ≤ 1/2.

This process has a stationary distribution on [−2, 2] and Xt has always the same

sign as εt. It is possible to recover Xt−1, Xt−2, ... from Xt, it means that the process

{Xt}t∈Z is purely deterministic going backwards in time, so it cannot be strong

mixing (proof is given in [1]).

In 1999 Doukhan and Louhichi [25] and simultaneously Bickel and Bühlmann [13]

proposed an alternative condition for the dependence in time series called weak

dependence and ν−dependence, respectively. This kind of dependence property is

obtained from the convergence to zero of covariances of the process. They called

a process weakly dependent if the covariances of smooth functions of blocks of

random variables separated by a time gap tend to zero as the time gap increases.

It has been shown that many classes of processes for which mixing does not hold

satisfy weaker conditions - the weak dependence condition [18]. The definition

of weak dependence in comparison to, for example, mixing is very general. It

includes very general data sets and models like causal, non causal linear, bilin-

ear, strong mixing processes, dynamical systems or Markov processes driven by

discrete innovations.

The main objective of this thesis is to introduce the theoretical results describing

the consistency of subsampling method and to show how to use them in statistical

inference for time series with periodic behavior.

Three specific features of time series will be studied: heavy tails (stable and GED),

long memory and periodic behavior. The construction of described in the thesis

process entails the weak dependence property.

The central limit theorem for the mean estimator will be given. The subsam-

pling method to estimate the mean vector will be presented and the applications

of the central limit theorem to prove the consistency of subsampling method will

be shown.

The structure of the thesis is as follows. In the fourth chapter of the thesis the

definitions and the main ideas will be introduced. The purpose of the fifth chapter

is reviewing the existing resampling methods for periodic time series. Sixth chap-

ter contains the construction of our long memory, heavy tailed and periodically

stationary model and its properties. Moreover, the new central limit theorems are

presented. Moreover, the consistency of one of the resampling method - subsam-

pling is shown. In the seventh chapter the applications are presented.
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Main original results of the dissertation are presented in Sections 6 and 7.
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4 Basic concepts and definitions

In this chapter the basic concepts and definitions will be presented. Some of

them will be illustrated by examples.

Let (Ω,F , P ) be a probability space and (R,Σ) a measurable space.

Let also {Xt : t ∈ I} be a real-valued stochastic process and I is the set of

time indexes. A real-valued stochastic process {Xt : t ∈ I} with I = Z is called

time series.

Below the definitions of strictly and weakly stationary processes are intro-

duced. The first is referred to invariance of the moments of adequate orders and

second is referred to invariance of distributions. In both definitions T−the length

of the period and r−order parameter are natural numbers.

Definition 4.1. ([47], p. 3) The time series {Xt}t∈Z is called strictly stationary

if for each t1, t2, t3, ..., tn ∈ Z we have

(Xt1 , Xt2 , ..., Xtn)
d
= (Xt1+1, Xt2+1, ..., Xtn+1).

Definition 4.2. The time series {Xt}t∈Z is called weakly stationary of order r,

(WS(r)), if E|Xt|r <∞ and for each t, τ1, τ2, ..., τr−1 ∈ Z and h ∈ Z,

E(XtXt+τ1 ...Xt+τr−1) = E(Xt+hXt+τ1+h...Xt+τr−1+h).

Comment 4.1. For r = 2 we obtain classical weak stationarity.

It means that the mean of the time series is constant and autocovariance function

depends only on h.

Definition similar to Def. 4.2 can be found in [88], p. 9 and in [81], p. 105.

4.1 Data with the periodic structure

The case of stationary stochastic models was quite well investigated in the

past century. For non-stationary models there is a need to classify the type of

non-stationarity at hand.

Many real life phenomena are characterized by a seasonal behavior which, obvi-

ously, is not non-stationary. Seasonal data appear in such fields as: economics,

biology, climatology, telecommunications and many others. If seasonality is not

easily removable it means that we are dealing with a particular type of non-

stationarity, for example the periodic structure. In such cases it is not just the

mean that has a periodic rhythm. A periodic rhythm also describes the behavior

12



4.2 Long range dependence

of covariance.

Popular models used for describing such phenomena are periodically nonstation-

ary processes. Synonyms for periodically non-stationary are periodically station-

ary, cyclostationary, processes with periodic structure and many others. The pi-

oneer of research on periodically non-stationarity was Gladyshev [36], [37]. For

a review the research of Dehay and Hurd [20], Hurd et al. [48], [47], Hurd and

Leśkow [49] can be referred. Development of these research brought many theo-

retical results (Gardner et. al. [35], Leśkow et al. [66]).

Below are introduced the formal definitions of periodicity of the time series.

Definition 4.3. ([47], p. 3) A time series {Xt}t∈Z is called (strictly) periodically

stationary (PS) with period T if, for every n, any collection of times t1, ..., tn ∈ Z,
and Borel sets A1, ..., An ⊂ R,

Pt1+T,...,tn+T (A1, ..., An) = Pt1,...,tn(A1, ..., An),

and there are no smaller values of T > 0 for which above equation holds. τ ∈ Z.

For the time series {Xt}t∈Z we define the autocovariance of the pair (Xt, Xt+h)

to be

γX(t, h) = Cov(Xt, Xt+h).

Definition 4.4. ([47], p. 5) Time series {Xt}t∈Z is periodically correlated (PC)

in Gladyshev sense, if the mean µX(t) is periodic (µX(t) = µX(t + T )) and the

autocovariance function γX(t, h) is periodic in t for all h ∈ Z (γX(t, h) = γX(t+

T, h)).

If there is no ambiguity, we will write γ(t, h) (or γ(h) if we deal with classical

weak stationarity) instead of γX(t, h) for the autocovariance function of time

series {Xt}t∈Z.

4.2 Long range dependence

In many periodic phenomena the existence of the long range dependence is

observed [46], [76], [7]. The presence of long range dependence in time series

means that there exists a relationship between observations which are far away

from each other in time. Classical fields where long range dependence occurs are

dendrochronology and hydrology. Long memory occurs in the sense that a hyper-

bolic behavior of the autocorrelations holds for almost all lags and frequencies

respectively.
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4.2 Long range dependence

The investigation of long range dependence in time series data was started in the

seventies by Lawrance and Kottegoda [65], McLeod and Hipel [74], and then in

eighties by Hosking ([45]).

The long range dependence can be defined as long memory. Note that the

definition of long memory introduced below is one of many possible definitions.

Definition 4.5. ([16], p.520) A stationary, in the sense of the Definition 4.2,

time series {Xt}t∈Z has long memory if its autocovariance function γ satisfies the

following formulas: ∑
0<|h|<n

γ(h) ∼ Cnβ

where β ∈ [0, 1), and C 6= 0.

Definition 4.6. A PC or PS time series {Xt}t∈Z has a long memory if the

autocovariance function γ(s)(h) = Cov(Xs+qT , Xs+(q+h)T ) for each q ∈ Z satisfies

the following formula∑
0<|h|<n

γ(s)(h) ∼ C(s)nβ, s ∈ {1, . . . , T}

where β ∈ [0, 1). For each s ∈ {0, . . . , T − 1} C(s) is the finite constant such that

C(s) = 2 · lim
n→∞

∑n−1
h=1 γ(s)(h)

nβ
> 0.

Let us assume that the notation for the long memory with parameter β ∈ [0, 1)

will be LM(β).

Granger and Joyeux [38] and Hosking [44] proposed the use of fractional dif-

ferencing in modeling this kind of data. Fractional differencing is related to the

so called Hurst phenomenon in hydrology (Hosking [44]). β− the long memory

parameter is related to H−the Hurst parameter: H = β+1
2
.

4.2.1 Gegenbauer process

Many data sets presenting the long range dependence also exhibit some form

of periodicity. In the case when seasonality is not difficult to remove (for example

by removing seasonal means), such phenomena can be modeled via stationary

processes - so-called seasonal fractional models presented e.g. by Gray et al. [39],

[40]. Following the suggestion of Hosking [44], that so-called Gegenbauer pro-

cesses, can deal with long memory and seasonal behavior, by suitable selection

of the coefficient. Gray studied the so-called GARMA (Gegenbauer ARMA) pro-

cesses.
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4.3 Mixing and Weak dependence

Hui and Li have in [46] considered the use of fractional differencing in modeling

persistence phenomenon in a periodic process. They mix together periodicity and

long-memory i.e. they propose a process consisting of two independent fractional

long-memory components. However, the processes are covariance stationary [44].

Notice that the Gegenbauer processes are suitable tool to describe the long

memory behavior [44], [32]. This kind of process will be used in modeling the long

range dependence in my dissertation.

Definition 4.7. ([39]) Let us assume that εt is i.i.d. innovation process. The

process {Gt}t∈Z defined by the equation:

Π1≤i≤k(I − 2νiB +B2)diGt = εt, (1)

is the k-factor Gegenbauer process.

0 < di < 1/2 if |νi| < 1 or 0 < di < 1/4 if |νi| = 1 for i = 1, ..., k and I is identity

operator, B is backshift operator.

Theorem 4.1. ([41]) Process defined by the Definition 4.7 is long memory, sta-

tionary, causal and invertible and has a moving average representation:

Gt =
∑
j≥0

ψj(d, ν)εt−j,

with
∑∞

j=0 ψ
2
j (d, ν) <∞, where ψj(d, ν), j ≥ 0, is defined by:

ψj(d, ν) =
∑

0 ≤ l1, ..., ln ≤ j

l1 + ...+ ln = j

Cl1(d1, ν1) · ... · Clk(dk, νk),

where Cli(di, νi) are the Gegenbauer polynomials defined as follows:

(1− 2νz + z2)−d =
∑
j≥0

Cj(d, ν)zj, |z| ≤ 1, |ν| ≤ 1.

Moreover, if {εt}t∈Z in the Definition 4.7 is the Gaussian white noise, then

{Gt}t∈Z is Gaussian time series.

The Gegenbauer processes are stationary, seasonal fractional models [39], [40].

It is enough to take, for example ν = cos$t, with $t = 2tπ/T, where T is a season.

4.3 Mixing and Weak dependence

The time series is a sequence of dependent observations. In 1999 Doukhan

and Louhichi [25] and simultaneously Bickel and Bühlmann [13] introduced a
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4.3 Mixing and Weak dependence

new way of describing data dependency - the weak dependence. Until then, the

most widely used methods to describe the dependence in the time series were

mixing techniques.

In the literature there are several concepts of mixing: α, β, ϕ, ψ− mixing

[24], [15]. The most general and the most widely used is α−mixing.

Let {Xt : t ∈ Z} be time series and F(t1, t2) be σ−algebra generated by the

observations {Xt : t1 ≤ t ≤ t2}.

Definition 4.8. ([24]) We define α−mixing sequence as follows

αX(τ) = sup
t∈Z

sup

A ∈ FX(−∞, t)
B ∈ FX(t+ τ,∞)

|P (A ∩B)− P (A)P (B)|,

where τ ∈ N.
The time series {Xt}t∈Z is α−mixing if αX(τ)→ 0 for τ →∞.

Comment 4.2. P, in Definition 4.8, is the measure corresponding to the whole

process {Xt}t∈Z.

Definition 4.9. ([51], p. 111) Let us define

rX(τ) = sup

ξ1, ξ2

|corr(ξ1, ξ2)|,

and ξ1 and ξ2 are respectively measurable to the σ−algebras FX(−∞, t) and

FX(t+ τ,∞).

The time series {Xt}t∈Z satisfy the completely regular condition if limτ→∞rX(τ) =

0.

Definition 4.10. ([51], p. 111) Let us define

ρX(τ) = sup

ξ1 ∈ Lt−∞
ξ2 ∈ L∞t+τ

|corr(ξ1, ξ2)|,

Lmn is the closure in L2 of the vector space spanned by Xn, ..., Xm. The time series

{Xt} satisfy the completely linear regular condition if limτ→∞ρX(τ) = 0.

It is known [60], that for Gaussian processes the relationship between above

coefficient is as follows:

ρX(τ) = rX(τ),
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4.3 Mixing and Weak dependence

and

αX(τ) ≤ rX(τ) ≤ 2παX(τ).

As we see in the formal definition of mixing, the distant observations are

almost independent random variables. As a consequence, we can obtain limit re-

sults, like limit theorems. But the mixing conditions are dependence conditions

in terms of the σ−algebras generated by the initial time series. This means that

we need to consider conditions which are often unverifiable or very difficult to

verify in practice.

To quote Bardet [6] the mixing notions are adapted in areas where history, that

is the σ−algebra generated by the past is very important.

Moreover, there are also time series which do not fulfill any of the mixing condi-

tions.

Using weak dependence instead of mixing conditions provides us the whole spec-

trum of new statistical possibilities. The definition of weak dependence includes

very general data sets and models like causal, non causal linear (e.g. Bernoulli

shifts), bilinear, strong mixing processes or dynamical systems. Moreover, prop-

erties of dependence are independent of the marginal distribution of the time

series, that can be the discrete one e.g. Markov processes driven by discrete in-

novations. The weak dependence provides the tools in the analysis of various

statistical procedures with very general data sets.

Below, the two definitions of weak dependence are introduced. In the subse-

quent considerations it is completely sufficient to use the second definition, which

is a special, more simple case of the first one.

Let (Ω,A,P) be a probability space and let X be a Polish space. Let

F =
⋃
u∈N∗

Fu and G =
⋃
u∈N∗

Gu,

where Fu and Gu are two classes of functions from X u to R.

Definition 4.11. ([18], p. 11) Let X and Y be two random variables with values

in X u and X v respectively. If Ψ is some function from F × G to R+, define the

(F ,G,Ψ)−dependence coefficient ε(X, Y ) by

ε(X, Y ) = sup

f ∈ Fu
g ∈ Gv

|Cov(f(X), g(Y ))|
Ψ(f, g)

.

Let {Xn}n∈Z be a sequence of X−valued random variables. Let Γ(u, v, k) be the

set of (i, j) in Zu × Zv such that i1 < ... < iu ≤ iu + k ≤ j1 < ... < jv. The
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4.3 Mixing and Weak dependence

dependence coefficient ε(k) is defined by

ε(k) = sup

u, v

sup

u, v ∈ Γ(u, v, k)

ε((Xi1 , ..., Xiu), (Xj1 , ..., Xjv)).

The sequence {Xn}n∈Z is (F ,G,Ψ)−dependent if the sequence (ε(k))k∈N tends to

zero. If F = G we simply denote this as (F ,Ψ)−dependence.

Fact 4.1. ([18], p. 11) The Definition 4.11 can be easily extended to general

metric sets of indexes T equipped with a distance δ (e.g. T = Zd yields the case

of random fields). The set Γ(u, v, k) is then the set of (i, j) in T u × T v such that

k = min{δ(il, jm)/1 ≤ l ≤ u, 1 ≤ m ≤ v}.

In the thesis it will be sufficient to assume the simpler version of the Definition

(4.11), as below.

Let (E, ‖ · ‖) be a normed space and u ∈ N∗. We assume that a function

h : Eu −→ R belongs to the class L = {h : Eu → R, ‖ h ‖∞≤ 1, Lip(h) < ∞},
where Lip(h) = supx 6=y

|h(x)−h(y)|
‖x−y‖1 and ‖ x ‖1=

∑u
i=1 ‖ xi ‖ .

Definition 4.12. ([6]) A sequence {Xt}t∈Z of random variables taking values

in E = Rd (d ∈ N∗ = N \ {0}) is (ε,L,Ψ)−weakly dependent if there exists

Ψ : L × L × N∗ × N∗ → R and a sequence {εr}r∈N (εr → 0) such that for any

(f, g) ∈ L × L, and (u, v, r) ∈ N∗2 × N

|Cov(f(Xi1 , ..., Xiu), g(Xj1 , ..., Xjv))| ≤ Ψ(f, g, u, v)εr

whenever i1 < i2 < ... < iu ≤ r + iu ≤ j1 < j2 < ... < jv.

The weak dependence notions are related to the initial time series and are

measured in terms of covariance of the functions.

The asymptotic behavior of the covariance shows us the independence between

”past” and ”future”. Intuitively, the weak dependence is ”forgetting” in time

series.

Just as there are different notions of mixing, so there are several concepts of

weakly dependent processes. Generally, one can identify following types of weak

dependence:

• λ−weak dependence, if Fu, Gu bounded and Xt is L1 integrable

• κ−weak dependence, if Fu bounded and Xt is L1 integrable
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4.3 Mixing and Weak dependence

• θ−weak dependence, if Fu, Gu bounded and Xt is L1 integrable

• ζ−weak dependence, if Fu bounded and Xt is L1 integrable

• η−weak dependence, if Fu, Gu bounded and Xt is L1 integrable

Note there are other cases of weakly dependent, that are not quoted here.

The form of the Ψ function corresponds to particular cases of weak depen-

dence.

The coefficient λ corresponds to:

Ψ(f, g, u, v) = uvLip(f)Lip(g) + uLip(f) + vLip(g),

the coefficient η corresponds to:

Ψ(f, g, u, v) = uLip(f) + vLip(g),

the coefficient θ corresponds to:

Ψ(f, g, u, v) = vLip(g),

the coefficient ζ corresponds to:

Ψ(f, g, u, v) = min(u, v)Lip(f)Lip(g),

and the coefficient κ corresponds to:

Ψ(f, g, u, v) = uvLip(f)Lip(g).

There exist following dependences between particular cases of weak depen-

dence:

{ θ ⇒ η

ζ ⇒ κ

}
=⇒ λ

In the definition of weak dependence we denote respectively λr, ηr, ζr, κr or

θr instead of εr.

Examples of weakly dependent sequences

First example is α−mixing time series, which of course is also weakly depen-

dent. We give the definition of which will also be used in the sequel of the paper

thesis.

Definition 4.13. ([6], p. 4) The stationary sequence {Xt}t∈Z is said

to be m−dependent if Xs and Xt are independent whenever |s− t| > m.
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4.3 Mixing and Weak dependence

Example 4.1. The m−dependent time series defined as in Definition 4.13 is

both α−mixing and weakly dependent. It follows strictly from the Definitions re-

spectively 4.8 and 4.12. It is enough to take respectively τ and r more than m.

The most popular example of m−dependent sequence is MA(m).

If {Z}n∈N is an independent sequence then for any finite non zero sequence

(a1, ..., am) the moving average (MA(m)) process Xn = a1Z1 + ...+ amZn−m+1 is

m−dependent.

Below non mixing but weakly dependent sequences are given:

Example 4.2. Bernoulli shift: Xn = H(ξn, ξn−1, ...), where n ∈ N (with H(x) =

=
∑∞

k=0 2−(k+1)xk) is not mixing but is weakly dependent.

Indeed: Xn =
∑∞

k=0 2−(k+1)ξn−k, where ξn−k is the k − th digit in the binary

representation of the uniformly chosen number Xn = 0.ξnξn−1... ∈ [0, 1].

Such Xn is deterministic function of X1, so the event A = (X1 ≤ 1
2
) belongs to

the σ− algebras: σ(Xt, t ≤ 0) and σ(Xt, t ≥ n). From the definition:

α(n) ≥| P (A ∩ A)− P (A)P (A) |= 1

2
− 1

4
=

1

4
.

From the lemma below follows that Bernoulli shift {Xn}n∈N is weakly dependent.

Lemma 4.1. ([18]) Bernoulli shifts are θ−weakly dependent with θ(r) ≤ 2δ[r/2],

where {δr}r∈N is defined by: E | H(ξt−j, j ∈ Z)−H(ξt−j1|j|≤r, j ∈ Z) | .

Example 4.3. Example of the model which satisfies the weak dependence def-

inition (but not fulfills mixing conditions) is AR(1) model defined as: Xt =

aXt−1 + εt, where |a| < 1 and innovations {εt}t∈Z are i.i.d. Bernoulli variables

with parameter s = P (εt = 1) = 1− P (εt = 0).

Example 4.4. One of the useful theorems to construct the stationary time series

with weak dependence properties is given below:

Theorem 4.2. ([23]) Let {εt}t∈Z be centered i.i.d innovations and let linear pro-

cess {Xt}t∈Z be defined as

Xt =
∞∑
k=0

bkεt−k,

where k ∈ Z and the series bk is square summable. Then Xt is η−weakly depen-

dent, where η2
2r =

∑
k>r b

2
k.
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4.4 Heavy tailed random variables

The above models are weakly dependent but they do not exhibit mixing prop-

erties [26].

More examples of weakly dependence sequences can be found in the research of

Doukhan et al. [18], [41].

4.4 Heavy tailed random variables

The heavy-tailed random variables are variables with distributions whose ex-

treme values are ”more probable than normal”. The heavy tail phenomena occur

frequently in real life. In contradiction to Gaussian phenomena which do not al-

low for large fluctuations, ”heavy tails” can be used to describe high variability.

The data with ”heavy tails” appear in such different fields as economics, telecom-

munications, meteorology, physics and signal processing.

If we define kurtosis as µ4/σ
4 and µ4 is the fourth central moment (if it exists),

while σ is the standard deviation then we can say that heavy-tailed variables are

those with kurtosis greater than three, and whose tails go to zero slower than in

the normal distribution.

4.4.1 Stable random variables

The stable variables are very specific group of the heavy tails variables. Al-

though they have infinite moments, they are very convenient to use in many

applications. Stability plays very important role in the theory of stochastic pro-

cesses and time series. It is connected with insensitivity character of the process

to change of the scale.

One of the main objectives of statistics, is to find the equation that best

describes the set of observed points. In the 18th and 19th centuries pioneers of

the statistics also considered ”the best fit” problem. They found the least squares

method very suitable. They considered generating functions and the distribution

of the errors and found the importance of the normal distribution. Laplace and

Poisson applied the theory of Fourier series and integral as a new tool for analysis

of the probability problems. For example the Gaussian density:

f2(x) =
1

π

∫ ∞
0

exp(−ct2)cos(tx)dt

is the Laplace’s Fourier transform. In the 1853 Augustin Cauchy has discovered

that the function fα, where α is not necessarily equal to 2, satisfying the equation:∫ ∞
−∞

exp(itx)fα(x)dx = exp(−σα|t|α), α > 0 (2)
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4.4 Heavy tailed random variables

has the convolution property

(Afα(A·)) ∗ (Bfα(B·)) = Cfα(C·)

for some C = C(A,B) and all A, B > 0. To show the non-negativity of the

function fα is sufficient to show that the function exp(−|t|α) is a characteristic

function. Cauchy succeeded in proving that fα(x) ≥ 0 for all x only in the cases:

α = 1 and α = 2.

In 1923 Pólya presented the condition for a function to be the characteristic

function:

The {ψ(t), t ∈ R} is characteristic function if ψ(t) is real, non-negative, ψ(0+) =

ψ(0) = 1, ψ(t) = ψ(−t) and ψ is convex on (0,∞).

Above condition implies for 0 < α < 1 that the function fα is non-negative. One

year after Pólya, in 1924, Lévy proved that for all α ∈ (0, 2] functions fα in (2)

are non-negative.

The definitions, adopted from the book of Taquu [89] clarify the concept of

stable distributions.

Definition 4.14. ([89], p.2) A random variable X is said to have a stable distri-

bution if for any positive numbers A and B, there is a positive C and real number

D such that

AX1 +BX2
d
= CX +D,

where X1 and X2 are independent copies of X, and ”
d
=” denotes equality in dis-

tributions.

We also have the following equivalent definition.

Definition 4.15. ([89], p.3) A random variable X is said to have a stable dis-

tribution if for any n ≥ 2, there is a positive number Cn and a real number Dn

such that

X1 +X2 + ...+Xn
d
= CnX +Dn,

where X1, X2, ..., Xn are independent copies of X.

Definition 4.16. ([89], p.5) A random variable X is said to have a stable distri-

bution if it has a domain of attraction, i. e., if there is a sequence of i.i.d. random

variables Y1, Y2, ... and sequence of positive numbers {dn} and real numbers {an},
such that

Y1 + Y2 + ...+ Yn
dn

+ an
d⇒ X,

where ”
d⇒” denotes convergence in distribution.
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4.4 Heavy tailed random variables

The Definition (4.16) implies that limits of the normalized sums of i.i.d. ran-

dom variables can only be the stable distributions.

It is also possible to define the stable random variable by the characteristic func-

tion. This kind of definition is equivalent to the definition ”in distribution”, but

it is analytically more tractable.

Definition 4.17. ([89], p.5) Random variable X has a stable distribution if there

exist the parameters such that random variable X has the form τ > 0 and µ ∈ R :

characteristic function of the variable distribution X has a form:

ϕ(t) =

{
exp{−τα|t|α(1− iβ(t)tg πα

2
) + iµt}, α 6= 1

exp{−τ |t|(1 + iβ 2
π
(t) ln |t|) + iµt}, α = 1

.

While considering stable distributions one usually takes the ”enough regular”

case of α−stability, that is the case when α belongs to the interval (0, 2]. Observe

that the stable distribution is well defined only when α ∈ (0, 2]. For α > 2 the

real-valued α−stable random variables do not exist ([29]).

Recall that α ∈ (0, 2] is the stability index, β ∈ [−1, 1] is the skewness pa-

rameter, τ > 0 is the scale parameter and µ ∈ R is the location parameter.

If α = 2, then the random variable X is Gaussian. In the case when α ∈ (0, 2),

we obtain distributions with tails much heavier than Gaussian. Moreover, when

α ∈ (0, 2), there is no second moment in the distribution and when α ∈ (0, 1],

there is no even first one.

As we have noticed β ∈ [−1, 1] is the skewness parameter. If β > 0, then

distribution of the random variable is skewed to the right (the right tail is heavier),

in the case when β < 0, we have skewness to the left. In the case β = 0 we deal

with the symmetric distribution if µ = 0 or about µ, if µ 6= 0.

In the case when β = ±1 we call the distribution of the random variable X

totally skewed or completely asymmetric. The last term was proposed by Weron

[92]. Finally, if β = 1 and α ∈ (0, 1), then the random variable is positive, real

valued. In case if β = −1 and α ∈ (0, 1), then the random variable is negative,

real valued.

The scale parameter τ plays similar role as the variance in Gaussian case, e.g. if

some stable random variables X,X1 have the scale parameters τX , 1, respectively,

then variables X and τ ·X1 have the same distributions.

The fourth parameter µ is responsible for the shift.

Instead of writing that a random variable X has the α−stable distribution

with the parameters: α, β, τ and µ we write X ∼ Sα(τ, β, µ).
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4.4 Heavy tailed random variables

It is well-known that the many stable distributions have the self-similarity

property.

Definition 4.18. ([89], p. 311)

The time series {Xt}t∈Z is H-self similar with index H > 0 if the finite-dimensional

distributions of: Xct and cHXt are the same for all c > 0.

For more informations and examples the reader is referred to Weron et al.

[55], p. 135.

The self similarity index H is related to the Hurst parameter H. While 1/2 <

H < 1, the asymptotic behavior of the autocovariance function defines the long

range dependence [89], p. 310.

Examples of stable and non-stable distributions It is clear to see that

the normal distribution is α-stable with α = 2.

In the following example we consider the lack of the stability of the uniform

distribution.

Example 4.5. Non-stability of the uniform distribution.

Let X1, X2− be independent random variables with the uniform distribution on

[0, 1]. The density function of uniform distribution on [0, 1] is:

f(x) =

{
1, x ∈ [0, 1]

0, x /∈ [0, 1]
.

The density function of X1 +X2 is equal:

fX1+X2(x) =


0, x /∈ [0, 2]

x, x ∈ [0, 1]

2− x, x ∈ [1, 2]

.

It is clear that distribution function of the sum X1 + X2 and the uniform

distribution of X1 or X2 are completely different. It means that uniform random

variable is not stable.

Notice that all stable distributions that are non degenerate are continuous.

Below analogous definitions for the stability but in the multivariate case will

be presented. It leads to the definition of the stability of the time series.
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4.4 Heavy tailed random variables

Definition 4.19. ([89], p.57) A random vector X = (X1, X2, ..., Xn) is said to

be a stable random vector in Rn if for any positive numbers A and B there is a

positive number C and vector D ∈ Rn such that

AX(1) +BX(2) d
= CX +D, (3)

where X(1) and X(2) are independent copies of X, and
d
= denotes equality in

distribution. The vector X is called strictly stable if the equation (3) holds with

D = 0, ∀A,B > 0.

Fact 4.2. ([89], p.58) A random vector X is stable if and only if for any k ≥ 2,

there is a constant α ∈ (0, 2] and a vector Dk such that

X(1) +X(2) + ...+X(n) d
= k1/αX +Dk,

where X(1), X(2), ..., X(n) are independent copies of X. The α is called stability

index.

The finite-dimensional distributions of time series {Xt}t∈Z are the distribu-

tions of the vectors

(Xt1 , Xt2 , ..., Xtn), t2, t2, ..., tn ∈ Z, D ≥ 1.

Definition 4.20. ([89], p.112) A time series {Xt}t∈Z is stable if all its finite-

dimensional distributions are stable.

Comment 4.3. ([89], p.112) If the finite-dimensional distributions of the stable

time series {Xt}t∈Z are stable then they must all have the same index of stability

α. We use the term α−stable time series when we want to specify the index of

stability.

It is also possible to define the stable random vector by the characteristic

function.

Let (X1, X2, ..., Xn) be a α−stable vector in Rn and let

Φα(θ) = Φα(θ1, θ2, ..., θn) = E exp
{
i

n∑
k=1

θkXk

}
.

Φα(θ) is characteristic function of α−stable random vector.

The interesting question is: are the coordinates of the α−stable random vector

(X1, ..., Xn) also α−stable? Are linear combinations of α−stable variables are

α−stable as well? The following Lemma provides the answers.
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4.4 Heavy tailed random variables

Lemma 4.2. (Theorem 2.1.2, ([89], p. 58)) Let X = (X1, ..., Xn) be a stable

vector in Rn. Then, in the Definition 3 the constants A,B and C can be chosen

in such a way that C = (Aα + Bα)1/α. Moreover, any linear combination Y =∑n
k=1 bkXk of the components of X is an α−stable random variable. We take

bk ∈ R.

Another natural question: does the conversion of the Lemma 4.2 hold? If all

linear combinations of the coordinates of the random vector are α−stable, is the

vector α−stable? In the Gaussian case, α = 2, the answer is yes. What with α < 2

? Below lemma gives the answer.

Lemma 4.3. (Theorem 2.1.5, ([89], p. 59)) Let X be a random vector in Rn.

(a) If all linear combinations Y =
∑n

k=1 bkXk have strictly stable distributions,

then X is a strictly stable random vector in Rn.

(b) If all linear combinations Y =
∑n

k=1 bkXk are α−stable, where α ≥ 1, then

X is a stable vector in Rn.

The following useful Lemma considers the case of sums of independent α-

stable variables.

Lemma 4.4. Let X1, X2, ..., Xn be independent random variables with Xi ∼
Sα(τi, βi, µi), i = 1, 2, ..., n, where n < ∞. Then X1 + ... + Xn ∼ Sα(τ, β, µ),

with

τ = (τα1 + ...+ ταn )1/α, β =
β1τ

α
1 + ...+ βnτ

α
n

τα1 + ...+ ταn
, µ = µ1 + ...+ µn.

Proof of the Lemma 4.4

• α 6= 1

lnE exp iθ(X1 + ...+Xn) = ln(E exp iθX1) + ...+ ln(E exp iθXn) =

= −(τα1 +...+ταn )|θ|α+i|θ|αsign(θ)
(

tan
πα

2

)
(β1τ

α
1 +...+βnτ

α
n )+iθ(µ1+...+µn) =

= −(τα1 +...+ταn )|θ|α
[
1−iβ1τ

α
1 + ...+ βnτ

α
n

τα1 + ...+ ταn
sign(θ) tan

πα

2

]
+iθ(µ1+...+µn).

• α = 1

lnE exp iθ(X1 + ...+Xn) = ln(E exp iθX1) + ...+ ln(E exp iθXn) =

−(τ1 + τ2)|θ|(1 + i(β1 + β2)
2

π
sign(θ)ln|θ|) + i(µ1 + µ2θ)

26



4.4 Heavy tailed random variables

Lemma 4.5. (Property 1.2.3, ([89]), p. 11) Let X ∼ Sα(τ, β, µ) and let a be a

non-zero real constant. Then

aX ∼ Sα(|a|τ, sign(a)β, aµ), if α 6= 1

aX ∼ S1(|a|τ, sign(a)β, aµ− 2

π
a(ln|a|)τβ), if α = 1.

4.4.2 The Generalized Error Distribution

The Generalized Error Distribution (GED) is a parametric model of a heavy

tailed distribution. Unlike α-stable distributions, all moments of the GED are

finite and the GED has a relatively simple form of a probability density function.

The Generalized Error Distribution is a symmetric unimodal member of the

exponential family. The domain of the probability distribution function is (−∞,∞).

The original concept of the GED was introduced by Subbotin in 1923 [86], so it

is known as ”Subbotin’s family of distributions”. However, Subbotin proposed a

two-parameters GED model:

f(x;h,m) =
mh

2Γ(1/m)
exp{−hm|x|m}, (4)

where x ∈ R and h > 0 and m ≥ 1 are scale and shape parameters, respectively.

In 1963 Lunetta ([72]) has defined a three-parameters GED class, as follows:

f(x;µ, σ, α) =
1

2σα1/αΓ(1 + 1/α)
exp{−1

2
|x− µ
σ
|α}, (5)

where µ ∈ R is the location parameter, τ > 0 is the scale and α > 0 is the shape

(power).

Of course, the m in the equation (4) is equal to the α in the equation (5) while

h = (α1/ατ)−1. Taking into account the fact that the Euler gamma function Γ

satisfies the formula rΓ(r) = Γ(r + 1), the equations (4) and (5) are equivalent,

whenever the location parameter µ in (5) is equal to zero.

The GED is also called the generalized normal class. The reason is that for the

random variable X with density function as in the formula (5) we have the fol-

lowing equation:

τ = {E|X − µ|α}1/α,

which for α = 2, gives the standard deviation in the normal case. Note that if

α 6= 2, τ must not be confused with the standard deviation of X.

Below we give the definition in which τ stands for the standard deviation:
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4.4 Heavy tailed random variables

Definition 4.21. ([90]) The random variable X has GED distribution (X ∼
G(µ, τ, α)) if the density function, f(x), of X is given by the equation:

f(x;µ, τ, α) = (2Γ(1 + 1/α)A(τ, α))−1exp{−| x− µ
A(τ, α)

|α} (6)

with A(τ, α) = τ
√

Γ(1/α)/Γ(3/α).

In the sequel of this dissertation it is enough to consider the case τ = 1 in the

equation (6). Therefore, we will be considering the density function

f(x;µ, α) =
α

2A(α)Γ(1/α)
exp{−|x− µ

A(α)
|α}, (7)

where A(α) =
√

Γ(1/α)/Γ(3/α), α > 0, µ ∈ (−∞,∞), and x ∈ R.

Our definition of the GED is as follows:

Definition 4.22. The random variable X has a GED distribution X ∼ G(µ, 1, α)

if the density function, f(x), of X follows the equation (7).

The rth central moment of a random variableX ∼ G(µ, 1, α) can be calculated

as

E(X − EX)r =
1√

Γ(1/α)/Γ(3/α)Γ(1 + 1/α)

∫ ∞
−∞

(x− EX)re−
1
2
|x−EX|αdx,

where r ∈ N. When r is odd then the rth moments are equal to zero, by symmetry.

For r even the rth moments are as follow:

EXr = (
√

Γ(1/α)/Γ(3/α))r
Γ(1/α(r + 1))

Γ(1/α)
.

Notice that in the consequence of the Definition 4.22 the first four moments

of GED distribution are: mean = µ, variance = 1 skewness = 0, kurtosis =
Γ(5/α)Γ(1/α)

Γ2(3/α)
.

Recall that the GED distribution has heavy tails, if α < 2. When α > 2 we get

tails lighter than normal.

It is clear to see that the normal distribution is GED with α = 2. Below are

other examples of the GED distribution.

Example 4.6. If we choose α = 1 in the Definition 4.21 then the GED distri-

bution is so-called Double Exponential, or Laplace, distribution, i.e. G(µ, τ 2, 1) =

L(µ, 4τ 2).

Comment 4.4. Note that the Subbotin’s model (4) does not allow for the tails

heavier than those in the Laplace distribution. Unlike the formula (5), where the

tails heavier than those in the Laplace distribution are allowed.

Example 4.7. If we consider the Definition (4.21) and α → 0, then the GED

distribution tends to the uniform distribution U(µ− τ, µ+ τ).

28



5 Brief overview of the inference for non-stationary

time series

There are many results for the stationary and weakly dependent time series,

for example Doukhan et al. [22], [26], Bardet et al. [6]. The results will be briefly

introduced in the Subsection 3.3.

The main objectives of interest of this Section are resampling methods in time

domain for non-stationary time series with periodic structure.

We focus on periodic (seasonal) time series, because periodicity is a common fea-

ture of the real life data sets. We can find seasonality in many fields like telecom-

munication, economy, climatology, vibromechanics. The most popular approach

to model the periodic data is the notion of periodic correlation. This approach

was introduced by Gladyshev [36] and developed among others by Hurd and Mi-

amee [47], Hurd and Leśkow [49], [50], Hurd, Makagon and Miamee [48], Leśkow

and Weron [68], Leśkow and Dehay [21], Leśkow and Synowiecki [66], [67].

5.1 Linear filtration methods

In this Section the results of Javorskyj et al. [56], [57] will be presented. The

results are dedicated to the inference of the periodically correlated (PC) process

with continuous time.

In the case of discrete time the realization of the process is the time series.

Hence the process is, in that sense, the generalization of the time series.

The tool used in the article to estimate the mean and the covariance functions

is the linear filtration theory.

Recall that for the PC processes {Xt}t∈R the mean function and the covariance

function of the process fulfill the conditions:

EXt = m(t) = m(t+ T ),

Cov(Xt, Xt+u) = γ(t, u) = γ(t+ T, u).

The process of interest in this Section is the PC process in the sense of Glady-

shev (the Definition 4.4 with Z replaced by R). Hence there exists the second

moment of the process. Moreover, we assume a summability for the autocovari-

ance function, it means that
∫∞
t=−∞ |γ(t, u)|du <∞, for all t ∈ R.

Remark 5.1. Notice that the last condition shows that if we take {Xt} with t ∈ Z,
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5.1 Linear filtration methods

there will not be the long memory in the sense of the Definition 4.5 in considered

process.

Fact 5.1. ([56])

Let us assume that
∫ T
t=0
|m(t)|dt < ∞ and

∫ T
t=0
|γ(t, u)|dt < ∞, then we use the

following Fourier representation for the mean and the autocovariance, respec-

tively:

m(t) =
∑
k∈Z

mke
ikω0t,

γ(t, u) =
∑
k∈Z

Bk(u)eikω0t,

where |mk| → 0, |Bk(u)| → 0, if k →∞ and ω0 = 2π/T .

Functions mk and Bk(u) are called the mean and the autocovariance compo-

nents.

5.1.1 Coherent and component methods

In this Section the traditional methods of linear filtration for statistical anal-

ysis of PC process will be introduced. This methods are the coherent and the

component methods [58], [59]. Moreover, the generalization of this procedures

will be used to estimate the mean and the covariance functions and the compar-

ison of the methods will be done.

Without a loss of the generality we assume, in all the Section, that the length

of the signal is n = NT, where T is the known period and N is a number of

periods that are averaged.

As we have mentioned above, the coherent and the component procedures are

traditional methods for statistical inference of the PC time process. The coherent

method is based on synchronous averaging. Therefore, the estimators of the first

and second order components are defined as follows:

m̂N(t) =
1

N

N−1∑
p=0

Xt+pT ,

b̂N(t, u) =
1

N

N−1∑
p=0

[Xt+pT − m̂N(t+ pT )][Xt+u+pT − m̂N(t+ u+ pT )].
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5.1 Linear filtration methods

On the other hand, the component method is based on trigonometric polyno-

mials:

m̂n(t) =

N1∑
k=−N1

m̂k,ne
ikω0t,

γ̂n(t, u) =

N2∑
k=−N2

B̂k,n(u)eikω0t,

where

m̂k,n =
1

n

∫ n

s=1

Xse
−ikω0sds,

B̂k,n(u) =
1

n

∫ n

s=1

[Xs − m̂n(s)][Xs+u − m̂n(s+ u)]e−ikω0sds,

N1, N2 are number of harmonics and ω0 = 2π/T .

In the case when the number of harmonics is large (N1 →∞, N2 →∞), the

properties of both methods are similar. Otherwise the component method gives

better results.

Note that the coherent estimation is based on synchronous averaging and

only one value on period T is averaged overall the realization length, meanwhile

in the component method the integral realization transformations are used. The

component method gives more precise results, in the case of mixture of harmonic

function and a white noise.

Let us denote the weight function by h. For the estimator m̂(t) we get

m̂(t) =

NT∫
0

Xt−sh(s)ds, (8)

The coherent or the component estimators are obtained by using the different

form of the weight functions.

Theorem 5.1. ([56]) If the weight function h is in the form:

h(s) =
1

N

N−1∑
p=0

δ(s− pT ), (9)

where δ is the Dirac function then we obtain a coherent estimator:

m̂N(t) =
1

N

N−1∑
p=0

Xt−pT . (10)
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5.1 Linear filtration methods

If the weight function h is in the form:

h(s) =
1

n

N1∑
k=−N1

eikω0s =
sin[(N1 + 1

2
)ω0s]

nsinω0s
2

, (11)

then we obtain a component estimator:

m̂n(t) =

∫ n

0

Xt−s
[ 1

n

N1∑
k=−N1

eikω0s
]
ds.

Of course functions (9) and (11) are periodic and they satisfy the unbiasedness

condition: ∫ n

0

h(s)e−ikω0sds = 1, (12)

where k = −N1, ..., N1, since

Em̂n(t) =

∫ n

0

m(t− s)h(s)ds =

N1∑
k=−N1

mke
ikω0t

[ ∫ n

0

h(s)e−ikω0sds
]

and

Em̂N(t) =

∫ n

0

m(t− s)h(s)ds.

Remark 5.2. The weight function is determined by the properties of the process

i.e. it depends on probability characteristics parameters of the process. Only a

priori information about these parameters can provide its usefulness.

It is possible to compare the coherent and component estimation procedures

using the form (8) of the mean estimator.

We can write (8), as follows:

m̂(t) =
N−1∑
p=0

∫ T

0

Xt−s−pTh(s)ds, (13)

where the interval [0, n] was divided into subintervals [pT, (p+1)T ], p = 0, ..., N−
1, and h(s+ pT ) = h(s).

To get the coherent statistic (10) it is enough to put the following limit of com-

ponent weight function

lim
N1→∞

h(s) = lim
N1→∞

sin
[(
N1 + 1

2

)
ω0s
]

n sin[ω0s
2

]
=

1

N
δ(s),

where

δ(s) =
1

T

∑
k∈Z

eikω0s, s ∈ [0, T ]

into the equation (13).
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5.1 Linear filtration methods

Remark 5.3. The component method uses an information about the number

of mean function components - N1, while the coherent method provides its infi-

nite number. The component method becomes more complex as the number of

harmonic components grows.

The equation (8) can be also considered from the different perspective. Assume

that (8) was obtained as a result of transmitting the process Xs through the filter

with a transfer function H(ω), where

H(ω) =

∫ ∞
−∞

h(s)e−iωsds,

and ω ∈ (−∞,∞).

Fact 5.2. ([56]) In the case of a coherent estimate the transfer function of the

filter has the form

H(ω) =
1

N

N−1∑
p=0

eiωT/2(N − 1)
sin[NaT

2
]

N sin[ωT
2

]
,

and in the case of a component estimation

H(ω) =

N1∑
k=−N1

e−i(ω−kω0)(n/2) sin[(ω − kω0)n
2
]

(ω − kω0)n
2

.

According to the harmonic spectral representation of the PC process ([56]):

Xt =

∞∫
−∞

eiωtdZ(ω),

the estimators (8) can be represented as follows:

m̂n(t) =

∞∫
−∞

H(ω)eiωtdZ(ω), m̂N(t) =

∞∫
−∞

H(ω)eiωtdZ(ω). (14)

The characteristics of dZ(ω) are defined by the equations

EdZ(ω) =

N1∑
k=−N1

mkδ(ω − kω0)dω, (15)

EdZ(ω1)dZ?(ω2) = f(ω1, ω2)dω1dω2, (16)

the star denotes a complex conjugate,

f(ω1, ω2) =

N1∑
k=−N1

f̃k(ω1)δ(ω2 − ω1 + kω0)dω1dω2,
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5.1 Linear filtration methods

where

f̃k(ω1) =
1

2π

∞∫
−∞

B̃k(u)e−iωudu.

There is following relationship connected with the Fourier decomposition between

B̃k(u) and correlation function of the process {Xt}

γ̃(s, u) = EXsXs+u =

N2∑
k=−N2

B̃k(u)eikω0s.

The correlation components B̃k(u) are different from covariance componentsBk(u)

in tails.

Based on (14), we can get the properties of the estimator of th mean function.

The estimator of the mean function is as follows

Em̂(t) =

N1∑
k=−N1

mkH(kω0)eikω0t.

This property was obtained by the calculation using the equation (15). It is

necessary to mention that Em̂(t) is equal to the mean function only if H(kω0) =

1, k = −N1, ..., N1. It is a condition for unbiasedness.

Let us consider the variance of the estimator m̂(t) :

D[m̂(t)] =

∫ ∞
−∞

∞∑
−∞

H(ω1H
?(ω2)ei(ω1−ω2)tEdZ(ω1)dZ?(ω2)−m2(t) =

=

N2∑
k=−N2

eikω0t

∫ ∞
−∞

H(ω)H∗(ω − kω0)fk(ω)dω.

Since

H(ω − kω0) = H(ω), (17)

the variance of the coherent estimator is as follows:

D[m̂(t)] =

N2∑
k=−N2

eikω0t ×
∫ ∞
−∞
|Hk(ω)|2fk(ω)dω.

For the component filter its transfer function does not satisfy (17) but for a

sufficiently long signal and ω − kω0 ∈ [−N2ω0, N2ω0] it can be used with some

approximation.

If the number N1 is larger then the difference between two estimation methods is

smaller. Better selectivity of the component filter for small N1 brings advantages
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5.1 Linear filtration methods

of the component method over the coherent method. Moreover, correct selection

of the component filter for small N1 leads to the advantage of component method

over coherent one.

Let us consider the following example: assume that the multiplicative model

Xt = stYt

is the PC process, where Yt is a stationary narrow band white noise with a zero

mean and the covariance function equal to 2D(sinΩu/u) and the sis periodic

function st =
∑N−1

k=−N−1 ske
ikω0t. The covariance function b(t, u) is as follows

γ(t, u) = 2D
sinΩu

u

2N1∑
r=−2N1

eirω0t

N1∑
l=−N1

sls
?
l−re

ilω0u. (18)

Assuming that ω1 = Ω +N1ω0 and N2 = 2N1 we obtain

• for the component estimator

D[m̂(t)] =

N2∑
k=−N2

fke
ikω0t

∫ ω1

−ω1

H(ω)H?(ω − kω0)dω, (19)

• for the coherent estimator

D[m̂(t)] =

N2∑
k=−N2

fke
ikω0t

∫ ω1

−ω1

|H(ω)|2dω, (20)

where

fk(ω) = D

N1∑
l=−N1

sls
?
l−re

ilω0u

∫ Ω+lω0

−Ω−lω0

δ(ω1 − ω)dω1.

Moreover, if Ω � N1ω0 then ω1 ≈ Ω and it leads to the correlation function in

the form as follows:

γ(t, u) ≈ 2s2
t (sinΩu/u).

Remark 5.4. The process with such correlation function are called locally sta-

tionary random processes, see [84].

In general case, when the equation (18) is not fulfilled, the number N1 defines

the measure of difference between the coherent and the component estimators.

The estimators will be better if the number of observations increases.

The linear filtration theory can be also successively used to the estimation of

the covariance function of the PC process. For simplicity assume that the mean

35



5.1 Linear filtration methods

function is known.

Estimator of the covariance function γ̂(t, u) is as follows

γ̂(t, u) =

∫ n

0

(Xt−s −m(t− s))(Xt−s+u −m(t− s+ u))h(s)ds.

Let us consider the mean of the covariance estimator

Eγ̂(t, u) =

N2∑
k=−N2

eikω0tBk(u)

∫ n

0

e−ikω0sh(s)ds. (21)

It is equal to γ(t, u) only if the unbiasedness condition (12) is fulfilled. For the

Gaussian processes it is also possible to calculate the variance of the estimator

(21), see [56].

Based on the linear transformation method it is possible to introduce the

optimal estimation technique, which gives the minimal value of the estimator

variance [56]. This technique is determined by the form of the weight function and

is based on finding its optimal form. The weight function depends on probability

characteristics parameters of the process. It implies that we need to have a priori

information about the parameters of the process.

The time averaged variance of the mean function estimator (8) is as follows:

DT [m̂(t)] =

∫ n

0

∫ n

0

B0(t− s)h(t)h(s)dtds. (22)

Using Euler equation∫ n

0

B0(t− s)h(s)ds =

2N1∑
k=0

µkϕk(t)

we can write (22) as follows:

DT [m̂(t)]−
2N1∑
k=0

µk

∫ n

0

h(t)ϕk(t)dt =

=

∫ n

0

h(t)
[ ∫ n

0

B0(t− s)h(s)ds−
2N1∑
k=0

µkϕk(t)
]
dt,

where ϕ0(t) = 1, ϕk(t) = cos(kω0t), ϕk+N1(t) = sin(kω0t), k = 1, ..., N1.

The goal is to find the function h which minimizes the equation (22) under

the condition ∫ n

0

h(s)ϕk(s)ds =

{
1, k = 0, ..., N1,

0, k = N1 + 1, ..., 2N1

, (23)
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5.1 Linear filtration methods

which guarantees the unbiasedness of the estimator of the mean function e.g.

Em̂(t) = m(t).

The form of the weight function is

h(t) =

2N1∑
k=0

µkhk(t),

where the functions hk(t) for each k = 0, ..., 2N1 satisfy the equation:∫ n

0

B0(t− s)hk(s)ds = ϕk(t).

This equation can be solved by applying the appropriate techniques (see [56])

and the constants µk can be obtained from the formula

2N1∑
k=0

µk

∫ n

0

hk(t)ϕl(t)dt =

{
1, l = 0, ..., N1,

0, l = N1 + 1, ..., 2N1

.

The problem of finding optimal weight function for covariance estimation (21)

can be solved in very similar way.

If we repeat the reasoning such as for the the variance of the mean estimator,

but we replace N1 by N2 in the equation (23), we obtain a method of finding an

estimator with the minimal value of variance for the covariance estimator.

Conclusion of this Section is that estimation theory for the PC process can

be developed using of the linear filtration methods.

The main advantage of the component technique over the coherent one consists

in the finite number of transfer function. This number is equal to the number of

harmonic components. Notice that in the case of coherent filter it is infinite. The

advantage becomes really significant, if we estimate the characteristics of the PC

process with small number of harmonic components. If the length of realization

grows the effectiveness of both methods is similar.

The component and the coherent approach can be used in e.g. telecommunication

and everywhere else, where the structure of the process is known.

5.1.2 Hilbert’s transformation-based method and a frequency shift

method

In previous Section traditional statistical methods for estimates characteristics

of the PC processes were analyzed.
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5.1 Linear filtration methods

Definition 5.1. The PC process {Xt}t∈R has a finite power if the following con-

dition holds

lim
n→∞

1

2n

n∫
−n

E(Xt −m(t))2dt <∞.

Let us introduce the fact:

Fact 5.3. If PC process {Xt}t∈R has a finite power, then it has a harmonic series

representation:

X(t) =
∑
k∈Z

Xk(t)e
ikω0t, (24)

where Xk(t) are jointly stationary random signals.

The linear filtration methods lead to new estimation techniques, which are

based on stationary components extraction. The methods use the harmonic series

representation of the PC process (24), which is the generalization of the Fourier

series representation for periodic functions, where the Fourier coefficients are

replaced by jointly stationary processes.

In this Section we will consider an approach based on stationary modulated

processes. Two methods will be discussed: method based on a frequency shift and

method based on the Hilbert transformation.

In order to extract stationary components the considered region is divided

into the bands [(k − 1/2)ω0, (k + 1/2)ω0], k ∈ Z.
First method consists in each shifted each band kω0 value and low-band filtration

in the interval [−ω0/2, ω0/2].

The second method is filtering each part, and uses the Hilbert transformation

for the components estimation. Probability characteristics of these components

are determined by probability characteristics of the PC process. They are jointly

stationary random processes, and their spectral density functions are located in

the interval [−ω0/2, ω0/2].

If the process is PC then its mean and covariance functions have the following

Fourier series representation:

m(t) = EXt =
∑
k∈Z

mke
ikω0t,

γ(t, u) =
∑
k∈Z

Bk(u)eikω0t,
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5.1 Linear filtration methods

where ω0 = 2π/T.

If the process is represented by (24) we obtain the mean

m(t) =
∑
k∈Z

EXk(t)e
ikω0t =

∑
k∈Z

mke
ikω0t,

and the autocovariance function

γ(t, u) =
∑
k,l∈Z

EX̂∗k(t)X̂l(t+ u)ei(k−l)ω0teikω0t =
∑
k∈Z

eikω0t
∑
l∈Z

Rl−k,l(u)eilω0u,

where

Rk,l(u) = EX̂∗k(t)X̂l(t+ u), X̂k(t) = Xk(t)−mk.

Thus

Bk(u) =
∑
l∈Z

Rl−k,l(u)eilω0u. (25)

If Rk,l(u) 6= 0, for some k, l with k 6=, then Xt is a PC signal. If Rk,l(u) = 0,

for all k, l with k 6= l, then Xt is a stationary one.

The characteristics m(t) and Bk(u) can be used for statistical analysis of the

considered data.

If the process is PC then the components of autocovariance function are de-

termined by auto-and crosscovariance functions of a stationary processes Xk(t),

defined in (24).

Notice that from the equation (25) it follows that the covariance components

Bk(u) are determined by Rl−n,l(u)− the sums of covariance functions of stationary

components. If we could calculate Rl−n,l(u), we automatically obtain Bk(u).

On the other hand, if we have calculated the components Bk(u), we are able

to estimate their probability characteristics and in consequence estimate the PC

processes characteristics. But there appears the problem of calculation the direct

components Xk(t) from the real-life data.

Taking into consideration the harmonic spectral representation of the PC process

([57])

Xt =

∞∫
−∞

eiωtdZ(ω),

we obtain

Xt =
∑
k∈Z

ηk(t)e
ikω0t.

Here low-band processes ηk(t) are defined as
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ηk(t) =

ω0/2∫
−ω0/2

eiωtdZk(ω), (26)

where dZk(ω) = dZ(ω + kω0).

Fact 5.4. ([57]) For all k ∈ Z the mean of the processes Xk(t) from the repre-

sentation (24) and the mean of the processes Zk(t) from (26) are the same.

Fact 5.5. (Fact 2.2, [57]) The cross-correlation functions of the processes ηk(t)

depend only on time lag, therefore, the processes ηk(t), k ∈ Z, are jointly station-

ary.

Fact 5.6. (Fact 2.3, [57]) Every PC process can be represented by the equation:

X(t) =
∑
k∈Z

ηk(t)e
ikω0t, (27)

where ηk(t) defined by (26) are jointly stationary random processes.

Fact 5.7. (Fact 2.4, [57]) Representation (24) and (27) are equivalent in terms

of probability characteristics of the PC processes.

The processes ηk(t) can be extracted using the transformation:

η̃k(t) =

∞∫
−∞

h(t− s)Xse
−ikω0sds, (28)

where h(t) = 1
2π

∞∫
−∞

H(ω)eiωtdω is a weight function with a transfer function

H(ω) =

{
1, ω ∈ [−ω0

2
, ω0

2
]

0, ω /∈ [−ω0

2
, ω0

2
]
.

The form of the transfer function implies that

h(s) =
sin(ω0s

2
)

πs
.

The (28) is interpreted like a shifting of a low-band filtration.

Now let us focus on the second linear filtration methods based on stationary

components extraction, it is the extraction of quadrature components using the

Hilbert transformation for stationary components estimation.

The division considered interval into into the bands [(k − 1
2
)ω0, (k + 1

2
)ω0] leads

to representation (27).
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We can write the process η(t) as

η(t) = ηc(t)cos(ω0t) + ηs(t)sin(ω0t), (29)

where ηc(t) = ηk(t) + η∗k(t), etas(t) = i[η∗k(t)ηk(t)].

Extracted process η(t) is the PC process with characteristics that are deter-

mined by characteristics of stationary components ηck(t) and ηsk(t).

Applying the Hilbert transformation to the (29) we get:

ζ(t) = Hη(t) =
1

π

∞∫
−∞

η(s)

t− s
ds.

Quadrature components ηck and ηsk obtained by Hilbert transformation

ζ(t) = ηck(t)sin(ω0t) + ηsk(t)cos(ω0t)

are as follows:

ηck(t) = ζ(t)sin(ω0t) + η(t)cos(ω0t)

ηsk(t) = η(t)sin(ω0t) + ζ(t)cos(ω0t).

Processes ηck(t) and ηsk(t) are stationary and jointly stationary. Because of non-

stationarity of the η(t) process their auto-correlation functions are not equal.

Notice that the means of extracted processes mk = Eζk(t) are equal and correla-

tion components are determined by their auto-and cross-correlation functions.

Now we briefly investigate the properties of PC process mean and correlation

functions estimated using the harmonic series representation.

The mk are estimated by

m̂k =
1

n

n∫
0

ηk(t)dt.

Notice that Êk = mk. And for the variance

V ar(m̂k) =
1

n

n∫
−n

(1− |u|
n

)R
(η)
k,k(u)du,

where R
(η)
k,k(u) is auto-correlation function of the process η.

The processes ηk(t) are stationary. It implies that that
∞∫
−∞
|R(η)

k,k(u)|du = M <∞.

In that case V ar(m̂k) → 0, with n → ∞. It means that the estimator of the

mean is consistent.
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The correlation component for PC can be built as follows:

Bn(u) =

{ ∑L
l=n−LR

(η)
l−n,l(u)eilω0u, n ≥ 0∑L+n

l=−LR
(η)
l−n,l(u)eilω0u, n < 0

where L is the number of spectral bands and R
(η)
k,l (u) are the cross-correlation

functions of the ηk and ηl.

If n ≥ 0 then we have estimator of the statistic Bn(u) in the form:

B̂n(u) =
L∑

l=n−L

R̂
(η)
l−n,l(u)eilω0u

where

R̂
(η)
l−n,l(u) =

1

θ

θ∫
0

[η∗l−n − m̂∗l−n][ηl(t)− m̂l]dt.

After averaging we obtain:

ER̂
(η)
l−n,l(u) = R

(η)
l−n,l(u)− 1

θ

θ∫
0

(1− |u|
θ

)R
(η)
l−n,l(u)du.

The cross-correlation functions R
(η)
l−n,l(u) are absolutely integrable, it means

that the estimator is asymptotically unbiased.

The variance of the Bn(u) is as follows:

V ar(B̂n(u)) = E|B̂n(u)− EB̂n(u)|2 ≈

≈
N∑

l,k=−N

ER̂
(η)
l−n,l(u)R̂

(η)
k−n,k(u)ei(l−k)ω0u − |Bk(u)|2.

If for each k the processes ηk(t) are Gaussian then the variance tends to zero.

It means that for the Gaussian PC process, estimators of the correlation function

components obtained by Hilbert transformation are consistent.

The method based on harmonic series representation by stationary compo-

nents concerns the structure of the process, in contrast to the coherent and com-

ponent methods which deal only with characteristics of the process.

This technique is very useful for the engineers, specially in vibration diagnos-

tic.
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5.2 Resampling methods

In this Section the description of resampling methods and their consistency

for time series with periodic structure will be presented.

The resampling methods are based on multiple times resampling from the sample

to obtain approximation of the distribution of the investigated estimator. The

development of the resampling methods is strictly connected with evolution of

computers and technology. The reason of this fact is that the implementation

of this method require advanced calculations tools. The first resampling method

was the bootstrap method. It was described by Efron at the end of the seventies

[30] of the twentieth century.

Let xn = (X1, ..., Xn) be the sample of the time series {Xt}t∈Z. Let P be

the joint distribution of the time series {Xt}t∈Z. The statistic Tn = tn(xn, P ) is

calculated and Tn can be for example

Tn = an(θ̂n(X1, ..., Xn)− θ(P )),

where an is normalizing sequence.

Our aim is to approximate the distribution Gn = L(Tn) as well as to estimate

the important characteristics of such a distribution.

The bootstrap version of Tn is in a form T ∗m,n = an(θ̂m(X∗1 , ..., X∗m)−θ̂n(X1, ..., Xn)).

Fn is a empirical distribution function based on the bootstrap sample x∗m =

(X∗1 , ..., X
∗
m).

The estimator of Gn is in a form Ĝn = G∗m,n = L∗(T ∗m,n), where xn is known,

hence the distribution Fn of the variables X∗i is also known. Theoretically it is

possible to obtain the distribution Ĝn, but unfortunately getting Ĝn is very dif-

ficult. The reason of this complication is that the number of bootstrap samples

x∗m grows very fast.

In practice we approximate the distribution of T ∗m,n by resampling from the em-

pirical distribution Fn.

Development of resampling method is strictly connected with the development

of technology. That is why recently we observed explosion of interest in this kind

of methodology. At the beginning the statisticians investigated the resampling

methods for independent random variables. More recently, the focus has shifted

to dependent data.

There exist a big difference between resampling methods for dependent and

independent observations. The following example [85] is the illustration of the

differences.
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Example 5.1. Let xn = (X1, ..., Xn) be the sample from a m-dependent zero mean

time series {Xt}t∈Z, that is second ordered stationary. Assume that the subsample

(X∗1 , ..., X
∗
n) was generated from xn by drawing single observations with return. It

is the case of Efron’s bootstrap.

We can calculate the bootstrap variance of the bootstrap subsample

V ar∗(
√
nX̄∗n) =

1

n
V ar∗

( n∑
j=1

X∗j
)

=

V ar∗X∗1 =
1

n

n∑
t=1

X2
t −

( 1

n

n∑
t=1

Xt

)2 P→ V ar(X1).

It is known that V ar(
√
nX̄n)→

∑m
τ=−mCov(X1, X1+τ ), hence the bootstrap esti-

mator do not estimate the real asymptotic variance.

The above example shows that resampling for dependent data needs to be

defined in a different way. If we want to obtain consistency of resampling methods

we need to resample not the single values but the blocks of values. The length of

the block needs to increase with the increasing the length of the sample.

5.2.1 The Moving Block Bootstrap

In this subsection the moving block bootstrap (MBB) will be described. This

procedure was independently introduced by Liu and Singh [71] and Künsch [61].

The results were developed for the strictly stationarity case.

Let (X1, ..., Xn) be the observed sample from the time series and

B(j, b) = (Xj, ..., Xj+b−1) be b−block of the data. The length of the b−block is

b = bn. Assume, without loss of generality, that k = n/b ∈ N.

Algorithm

• Let the i.i.d. random variables i1, i2, ..., ik come from the distribution

P (ij = t) =
1

n− b+ 1
for t = 1, ..., n− b+ 1.

• To obtain the MBB resample

(X∗1 , X
∗
2 , ..., X

∗
n)

the blocks (B(i1, b), B(i2, b), ..., B(ik, b)) are concatenated.
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Consistency of the moving block bootstrap

It has been proved by Lahiri [63] that if we admit the overlapping the blocks

then we get the better effectiveness of block bootstrap. The MBB is the method

with the maximal overlap the blocks.

The research of Liu and Singh [71], Künsch [61] and Radulović [82] was focused

on the stationary case. Liu and Singh have showed the consistency of the MBB

for m−dependent time series with finite moments of order more than 4 and the

length of the block b = o(n1/2). In the research of Künsch we find consistency of

the MBB for α−mixing time series with additional assumptions: for δ > 0

E|X1|6+δ <∞ and
∞∑
τ=1

τ 2α
δ

6+δ

X (τ) <∞.

The research of Radulović has summarized all the previous results. The author

got the results of consistency of MBB for α−mixing and strictly stationary case

with weaker assumptions, it means with the standard conditions for the mixing

moments:

E|X1|2+δ <∞ and
∞∑
τ=1

α
δ

2+δ

X (τ) <∞,

than those in Künsch’s research.

First result, for the non-stationary case but with constant expectation value,

was derived by Fitzenberger [33]. Under assumptions:

sup
t
E|Xt|4+δ+ε <∞ and αX(τ) = O(τ

δ
4+δ )

author has obtained consistency of the MBB for the length of the block b as

follows: b = o(n1/2).

Politis et al. [80] also have obtained the consistency of the MBB, but with the

stronger assumptions, as follows:

sup
t
E|Xt|4+2δ <∞ and

∞∑
τ=1

τ 2α
δ

4+δ

X (τ) <∞.

The known and the most general results have been obtained by Synowiecki

[87]. The parameter of interest was M{EXt}− the mean over the time variable

t, where

M(f(t)) = lim
n→∞

1

n

s+n−1∑
j=s

f(j).

The estimator of the parameter Mt is X̄n = 1
n

∑n
t=1Xt. The author has shown the

consistency of moving block bootstrap for α−mixing, nonstationary time series
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with strictly periodic structure with the length of the block b = o(n) under the

assumption of summability of the covariance function

∞∑
τ=0

|Cov(Xt, Xt+τ )| <∞ for all t = 1, ..., T.

Notice that Synowiecki in his research has not assumed noting about the order

of convergence of the α−mixing sequence. The theorem with the assumptions

E|X1|2+δ <∞ and
∞∑
τ=1

α
δ

2+δ

X (τ) <∞,

for α−mixing and strictly periodic time series is the simple conclusion from the

Synowiecki result [87]. And this is a generalization of the strictly stationary case

considered by Radulović [82].

The mentioned results of Synowiecki are dedicated to wider class than PC time

series. They are dedicated to the APC - almost periodically correlated time series.

(For more information on the definition and examples of APC, we refer the reader

to the Besicovitch [12], Antoni [3] and Gardner et al. [35].) The almost periodic

function cannot be easily estimated and subtracted from the time series. That

is the reason why the Fourier analysis needs to be applied to this problem. It

helps to identify the frequencies of the mean or the covariance function. The

estimators of the mean and covariance function and their asymptotic properties

for APC time series have been investigated in Hurd and Leśkow [50] and Dehay

and Leśkow [21]. Synowiecki in his research (see [88]) has extended the results of

the consistency of MBB for the overall mean of the time series into the consistency

of MBB for the coefficient of Fourier representation of mean and autocovariance

function.

5.2.2 The Circular Block Bootstrap

Described in this section the circular block bootstrap (CBB) first was in-

troduced by Politis and Romano [79]. The CBB is a modification of the MBB

procedure. The idea of this method is to ”wrap” the data around in a circle,

which helps to avoid the edge effect.

Let (X1, . . . , Xn) be a sample from the periodic time series with period T.

We consider periodicity in the sense of distribution or in the sense of moments.

The block of the length b is B(j, b) = (Xj, ..., Xj+b−1). Moreover we assume that

Xn+j = Xj

Algorithm
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• Let the i.i.d. random variables i1, i2, ..., in come from the distribution

P (ij = t) =
1

n
for t = 1, ..., n.

• To obtain the CBB resample

(X∗1 , X
∗
2 , ..., X

∗
n)

the blocks (B(i1, b), B(i2, b), ..., B(in, b)) are concatenated.

Consistency of the circular block bootstrap

In the stationary case consistency of the CBB technique for the mean was

derived by Politis and Romano [79].

In the paper of Dudek [28] the CBB method has been applied to non-stationary

data with the almost periodic structure (APC).

The statistical inference for APC time series is based on the Fourier represen-

tation of the mean and the autocovariance functions. The form of the estimators

of the Fourier coefficients was defined by Hurd and Leśkow [49], [50].

Dudek in [28] has introduced the circular block bootstrap version of the esti-

mators of the Fourier coefficients for the autocovariance functions. She has proved

the consistency of this estimator in the multidimensional case under the same

assumptions as Synowiecki in the MBB case. Dudek’s approach has helped to

construct bootstrap simultaneous confidence intervals for the coefficients of the

autocovariance function.

The main idea of resampling methods is to preserve the character of the sam-

ple. We want to find the most effective method that will reflect the data structure.

Hence, if we deal with the periodic data we want to get periodicity in the repli-

cated sample. Unfortunately the MBB procedure destroys the periodic structure

of the considered time series.

For the periodic data, using the MBB procedure, we obtain the replication with

E∗X∗t 6= E∗X∗t+T . Even if we modify the MBB into the CBB we get only condi-

tional stationarity E∗X∗t = X̄n.

Below we provide methods that preserve periodicity in replications. These meth-

ods are:

• the periodic block bootstrap (PBB)

where E∗X∗t = E∗X∗t+T ,
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• the seasonal block bootstrap (SBB)

where E∗X∗t = E∗X∗t+bT ,

• the generalized block bootstrap (GSBB)

where E∗X∗t = E∗X∗t+bT .

This methods will be described in the next Subsections.

5.2.3 The Periodic Block Bootstrap

In this Section the periodic block bootstrap method will be described. Proce-

dure was introduced by Chan et al. [17] in 2004 and it was dedicated to periodic

time series.

The authors proposed dividing the observations into the blocks of length b and

resampling these blocks in a way that new periods of observations are generated.

Joining together the periods generated in such way we obtain a new series of

observations.

Let (X1, . . . , Xn) be a sample from the periodic time series with period T.

Here, we consider periodicity in the sense of distribution or in the sense of mo-

ments. The block of the length b is B(j, b) = (Xj, ..., Xj+b−1).

Algorithm

• Period T is divided into L ∈ N parts of the length b,

if T/L /∈ N then we leave the last, shorter interval; for simplicity assume

that T = Lb

• assume that n = rT, r ∈ N

• let us define random variable iu,1, iu,2, ..., iu,r as independent for all u and

i.i.d. from the distribution

P (iu,j = bu+ tT + 1) =
1

r
for t = 0, ..., r − 1,

and u = 0, ..., L− 1.

• joining the blocks

(B(i0,1, b), B(i1,1, b)..., B(iL−1,1, b), B(i0,2, b), B(i− 1, 2, b), ...

..., B(iL−1,2, b), ..., B(i0,rb), B(i1,r, b), ..., B(iL−1,r, b))

we get the resample of the PBB: (X∗1 , X
∗
2 , ..., X

∗
T , ..., X

∗
n).
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Disadvantage of the PBB is that the procedure is designed for periodic time series

that have long periodicities, since it is assumed that the block length b is much

smaller compared to the period T.

Notice that the PBB procedures requires knowledge about the length of the pe-

riod.

Consistency of the periodic block bootstrap

Chan et al. in their research [17] focused on the time series {Xt}t∈Z which is

SP (1) and PC with the period T.

In the paper [17] it was assumed that Xt fulfills the following conditions:

The considered time series is m−dependent with m much less than T, i.e. m� T

and the autocovariance function B(t, τ) is nonnegative.

The bootstrap techniques for dependent data will lead to the problems with

consistency, if we do not assume that the block length goes to infinity [71], [61].

Leśkow and Synowiecki [66] , [88] have extended the applicability of the Chan

procedure to triangular arrays of periodic random variables, using more general

dependence structures - α−mixing structure. Moreover, Leśkow and Synowiecki

[66] have showed the consistency of the PBB procedure for the mean estimator

assuming that the period length T tends to infinity as the sample size n increases.

The consequence of this assumption is that for the fixed period the PBB procedure

is not consistent.

The assumption that the period length Tn tends to infinity when n → ∞
follows from the justification of the Leśkow and Synowiecki [66] results, which

requires fulfilling the following condition:

Cov
( 1√

bn

(u+1)bn+tTn∑
j=ubn+tTn+1

Xj,
1√
bn

(u+2)bn+tTn∑
j=(u+1)bn+tTn+1

Xj

)
→ 0.

The condition above holds only if bn →∞, which implies Tn →∞.
Taking into consideration that in many applications we have fixed periodicity the

results assuming that Tn →∞ are too restrictive and do not indicate interesting

applications.

5.2.4 The Seasonal Block Bootstrap

In this Subsection the seasonal block bootstrap (SBB) will be briefly described.

The SBB method was introduced in 2001 by Politis [77] and that was a version

of Künschs Block Bootstrap [61] with blocks whose size and starting points are

restricted to be integer multiples of the period T. It is clear that the SBB poses
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a restriction on the relative size of the period and block size, i.e. the block size b

must be at least of the order of the period T and only integer multiples of T.

Let (X1, ..., Xn) be the observed sample from the time series and assume that

the sample is periodic with the period T, for example in distribution. The length

of the block is b = bn. Without a loss of generality we can assume that n = bTk,

where k ∈ N.

Algorithm

• Let random variables i1, i2, ..., ik be i.i.d. from a distribution

P (ij = 1 + tT ) =
1

(k − 1)b+ 1

for t = 0, ..., (k − 1)b.

• To obtain the SBB replication (X∗1 , X
∗
2 , ..., X

∗
n) we join the blocks

(B(i1, bT ), B(i2, bT ), ..., B(ik, bT )).

The SBB method is the modification of the MBB procedure. The modification

consists of taking only the blocks of the length and initial point equal to the

multiple of the period. This is related to the disadvantages of the SBB procedure,

which are:

• minimal block length is equal to period length,

• block length is always an integer multiple of the period length.

Note that the SBB procedure like the PBB method requires knowledge of the

period.

Consistency of the Seasonal Block Bootstrap

Politis [77] has obtained the consistency of the SBB procedure for the special

case of PC time series i.e for the model Xt = f(t) + Zt, where f is a periodic

function and the time series {Zt}t∈Z is strictly stationary. Synowiecki [88] has

introduced the generalization of this result. He has obtained the consistency the

SBB procedure for the mean for the PC and α−mixing time series under the

following assumptions:

1. there exists a summable sequence {cτ}∞τ=0 such that |Cov(Xt, Xt+τ )| < cτ ,
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2. there exist ζ > 0 such that

sup
t=1,...,n−b+1

E
∣∣ 1√
b

t+b−1∑
j=t

(Xj − EXj)
∣∣2+ζ ≤ K,

where K is constant,

3. the central limit theorem holds

√
n(X̄n − µ)

d→ N (0, σ2),

where = Mt(EXt).

Note that the SBB procedure is consistent, if the block length is Tb, where b→∞,
but b = o(n).

5.2.5 The Generalized Seasonal Block Bootstrap

In the previous sections the MBB, SBB and PBB methods were introduced.

This procedures have undergone modifications, improvements and generaliza-

tions. An important requirement is that the procedure preserves the periodic

structure of the data. Such method is GSBB introduced by Dudek et al. [27] in

2014.

The authors were looking for a new block bootstrap method that is suitable for

periodic time series with fixed arbitrary period T. They proposed to divide the

series of observations into blocks of desired length, independent from periodicity,

and resample these blocks in a way that keeps the periodicity.

The block size in the GSBB procedure is chosen independent from the length of

the periodicity. It implies that the method avoids the inconsistency problems of

the PBB procedure, and the lack of fine-tuning in block size choice problems of

the SBB method.

Let (X1, ..., Xn) be a sample from the periodic time series with period T. Let

b = bn be the block length and n = ωT, where ω ∈ N.

Algorithm

• We choose an positive integer block size b < n such that n = lb, l ∈ N.

• For t = 1, b+ 1, ..., (l − 1)b+ 1 we define B∗t as follows

B∗t = (X∗t , ..., X
∗
t+b−1) = (Xτt , ..., Xτt+b−1

),

51



5.2 Resampling methods

where τt is a discrete uniform random variable taking values in the set

{t−TR1,n, t−T (R1,n−1), ..., t−2T, t−T, t, t+T, t+2T, ..., t+T (R2,n−1), t+TR2,n}.

Here R1,n = [(t − 1)/T ] and R2,n = [(n − b − t)/T ]. Random variables

τ1, τ2, ..., τl are i.i.d. from the distribution

P (τω = 1 + (ω − 1)b+ tT ) =
1

ω
, t = 0, ..., l − 1.

Here τt is the beginning of the block B∗t , and it is restricted to be randomly

chosen from a set containing only periodic shifts of t.

• Joining l + 1 blocks (Xτt , Xτt+1, ..., Xτt+b−1) we get the bootstrap sample

(X∗1 , X
∗
2 , ..., X

∗
(l+1)b).

The first n points X∗1 , X
∗
2 , ..., X

∗
n are retained and this implies that the

bootstrap series has the same length as the original one. If n is an integer

multiple of b, then the whole last block is superfluous.

One may notice that if d = τb, τ > 1, τ ∈ N the GSBB procedure is identical to

the PBB, if b = τd, τ ∈ N the GSBB is identical to the SBB and if d = 1 the

GSBB is identical to the MBB.

Consistency of the GSBB procedure

The characteristics of interest are seasonal means and the overall mean.

Let us define the estimators of seasonal means µi, i = 1, ..., T and overall mean

µ̄ = 1
T

∑T
i=1 µi as follows

µ̂i =
1

ω

ω−1∑
j=0

Xi+jT ,

µ̂ =
1

T

T∑
i=1

µ̂i,

where ω is the number of observed periods.

Dudek et al. [27] obtained consistenc theorem for the characteristics generated

by the GSBB procedure. The results are quoted below.

Theorem 5.2. ([27]) Let us take δ > 0, suptE|Xt|4+δ <∞ and
∑∞

τ=1 τα
δ/(4+δ)
X (τ) <

∞, where αY (τ) is the strong mixing coefficients for stationary series {Xt}. If

b→∞ as n→∞, but with b = o(n), then

sup
x∈R
|P (
√
n(ˆ̄µ− µ̄) ≤ x)− P ∗(

√
n(ˆ̄µ∗ − E∗ ˆ̄µ∗) ≤ x)| P→ 0,
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Moreover

sup
t

∣∣P (
√
ωmax

i
|µ̂i − µi| ≤ t)− P ∗(

√
ωmax

i
|µ̂∗i − E∗µ̂∗i | ≤ t)

∣∣ p→ 0.

where µ̂∗i = 1
ω

∑ω−1
j=0 X

∗
i+jd and ˆ̄µ∗ = 1

T

∑T
i=1 µ̂

∗
i .

Theorem 5.3. ([27]) Let us take δ > 0, suptE|Xt|4+δ <∞ and
∑∞

τ=1 τα
δ/(4+δ)
X (τ) <

∞, where αY (τ) is the strong mixing coefficients for stationary series {Xt}. If

b→∞ as n→∞,but with b = o(n), then

sup
x∈Rd

∣∣P (
√
ω(µ̂− µ) ≤ x)− P ∗(

√
ω(µ̂∗ − E∗µ̂∗) ≤ x)

∣∣ p→ 0

where µ̂∗i = 1
ω

∑ω−1
j=0 X

∗
i+jd and µ = (µ1, ..., µT ) is the column vector.

Notice that assumptions in two above theorems are stronger than the standard

conditions for the mixing moments.

It is also worth noting that the GSBB procedure preserves the periodic structure

of the original data.

The authors have also got the results for the second ordered statistics, for more

informations reader is referred to [27].

5.2.6 Subsampling

In this subsection the subsampling method will be analyzed. The procedure

was introduced by Politis in 1994. The full description of the method and its

consistency is contained in the monograph by Politis et al. [80].

There is a fundamental difference between the methods like GSBB, MBB, CBB,

PBB on one hand and subsampling on the other hand. In subsampling there is

no post-sample randomization before recalculation of the estimator. Instead, the

window of the length b moves along the initial sample and so the repeated values

of the estimator are obtained.

Algorithm

Let (X1, ..., Xn) be the observed sample.

• The statistic ϑn(θ̂n − θ) is recomputed over ”short”, overlapping blocks of

length b (b depends on n−the length of the sample)

• n − b + 1 statistics are obtained: ϑb(θ̂n,b,t − θ̂n) where θ̂n,b,t is subsampling

version of the estimator θ̂n calculated using (Xt, ..., Xt+b−1)
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• then empirical distributions:

Ln,b(x) =
1

n− b+ 1

n−b+1∑
t=1

1{ϑb(θ̂n,b,t−θ̂n)≤x}

are used to approximate the asymptotic distribution of the estimator

ϑn(θ̂n − θ)

The subsampling procedure is very general. The advantage of it is its insensitivity

to the form of the asymptotic distribution. We do not need to know the form of

the distribution, we only need to know that it exists and that is non degenerate.

Note that the subsampling procedure does not require knowledge of the length

of the period.

Consistency of the subsampling procedure

Following the [80] we provide here the meaning of consistency for subsam-

pling.

Denote the asymptotic distribution of ϑn(θ̂n− θ) as J, and the distribution func-

tion of this distribution in the point x ∈ R as J(x).

The subsampling procedure is consistent if the following conditions hold:

• if x is continuity point of J(·), then

Ln,b(x)
P→ J(x)

• if J(·) is continuous, then

sup
x∈R
|Ln,b(x)− J(x)| P→ 0

• if J(·) is continuous in the point c(1− α), then

P (ϑn(θ̂n − θ) ≤ cn,b(1− α))→ 1− α,

where α ∈ (0, 1) and

cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α},

c(1− α) = inf{x : J(x) ≥ 1− α}.

The latest research on subsampling method for α−mixing non-stationary time

series with the moments of order more than two is e.g. in Lahiri [62], Synowiecki
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[88]. He has estimated, by the subsampling method, the parameters of the non-

stationary time series proposed by Hurd and Leśkow [49], [50] and Dehay and

Leśkow [21]. To show consistency Synowiecki has used the general sufficient con-

dition for the non-stationary time series, which was formulated by Politis in The-

orem 4.2.1 [80]. Moreover he assumed that the block length goes to infinity:

b = bn →∞, but b/n→ 0.

Synowiecki [88] has introduced modification of Politis’s estimator ([80]) and has

proved that for this modification consistency is true.

The research on generalization of resampling methods are in progress. It is

worth to notice that the subsampling procedure in continuous time was also

investigated. For the results for random fields see Bertail, Politis and Rhomari,

[10].

For non-stationary stochastic processes with periodic covariance structure the

consistency problem of subsampling has been solved by Dehay, Dudek and Leśkow

[19]. Moreover the authors have constructed the subsampling-based confidence

intervals for the relevant characteristics of considered non-stationary processes.

The mentioned article is dedicated to the much wider class than the PS or the

PC. It is dedicated to the HAPC processes - harmonizable almost periodically

correlated processes. Definition and properties of HAPC can be found in [69],

[70], [3].

5.3 Comparison of resampling techniques

In this part of the dissertation a very brief comparison of the resampling

methods will be introduced.

Moreover, the justification of the choice of the subsampling method as the

estimation technique, in the later part of the thesis will be introduced. We start

from the comparison of bootstrap methods.

The PBB method behaves much more stable than the MBB in terms of the length

of the block. The difference between the techniques is less evident when the block

length is a multiple of the period. In that case the MBB procedure interferes less

with the periodicity of the data. If the block length is equal to the period, then

the MBB procedure seems to be better. It is associated with overlapping of the

blocks in the MBB methods. [88]

The SBB and the MBB methods can be compared only at the points of the

exact multiples of the period. At those points, both methods are asymptotically

equivalent. [88]
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5.3 Comparison of resampling techniques

In the GSSB method, the block size is chosen independent from the length of the

periodicity. It implies that this method avoids the inconsistency problems of the

PBB procedure, and the lack of fine-tuning in block size choice problems of the

SBB method.

For the periodic time series the research of Synowiecki [88] have showed that both

methods: bootstrap and subsampling are similar. The bootstrap methods works

mainly for the statistics with the normal asymptotic distribution. It is worth

noting, however, that the subsampling is more effective than the bootstrap in the

sense of the sensitivity to the asymptotic distribution of the statistics.

The versatility of the subsampling method can be seen if one deals with the

periodic data and additionally with heavy tails and/or long range dependent

structure. It will be more fully described in the next section.

Note that the above-described results have been proven under the assumption

that the time series is strongly mixing. There is no analogous results for the weak

dependent time series so far.

Figure 1 presents a summary of the results achieved so far for the the resam-

pling methods used to α− mixing, periodically correlated time series. The APC

means the Almost Periodically Correlated time series [50], which is the wider

class than PC series.

5.3.1 Resampling methods for heavy tailed, long-range and weakly

dependent data sets

The bootstrap methods give a correct and high quality approximations of

considered statistics.

Bertail, in [18], has given the conditions for first-order correct MBB confidence

intervals in general spaces for non-i.i.d. sequences. Moreover in the independent

identically distributed case and in a strong-mixing setting author has shown that

the bootstrap distribution obtained by a modified version of resampling without

replacement (as considered by Politis and Romano [78]) leads to second-order

correct confidence intervals, if the resampling size is chosen adequately. The re-

sults are also extended to a modified version of the MBB for α−mixing random

fields.

If one wants to estimate the sample mean of independent data with heavy tails,

the usual form of the bootstrap does not work. The reason of this fact is that the

size of the sample mean is determined by the values of a small number of extreme

order statistics. This problem can be solved by using so-called the ”subsample

bootstrap”, where resamples size is much smaller than the original sample [5].
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Figure 1: Consistency of the resampling methods for the parameters of non-

stationary time series with periodic and almost periodic structure in time domain.
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The result does not indicate whether the ”subsample bootstrap” provides a more

accurate estimation of the mean than more standard, asymptotic methods. Hall

et al. [42] have showed that even if the subsample size is chosen optimally, the

error between the bootstrap approximation and the true distribution is often

larger than that of an asymptotic approximation.

But the authors have introduced a hybrid approach. It is based on a mixture of

asymptotic and subsample bootstrap methods and it is shown that it improves

standard results.

The resampling method which does work for heavy tailed dependent data, in

the stable case, is subsampling. The theorems from the book of Politis, Section 11

[80] show the consistency of the subsampling estimators for the data with heavy

tails.

From research of Hall and Lahiri [43], [64] we know that for long-range depen-

dent data the known resampling methods, other than subsampling, do not work.

It has been shown by Lahiri [64] that the block bootstrap is not consistent if

we deal with long-range dependent sequences. The conclusion of Lahiri’s paper

[64] is: ”the block bootstrap fails to capture the limit law of the normalized sam-

ple mean X̄n of long-range dependent data, whenever X̄n has a non-normal limit

law”. The ineffectiveness of block bootstrap methods implies form that the joining

independent bootstrap blocks to define the bootstrap sample fails to reproduce

the long-range dependence of time series.

Hall et al. [43] discussed the subsampling procedure in the context of long memory

data. The authors showed that under some regularity conditions, the subsampling

method produces consistent estimators of the distribution of the normalized sam-

ple mean in both normal and non-normal limit laws. They introduced a method

for studentizing X̄n, and they showed that for this kind of statistic the subsam-

pling method is consistent, also in both normal and non-normal limit laws.

The facts from [43] and [64] are the reasons that in the Section 4 the subsam-

pling, not other resampling method, is used to estimate the sample mean of the

observations from the process defined in Section 4.

Doukhan et al. in [22] have investigated properties of the subsampling estima-

tors for distributions of converging and extreme statistics for the stationary time

series which are weakly dependent. This results are extensions of the research of

Bertail et al. [9] for the strong mixing case. In the article [22] subsampling the

distribution of the normalized sample maximum for weakly dependent data is in-

troduced. The authors have considered a sequence of statistics Sn = sn(X1, ..., Xn)
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for n = 1, 2, ... . They have assumed that Sn is a sequence of converging statistics

in the sense that Kn = P (Sn ≤ x) has a limit K. Let us assume that the statistics

satisfy the condition as follows:

Assumption A:

rn = sup
x∈R
|Kn(x)−K(x)| →n→∞ 0, ‖ K′ ‖∞<∞. (30)

where K′ denotes the density of this limit distribution.

Let us consider the subsampling scheme with overlapping samples for the

observations X1, ..., Xn, as follows;

Yb,i = (Xi+1, ..., Xi+b), N = n− b,

and let us introduce, quote [22], the so-called rough subsampling estimator for

K :

K̂b,n(x) =
1

N

N−1∑
i=0

I(sb(Yb,i) ≤ x), rough subsampled statistics, (31)

where b is the length of the subsampling sample and limn→∞ n/b =∞.
Moreover, let us defined the value Lip(h) for the h : Ru → R, (u ∈ N∗) as

follows:

Lip(h) = sup
(y1,...,yu) 6=(x1,...,xu)∈Ru

|h(y1, ..., yu)− h(x1, ..., xu)|
‖ y1 − x1 ‖ +...+ ‖ yu − xu ‖

.

The most interesting theorem from my research viewpoint is theorem quoted

below, in which the authors have got convergence of the estimator (31).

Theorem 5.4. (Theorem 2, [22]) Let the Assumption A be fulfilled. If the

overlapping setting is used and one among the following relations hold

• η−dependence:

∞∑
t=0

η(t)
1
2 <∞, lim

n→∞

b

n
(1 ∨ Lip(sb)√

b
) = 0

• λ−dependence:

∞∑
t=0

λ(t)
2
3 <∞, lim

n→∞

b

n
(1 ∨ (

(Lip(sb))
4

b
)
1
3 ∨ (

Lip(sb)

b
)
2
3 ) = 0,
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then

lim
n→∞

|E[K̂b,n(x)− E[K̂b,n(x)]]2| = 0

and

lim
n→∞

sup
x∈R
|K̂b,n(x)−K(x)| = 0,

in probability.

Let us take a look for a moment on the Lipschitz constant Lip(sb). Of course

its form depends on the statistics Sb = sb(X1, ..., Xb). To clarify the concept of

Lip(sb) let us consider the following two examples.

1◦ The case where sb(X1, ..., Xb) is a maximum.

If we consider the sequence of extreme statistics

Sb = sb(X1, ..., Xb) = max1≤i≤bXi,

then it is easy to calculate that the Lip(sb) is equal to 1.

Indeed:

Lip(sb) = sup
(X1,...,Xb)6=(Y1,...,Yb)

| max1≤i≤bXi −max1≤i≤bYi |∑b
i=1 | Xi − Yi |

Let the max1≤i≤bXi = Xi? and max1≤i≤bYi = Yj? then

|Xi?−Yj? |∑b
i=1|Xi−Yi|

≤ |Xi?−Yj? |
|Xi?−Yi? |+|Xj?−Yj? |

≤ |Xi?−Yi? |
|Xi?−Yi? |+|Xj?−Yj? |

≤ |Xi?−Yi? |
|Xi?−Yi? |

≤ 1.

2◦ The case where sb(X1, ..., Xb) is a standardized mean.

If we consider the sequence of statistics

Sb = sb(X1, ..., Xb) = b−1/2

b∑
i=1

(Xi − EXi),

then Lip(sb) is equal to b−1/2.

Indeed:

Lip(sb) = sup
(X1,...,Xb) 6=(Y1,...,Yb)

| b−1/2
∑b

i=1(Xi − EXi)− b−1/2
∑b

i=1(Yi − EYi) |∑b
i=1 | Xi − Yi |

| b−1/2
∑b

i=1(Xi − EXi)− b−1/2
∑b

i=1(Yi − EYi) |∑b
i=1 | Xi − Yi |

≤

≤ b−1/2 |
∑b

i=1Xi −
∑b

i=1 Yi|∑b
i=1 |Xi − Y − i|

≤ b−1/2 |
∑b

i=1(Xi − Yi)|
|
∑b

i=1(Xi − Yi)|
≤ b−1/2.
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In the articles of Bardet et al. [6] or Doukhan et al. [26] one can find ap-

plications of the classical Lindeberg central limit theorem to the class of weakly

dependent processes, introduced by Doukhan and Louhichi [25].

Let {Xt}t∈N be a series of zero mean random variables with values in Rd. Let

‖ Xt ‖2= X2
t,1 + ...+X2

t,d

be the Euclidean norm for Xt = (Xt,1, ..., Xt,d). Let us denote by C3
b the set of

bounded functions Rd → R with bounded and continuous partial derivatives up

to order 3.

Assumption Hδ:

It exists 0 < δ ≤ 1 such that ∀t ∈ N, E‖Xt‖2+δ <∞ and ∀k ∈ N∗, define

Ak =
k∑
t=1

E‖Xt‖2+δ.

Theorem 5.5. (Lindeberg C.L.T., [6]) Assume that the sequence {Xt,k}t∈N sat-

isfies Assumption Hδ, and Ak →k→∞ 0, and there exists Σ a positive matrix such

that Σk =
∑k

t=1 Cov(Xt,k) →k→∞ Σ. Moreover, assume that for j = 1, 2 and

f ∈ C3
b

Tj(k) =
k∑
t=1

|Cov(f (j)(X1 + ...+Xt−1), Xj
t )| →k→∞ 0

or

T (k) =
∑
j=1

k|Cov(ei<t,X1+...,Xj−1>, ei<t,Xj>)| →k→∞ 0.

Then,

Sk =
k∑
i=1

Xi,k
d→k→∞ Nd(0,Σ).

The classical Lindeberg theorem above was the base to obtain the CLT for

weakly dependent time series. Doukhan et al. [26] have proved a (2 + δ)−order

moment inequality which implies the conditions A(kn) → 0 and T (kn) → 0,

when kn →∞ and thereby they have obtained the following theorem for weakly

dependent series:

Theorem 5.6. ([26]) Let {Xt}i∈N be a sequence of stationary zero mean (2 +

δ)−order random variables, with δ > 0. Assume that {Xt}i∈N is a λ−(or θ−)weakly

dependent time series satisfying λr = O(r−c) (or θr = O(r−c)) when r →∞, with
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c > 4 + 2/δ.

Then it exists 0 < σ2 <∞ such that

1√
n

n∑
i=1

Xi
d→ N (0, σ2), k →∞.

It is clear that Theorem 5.6 does not work when we are dealing with long

memory time series, in the sense of the Definition 4.5 (β− 1 = c, where β ∈ [0, 1)

is from the Definition 4.5). However, it shows the necessary prerequisites to obtain

the central limit theorem in the model considered in the sequel of this dissertation.

The next Section - Section 6 is dedicated to the presentation the main results

of the Author’s PhD thesis.
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6 Subsampling, weak dependence, heavy tails

and long memory

6.1 The Model and the Central Limit Theorems

6.1.1 The model of the weakly dependent time series

In many applications of time series analysis one is confronted separately with

heavy tailed and long memory behavior. The non-stationarity of the time series,

and its special case - the periodicity is also a feature that researchers are dealing

with.

Below we present a model which will simultaneously be dealing with three fea-

tures: periodicity, long memory and heavy tails. We build it by adjusting a long

memory and a heavy tailed stationary model to the T-variate process similarly

as in [4], [73].

Let the time series {Xt}t∈Z be defined as:

Xt = σtGGt + ηt, (32)

where

A1 The volatility time series σt and the Gaussian-Gegenbauer time series GGt

are independent

A2 The sequence of random variables σt is i.i.d and its marginal distribution

comes either from a stable family or a GED family.

A3 GGt is periodic Gaussian-Gegenbauer time series. We put that

GGt = ft ·Gt, where Gt is Gaussian-Gegenbauer mean zero time series with

k = 1, | ν |≤ 1, LM(β) with β ∈ [0, 1). The function ft is a periodic,

deterministic, bounded with a known period T. The autocovariance of Gt

is γG.

A4 The deterministic function ηt is periodic with the same period T as ft.

Comment 6.1. β = 2d, where d is a memory parameter from the Definition 4.7.

The stationary case of the model (32) was considered by Politis and McElroy

in [75].
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6.1.2 Properties of the model

Fact 6.1. The process {Xt}i∈Z defined by the equation (32) is a long memory

process in the sense of Definition 4.6, with β ∈ [0, 1).

Indeed:

∑
0<|h|<n

γ(s)(h) =
∑

0<|h|<n

(Eσ)2f 2
hγG(h) ∼ C(s)nβ.

The last asymptotic equivalence follows from Theorem 5.4.

Lemma 6.1. ([41]) The long memory stationary Gaussian - Gegenbauer time

series is not strong mixing.

In the proof of Lemma 6.1 authors have used the property of the Gaussian

time series. They have studied the relationship as follows [60]:

ρ(k) = r(k), α(k) ≤ r(k) ≤ 2πα(k),

between the coefficients ρ, α (not to be confused with a stable coefficient α)

and r related to completely linear regular condition, α− mixing condition and

completely regular condition, respectively. From [41] the 1-factor Gegenbauer

time series is not completely linearly regular (see 4.10), hence it is not completely

regular (see, Definition 4.9). And hence it follows that the 1-factor Gaussian -

Gegenbauer time series can not be strong mixing.

Fact 6.2. Assume A1 through A4. Then Xt defined by the equation (32) is

λ−weakly dependent.

Proof of Fact 6.2

It follows from Lemma 6.1 that the Gaussian - Gegenbauer time series Gtt∈Z, is

not strong mixing.

From Theorem 4.1 we know that Gegenbauer (in the sense of the Definition 4.7)

time series has a long memory. And from the [6], p.8 follows that the stationary

Gaussian long memory time series has the λ−weak dependence properties.

Finally the λ−weak dependency of Xt is implied from the Proposition 1 in

[53].

Fact 6.3. Assume A1 through A4. Then the weak dependence coefficients of the

model defined by the equation (32) satisfy the following relationship:

λr = O(rβ−1), β ∈ [0, 1).
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Proof of above fact follows from [6].

The Fact 6.2 provide clear motivation to study weakly dependent structures.

In the next Subsection we will consider the model (32) with two different heavy

tails cases of volatility.

Stable volatility

Define the volatility process in the model (32) as follows:

σt =
√
εt, (33)

where εt are i.i.d. α/2-stable, α ∈ (1, 2), with the skewness parameter equal to one,

the scale parameter equal to (cos(πα/4))2/α, and the location parameter Eεt = 0,

for each t. From the research of Taqqu ([89], Prop.1.2.16 and Prop.1.2.17), we

know that E(σ) = E(σt) is finite and non negative.

The construction of Xt is based on sub-Gaussian vector [89], p.77.

The following fact provides the information about the marginal distribution

of Xt :

Fact 6.4. Assume A1 through A4. Then Xt has a symmetric about the mean

ftE(σ) −stable marginal distribution with scale parameter

τ(Xt) = |ft|
√
γG(0)/2.

The proof of the Fact 6.4 follows from the results of Taqqu ([89], Prop.1.2.3

and Prop. 1.3.1).

If the volatility in model (32) is stable with the stability coefficient α ∈ (1, 2) then

the time series is WS(1). Indeed, the first moment of Xt is finite (Proposition

1.2.16, [89]) and periodic (from the construction of the model (32)).

The second moment of the time series Xt is infinite (Proposition 1.2.16, [89]),

hence it is not second-order process. Thus the model (32) is not periodically

correlated in the sense of Gladyshev but it still is periodically stationary (PS) as

stated below.

Comment 6.2. The Xt defined by the equation (32) does not the have the vari-

ance, but it still has finite periodic autocovariance function γ(t + T, h) < ∞ for

h 6= 0, and is periodically stationary (PS).

Indeed, the time series Xt has periodic covariance:

γ(t+ T, h) = ft+Tft+T+h(Eσ)2γG(t+ T, h) =
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= ft+Tft+T+h(Eσ)2γG(h) = ftft+h(Eσ)2γG(t, h) = γ(t, h).

And it is PS, since σtGt is strictly stationary and the function f is periodic:

(σt1Gt1 , σt2Gt2 , ..., σtnGtn)
d
= (σt1+TGt1+T , σt2+TGt2+T , ..., σtn+TGtn+T )

(ft1σt1Gt1 , ft2σt2Gt2 , ..., ftnσtnGtn)
d
=

(ft1σt1+TGt1+T , ft2σt2+TGt2+T , ..., ftnσtn+TGtn+T )

(ft1σt1Gt1 , ft2σt2Gt2 , ..., ftnσtnGtn)
d
=

(ft1+Tσt1+TGt1+T , ft2+Tσt2+TGt2+T , ..., ftn+Tσtn+TGtn+T ).

In such a way we have succeeded in constructing a heavy tailed, long memory,

weakly dependent and not α-mixing time series with periodic structure.

Another interesting case of heavy tailed distributions is provided by the GED

family. We focus on that case in the subsection below.

GED volatility

Assume that the volatility process σt in the model (32) comes from a GED

distribution, as in Definition 4.22, i.e. σt ∼ G(µ, 1, α)).

The following fact provides the information about the heaviness of Xt tails in

the GED case:

Fact 6.5. Assume A1 through A4. Then Xt defined by the equation (32) has a

heavy tailed marginal distribution for α > 0.

Proof of the Fact 6.5.

From direct calculations we can obtain the strict formula for the kurtosis of the

model Xt, which is:

E(Xt − EXt)
4

(E(Xt − EXt)2)2
=

Eσ4
tEG

4
t

(Eσ2
t )

2(EG2
t )

2
= 3

Γ(5/α)Γ(1/α)

Γ2(3/α)
.

If we use the Stirling’s formula for Γ function we will obtain the approximation

as follows:

kurtosis ≈ 3 · 1.4 · 4.31/α.
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The kurtosis is more than 3 for all α > 0.

We do not have information about the marginal distribution of Xt, but since all

the moments of both distribution GGt and σt exist the model Xt is (2 + δ)-order,

with δ > 0.

In particular Xt is second-order, so it is periodically correlated in the sense of

Gladyshev. The formalization of this statement is as follows:

Comment 6.3. Xt defined by the equation (32) with σt coming from the GED

has a periodic mean, a periodic variance and a periodic autocovariance. Moreover,

the autocovariance of Xt has a form:

γ(t, h) = (Cov(σt, σt+h) + ϕ2)|ft||ft+h|γG(h).

Indeed:

The mean of Xt is ηt, so it is periodic. The variance is periodic:

γ(t+ T, 0) = (ft+T )2(1 + ϕ2)γG(t+ T, 0) =

= (ft+T )2(1 + ϕ2)γG(0) = (ft)
2(1 + ϕ2)γG(t, 0) = γ(t, 0).

The autocovariance also:

γ(t+ T, h) = |ft+Tft+T+h|ϕ2γG(t+ T, h) =

= |ft+Tft+T+h|ϕ2γG(h) = |ftft+h|ϕ2γG(t, h) = γ(t, h).

The form of the variance and autocovariance follows from the form of the variance

of variable with the GED distribution.

6.1.3 The estimator and its properties

For the model defined by the equation (32) one of the resampling method

- subsampling - is considered to approximate an asymptotic distribution of the

seasonal trend components, the overall mean and the vector of the seasonal trend

components.

We start with the definition.

Definition 6.1. We define the estimator of the seasonal trend components η(s)

as follows:

η̂N(s) =
1

N

N−1∑
p=0

Xs+pT , s = 1, 2, . . . , T, (34)

where T is the known period.

67



6.1 The Model and the Central Limit Theorems

Definition 6.2. We define the estimator of the overall mean η̄ = 1
T

∑T
s=1 η(s) as

follows:

ˆ̄η =
1

T

T∑
s=1

η̂N(s) (35)

where T is the known period.

For the case of stable heavy tails define ζ = max{1/α, (β + 1)/2}, where α is

the heavy tails parameter and β is a long memory parameter. For the case of the

GED model define ζ = 1/2.

6.1.4 Central Limit Theorems in the stable case

Let us define:

AN(s) = N1−ζ(η̂N(s)− η(s)).

Theorem 6.1. (Central Limit Theorem - for the seasonal means)

Assume A1 through A4 and the volatility process σt is defined by the equation

(33). Then the following weak convergence holds:

AN(s)
d⇒


S(s), if 1/α > (β + 1)/2

V (s), if 1/α < (β + 1)/2

S(s) + V (s), if 1/α = (β + 1)/2.

(36)

The variables S(s) and V (s) are independent. Here S(s) is a SαS variable

(α−stable, symmetric around zero), and the scale parameter equal to |fs|
√
γG(0)/2,

s = 1, . . . , T. Moreover, V (s) is a mean zero Gaussian variable with variance

C̃(s)(Eσ)2/(β + 1), where C̃(s) = |ft|(C(s) − γG(0)I{β=0}) and C(s) is the con-

stant from the Definition 4.6.

Proof of Theorem 6.1

The proof of the Theorem 6.1 follows from the Theorem 1 from [75] and Lemma

4.5. Assume that we are in the space L1.

Let E and G be the σ−field defined as follows E = σ(ε) = σ(εt, t ∈ Z), G = σ(G) =

σ(Gt, t ∈ Z) respectively. From the assumption A1 E and G are independent with

respect to the probability measure P.

Let us assume that β = 0, it follows ζ = 1/α.

From Theorem 4 in [54], p. 132 the characteristic function of AN(s) can be

written as (similarly as in [89], p. 20)
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Eexp{iνN−1/α

N−1∑
p=0

Ys+pT} = E[E[exp{iνN−1/α

N−1∑
p=0

σs+pTGGs+pT}|E ]]

where ν is any real number and s = 1, 2, ..., T. Let us investigate the inner con-

ditional characteristic function. From the properties of Gaussian characteristic

function we get that

E[exp{iνN−1/α

N−1∑
p=0

σs+pTGGs+pT}|E ] =

= exp{−(νN−1/α)2

2
f 2
s

N−1∑
p,q=0

σs+pTσs+qTγG(T (p− q))}, s = 1, ..., T.

The double sum is divided into the diagonal and the off-diagonal terms:

N−
2
α

(
f 2
s

N−1∑
p=0

σ2
s+pTγG(0) + f 2

s

∑
p 6=q

σs+pTσs+qTγG((p− q)T )
)

(37)

The second part of (37) from the Markov inequality tends to 0 in probability as

N →∞ and hence, as it is known, in distributions. Indeed:

E|N−
2
αf 2

s

∑
p 6=q

σs+pTσs+qTγG((p− q)T )| ≤ N−
2
αf 2

s (E(σ))2
∑
p 6=q

|γG((p− q)T )|

≤ N1− 2
αf 2

s (E(σ))2
∑
h≤N

(1− |h|
N

)|γG(h)|.

For the sum, the assumptions of the dominated convergence principle ([31], p.

111) are satisfied. Hence the sum tends to
∑

h∈Z |γG(h)|, which, from the condition

LM(β) (Definition 4.5), for β = 0 is finite. Consequently

N1− 2
αf 2

s (E(σ))2
∑
h≤N

(1− |h|
N

)|γG(h)| → 0,

as N →∞, since α < 2 and function f is bounded.

Stability of the σt makes the distribution of the first part of the (37) stable.

Due to the boundedness of exp{−ν2/2·} the assumption of the Theorem 25.8 in

[14] are satisfied and hence we have the weak convergence result:

Eexp{iνN−
1
αf 2

s

N−1∑
p=0

σ2
s+pTγG(0)} → Eexp{−ν

2

2
f 2
s γG(0)ε}.
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6.1 The Model and the Central Limit Theorems

The ε has the same distribution as εt. Therefore the expression

Eexp{−ν2

2
fsγG(0)ε} is the characteristic function of S variable with the scale

parameter |fs|
√
γG(0)/2.

In the case 1/α > (β + 1)/2 the second term of (37) is O(N1−2/αNβ) which

tends to zero as N → ∞ and f is bounded. The rest of the proof is identical as

in the case β = 0.

In the case 1/α < (β + 1)/2 the formula (37) becomes

N−(β+1)
(
f 2
s

N−1∑
p=0

σ2
s+pTγG(0) + f 2

s

∑
q 6=p

σs+pTσs+qTγG((p− q)T )
)
. (38)

The first term is OP (N2/α−(β+1)) and tends to zero as N →∞ and f is bounded.

From the Lemma 1, [75] and Lemma 3.1, [89] the limiting characteristic function

of the second term is

Eexp{−ν
2

2
f 2
s

C̃(t)(Eσ)2

β + 1
} = exp{−ν

2

2
f 2
s

C̃(s)(Eσ)2

β + 1
}

which is characteristic function of a mean zero Gaussian with variance

f 2
s C̃(s)(Eσ)2/(β + 1).

The case 1/α = (β+1)/2 is the combination of the two above cases. From the Slut-

sky’s Theorem we get the weak convergence of the sum of two independent ran-

dom variables. The characteristic function is in the form: Eexp{−ν2

2

(
f 2
s γG(0)ε+

f 2
s C̃(t)(Eσ)2/(β+1)

)
} = exp{−|ν|α(f 2

s γG(0)/2)α/2}·exp{−ν2

2
f2s C̃(s)(Eσ)2

β+1
}, and in-

deed this is a characteristic function of the sum of a stable S and a stable/normal

V variables.

The similar proof can also be found in Gajecka-Mirek [34].

Let us define

A = n1−ζ(ˆ̄η − η̄).

The following Theorem holds for the term A.

Theorem 6.2. (Central Limit Theorem - for the overall mean)

Assume A1 through A4 and the volatility process σt is defined by the equation

(33). Then the following weak convergence holds:

A
d⇒


S if 1/α > (β + 1)/2

V if 1/α < (β + 1)/2

S + V if 1/α = (β + 1)/2.

(39)
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6.1 The Model and the Central Limit Theorems

The variables S and V are independent. Here S is a SαS variable with the

scale parameter

(
T∑
s=1

|fs|α)1/α
√
γG(0)/2.

Moreover S is a sum of T SαS independent random variables as follows: S =∑T
s=1 S(s), V is a mean zero Gaussian variable with variance C̃(Eσ)2/(β + 1),

where C̃ =
∑T

s=1 f
2
s (C − γG(0)I{β=0}).

Proof of Theorem 6.2

From the construction of the model Xt defined by the equation (32) it is enough

to repeat the method shown in the Theorem 6.1 together with Lemma 4.4 and

Lemma 4.5. Note that f is assumed to be bounded.

Let us define

AN = N1−ζ(η̂ − η).

The following Theorem holds for AN .

Theorem 6.3. (Central Limit Theorem - for the mean’s vector)

Assume A1 through A4 and the volatility process σt is defined by the equation

(33). Then the following weak convergence holds:

AN
d⇒


SN if 1/α > (β + 1)/2

VN if 1/α < (β + 1)/2

SN + VN if 1/α = (β + 1)/2.

(40)

The vectors SN and VN are independent. Here SN is a SαS vector with zero

location parameter, and scale vector√
γG(0)/2[|f1|, ..., |fT |].

VN is a mean zero Gaussian variable with variance C̃(Eσ)2/(β+1), where C̃(s) =

[f 2
1 , ..., f

2
T ](C − γG(0)I{β=0}).

Proof of Theorem 6.3

The proof of the Theorem 6.3 follows from the Cramer-Wald Theorem together

with the Theorem 6.2. SN is a S vector from the Theorem 2.1.5, p.59, [89].

6.1.5 Central Limit Theorems in the GED case

In this subsection, the central limit theorems for the seasonal and overall mean

for the variables from the GED are introduced.
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6.1 The Model and the Central Limit Theorems

Let us define Σs = V ar(Xs). In the GED case Σs = |fs|2γG(h), s = 1, ..., T.

Let us define:

BN(s) = N−1/2(η̂N(s)− η(s)).

For a sequence {mN}N∈N such that mN →∞, if N →∞ let us define {kN}N∈N
such that

kN = [
N

mN

]→∞, if N →∞

and for λ−weakly dependent model {Xt}t∈Z defined by the equation (32) following

condition holds

λmNk
3
2
N → 0, N →∞.

Let us consider a subsample (XmN , . . . , XkNmN ) of (Xs, . . . , Xs+(N−1)T ).

Theorem 6.4. (Central Limit Theorem - for the seasonal means)

Assume A1 through A4 and the volatility process σt is as in the Definition

4.22. Then, for a sequence {mN}N∈N such that mN → ∞ and kN = [ N
mN

] →
∞, if N →∞ and for each s = 1, . . . , T following convergence holds:

BkN (s)→ N (0,Σs), N →∞.

Proof of Theorem 6.4

The proof follows from Proposition 4.1, [6].

Since the model defined by the equation (32) satisfies property LM(β) (Def-

inition 4.5), for β ∈ [0, 1) the time series Xt defined by the equation (32) does

not satisfy the Central Limit Theorem 5.6. The reason for this fact is that it has

the long memory property. But the Central Limit Theorem will be satisfied if we

choose a subsample of the observation with the appropriate asymptotic step of

sampling. In the model (32) the subsampled time series {YsmN = XsmN − ηsmN},
with a ”subsampling” step mN such that

o(mN) = N3/(2β+1), (41)

satisfies the Central Limit Theorem with a convergence rate o(N (1−β)/(4β+2)).

Following [6] there are objections to this ”subsampling” method: only a part of

the sample is used and the choice of the convergence rate of the ”subsampling”

implies the knowledge of the convergence rate of λr. But the convergence rate of

λr, in long memory processes is connected with the the long memory parameter

β. It could give us a step of ”subsampling”. The problem of the estimation of the

long memory parameter β will be discussed in the next Section.
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6.2 Consistency of the subsampling method for the mean

Let us define:

BkN ,N = k
−1/2
N (η̂ − η).

Theorem 6.5. (Central Limit Theorem - for the vector of the means)

Assume A1 through A4. Moreover, assume that

λmNk
3
2
N → 0, N →∞.

Let ZN = (Ys+pT , ..., Ys+(p+1)T ), p = 0, ..., N − 1 be a sequence of zero mean

random variables with values in RT , where T is the period. Then, for a sequence

{mN}N∈N such that mN →∞ and kN = [ N
mN

]→∞, if N →∞

BkN ,N =
1√
kN

kN∑
i=1

ZimN → NT (0, Cov(X0)), N →∞.

Proof of Theorem 6.5

The proof of Theorem 6.5 implies from the Proposition 4.1, [6], but applied to

the vectors.

Let us define:

B = n−1/2(ˆ̄η − η̄).

Theorem 6.6. (Central Limit Theorem - for the overall mean)

Assume A1 through A4. Moreover assume that

λmNk
3
2
N → 0, N →∞.

Then, for a sequence {mN}N∈N such that mN → ∞ and kN = [ N
mN

] →
∞, if N →∞

B =
1√
kNT

T∑
s=1

(

kN−1∑
p=0

(XsmN+pT − η(s)))→ N (0,Σ), N →∞.

Proof of the Theorem 6.6

The proof of the Theorem 6.6 implies from the Proposition 4.1, [6] for the vectors

and the Cramer - Wald theorem.

6.2 Consistency of the subsampling method for the mean

From research of Hall and Lahiri ([43], [64]) we know that, for long-range

dependent process, the bootstrap (MBB, CBB, PBB, SBB, GSBB) do not work,
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6.2 Consistency of the subsampling method for the mean

whereas subsampling still works asymptotically.

All we need to know to use subsampling is if there exists a non-degenerated

asymptotic distribution of the statistic (we do not have to know the form of the

asymptotic distribution) - we need to have the Central Limit Theorem.

Recall that our sample size n is equal n = NT .

The idea of subsampling in our model for the seasonal components is as follows:

Step 1 For each s = 1, . . . , T the estimator η̂N(s) is recomputed from the

(Xs, . . . , Xs+(N−1)T ) over ”short” overlapping blocks of length bs (bs depends

on N-the length of the sample)

Step 2 From Step 1 N − bs + 1 statistics are obtained for each s. In our context

those will be abs(η̂N,bs,i(s) − η̂N(s)) where η̂N,bs,i(s) is subsampling version

of the estimator η̂N(s) and abs is the normalize sequence. In the stable case

aN = N1−ζ and in the GED case aN = N−1/2.

Step 3 then the empirical distributions:

LN,bs(x, s) =
1

N − bs + 1

N−bs+1∑
i=1

1{abs (η̂N,bs,i(s)−η̂N (s))≤x}

are used to approximate the asymptotic distribution L(s)(x) of the estima-

tor aN(η̂N(s)− η(s)).

The idea of subsampling in our model for the vector of seasonal components is

as follows:

Step 1 For each s = 1, . . . , T the estimator η̂N is recomputed from the (X1, . . . , XN),

where X i = (X1+(i−1)T , ..., XiT ) over ”short” overlapping blocks of length b

(b depends on N-the length of the sample)

Step 2 From Step 1 N − b+ 1 statistics are obtained. In our context those will be

ab(η̂N,b − η̂N) where η̂N,b is subsamplig version of the estimator η̂N and ab

is the normalizing sequence.

Step 3 then the empirical distributions: LN,b(x) = 1
N−b+1

∑N−b+1
i=1 1{ab(η̂N,b−η̂N )≤x}

are used to approximate the asymptotic distribution L(x) of the estimator

aN(η̂N − ηN).

The main problem with the subsampling procedure is its consistency. We need

to prove that the finite sample quantiles generated by the subsampling procedure
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6.2 Consistency of the subsampling method for the mean

converge asymptotically (N →∞) to the quantiles of the asymptotic distribution.

Now we consider the problem of consistency of the Subsampling.

To prove the consistency of the subsampling procedure we need to know if there

exists a non-degenerated asymptotic distribution of the statistic which means

that we need to have the central limit theorem.

In both the stable and the GED case we have obtained a weakly convergence to

the limit random variables.

Denote the cumulative distribution functions of this limit random variables by

L(s) and L for the seasonal means and vector of the seasonal means, respectively.

To fulfill the Step 3 of the subsampling procedure the empirical distribution

functions LN(s)(x) = P (PN(s) ≤ x) are computed from the subsamples

(Xs, ..., Xs+(N−1)T ), for each s = 1, . . . , T where Xt is defined by the equation

(32).

The conclusion from the central limit theorems is that the empirical distribution

functions converge weakly to the cumulative distribution functions of the limit

random variables

LN(s)(x)→ L(s)(x) if N →∞, s = 1, . . . , T.

Denote the density of the limit distribution by L′(s). It is obvious that in the

GED case ‖ L′(s) ‖∞<∞. Let us consider the stable case.

We can look at the sub-Gaussian time series {Yt = Xt − ηt, t ∈ Z} as defined on

the product of two probability spaces:

(Ω,G, P ) and (Ω, E , P ) on which the series {GGt, t ∈ Z} and {εt = σ2
t , t ∈ Z}

are defined, respectively. The G and the E are the σ−fields as follows:

G = σ(GGt, t ∈ Z),

E = σ(εt = σ2
t , t ∈ Z).

From the Assumption A1 in the definition of the model (32) the σ−fields E and G
are independent with respect to the probability measure P. If we ”fix” the values

of εt then the series {Yt = ε1/2GGt, t ∈ Z} becomes a zero mean Gaussian time

series on the probability space (Ω,G, P ).

Generally, the sub-Gaussian S series are conditionally centered Gaussian ([89],

Section 3.11). It implies that we can view {Yt = Xt − ηt, t ∈ Z} as

N(0, γG(0)f 2
t εt), i.e., a normal with the variance γG(0)f 2

t εt. Note that by the

definition in the Section 4.2.1 of this thesis εt is, for each t ∈ Z, positive value

random variable. It follows that in the stable case inequality ‖ L′(s) ‖∞<∞ also

holds.
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6.2 Consistency of the subsampling method for the mean

A5
∑∞

r=0 λ
2
3
r < ∞, where λr is the weak dependence sequence of the model

(32), and limn→∞
bs
N

= 0,

bs is the length of subsampling subseries:

Xs+pT , Xs+(p+1)T , . . . , Xs+(p+bs−1)T , p = 0, . . . , N − bs.

Theorem 6.7. (Consistency theorem for seasonal means in both stable and GED

cases)

Assume A1 through A5 and consider the subsample of the sample withe subsample

step as in the equation (41), then consistency of the subsampling method holds:

1. If x is the point of the continuity of L(s), then LN,bs(s)(x)
P−→ L(s)(x).

2. If L is continuous then supx |LN,bs(s)(x)− L(s)(x)| P−→ 0.

3. If L(s) is continuous in c(1 − q) (where c(1 − q) is a q−quantile) then if

N →∞
P [N1−ζ(η̂N(s)− η(s)) ≤ cN,b(1− q)]→ 1− q

in stable case or

P [N−1/2(η̂N(s)− η(s)) ≤ cN,b(1− q)]→ 1− q

in GED case.

Where α ∈ (0, 1) and

cN,b(1− α) = inf{x : LN,b(s)(x) ≥ 1− α},

c(1− α) = inf{x : L(s)(x) ≥ 1− α}.

The
P−→ denotes convergence in probability.

Proof of Theorem 6.7

Let us consider a sequence of statistics AN(s), for fixed s = 1, 2, ..., T and N =

1, 2, ... (or BN(s) in the GED case).

LN(s)(x) = P (AN(s) ≤ x) is cumulative distribution function of AN(s).

(LN(s)(x) = P (BN(s) ≤ x) is cumulative distribution function of BN(s) in GED

case.)

From the assumptions

supx∈R|LN(s)(x)− L(s)(x)| −→ 0, N →∞

For overlapping samples the number of subsamples:
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6.2 Consistency of the subsampling method for the mean

Yb,q(s) = (Xs+qT , Xs+(q+1)T ..., Xs+(q+b−1)T ), q = 0, 1, ..., N − b and the number of

subsampling statistics:

AN,b,q(s) =
√
b(η̂N,b,q(s)− η̂N(s)) is N − b+ 1.

(BN,b,q(s) =
√
b(η̂N,b,q(s)− η̂N(s)) is N − b+ 1 in GED case.)

Above statistics are used to approximate the distributions LN(s)(x) by empirical

distribution functions: LN,b,q(s)(x) = 1
N−b+1

∑N−b
q=0 I{AN,b,q(s)≤x}.

(LN,b,q(s)(x) = 1
N−b+1

∑N−b
q=0 I{BN,b,q(s)≤x} in GED case.)

Let us define rough subsampled distribution:

UN,b,q(s)(x) =
1

N − b+ 1

N−b∑
q=0

I{√b(η̂N,b,q(s)−ηN (s))≤x}.

From Theorem 11.3.1 [80] for Heavy Tails (or the Theorem 2.2.1 [80] in the GED

case) it is known that

∀x ∈ R |LN,b,q(s)(x)− UN,b,q(s)(x)| p−→ 0.

It follows that it is enough to investigate only the variance of UN,b,q(s), s = 1, ..., T

By Theorem (5.4), under theorem 6.7 assumptions we obtain:

limN→∞|E[UN,b,q(s)(x)− E[UN,b,q(s)(x)]]2| = 0.

It implies that V ar(UN,b,q(s)(x)) tends to zero, it proves point 1. of the Theorem

6.7.

To prove the point 2. of the Theorem 6.7 we also use the Theorem 2 from [22].

limN→∞supx∈R|UN,b,q(s)(x)− L(s)(x)| = 0,

in probability.

The proof of point 3. If point 1. holds and under assumption of the model (32) is

very similar to the proof of 3. in the Theorem 11.3.1, [80] (or the Theorem 2.2.1

[80] in the GED case).

Theorem 6.8. (Consistency theorem for vector of the seasonal means in both

stable and GED cases)

Assume A1 through A5, and consider the subsample of the sample with subsample

step as in the equation (41), then consistency of the subsampling method holds:

1. If x is the point of the continuity of L, then LN,b(x)
p−→ L(x).

2. If L is continuous then supx |LN,b(x)− L(x)| p−→ 0.
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6.2 Consistency of the subsampling method for the mean

Proof of Theorem 6.8

For any vector of constants c ∈ RT we have the equation for the subsampling

version of the characteristic functions of the distributions:

φ∗AN,b,q(c) = φ∗cTAN,b,q(1) in stable case

φ∗BN,b,q(c) = φ∗cTBN,b,q(1) in GED case

Let Zs+pT = csXs+pT , where p = 0, ..., N − 1 and s = 1, ..., T. The series

{Zt} fulfills the assumptions of Theorem 6.8, which means that subsampling is

consistent for the mean (ηN)Z . By Theorem A in Athreya [5] we have: in the

stable case

φ∗cTAN,b,q(1)
p→


φSN (c), 1/α > (β + 1)/2

φVN (c), 1/α < (β + 1)/2

φSN+VN (c), 1/α = (β + 1)/2

where SN and VN are like in Theorem 6.6.

In GED case

φ∗cTBN,b,q(1)
p→ φN(η,cTΣc)(1) = φN(η,Σ)(c).

Moreover, in the stable case

P ∗(AN,b,q ≤ x)(1)
p→


FSN (x), 1/α > (β + 1)/2

FVN (x), 1/α < (β + 1)/2

FSN+VN (x), 1/α = (β + 1)/2

for any x ∈ RT , where FSN (x), FVN (x) and FSN+VN (x) are the cumulative dis-

tribution function of SαS, Gaussian and the sum of SαS and Gaussian random

vectors, respectively.

In the GED case

P ∗(BN,b,q ≤ x)
p→ FN(η,Σ)(x),

for any x ∈ RT , where FN(η,Σ)(x) is the cumulative distribution function of

N(η,Σ).

The second point of the thesis of the Theorem 6.8 follows then from Polyas the-

orem.
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7 Applications

7.1 The rate of convergence

If the rate of convergence of the statistic is a priori unknown, then it can be

estimated by subsampling and used in the sampling distribution approximation,

see Bertail et al. [9] or Politis et al. [80], Chapter 8.

Recall that

LN,b(s)(x) =
1

N − b+ 1

N−b+1∑
i=1

I{ab(η̂N,b(s)−η̂N (s))≤x},

LN(s)(x) =
1

N

N∑
i=1

I{aN (η̂N (s)−η(s))≤x}

and

L(s)(x) = P (aN(η̂N(s)− η(s)) ≤ x)).

Let us define

L̄N,b(s)(x) =
1

N − b+ 1

N−b+1∑
i=1

I{(η̂N,b(s)−η̂N (s))≤x}

L̃N,b(s)(x) = P ((η̂N,b(s)− η̂N(s)) ≤ x).

The normalize sequence a is in the form: N1−ζ in stable case and N−1/2 in GED

case.

Lemma 7.1. Assume A1 through A5 and consider the subsample of the sample

with subsample size as in the equation (41), then

L̄N,b(s)(x) = L̃N,b(s)(x) + oP (1),

N → ∞. The above Lemma is a simple corollary from the consistency of the

subsampling method Theorem 6.7.

Theorem 7.1. Assume A1 through A5 and consider the subsample of the sample

with subsample size as in the equation (41). Let k0 = sup{x : L(s)(x) = 0} and

k1 = inf{x : L(s)(x) = 1} and assume that L(s)(x) is continuous and strictly

increasing on (k0, k1) as a function of x. If the consistency of the subsampling

method theorem is fulfilled then

abL̄
−1
b (s)(x) = L−1(s)(x) + oP (1), (42)

for any x ∈ (0, 1) and N →∞.
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7.2 Choosing length of the block

Proof of the Lemma 7.1

The proof of the Lemma 7.1 strictly follows from Lemma 2, [9] and Theorem

5.4.

To estimate the rate of convergence we can use simple empirical tool proposed

by Bertail [8].

Our time series is PS but for each s = 1, ..., T and p = 0, ..., N − 1 time series

Xs+pT is stationary. Assuming that δN = N−ζ and taking proper logarithm in

the equation (42) we get:

log(|L̄−1
b (s)(x)|) = log(L−1(s)(x)) + ζlog(b) + oP (1).

If we take any pi 6= pj ∈ (0, 1) and draw log of some quantile range of subsampling

distribution

|L̄−1
b (s)(pi)− L̄−1

b (s)(pj)| = ζlog(b) + |L−1(s)(pi)− L−1(s)(pj)|+ oP (1)

If we consider different subsample size bi,n, i = 1, ..., I > 1 we can use the least

squares estimator of slope, see [9]:

γI =

∑I
i=1(yi − ȳ)(log(bi,n)− ¯log)∑I

i=1(log(bi,n)− ¯log)2
,

where for given t ∈ 0, 1 yi = log(|L̄−1
bi,n

(s)(x)|), ȳ = I−1
∑I

i=1 yi, and ¯log =

I−1
∑I

i=1 log(bi,n).

Unfortunately consistency of this estimator for weakly dependent time series

is unknown. There exist other, known, methods to estimate the parameters of the

tails and long memory and this method can be used in the estimation of rate of

convergence.

7.2 Choosing length of the block

One needs to be careful in choosing length of the block: bN . It can’t be to

small of course, but also it can’t be to big else the subsampling method do not

work, see [8].

To choose the block length we used simple empirical tool proposed by Bertail

[8].

Assuming that δN = N−ζ and taking proper logarithm in equation in the equation

(42) we get:

log(|L̄−1
b (s)(x)|) = log(L−1(s)(x)) + ζlog(b) + oP (1).
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7.2 Choosing length of the block

Figure 2: The example of choosing b for the process Xs+p+T with parameters

α = 1.5, β = 0.3 and s = 5, T = 24.

If we take any pi 6= pj ∈ (0, 1) and draw log of some quantile range of subsampling

distribution

|L̄−1
b (s)(pi)− L̄−1

b (s)(pj)| = ζlog(b) + |L−1(s)(pi)− L−1(s)(pj)|+ oP (1)

we will see that the best choice of b is the largest one before the ”unstable”

behavior.

Bellow the simulation study for the mean in the stable case are introduced.

We assume that the mean value η(s) is 0, for all s = 1, ..., T.

For the simulation study we chose the Gaussian Gegenbauer process with k=1,

innovations with mean zero and variance 1, ν = 1 In this case the autocorrelation

function is equal as follow, [89]:

γGG(h) =
Γ(1− β)

Γ(β/2)Γ(1− β/2)
hβ−1

γGG(0) =
Γ(1− β)

Γ2(1− β/2)
.

The constant C in the definition of long memory for each s = 1, . . . , T is:

C(s) = µ2f 2
s

Γ(1− β)

β/2Γ(β/2)Γ(1− β/2)
.
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7.2 Choosing length of the block

Figure 3: Equal tailed confidence interval for the mean parameter of the process

Xs+p+T with parameters α = 1.5, β = 0.3 and T = 24.

For the εt we chose α/2−stable i.i.d. random variables with the skewed parameter

1, the location parameter 0 and the scale (cos(πα/4))2/α.

The number of observations is NT = 10320, period T = 24. In the first case we

took β = 0.3 and α = 1.5.

This is the ”tail” case.

For each s = 1,...,24, we found subsample size by the method described before

and then draw the equal-tailed and symmetric 95% confidence intervals.

In the second case we took β = 0.4 and α = 1.6.

This is the ”memory” case.

And for each s = 1, . . . , 24, we have done the same as in previous case.
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7.2 Choosing length of the block

Figure 4: Symmetric confidence intervals for the mean parameter of the process

Xs+p+T with parameters α = 1.5, β = 0.3 and T = 24.

Figure 5: Equal-tail confidence interval for the mean parameter of the process

Xs+p+T with parameters α = 1.6, β = 0.4 and T = 24.
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Figure 6: Symmetric confidence intervals for the mean parameter of the process

Xs+p+T with parameters α = 1.6, β = 0.4 and T = 24.

8 Conclusions and open questions

In the thesis non-stationary time series with the periodic structure and spe-

cific features: heavy tail, long memory have been considered. The consistency of

the subsampling method for the mean has been obtained. The techniques used

in the proofs were completely different in two different cases of heavy tails. In

the stable case the theory of stable laws was used and in the GED case methods

based on the Lindeberg theorem was used. Because the model (32) does not holds

the mixing conditions, the new condition of dependence in time series - weak de-

pendency has to be taken into consideration.

When working with the model defined by the equation (32) one may be faced

with the following problems:

• estimations of the convergence rate which is associated with the estimation

of parameters of the long memory and the tails and

• identification of the parameters of the model.

First problem was discussed in the previous Section. The second can be easily

explained. In the dissertation we do the analysis of the first order and the knowl-
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edge of the periodic function f it is not necessary.

Now let us consider the future research areas in this topic.

First question for the future is how to generalize the model 32 in two directions.

Firstly, in the thesis only two classes of volatility series σt, representing the heavy

tails were introduced. Which of course, does not cover all cases of heavy tails

processes. Moreover, the special case of periodic models, i.e. the multiplicative

model were featured. Hence, secondly, how to generalize the subsampling method

to the wider class of periodic time series.

Second, very important, question which need to be considered is how to make

the selection of the block length b in the class of periodic models adequate and

effective?

Third, how will behave resampling methods in non-stationary case, if we re-

place the α−mixing assumption by weak dependence?

For the results in stationary case, for selected bootstrap methods in some econo-

metrics models, see Ango Nze, Doukhan [2].

It is important to develop statistical tools for models with periodic structure.

The reason is very simple: many of the phenomena that we observe in real life

is characterized by seasonality. If we also consider long memory and heavy tails

it is even better. Because long memory is an often occurring phenomenon and

heavy-tails are everywhere therefor they are more ”normal” than the Gaussian.

Our results provide consistent statistical procedures for mean function and

confidence intervals.
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[13] Bickel, P., Bühlmann, P. (1999), A new mixing notion and functional central

limit theorems for a sieve bootstrap in time series, Bernoulli 5-3, p. 413-446

[14] Billingsley P. (1995), Probability and measure, John Wiley and Sons Inc.,

New York

[15] Bradley R. (2005), Basic properties of strong mixing conditions, Probab.

Surv., 2:107-144

[16] Brockwell P., Davis R. (1991), Time Series: Theory and Methods, Springer-

Verlag, New York

[17] Chan V., Lahiri S. N., Meeker W. (2004), Block bootstrap estimation of the

distribution of cumulative outdoor degradation, Technometrics, 46:215-224

[18] Dedecker J., P. Doukhan, Lang G., León J. R., Louhichi S., Prieur C. (2008),

Weak Dependence: With Examples and Applications Lecture Notes 190 in

Statistics, Springer-Verlag
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[56] Javorskyj I., Leśkow J., Kravets I., Isayev I., Gajecka E. (2012), Linear

filtration methods for statistical analysis of periodically correlated random

processesPart I: Coherent and component methods and their generalization,

Signal Processing 92:7, p.1559-1566
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