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Abstract

The connection between a valued field extension and the corresponding extensions of the
value group and the residue field is meaningful for the theory of valued fields. When this
connection is interrupted, the structure of valued field extensions is much more complicated.
This causes one of the main hurdles to solve many important questions in valuation theory
and related areas of mathematics. Crucial examples of this situation are defect extensions
and immediate extensions of valued fields. A better understanding of both types of extensions
turned out to be important for questions in algebraic geometry, like resolution of singularities,
problems in real algebra and the model theory of valued fields.

In this thesis we study the structure and constructions of immediate as well as defect
extensions of valued fields. In particular, we focus on the structure of maximal immediate
extensions of valued fields.

In connection with local uniformization, a local version of resolution of singularities, we
investigate the problems related to defect extensions. We describe properties of distances
of elements in valued field extensions, which turned out to be a useful tool for the study of
the structure of defect extensions of valued fields of positive characteristic. We also give an
upper bound of the number of distinct distances of immediate elements of a bounded degree.

We further study the problem of existence of infinite towers of Galois defect extensions
of prime degree. We give conditions for a valued field to admit such towers and present
constructions of them. In connection with questions related to local uniformization we
present constructions of infinite towers of Artin-Scheier defect extensions of rational function
fields in two variables over fields of positive characteristic. We consider the classification
of Artin-Schreier defect extensions into “dependent” and “independent” ones (according to
whether they are connected with purely inseparable defect extensions, or not). To understand
the meaning of the classification for the issue of local uniformization, we consider various
valuations of the above mentioned rational function fields and investigate for which they
admit an infinite tower of Artin-Schreier defect extensions of each type.

The existence of infinite towers of Galois defect extensions of prime degree turned out
to be important for the structure of maximal immediate extensions of valued fields, which
is the next problem treated in this thesis. We give conditions for a valued field to admit
maximal immediate extensions of infinite transcendence degree. This problem is tightly
connected with the description of the possible extensions of a valuation from a given field
to an algebraic function field. We further consider algebraic extensions of maximal fields
and study the structure of immediate extensions of such fields. We also investigate the
problem of uniqueness of maximal immediate extensions. We prove that there is a class of
valued fields which admit an algebraic maximal immediate extension as well as one of infinite
transcendence degree, which can be seen as the worst possible case of non-uniqueness.

In our studies of maximal immediate extensions we consider also valued fields (K, v) with
p-divisible value group and perfect residue field, where p is the characteristic exponent of
the residue field Kv. Maximal immediate extensions of such fields are tame fields. Because
of their good valuation theoretical and model theoretical properties, tame fields play an
important role in the theory of valued fields and its applications. We discuss first the case
of fields with maximal immediate extensions of finite transcendence degree and describe the
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structure of such extensions. We then relate the existence of defect extensions of the field
(K, v) with the structure of the maximal immediate extensions of this field. We prove that if
the field (K, v) admits a nontrivial separable-algebraic defect extension, then every maximal
immediate extension of K is of infinite transcendence degree. We finally apply the results
to the description of the structure of valued rational function fields. In particular, we give
necessary and sufficient conditions on (K, v) to admit an extension of the valuation to a
rational function field F over K such that vF/vK is a torsion group and the residue field
extension Fv|Kv is algebraic.
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1. Introduction

Special types of valuations were exploited in number theory and function theory already
in the 19th century. However, the theory of valuations, as a separate branch of mathematics,
was started in 1912 by J. Kürschák, who formulated in [34] the axioms for valued fields. The
notion was introduced as a foundation for the theory of p-adic fields, presented by K. Hensel
in [14]. From that time on one can observe a quick development of valuation theory. It
turned out that valuation theoretical methods allow us to understand better important
issues of algebraic number theory, algebraic geometry and the theory of ordered fields.

During the next decades, mathematicians like H. Hasse, F. K. Schmidt, A. Ostrowski,
O. F. G. Schilling and S. MacLane were developing the theory introduced by Kürschák
(cf. [40]). The first results and research in this area were connected mainly with discrete
complete valuations. Complete valued fields are important for the study of analytic proper-
ties of fields, whereas for the investigation of algebraic properties the henselian fields are more
adequate. After W. Krull had introduced the theory of general valuations of arbitrary rank,
it turned out that complete valued fields of higher rank are not necessarily henselian (cf. [3],
Chapter 6, §8). This problem can be solved by passing to a minimal henselian algebraic
extension of a given valued field, called a henselization of the field (cf. Section 2.2.2). The
completion of a given valued field as well as the henselization of the field have an interesting
property: the corresponding value group and residue field extensions are trivial. Such valued
field extensions are called immediate (cf. Section 2.2.3). They appear also in a natural way
while studying power series fields with their canonical valuations. The notion of immediate
extensions is due to Schmidt, but was first published by Krull in [20].

While the completion and the henselization of a valued field and their structure were
known, other immediate extensions turned out to be more problematic. A good example of
this is the Relative Uniqueness Theorem, proved by MacLane in [36] for discrete complete
valued fields. In his subsequent paper MacLane claimed that the result can be proved also for
non-discrete valuations. However, it was pointed out by his student I. Kaplansky that such
a general fact is not true. The reason is the existence of nontrivial immediate extensions of
complete fields in the non-discrete case. The research of Kaplansky on immediate extensions
of valued fields ([16]), which was a continuation of the work of Ostrowski ([39]), laid the basis
for the theory of immediate extensions, maximal immediate extensions, and their description.
The theory was further developed by many other mathematicians (see, e.g., [9], [25], [32]
and [42]).

The investigation of valued fields and related areas showed the importance of the connec-
tion between a valued field extension and the corresponding extensions of the value group
and the residue field. It turned out that the valued field extensions for which the value group
and the residue field extensions carry the maximal possible information are usually easier
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to deal with. Difficulties often appear when the connection between a valued field extension
and the extensions of its invariants, i.e., the value groups and the residue fields, is inter-
rupted. Crucial examples of this situation are immediate algebraic extensions of henselian
fields. Therefore, a better understanding of the structure of immediate extensions of valued
fields is meaningful for problems in various areas of research.

Since specific properties of an ordered field depend on specific properties of the valuations
of the field, the structure of extensions of valued fields is important for the theory of ordered
fields. As an example, the immediate extensions play a role in the problem of extending
an ordering from a given field to a rational function field over this field (see, e.g., [22], [24]
and [30]).

Immediate extensions are also meaningful for questions in the model theory of valued
fields, like classification of valued fields up to elementary equivalence (cf. [27] and [28]), and
in algebraic geometry, especially for the local uniformization problem (see, e.g., [19] and [27]).
Local uniformization is essentially a local version of the problem of resolution of singularities,
which can be described in the language of valued fields. For valued fields of characteristic 0,
local uniformization was proved in 1940 by O. Zariski ([46]). Over twenty years later H. Hi-
ronaka proved resolution of singularities over fields of characteristic 0 ([15]). For fields of pos-
itive characteristic both problems are solved only in special cases (see, e.g., [1], [2], [6], [7], [18]
and [19]), but the general case remains widely open.

One of the hurdles for the attempt to prove local uniformization in positive characteristic
are so-called defect extensions, which do not appear when the residue field has characteris-
tic 0. If (L|K, v) is a finite extension of valued fields such that v admits a unique extension
from K to L, then the Lemma of Ostrowski (see [47], Chapter VI, §12, Corollary to
Theorem 25) says that

[L : K] = pn(vL : vK)[Lv : Kv] (1.1)

with n ≥ 0 and p the characteristic exponent of Kv, that is, p = charKv if it is pos-
itive and p = 1 otherwise (for the notions and basic facts see Chapter 2). The factor
d(L|K, v) := pn is called the defect of the extension (L|K, v). If it is nontrivial, that is,
if n > 0, then (L|K, v) is called a defect extension. If d(L|K, v) = 1, then (L|K, v) is
called a defectless extension. The nature of the defect was studied and described first
by Ostrowski in [39]. However, there are still many open problems about defect extensions.
Since such extensions play a role also in deep open problems of the model theory of valued
fields as well as the theory of valued rational function fields (see, e.g., [22], [27] and [28]), we
need to better understand defect extensions and their structure.

In this thesis we study the structure of maximal immediate extensions of valued fields and
constructions of such extensions. In connection with the problem of local uniformization,
we also study the issue of defect extensions of valued fields, especially of valued rational
function fields.

We start with describing properties of a useful tool in the study of defect extensions of
valued fields. Elements of a valued field extension induce cuts in the value group of the
base field (in a sense that we will explain in Section 2.3). These cuts, called distances,
turned out to be important for the study of the structure of defect extensions of valued
fields of positive characteristic (cf. [25]). F.-V. Kuhlmann and O. Piltant in their joint
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work [31] relate defect extensions with higher ramification groups, in connection with the
local uniformization problem. They use distances to describe the relation. In Chapter 3 we
introduce a new definition of distance which carries more information about field extensions
(cf. Section 3.1). We then apply the properties of distances that we have proved to the case
of defectless extensions of prime degree, describing all possible distances of elements of such
extensions and the properties of their distances (cf. Section3.2).

In the study of valuations of rational function fields, which continues the work of S. D. Cut-
cosky and O. Piltant ([8]), the problem of an upper bound of the number of distinct distances
of elements in immediate extensions came up. The answer in the case of extensions of prime
degree was given partially by Kuhlmann. In Section 3.3 we fill gaps in his sketch of proof
and give an upper bound for the number of distinct distances in the case of extensions of
higher degree (Theorem 3.23.).

We further study Galois defect extensions of prime degree. The importance of studying
the structure of such extensions comes from the fact that towers of Galois extensions play
a central role in the issue of defect extensions. This follows from the fact that every finite
separable extension (L|K, v), lifted up to the absolute ramification field of K, becomes a
tower of Galois extensions of degree equal to the characteristic exponent of Kv. Further-
more, the defect of the lifted extension remains unchanged (for the details see Section 2.4).
Since the existence of defect extensions shows a “bad behaviour” of the valuation, we are
interested in the question whether the problem of defect extensions appears only in finite ex-
tensions, after which the defect vanishes. In Chapter 4 we show that the situation is not that
simple by giving criteria for valued fields of positive residue characteristic p with p-divisible
value group and perfect residue field to admit infinite towers of Galois defect extensions of
degree p. We prove that under certain conditions the existence of at least one Galois defect
extension of prime degree implies the existence of an infinite tower of such extensions. We
give constructions of such towers.

The existence of infinite towers of Galois defect extensions of prime degree of a given field
(K, v) turned out to be important for the description of maximal immediate extensions of
(K, v). We apply the facts proven in Chapter 4 in our further investigation of this description
(cf. Chapters 6 and 7).

The main results of the thesis are contained in Section 5.1 and in Chapters 6 and 7.
Chapter 5 is devoted to defect extensions of rational function fields of positive characteristic
in two variables. We focus on the issue of towers of Galois defect extensions of prime degree
of such fields. If the characteristic of the valued field is positive, then Galois defect extensions
of prime degree are Artin-Schreier defect extensions (cf. Section 2.4). The structure of defect
extensions of function fields is especially interesting for the problems related to resolution of
singularities, such as local uniformization. In particular, in the case of two dimensional alge-
braic function fields of positive characteristic, a strong relative form of local uniformization
presented in Theorem 7.35 of [8] does not hold in case of nontrivial defect. This can be shown
by an example which consists of a tower of two Artin-Schreier defect extensions of a rational
function field in two variables (cf. Theorem 7.38 of [8]). In connection with these results and
the importance of towers of Artin-Schreier extensions, we study the problem of constructing
infinite towers of Artin-Schreier defect extensions of rational function fields in two variables.
An example of such a construction was given by Kuhlmann ([22]). He showed the existence
of a valuation of the rational function field in two variables over an algebraically closed field
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such that the valuation is trivial on the field of coefficients and the valued function field
admits an infinite tower of Artin-Schreier defect extensions. We generalize this fact proving
the following theorem.

Theorem 1.1. Assume that K is a field of positive characteristic p and that it admits a
perfect subfield of cardinality κ. Then there is a valuation v on the rational function field
K(x, y)|K whose restriction to K is trivial, such that (K(x, y), v) admits κ many pairwise
linearly disjoint infinite towers of Artin-Schreier defect extensions.

The above theorem shows that even relatively simple fields can admit valuations such
that the algebraic extensions of the valued fields have a very bad structure.

We further consider a classification of Artin-Schreier defect extensions (introduced by
Kuhlmann in [25]) into “dependent” and “independent” ones, according to whether they
are connected with purely inseparable defect extensions, or not. There are indications
that considering this classification in connection with the problem of local uniformization is
meaningful. M. Temkin’s work (especially [41]) appears to show that the dependent Artin-
Schreier defect extensions may be more harmful. This seems to be confirmed by the men-
tioned example of Cutkosky and Piltant (Theorem 7.38 of [8]). Work in progress of L. Ghezzi
and S. ElHitti indicates that the tower of two Artin-Schreier defect extensions constructed
in the example consists of dependent extensions. We therefore consider various valuations
of the rational function fields and investigate for which they admit an infinite tower of de-
pendent or independent Artin-Schreier defect extensions. In Section 5.1.1 we give examples
of valuations for which the rational function fields admit towers of both kinds of extensions.
We also prove that there are valuations for which the rational function fields admit no depen-
dent, but infinite towers of independent Artin-Schreier defect extensions (cf. Section 5.1.2).
As all of the proofs are constructive, this provides valuable examples for the further study
of the local uniformization problem. The results of Chapter 5 are presented in [4].

In Chapter 6 we study the structure of maximal immediate extensions of valued fields. We
focus mainly on the question of transcendence degree of the maximal immediate extensions
of a given valued field. This turned out to be important for the description of the possible
extensions of a valuation from a given field to an algebraic function field. Ramification theory
enables us to deal with the algebraic extensions and reduces the problem to describing the
possible extension of a valuation from a given field to a rational function field over this field.
The case of rational function fields in one variable was studied already by Ostrowski ([39])
and investigated later by many authors (see the references in [22] for a selection from the
literature on this problem). The case of higher transcendence degree was considered in [22].
The problem turned out to be tightly connected with the question whether the maximal
immediate extensions of a given valued field have finite or infinite transcendence degree. The
following theorem gives conditions for a valued field to admit maximal immediate extensions
of the latter kind (see Chapter 2 for the notions).

Theorem 1.2. Take a valued field extension (L|K, v) of finite transcendence degree ≥ 0,
with v nontrivial on L. Assume that one of the following four cases holds:

valuation-transcendental case: vL/vK is not a torsion group, or Lv|Kv is transcendental;

value-algebraic case: vL/vK contains elements of arbitrarily high order, or there is a sub-
group Γ ⊆ vL containing vK such that Γ/vK is an infinite torsion group and the order of
each of its elements is prime to the characteristic exponent of Kv;
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residue-algebraic case: Lv contains elements of arbitrarily high degree over Kv;

separable-algebraic case: L|K contains a separable-algebraic subextension L0|K such that

within some henselization of L, the corresponding extension Lh0 |Kh is infinite.

Then each maximal immediate extension of (L, v) has infinite transcendence degree over L.
If the cofinality of vL is countable (which for instance is the case if vL contains an element
γ such that γ > vK), then already the completion of (L, v) has infinite transcendence degree
over L.

This theorem is a far-reaching generalization of the constructive proof of the fact that
the Laurent power series field K((x)) over a field K is of infinite transcendence degree over
the rational function field K(x), given by MacLane and Schilling in [37]. The proof of
Theorem 1.2 in particular presents effective methods for the construction of infinitely many
algebraically independent elements over various fields.

Because of the meaning of immediate extensions for various questions in valuation theory
and related areas, fields which do not admit any proper immediate extensions are of particular
interest. Such valued fields are called maximal. It is well known that a finite extension of
a maximal field is again maximal (cf. Section 2.5 for details and references). In Section 6.2
we answer the question when an infinite algebraic extension (L, v) of a maximal field (K, v)
can be again maximal and discuss the possible form of the maximal immediate extensions
of (L, v) if it is not maximal.

Another important question connected with immediate extensions is the problem of
uniqueness of maximal immediate extensions of valued fields. Kaplansky proved that under
a certain condition, which he called “hypothesis A”, a valued field admits maximal imme-
diate extensions which are unique up to isomorphism (see Section 2.5 for details). He also
gave an example showing that if hypothesis A is violated, then uniqueness may not hold.
It is an open question whether the uniqueness of maximal immediate extensions of a given
valued field always fails when the field does not satisfy hypothesis A and its completion is
not maximal. Interesting is also the question how much the maximal immediate extensions
of a given field can differ. In Theorem 6.10 we prove the existence of a class of valued fields
which admit an algebraic maximal immediate extension as well as one of infinite transcen-
dence degree. Results of Sections 6.1 and 6.2 are joint work with F.-V. Kuhlmann and are
presented in [5].

Section 6.3 of Chapter 6 is devoted to the problem of the structure of valued rational
function fields. We investigate the question when a valuation v of a given field K admits an
extension to a rational function field K(x1, . . . , xn) such that vK(x1, . . . , xn)/vK is a torsion
group and the residue field extension K(x1, . . . , xn)v|Kv is algebraic. The results presented
in this section are generalizations, comments and corrections of facts proved in [22].

In the last chapter we consider maximal immediate extensions of a valued field (K, v) with
p-divisible value group and perfect residue field, where p is the characteristic exponent of the
residue field Kv. Maximal immediate extensions of such fields are tame (cf. Section 2.2.3
for definition and properties). Since tame fields have good valuation theoretical and model
theoretical properties, they play an important role in the theory of valued fields and its
applications (cf., e.g., [21] and [22]).

We consider first the case when (K, v) admits a maximal immediate extension (M, v)
algebraic over K. It was proven in [29] that if M |K is finite, then the extension is trivial.
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We extend the result by showing that if M |K is an algebraic extension, then it is purely
inseparable and equal to the completion of (K, v) (see Corollary 7.5). We consider further the
case when M |K is of finite transcendence degree, and prove in particular that the maximal
immediate extension of (K, v) is then unique up to isomorphism (Theorem 7.7). This enables
us to prove the following theorem, which relates the problem of the existence of nontrivial
separable-algebraic defect extensions of (K, v) with the structure of the maximal immediate
extensions of the field.

Theorem 1.3. Take a valued field (K, v) of positive residue characteristic p, with p-divisible
value group and perfect residue field. Assume that at least one of the following cases holds:

1) (K, v) admits a finite separable-algebraic extension (F |K, v) such that the valuation v
extends in a unique way from K to F and (F |K, v) has nontrivial defect;

2) charK = p and the perfect hull of K is not contained in the completion of K.

Then every maximal immediate extension of (K, v) is of infinite transcendence degree over K.

We then apply the results to the description of the extensions of a valuation v from the
field K to a rational function field F over K. We give necessary and sufficient conditions
on (K, v) to admit an extension of the valuation v to F such that vF/vK is a torsion group
and the extension Fv|Kv is algebraic (Theorem 7.16).
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2. Preliminaries

This chapter briefly outlines main definitions and facts that will be used in this disserta-
tion. We introduce also terminology and notions we will work with.

2.1 Linearly disjoint and algebraically disjoint exten-

sions

In this section we recall a few properties of linearly and algebraically disjoint extensions.
For the details see for instance [35], Chapter VII, and [29]. We assume that all considered
fields are contained in a common extension field Ω. For an arbitrary field K, we will denote
by K̃ the algebraic closure of K and by Ksep the separable-algebraic closure of K.

Take field extensions L|K and F |K. We say that L|K is linearly disjoint from F |K
if for every n ∈ N, any a1, . . . , an ∈ L linearly independent over K will also be linearly
independent over F . This holds if and only if every finite subextension E|K of L|K is
linearly disjoint from F |K, that is, if [E : K] = [E.F : F ] for every such subextension,
where E.F denotes the compositum of E and F inside Ω. This property is symmetrical with
respect to L and F , hence we will also say that L and F are K-linearly disjoint.

A direct consequence of the above definition is the following transitivity property (cf.
Proposition 3.1, Chapter 8 of [35]).

Lemma 2.1. Let L|K and F ⊇ E ⊇ K be field extensions. Then L|K is linearly disjoint
from F |K if and only if L|K is linearly disjoint from E|K and L.E|E is linearly disjoint
from F |E.

The next lemma gives a useful criterion for linear disjointness if at least one of the
extensions is Galois.

Lemma 2.2. Suppose L|K is a Galois and F |K an arbitrary field extension. Then L and
F are linearly disjoint over K if and only if L ∩ F = K.

For the proof, see [45], Chapter VII, Theorem 10.
Take an arbitrary field extension K ′|K. If L|K is a Galois extension, then also L.K ′|K ′

and L|L ∩ K ′ are Galois extensions. Moreover, the restriction of the automorphisms of
L.K ′|K ′ to L induces a topological isomorphism Gal (L.K ′|K ′) ∼= Gal (L|L∩K ′) (cf. Propo-
sition 6.5, Chapter 6 of [17]). Together with the previous lemma these facts proves the
following property.
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Corollary 2.3. Take an arbitrary field extension K ′|K and a Galois extension L|K, linearly
disjoint from K ′|K. Then the extension L.K ′|K ′ is also Galois and the restriction of the
automorphisms of L.K ′|K ′ to the field L is a topological isomorphism of Gal(L.K ′|K ′) and
Gal(L|K).

A field extension L|K will be called separable if it is linearly disjoint from K1/p∞|K,
or equivalently, from K1/p|K. Note that in the case of algebraic extensions the definition
coincides with the standard notion of separable extensions. Such extensions will be called
separable-algebraic.

Lemma 2.4. If F |K is a field extension such that K is relatively algebraically closed in F ,
then F |K is linearly disjoint from every separable-algebraic extension of K.

Proof. Take a separable-algebraic extension L of K and a finite subextension L′|K. Since
L|K is separable-algebraic, L′ = K(a) for some a ∈ L, by the Theorem of Primitive Element.
Then a and all its conjugates over K are algebraic over F . If h is the minimal polynomial of
a over F , then each of its coefficients is a symmetric function in the conjugates of a over F ,
which are among the conjugates of a over K. Hence, the coefficients of h are algebraic
over K. Since K is relatively algebraically closed in F , all of the coefficients lie in K and
thus h is also the minimal polynomial of a over K. Consequently, [K(a) : K] = [F (a) : F ].
Therefore, F and L′ are K-linearly disjoint. It follows that also F and L are K-linearly
disjoint.

Take field extensions L|K and F |K. The extension L|K is called algebraically disjoint
from F |K if for every n ∈ N, any a1, . . . , an ∈ L algebraically independent over K will also
be algebraically independent over F . Hence, L|K is algebraically disjoint from F |K if every
finitely generated subextension E|K of L|K satisfies trdeg E|K =trdeg E.F |F . As in the
case of linear disjointness, the property of algebraic disjointness is symmetrical. Thus if L|K
is algebraically disjoint from F |K we also say that L and F are K-algebraically disjoint.
Directly from the definition of linear and algebraic disjointness it follows that if L|K is
linearly disjoint from F |K then it is also algebraically disjoint from F |K. The converse
holds only under additional assumptions. We are going to use it in the following form:

Lemma 2.5. Let L|K and F |K be algebraically disjoint field extensions. If K is relatively
algebraically closed in L and F |K is separable then L|K and F |K are also linearly disjoint.

The above fact is a special case of Theorem 4.12, Chapter VIII of [35].

2.2 Extensions of valued fields

In this section we recall basic notions and facts related to valued fields and their exten-
sions. For the details we refer the reader to [10], [11], [29], [43] and [47] . For an abelian
group Γ we will denote by Γ̃ the divisible hull of Γ.

2.2.1 Valued fields and their extensions

Take a field K and an ordered abelian group (Γ,+, 0, <). Extend the operation and the
ordering of Γ to Γ ∪ {∞} by setting γ +∞ = ∞ + γ = ∞ +∞ = ∞ and γ < ∞ for every
γ ∈ Γ. A mapping v : K → Γ∪{∞} is a valuation of K if it satisfies the following conditions:
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(V0) v(x) =∞⇔ x = 0

(VH) v(xy) = v(x) + v(y)

(VU) v(x+ y) ≥ min{v(x), v(y)},
for all x, y ∈ K. In this case the pair (K, v) is called a valued field. We will write also
K in place of (K, v) if the valuation v is fixed. For simplicity we will write vx in place
of v(x). From the definition we obtain that that v1 = 0 and thus vx−1 = −vx, for every
x ∈ K. Moreover, if x, y ∈ K are such that vx 6= vy, then v(x + y) = min{vx, vy}. Hence
in particular, v(−x) = vx for every x ∈ K.

The set vK := {vx | x ∈ K×} is a subgroup of the ordered abelian group Γ and is called
a value group of (K, v). The valuation v is called trivial if vK = {0}. We further define
the rank of (K, v) to be the rank of vK, that is, the order type of the chain of all proper
convex subgroups of vK. Hence, v is of rank 1 if and only if vK is archimedean, that is,
embeddable in R with its natural ordering.

From the definition of a valuation it follows that the set

Ov := {x ∈ K | vx ≥ 0}

is a subring of K. It is called the valuation ring of (K, v). It will be also denoted by OK .
Further,

Mv := {x ∈ K | vx > 0}

is an ideal of Ov, called the valuation ideal of (K, v).
Since Ov \ Mv = {x ∈ K | vx = 0} is the set of all invertible elements of Ov, the

valuation ring is a local ring and Mv is the unique maximal ideal of Ov. The field Ov/Mv

is called the residue field of (K, v) and denoted by Kv. The element a+M∈ Kv will be
denoted by av. Similarly, if f = anX

n + · · ·+ a1X + a0 ∈ Ov[X], then by fv we will denote
the reduction (anv)Xn + · · · + (a1v)X + a0v ∈ Kv[X] of f modulo v. The characteristic of
Kv is called the residue characteristic of (K, v). Note that if charK = p > 0, then also
charKv = p. The converse is not true. The valued fields of positive residue characteristic
will be for us of particular interest because of the phenomenon of defect, which can appear
in this case (see Section 2.2.3).

By an isomorphism of valued fields (K, v) and (L,w) we will mean a field isomorphism
σ : K → L preserving the valuation: σ(OK) = OL. Such an isomorphism preserves all
valuation theoretical properties.

Given any subset S of K, we define

vS = {va | 0 6= a ∈ S} and Sv = {av | a ∈ S, va ≥ 0} .

Take a valued field (K, v) and a field extension L of K. Then the valuation v admits an
extension to a valuation of the field L (cf. Theorem 13.2 of [10]). By (L|K, v) we denote an
extension of valued fields, where v is a valuation of L and K is equipped with the restriction
of this valuation. We will omit the valuation, writing L|K for the valued field extension, if v is
fixed. The natural embeddings vK ↪→ vL and Kv ↪→ Lv enable us to consider also the value
group and residue field extensions. The (finite or infinite) cardinal e(L|K, v) := (vL : vK)
is called the ramification index, and f(L|K, v) := [Lv : Kv] is called the inertia degree
of (L|K, v). The next lemmas state the relation between a valued field extension and the
respective extensions of value group and residue field.
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Lemma 2.6. Let (L|K, v) be an extension of valued fields. Take elements xi, yj ∈ L, i ∈ I,
j ∈ J , such that the values vxi , i ∈ I, are rationally independent over vK, and the residues
yjv, j ∈ J , are algebraically independent over Kv. Then the elements xi, yj, i ∈ I, j ∈ J ,
are algebraically independent over K.

Moreover, if

f =
∑
k∈S

ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j ∈ K[xi, yj | i ∈ I, j ∈ J ], (2.1)

where S is a finite subset of N and for every k 6= ` there is some i ∈ I s.t. µk,i 6= µ`,i or
some j ∈ J s.t. νk,j 6= ν`,j , then

vf = min
k∈S

v ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j = min

k∈S

(
vck +

∑
i∈I

µk,ivxi

)
. (2.2)

That is, the value of the polynomial f is equal to the least of the values of its monomials. In
particular, this implies:

vK(xi, yj | i ∈ I, j ∈ J) = vK ⊕
⊕
i∈I

Zvxi

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) .

Moreover, the valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by its restriction
to K, the values vxi and the residues yjv.

For the proof, see [3], chapter VI, §10.3, Theorem 1 together with §10.1, Propositions 1
and 2.

The algebraic analogue to the transcendental case discussed in Lemma 2.6 is the following
lemma:

Lemma 2.7. Let (L|K, v) be an extension of valued fields. Suppose that η1, . . . , ηk ∈ L
are such that vη1, . . . , vηk ∈ vL belong to distinct cosets modulo vK. Further, assume that
ϑ1, . . . , ϑ` ∈ OL are such that ϑ1v, . . . , ϑ`v are Kv-linearly independent. Then the elements
ηiϑj , 1 ≤ i ≤ k, 1 ≤ j ≤ `, are K-linearly independent, and for every choice of elements
cij ∈ K, we have that

v
∑

i≤k,j≤`

cijηiϑj = min
i≤k,j≤`

vcijηiϑj = min
i≤k,j≤`

(vcij + vηi) . (2.3)

If the elements ηiϑj form a K-basis of L, then

vL = vK +
⊕

1≤i≤k

Zvηi and Lv = Kv(ϑjv | 1 ≤ j ≤ `) .

The lemma follows from the proof of Theorem 30.14 of [43].
A direct consequence of the first assertion of the above lemma is the following

Corollary 2.8. If (L|K, v) is a finite extension of valued fields, then

[L : K] ≥ (vL : vK)[Lv : Kv]. (2.4)
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Under the conditions of the corollary one can say even more. If v1 = v, . . . , vg are the
distinct extensions of the valuation v of K to the field L, then L|K satisfies the fundamental
inequality (cf. Corollary 17.5 of [10]):

[L : K] ≥
g∑
i=1

(viL : viK)[Lvi : Kvi]. (2.5)

Note that from the above corollary it follows that if (L|K, v) is a finite extension of valued

fields, then Lv|Kv is an algebraic extension and the group vL/vK is torsion. Thus vL ⊆ ṽK

and Lv ⊆ K̃v. Furthermore, we have (see Lemma 2.16 of [22]) :

Lemma 2.9. Take a valued field (K, v) and assume that the valuation v is nontrivial. Take
an extension of v to the algebraic closure K̃ of K. Then the value groups of K̃ and of Ksep

are equal to the divisible hull of vK, and the residue fields of K̃ and of Ksep are equal to the
algebraic closure of Kv.

For any element x in a field extension of K and every nonnegative integer n, we set

K[x]n := K +Kx+ . . .+Kxn .

Since dimK K[x]n ≤ n+ 1, we obtain the following corollary from Lemma 2.7:

Corollary 2.10. Take a valued field extension (K(x)|K, v). Then for every n ≥ 0,

a) the elements of vK[x]n lie in at most n+ 1 many distinct cosets modulo vK,

b) the Kv-vector space K[x]nv is of dimension at most n+ 1.

2.2.2 Henselian fields and henselizations

Although for every valued field (K, v) the valuation can be extended to any field extension
L of K, such an extension does not need to be unique, even in the case of algebraic extensions.
However, if K is of positive characteristic p and L is a purely inseparable extension of K,
then any element of L is of the form ap

−n
for some a ∈ K and n ≥ 0. From the definition

of a valuation we obtain that vap
−n

= p−nva, hence v admits a unique extension to L. In
general, if L|K is an algebraic extension, every two extensions v1, v2 of the valuation v from

K to L are conjugate, that is, v2 = ṽ1 ◦ ι for some extension of ṽ1 to L̃ and an embedding ι
of L in L̃ over K (see Chapter VI, §11 of [47]). Together with Corollary 2.3 this yields the
following fact.

Lemma 2.11. Take a valued field (L, v). If (L(b), v1) is an algebraic extension and (L(x), v2)
a transcendental extension of the field (L, v), then there is an extension w of the valuation v
to the field L(x, b) such that the restrictions of w to the fields L(b) and L(x) coincide with
v1 and v2, respectively.

Proof. Take L0 to be the separable algebraic closure of L in L(b) and define F to be the
normal hull of L0 over K. Then F |L is a Galois extension. Take an extension v′1 of the
valuation v1 to the field F (b) and an extension v′2 of v2 to the field L(x).F = F (x). Since v′1
and v′2 coincide on L, the valuations v′1|F and v′2|F are conjugate. Take σ ∈Gal(F |L) such
that v′1|F = v′2 ◦ σ.
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By Lemma 2.4, the extensions F |L and L(x)|L are linearly disjoint. Since F |L is a
Galois extension, it follows from Corollary 2.3 that σ can be extended to an authomorphism
σ̃ ∈Gal(F (x)|L(x)). Setting w0 := v′2 ◦ σ̃, we obtain an extension of the valuations v1|L0 and
v2 to the field L0(x).

As L(b, x) = L0(x).L(b) is a purely inseparable extension of L0(x), the valuation w0

admits a unique extension w to L(x, b). Since L(b)|L0 is also purely inseparable, w|L(b) must
coincide with v1.

Take a valued field (K, v). If the valuation v admits a unique extension to the algebraic
closure K̃ of K, equivalently, admits a unique extension to any finite extension L of K,
then (K, v) is called henselian. Note that every algebraic extension of a henselian field is
henselian.

For a valued field (K, v) there is a henselian field extension which admits a unique embed-
ding in every other henselian extension of (K, v). This extension is separable-algebraic and
unique up to isomorphism over K (cf. Theorem 17.11 of [10]). It is called the henselization
of (K, v) and denoted by (K, v)h or, if v is fixed, by Kh. Furthermore, Kh|K is an immedi-
ate extension (cf. [10], Theorem 17.19). Fix the extension of v to K̃ and take any algebraic
extension F of K. Then F h must contain Kh and F , hence Kh.F ⊆ F h. Conversely, since
every algebraic extension of a henselian field is henselian, Kh.F contains F h . Therefore,

F h = Kh.F.

SinceKh|K is separable-algebraic, it is linearly disjoint from any purely inseparable extension
of K. On the other hand, we know that the valuation v of K extends uniquely to any such
extension. Generally, we have:

Lemma 2.12. If L is a finite extension of a valued field (K, v), then the extension of v to L
is unique if and only if L|K is linearly disjoint from some (equivalently, every) henselization
of (K, v).

Proof. By Corollary 7.48 of [29], we have that

[L : K] =

g∑
i=1

[Lh(vi) : Kh(vi)] = [Kh(vi).L : Kh(vi)], (2.6)

where v1, . . . , vg are the distinct extensions of v to L and Lh(vi), Kh(vi) are henselizations of
L and K with respect to an extension of vi to L̃ = K̃. If L|K was not linearly disjoint from
Kh(vi)|K for some i ≤ g, then [Kh(vi).L : Kh(vi)] < [L : K]. Thus g ≥ 2 and the extension of
v from K to L is not unique.

On the other hand, if L|K is linearly disjoint from some henselization Kh of K, then
[L : K] = [Kh.L : Kh] and from equation (2.6) we deduce that v admits a unique extension
from K to L.

For the valued field (K, v) the property of being henselian is equivalent to various criteria.
Two of them are presented in the next two theorems.

Theorem 2.13 (Hensel’s Lemma). A valued field (K, v) is henselian if and only if it satisfies
the following property: for every monic polynomial f ∈ Ov[X], if fv admits a simple root
ξ ∈ Kv, then f admits a root a ∈ Ov such that av = ξ.
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For the proof, see for instance [10], Corollary 16.6.
A direct application of Hensel’s Lemma is the following fact.

Lemma 2.14. Assume (L, v) to be henselian and K to be relatively separable-algebraically
closed in L. Then Kv is relatively separable-algebraically closed in Lv. If in addition Lv|Kv
is algebraic, then the torsion subgroup of vL/vK is a p-group, where p is the characteristic
exponent of Kv.

Proof. Take ζ ∈ Lv separable-algebraic over Kv. Choose a monic polynomial g(X) ∈ K[X]
whose reduction gv(X) ∈ Kv[X] modulo v is the minimal polynomial of ζ over Kv. Then ζ
is a simple root of gv. Hence by Hensel’s Lemma, there is a root a ∈ L of g whose residue
is ζ. As all roots of gv are distinct, we can lift them all to distinct roots of g. Since g is
monic, deg g = deg gv and thus a is separable-algebraic over K. From the assumption of
the lemma, it follows that a ∈ K, showing that ζ ∈ Kv. This proves that Kv is relatively
separable-algebraically closed in Lv.

Now assume in addition that Lv|Kv is algebraic. Then Kv is relatively separable-
algebraically closed in Lv, by what we have proved already. Take α ∈ vL and n ∈ N not
divisible by p such that nα ∈ vK. Choose a ∈ L and b ∈ K such that va = α and vb = nα.
Then v(an/b) = 0. Since Lv|Kv is a purely inseparable extension, there exists m ∈ N such
that ((an/b)v)p

m ∈ Kv. We choose c ∈ K satisfying vc = 0 and cv = ((an/b)v)p
m

, to obtain
that (anp

m
/cbp

m
)v = 1. So the reduction of the polynomial Xn − anp

m
/cbp

m
modulo v is

Xn−1. Since n is not divisible by p, 1 is a simple root of this polynomial. Hence by Hensel’s
Lemma, there is a simple root d ∈ L of the polynomial Xn−anpm/cbpm with dv = 1, whence
vd = 0. Consequently, ap

m
/d is a simple root of the polynomial Xn − cbp

m
and thus is

separable algebraic over K. Since K was assumed to be relatively separable-algebraically
closed in L, we find that ap

m
/d ∈ K. As n is not divisible by p, there are k, l ∈ Z such that

1 = kn+ lpm. This yields:

α = knα + lpmα = knα + l(pmva− vd) = k(nα) + lv

(
ap

m

d

)
∈ vK.

Let (K, v) be any valued field and a ∈ K̃ \K not purely inseparable over K. Choose an
extension of v from K to K̃. The Krasner constant of a over K is defined as

kras(a,K) := max{v(τa− σa) | σ, τ ∈ Gal (K̃|K) and τa 6= σa} ∈ vK̃.

Since all extensions of v from K to K̃ are conjugate, this definition does not depend on the
choice of the particular extension of v. For the same reason, over a henselian field (K, v) we
have that

kras(a,K) = max{v(a− σa) | σ ∈ Gal (K̃|K) and a 6= σa} .

Theorem 2.15 (Krasner’s Lemma). A valued field (K, v) is henselian if and only if the
following condition holds. Take an extension of v to Ksep and call it again v. If a /∈ K is
separable-algebraic over K, then for any b ∈ Ksep \K such that

v(a− b) > kras(a,K)

the element a lies in K(b).
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For the proof, see e.g., [10], Lemma 16.8.

Lemma 2.16. Take an extension (K(a)|K, v) of henselian fields, where a is an element in
the separable-algebraic closure of K with va ≥ 0. Then

va ≤ kras(a,K) , (2.7)

and for every polynomial f = dmX
m + . . .+ d0 ∈ K[X] of degree m < [K(a) : K],

vf(a) ≤ vdm + m kras(a,K) . (2.8)

Proof. Since (K, v) is henselian and every two extensions of v from K to K(a) are conjugate,
vσa = a and therefore, v(a−σa) ≥ min{va, vσa} = va for all σ. This yields inequality (2.7).

Take any element b in the separable-algebraic closure of K with [K(b) : K] < [K(a) : K].
Then v(a − b) ≤ kras(a,K) since otherwise, Krasner’s Lemma would yield that a ∈ K(b)
and [K(b) : K] ≥ [K(a) : K].

If we write f(X) = dm
∏m

i=1(X − bi), then [K(bi) : K] ≤ deg(f) < [K(a) : K]. Hence by
our observation we obtain that

vf(a) = vdm +
m∑
i=1

v(a− bi) ≤ vdm + m kras(a,K) .

This proves inequality (2.8).

For a rational function field K(x1, . . . , xn)|K equipped with a valuation v, denote by
IC(K(x1, . . . , xn)|K, v) the relative algebraic closure of K in K(x1, . . . , xn)h. We will call it
the implicit constant field of (K(x1, . . . , xn)|K, v). The implicit constant field depends
on the choice of an extension of v to the algebraic closure of K(x1, . . . , xn). However, since
the henselization of K(x1, . . . , xn) is unique up to valuation preserving isomorphism over
K(x1, . . . , xn), also IC(K(x1, . . . , xn)|K, v) is unique up to valuation preserving isomorphism
over K. Since for a fixed extension of v to the algebraic closure of K(x1, . . . , xn) the henseliza-
tion Kh of K is an algebraic subextension of K(x1, . . . , xn)h|K, the implicit constant field
of (K(x1, . . . , xn)|K, v) contains Kh and is itself henselian. Further, since K(x1, . . . , xn)h|K
is separable, IC(K(x1, . . . , xn)|K, v) is a separable-algebraic extension of K. The following
lemma was proved in [22] (cf. Lemma 3.13).

Lemma 2.17. Assume that K(a)|K is a separable-algbraic extension, K(x)|K is a rational

function field and v a valuation on K̃(x) such that

v(x− a) > kras(a,K).

Then K(a) ⊆ IC(K(x)|K, v) and consequently, vK(a) ⊆ vK(x) and K(a)v ⊆ K(x)v.

2.2.3 Tame, defect and immediate extensions

Take a valued field (K, v) and a finite extension L of K. Assume that the extension of
the valuation v from K to L is unique, which holds in particular if (K, v) is henselian. Then
equality (2.5) is of the form (2.4) and the nature of the “missing factor” on the right hand
side of the inequality is determined by the Lemma of Ostrowski (cf. equation (1.1)).
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An infinite algebraic extension (F |K, v) such that the valuation v admits a unique ex-
tension from K to F is called defectless if every finite subextension (E|K, v) of (F |K, v)
is defectless, that is, if d(E|K, v) = 1 for every such subextension. The field (K, v) is called
defectless if equality holds in the fundamental inequality (2.5) for every finite extension
L|K. Note that a nontrivial defect can appear only in the positive residue characteristic
case. Every field of residue characteristic 0 is defectless (see, e.g., Corollary 20.23 of [10]).

Take a valued field (K, v) and finite field extensions K ⊆ L ⊆M . Assume that v extends
in a unique way to a valuation of the field M and denote this extension again by v. Since
degree of a field extension, ramification index and inertia degree are multiplicative, the defect
is also multiplicative:

d(M |K, v) = d(M |L, v) · d(L|K, v).

The defect of a valued field extension (L|K, v) destroys the tight connection between this
extension and the extensions of the invariants of (K, v) and (L, v), that is, their value groups
and residue fields. If (vF : vK) = 1 = [Fv : Kv] (i.e., the canonical embeddings of vK in
vL and of Kv in Lv are surjective), which means that the extension L|K is immediate, then
the value group and residue field extensions carry minimal information about the extension
L|K.

Note that by Lemma 2.12, for a finite extension (L|K, v) of valued fields the defect
of the extension is equal to its degree if and only if (L|K, v) is an immediate extension
and it is linearly disjoint from some henselization of (K, v). Directly from the definition
of an immediate extension it follows that an infinite algebraic extension of valued fields is
immediate if and only if every finite subextension of the extension is immediate.

Lemma 2.18. Take a valued field extension (Ω|K, v). Assume that (L|K, v) is a finite
defectless and (E|K, v) an immediate subextension of (Ω|K, v). If v admits a unique exten-
sion from K to L, then L|K is linearly disjoint from E|K and the extension (E.L|L, v) is
immediate.

For the proof, see Lemma 2.5, [25].
Take a finite extension (L|K, v) and assume that the valuation of K admits a unique

extension to the field L. Fix an extension of this valuation to K̃ and denote it again by v.
Then from Lemma 2.12 it follows that [L : K] = [L.Kh : Kh] = [Lh : Kh]. Since (Kh|K, v)
and (Lh|L, v) are immediate extensions, (vL : vK)[Lv : Kv] = (vLh : vKh)[Lhv : Khv].
Together with the definition of defect this yields that

d(L|K, v) = d(Lh|Kh, v). (2.9)

There are also other extensions which do not change the defect. An algebraic extension
(L|K, v) of henselian fields is called tame if every finite subextension E|K of L|K satisfies
the following conditions:

(T1) the ramification index (vE : vK) is prime to the characteristic exponent of Kv,

(T2) the residue field extension Ev|Kv is separable,

(T3) (E|K, v) is a defectless extension.

Assume that (L, v) is a henselian field with charLv = 0. Then the first two conditions
of the above definition are trivially satisfied and the third one follows immediately from the
Lemma of Ostrowski. Hence every algebraic extension of such a field is tame.
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A henselian field (K, v) is said to be a tame field if (K̃|K, v) is a tame extension. If
p is the residue characteristic exponent of K, then directly from the definition of a tame
extension it follows that (K, v) is tame if and only if

(TF1) the value group vK is p-divisible

(TF2) the residue field Kv is perfect,

(TF3) (K, v) is a defectless field.

Take a valued field (K, v), fix an extension of v to Ksep and call it again v. The fixed
field of the closed subgroup

Gr := {σ ∈ Gal (Ksep|K) | v(σa− a) > va for all a ∈ OKsep \ {0}}

of Gal(Ksep|K) (cf. Corollary 20.6 of [10]) is called the absolute ramification field of
(K, v) and is denoted by (K, v)r or Kr if v is fixed. If p is the characteristic exponent of the
residue field of (K, v), then Lemma 2.7 of [25] states that Ksep|Kr is a p-extension, that
is, a Galois extension with a pro-p-group as its Galois group. Moreover, for any algebraic
extension L of K we have that

Lr = Kr.L (2.10)

(cf., Theorem 4.10 of [27]). From Section 4. of [27] (cf. equation (4.5) and the definition of
henselization presented in that paper) it follows that Kh ⊆ Kr. In particular, together with
the equation (2.10) it shows that

(Kh)r = Kr. (2.11)

If (K, v) is henselian, then Kr is a Galois extension of K, and it is also the unique
maximal tame extension of (K, v) (see Theorem 20.10 of [10] and Proposition 4.1 of [32]).
This yields that every tame extension of valued fields is separable-algebraic. Furthermore,
we obtain that (K, v) is a tame field if and only if Kr = K̃. An important property of the
absolute ramification field is the following fact, which follows via Galois correspondence from
the fact that Gr is a pro-p-group (For the proof, see Lemma 2.9 of [25]).

Lemma 2.19. Let (K, v) be a valued field extension and take p to be the characteristic
exponent of Kv. Then every finite extension of Kr is a tower of normal extensions of
degree p. If L|K is a finite extension, then there is already a finite tame extension N of Kh

such that L.N |N is such a tower.

The above lemma together with the next proposition are of key importance for our further
studies.

Proposition 2.20. Take a henselian field (K, v) and a tame extension N of K. Then for
any finite extension L|K,

d(L|K, v) = d(L.N |N, v).

For the proof, see [25], Proposition 2.8.
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2.3 Cuts and distances

We recall basic notions and facts connected with cuts of ordered abelian groups and
distances of elements of valued field extensions, which will be among of our main tools in our
further studies. For the details see Section 2.3 of [25] and Section 3 of [33]. In Section 3.1 we
will introduce another definition of distance of elements in the case of algebraic extensions.
The alternative definition carries more information about the valued field extension; however,
the definition presented in this section allows us to determine distances of elements in any
extensions of valued fields.

Take a totally ordered set (T,<). For a nonempty subset S of T and an element a ∈ T
we will write S < a if s < a for every s ∈ S. A set ΛL ⊆ T is called an initial segment of
T if for each α ∈ ΛL every β < α also lies in ΛL. A pair (ΛL,ΛR) of subsets of T is called a
cut in T if ΛL is an initial segment of T and ΛR = T \ ΛL. To compare cuts in (T,<) we
will use the lower cut sets comparison. That is, for two cuts Λ1 = (ΛL

1 ,Λ
R
1 ), Λ2 = (ΛL

2 ,Λ
R
2 )

in T we will write Λ1 < Λ2 if ΛL
1  ΛL

2 , and Λ1 ≤ Λ2 if ΛL
1 ⊆ ΛL

2 .
For any s ∈ T , we define the cuts

s− := ({t ∈ T | t < s}, {t ∈ T | t ≥ s}),

s+ := ({t ∈ T | t ≤ s}, {t ∈ T | t > s}).

We identify the element s with s+. Therefore, for a cut Λ = (ΛL,ΛR) in T and an element
s ∈ T the inequality Λ < s means that for every element β ∈ ΛL we have β < s. Similarly,
for any subset M of T we define M+ to be the cut (ΛL,ΛR) in T such that ΛL is the least
initial segment containing M , that is,

M+ = ({t ∈ T | ∃m ∈M t ≤ m}, {t ∈ T | t > M}).

We denote by M− the cut (ΛL,ΛR) in T such that ΛL is the largest initial segment disjoint
with M , i.e.,

M− = ({t ∈ T | t < M}, {t ∈ T | ∃m ∈M t ≥ m}).

For every extension (L|K, v) of valued fields and z ∈ L we define

v(z −K) := {v(z − c) | c ∈ K}.

Take an element α ∈ v(z−K)∩vK and β ∈ vK, β < α. If c, d ∈ K are such that α = v(z−c)
and vd = β, then β = min{vd, v(z − c)} = v(z − (c + d)) ∈ v(z − K) ∩ vK. Hence, the
set v(z − K) ∩ vK is an initial segment of vK and thus the lower cut set of a cut in vK.
However, it is more convenient to work with the cut

dist (z,K) := (v(z −K) ∩ vK)+ in the divisible hull ṽK of vK.

We call this cut the distance of z from K. The lower cut set of dist (z,K) is the smallest

initial segment of ṽK containing v(z−K)∩vK. If the lower cut set of dist (z,K) is equal to

ṽK, we will write dist (z,K) =∞. Since dist (z,K) is always a cut in ṽK, we can compare
distances of elements over any algebraic extensions of (K, v), regardless of the respective

value group extensions. If (F |K, v) is an algebraic subextension of (L|K, v) then ṽF = ṽK.
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Thus dist (z,K) and dist (z, F ) are cuts in the same group and we can compare these cuts
by set inclusion of the lower cut sets. Since v(z −K) ⊆ v(z − F ) we deduce that

dist (z,K) ≤ dist (z, F ).

If dist (z,K) = (ΛL,ΛR), then for any natural number n we define

n · ΛL := {nγ | γ ∈ ΛL}.

Since dist (z,K) is a cut in the divisible group ṽK, the set n ·ΛL is again an initial segment

of ṽK. We denote by n · dist (z,K) the cut in ṽK with the lower cut set n ·ΛL. We say that
the distance dist (z,K) is idempotent if

n · dist (z,K) = dist (z,K)

for some natural number n ≥ 2. If it holds, then obviously also ni ·dist (z,K) = dist (z,K),
for any i ∈ N. Denote by ΛL the lower cut set of dist (z,K) and take any natural number m.
If 0 ∈ ΛL, then ΛL ⊆ 2 · ΛL ⊆ . . . ⊆ m · ΛL. Otherwise, ΛL ⊇ 2 · ΛL ⊇ . . . ⊇ m · ΛL. This
yields that if dist (z,K) is idempotent, then n · dist (z,K) = dist (z,K) for every natural
number n ∈ N. From Lemma 2.14 of [25] it follows that this condition holds if and only if

dist (z,K) = H+ or dist (z,K) = H− for some convex subgroup H of ṽK.
If y is another element of L then we define z ∼K y to mean that

v(z − y) > dist (z,K).

If this holds, then from the definition of distance it follows that v(z − c) = v(y − c) for
all c ∈ K such that v(z−c) ∈ vK and thus, dist (z,K) = dist (y,K). The next lemma shows
that the converse holds under an additional assumption.

Lemma 2.21. Take a valued field extension (L|K, v) and elements z, y ∈ L. If v(z−K)∩vK
has no maximal element, then z ∼K y if and only if v(z− c) = v(y− c) for every c ∈ K such
that v(z − c) ∈ vK.

Proof. Assume that v(z − c) = v(y − c) for every c ∈ K such that v(z − c) ∈ vK. Then

v(z − y) = v(z − c+ c− y) ≥ min{v(z − c), v(c− y)} = v(z − c),

for every c ∈ K such that v(z − c) ∈ K. Since v(z − K) ∩ vK has no maximal element,
v(z − y) > v(z − c) for every such c and thus v(z − y) > dist (z,K).

Assume now that z ∼K y. Then v(z− y) > dist (z,K). Take c ∈ K with v(z − c) ∈ vK.
Then by the definition of dist (z,K) we have that v(z − y) > v(z − c). Hence,

v(z − c) = v(z − c− (z − y)) = v(y − c).

The following theorem gives us important information about the distance of immediate
extensions.

Theorem 2.22. If (L|K, v) is an immediate extension of valued fields, then for every element
z ∈ L\K the set v(z−K) ⊆ vK and has no maximal element. In particular, vz < dist (z,K).
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Proof. Take z ∈ L \ K. Then ∞ /∈ v(z − K). Since (L|K, v) is immediate, we have that
v(z−K) ⊆ vL = vK. Take any c ∈ K. As vK = vL, there is d ∈ K such that v(z− c) = vd
and thus vd−1(z− c) = 0. Since Lv = Kv, we obtain that d−1(z− c)v = bv for some b ∈ Kv.
It follows that (d−1(z−c)−b)v = d−1(z−c)v−bv = 0 and consequently, v(d−1(z−c)−b) > 0.
Therefore, v(z−(c+bd)) > vd = v(z−c), which shows that v(z−K) has no maximal element.

Note that vz ∈ v(z −K) = v(z −K) ∩ vK lies in the initial segment of dist (z,K) and,
by the first part of the proof, z cannot be a maximal element of this segment. This proves
the last assertion of the theorem.

Take an extension (L|K, v) of valued fields and elements y, z ∈ L. If (K(z)|K, v) is an
immediate extension, then the previous theorem shows that the relation z ∼K y is equivalent
to the inequality v(z − y) > v(z −K).

The following fact was proven in [26] (Theorem 2).

Theorem 2.23. Take a valued field (K, v) and the henselization Kh of K with respect to

some extension of the valuation v to the algebraic closure of K. Assume that a, z ∈ K̃ are
such that

a ∼K z.

If a lies in Kh, then the extensions K(z) and Kh are not linearly disjoint over K. In
particular, the extension K(z)|K is not purely inseparable.

For any α ∈ vK and each cut Λ in vK we set α+ Λ := (α+ ΛL, α+ ΛR). An immediate
consequence of the above definitions is the following lemma:

Lemma 2.24. Take an extension (L|K, v) of valued fields. Then for every element c ∈ K
and y, z ∈ L:

a) dist (z + c,K) = dist (z,K),

b) dist (cz,K) = vc+ dist (z,K),

c) if z ∼K y, then z + c ∼K y + c,

d) if c 6= 0 and z ∼K y, then cz ∼K cy.

Assume that (L|K, v) is a defectless extension of henselian fields. Set e = (vL : vK) and
f = [Lv : Kv]. Choose elements η1, . . . , ηe ∈ L such that vη1, . . . , vηe ∈ vL are representatives
of the distinct cosets modulo vK. Further, choose ϑ1, . . . , ϑf ∈ OL such that ϑ1v, . . . , ϑfv
form a basis of Lv|Kv. Without loss of generality we can assume that η1 = ϑ1 = 1. Since
L|K is defectless, [L : K] = e · f . Thus by Lemma 2.7, the elements ηiϑj, i ≤ e and j ≤ f
form a K-basis of L. Such a basis will be called a standard valuation basis. The next
lemma allows us to determine the distance of defectless extensions of henselian fields with
the use of a standard valuation basis of the extension.

Lemma 2.25. With the above assumptions on (L|K, v) and on the elements ηi, i ≤ e and
ϑj, j ≤ f , the set v(a−K) has a maximum, for every a ∈ L. If

a =
∑
i≤e
j≤f

ci,jηiϑj,

then v(a− c1,1) is the maximal element of v(a−K).
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Proof. From Lemma 2.7 it follows that

v(a− c1,1) = min
(i,j)6=(1,1)

(vci,j + vηi).

On the other hand, for any c ∈ K we have that

v(a− c) = min{v(c1,1 − c), vci,j + vηi | (i, j) 6= (1, 1)} ≤ min
(i,j)6=(1,1)

(vci,j + vηi) = v(a− c1,1).

Thus v(a− c1,1) is the maximal element of v(a−K).

Corollary 2.26. Assume that (K(a)|K, v) is an extension of valued fields of degree
p = char(Kv) > 0 such that the extension of v from K to K(a) is unique.

1) If v(a−K) has no maximal element, then the extension (K(a)|K, v) is immediate.

2) If (K(b)|K, v) is an immediate extension such that b ∼K a in some common valued field
extension of K(a) and K(b), then also the extension (K(a)|K, v) is immediate.

Proof. Note first that by the Lemma of Ostrowski,

p = [L : K] = pn(vL : vK)[Lv : Kv]

for n ∈ {0, 1}. If (K(a)|K, v) were not immediate, then n = 0 and the extension would be
defectless. Thus, by the previous lemma, v(a−K) would have a maximum, a contradiction.
This proves assertion 1).

To prove the remaining part of the corollary, assume that (K(b)|K, v) is an immediate
extension. Then by Theorem 2.22 the set v(b − K) has no maximal element. Suppose
moreover that b ∼K a. Then Lemma 2.21 together with the fact that v(b−K) ⊆ vK yields
that v(a − c) = v(b − c) for every c ∈ K. Hence v(a − K) = v(b − K) has no maximal
element. From assertion 1) it follows that (K(a)|K, v) is immediate.

2.4 Artin-Schreier defect extensions

We recall a few facts about Artin-Schreier defect extensions of valued fields and their
classification presented in detail in [25]. Recall that an Artin-Schreier extension of a
field K of positive characteristic p is an extension of degree p generated by a root ϑ of a
polynomial Xp−X − a with a ∈ K. In this case, ϑ is called an Artin-Schreier generator
of the extension. Since the other roots of the polynomial Xp − X − a are of the form
ϑ + 1, . . . , ϑ + p − 1, such an extension is always normal and hence Galois. On the other
hand, every Galois extension of K of degree p is an Artin-Schreier extension (see, e.g., [35],
Chapter VI Galois Theory, 6. Cyclic Extensions).

The importance of studying the structure of such extensions comes from the fact that
towers of Artin-Schreier defect extensions play a central role in the issue of defect extensions.
Take a valued field (K, v) of positive residue characteristic p. Fix an extension of v to
Ksep. Denote by Kh and Kr the henselization and the absolute ramification field of K with
respect to this extension. Take any finite extension (L|K, v) such that the extension of the
valuation v from K to L is unique. Then equation (2.9) together with Proposition 2.20 and
equation (2.11) give that

d(L|K, v) = d(L.Kh|Kh, v) = d(L.Kr|Kr, v).
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On the other hand, L.Kr|Kr is a tower of normal extensions of degree p, by Lemma 2.19.
Thus, if L|K is separable, L.Kr|Kr is a tower of Galois extensions of degree p and if (L|K, v)
is a defect extension, then so are some of these extensions. If additionally charK = p, then
every Galois extension of degree p is an Artin-Schreier extension. Hence in this case, if the
extension (L|K, v) has nontrivial defect, then the tower L.Kr|Kr contains Artin-Schreier
defect extensions.

Throughout the remaining part of this section we assume that (K, v) is a
valued field of positive characteristic p and K(ϑ)|K an Artin-Schreier extension
with ϑp − ϑ− a = 0 for some a ∈ K.

We will frequently use the following observations (for the proofs, see Lemma 2.27 and
Lemma 2.28 of [25], cf. also Lemma 5.15 and Lemma 5.16).

Lemma 2.27. If va ≤ 0, then vϑ = 1
p
va. If va > 0, then exactly one of the conjugates

ϑ, ϑ+ 1, . . . , ϑ+ p− 1 has value va and the others have value 0.

Lemma 2.28. Assume that va > 0 or that va = 0 and the polynomial Xp −X − av has a
root in Kv. Then the Artin-Schreier generator ϑ lies in the henselization of K with respect
to every extension of v to K̃, and the valuation v of K has exactly p many distinct extensions
to K(ϑ). Therefore, equality holds in the fundamental inequality. If va = 0 and Xp−X−av
has no root in Kv, then the residue field extension K(ϑ)v|Kv is a separable extension of
degree p and (K(ϑ)|K, v) is defectless.

If (K(ϑ)|K, v) is a defect extension, then va < 0.

Take a field L. A polynomial g ∈ L[X] is called additive if g(b + c) = g(b) + g(c) for
all b, c in every extension field L′ of L. Since charK = p, the Artin-Schreier polynomial
Xp −X is additive. Hence, for any c ∈ K the element ϑ− c is a root of the Artin-Schreier
polynomial Xp−X − a+ cp− c. It follows that this polynomial induces the same extension
K(ϑ)|K as the polynomial Xp −X − a. Suppose there is c ∈ K such that v(ϑ− c) ≥ 0. As
we have seen, ϑ− c is another Artin-Schreier generator of the extension K(ϑ)|K. From the
previous lemma it follows that K(ϑ)|K is not a defect extension. This proves:

Corollary 2.29. If (K(ϑ)|K, v) has nontrivial defect, then v(ϑ − c) < 0 for every c ∈ K
and consequently, dist (ϑ−K) ≤ 0−.

Assume that (K(ϑ)|K, v) is a defect extension. Then from the Lemma of Ostrowski it
follows that the defect is equal to the degree of the extension. Consequently, the extension
is immediate. Furthermore, the valuation v of K admits a unique extension to K(ϑ). By
Theorem 2.22 it follows that v(ϑ−K)∩ vK = v(ϑ−K), and that v(ϑ−K) has no maximal
element.

Take ϑ′ ∈ K(ϑ) to be another Artin-Schreier generator of the extension K(ϑ)|K. One
can show that the element ϑ′ is of the form iϑ+c for some i ∈ F×p and c ∈ K (cf. Lemma 2.26
of [25]). Hence from Lemma 2.24 it follows that δ := dist (ϑ,K) does not depend on the
choice of the Artin-Schreier generator ϑ. We call δ the distance of the Artin-Schreier
extension (K(ϑ)|K, v). Corollary 2.29 implies that δ ≤ 0−.

We will distinguish two types of Artin-Schreier defect extensions considering their con-
nection with purely inseparable extensions. Assume that K(ϑ)|K is an Artin-Schreier defect
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extension. If there is an immediate purely inseparable extension K(η)|K of degree p such
that

η ∼K ϑ,

then K(ϑ)|K is called a dependent Artin-Schreier defect extension. Otherwise it is
called an independent Artin-Schreier defect extension. The next proposition gives us
a useful characterization of independent Artin-Schreier defect extensions by idempotent cuts
(cf. Proposition 4.2. of [25]).

Proposition 2.30. Assume that the extension (K(ϑ)|K, v) has nontrivial defect. Then
K(ϑ)|K is an independent Artin-Schreier defect extension if and only if its distance is idem-
potent.

Assume that (K(ϑ)|K, v) is a defect extension. Suppose moreover that δ := dist (ϑ,K) is
an idempotent cut. In the previous section we have mentioned that the cut δ is idempotent
if and only if δ = H+ or δ = H− for some convex subgroup H of ṽK. Furthermore,
Corollary 2.29 implies that δ ≤ 0−. Hence δ = H−. Together with the previous proposition
this yields that if (K(ϑ)|K, v) has a nontrivial defect, then the extension is independent if

and only if dist (ϑ,K) = H− for some convex subgroup H of ṽK. In particular, if the value

group of (K, v) is archimedean, then the unique proper convex subgroup of ṽK is {0}. This
yields the following fact.

Corollary 2.31. Assume that (K(ϑ)|K, v) has nontrivial defect and the valuation v is of
rank one. Then the Artin-Schreier defect extension (K(ϑ)|K, v) is independent if and only
if dist (ϑ,K) = 0−.

2.5 Maximal immediate extensions and completions

This section is devoted to properties of maximal immediate extensions and maximal
fields. We will introduce also the notions of complete valued fields and of completions.

Take a valued field (K, v). Assume that the field is maximal, that is, admits no proper
immediate extensions. Since the henselization Kh of K is an immediate extension of K, we
have that Kh = K. From this and Theorem 31.21 of [43] we obtain the following fact.

Theorem 2.32. Every maximal field is henselian and defectless.

We say that (K, v) is algebraically maximal (or separable-algebraically maximal)
if it admits no proper immediate algebraic (or separable-algebraic, respectively) extensions.

Theorem 2.33. If a valued field (K, v) is maximal, then every finite extension L of K with
the unique extension of the valuation v is again a maximal field.

For the proof see Theorem 31.22 of [43].
Directly from the definition of a maximal field it follows that a maximal immediate

extension of a valued field is a maximal field. It was shown by W. Krull in [20] that every
valued field (K, v) admits a maximal immediate extension (M, v) (later, K. A. H. Gravett in
[12] gave a nice and simple proof of the fact). However, the maximal immediate extension
M does not need to be unique up to isomorphism. This was shown by I. Kaplansky in [16].
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He proved also that under a certain condition (which he called “hypothesis A”), uniqueness
holds. A valued field (K, v) of residue characteristic p is called a Kaplansky field if it
satisfies:

(K1) if p > 0 then the value group vK is p-divisible,

(K2) the residue field Kv is perfect,

(K3) the residue field Kv admits no finite separable extension of degree divisible by p.

Note that conditions (K2) and (K3) can be replaced by:

(K2’) the residue field Kv admits no finite extensions of degree divisible by p.

A direct consequence of the above definition is that every valued field of residue character-
istic 0 is a Kaplansky field.

Theorem 2.34. If (K, v) is a Kaplansky field, then the maximal immediate extension of
(K, v) is unique up to valuation preserving isomorphism over K.

For the proof of Kaplansky, see Theorem 5 of [16]. See also Theorem 1 of [44], which
shows the equivalence of conditions (K1) and (K2’) with the original “hypothesis A” assumed
by Kaplansky.

Immediate extensions and maximal fields can be characterized with the use of pseudo
Cauchy sequences and approximation types. Both notions will be described in the remaining
part of this section and will be the main tools in our further studies of immediate extensions
of valued fields.

2.5.1 Pseudo Cauchy sequences

Pseudo Cauchy sequences were studied by Kaplansky in [16]. He called such sequences
“pseudo convergent sets”. We will also use the name of “pseudo limit” in place of “limit” of
a pseudo Cauchy sequence. Take a valued field (K, v) and a sequence (aν)ν<λ of elements of
K indexed by ordinals ν < λ, where λ is a limit ordinal. Then (aν)ν<λ is called a pseudo
Cauchy sequence if

v(aσ − aρ) < v(aτ − aσ) whenever ρ < σ < τ < λ. (2.12)

If this holds, then from the above definition it follows that (v(aν+1 − aν))ν<λ is a strictly
increasing sequence and

v(aµ − aν) = v(aν+1 − aν) whenever ν < µ < λ.

If moreover a ∈ K, then from the dichotomy of equation (4) and inequality (5) of [16]
(page 306) it follows that either

v(a− aν) < v(a− aµ) whenever ν < µ < λ, (2.13)

or there is ν0 < λ such that

v(a− aν) = v(a− aν0) whenever ν0 < ν < λ.

From the definition of a pseudo Cauchy sequence we obtain that condition (2.13) is equivalent
to the following:

v(a− aν) = v(aν+1 − aν) for every ν < λ. (2.14)
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If a satisfies condition (2.13) (or equivalently, condition (2.14)), then it is called a pseudo
limit of (aν)ν<λ. Note that a pseudo Cauchy sequence can admit more than one limit. More
precisely:

Lemma 2.35. Take a valued field (K, v) and a pseudo Cauchy sequence (aν)ν<λ in this field.
If a ∈ K is a pseudo limit of (aν)ν<λ, then b ∈ K is also a pseudo limit of the sequence if
and only if v(a− b) > v(aν+1 − aν) for every ν < µ < λ.

For the proof see Lemma 3 of [16].
The next theorem, proved by Kaplansky, shows the relation between pseudo Cauchy

sequences and immediate extensions. As the relation is the basis of our further investigation,
for the convinience of the reader we present the proof of the theorem.

Theorem 2.36. Assume that (L|K, v) is an immediate extension of valued fields. Then
every element a ∈ L \K is a pseudo limit of a pseudo Cauchy sequence in (K, v) without a
limit in K.

Proof. Take an element a ∈ L \ K. By Theorem 2.22, the initial segment v(a − K) has
no maximal element. Choose a strictly increasing sequence (αν)ν<λ in L such that the set
{αν | ν < λ} is cofinal in v(a−K). For every ν < λ take aν to be an element of K such that

v(a− aν) = αν .

Take any ρ < σ < τ < λ. Then from the above equality and the fact that αρ < ασ < ατ we
obtain that

v(aτ − aσ) = v(a− aσ − (a− aτ )) = ασ > αρ = v(a− aρ − (a− aσ)) = v(aσ − aρ).

Thus (aν)ν<λ is a pseudo Cauchy sequence in (K, v). It also follows that for ν < λ we have
that v(aν+1 − aν) = αν = v(a− aν). Hence a is a pseudo limit of this sequence.

Suppose now that (aν)ν<λ admits a pseudo limit b in K. Then, from Lemma 2.35 it
follows that v(a − b) > v(aν+1 − aν) = αν for every ν < λ. this contradicts the fact that
{αν | ν < λ} is cofinal in v(a−K).

Kaplansky proved that for every pseudo Cauchy sequence (aν)ν<λ in a valued field (K, v)
there is a pseudo limit a of (aν)ν<λ in some valued field extension (L, v) of (K, v), such
that the extension (K(a)|K, v) is immediate (see Theorems 2.40 and 2.41). In general,
not every pseudo limit of a pseudo Cauchy sequence generates an immediate extension (see
Example 2.44). To make it more precise, we start with describing the relation between
pseudo Cauchy sequences and polynomials.

Lemma 2.37. Assume that (aν)ν<λ is a pseudo Cauchy sequence in a valued field (K, v)
and take a polynomial f ∈ K[X]. Then there is ν0 < λ such that either

vf(aν) = vf(aµ) whenever ν0 < ν < µ < λ. (2.15)

or

vf(aν) < vf(aµ) whenever ν0 < ν < µ < λ. (2.16)
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For the proof, see [16], paragraph after Lemma 5.
This fact enables us to introduce an important classification of pseudo Cauchy sequences.

Assume that (K, v) is a valued field. Take a pseudo Cauchy sequence (aν)ν<λ in K and a
polynomial f ∈ K[X]. We say that (aν)ν<λ fixes the value of f if equation (2.15) holds
for some ν0 < λ. If (aν)ν<λ fixes the value of every polynomial in K[X], then it is said to
be of transcendental type. Otherwise it is said to be of algebraic type. By the previous
lemma, the second means that the sequence (vf(aν))ν<λ is ultimately strictly increasing for
some polynomial f ∈ K[X]. Note that if (aν)ν<λ does not fix the value of f , then it does not
fix the value of any polynomial of the form cf with c ∈ K. Hence if (aν)ν<λ is of algebraic
type, then we can find a monic polynomial f such that the sequence (vf(aν))ν<λ is ultimately
strictly increasing. If f ∈ K[X] is such a polynomial of minimal degree, then it is called
an associated minimal polynomial for (aν)ν<λ. Such a polynomial is always irreducible
over K. Indeed, suppose that f = g · h ∈ K[X] with h, g ∈ K[X] of degree less than f .
Then (aν)ν<λ fixes the value of g and h. Hence (vg(aν))ν<λ and (vh(aν))ν<λ are ultimately
constant. It follows that also (v(g · h)(aν))ν<λ is ultimately constant, a contradiction.

Lemma 2.38. Take a pseudo Cauchy sequence (aν)ν<λ in a valued field (K, v). Then an
element a ∈ K is a pseudo limit of (aν)ν<λ if and only if X − a is an associated minimal
polynomial for the sequence. If (aν)ν<λ is an algebraic pseudo Cauchy sequence then it admits
no limit in K if and only if the degree of an associated minimal polynomial for (aν)ν<λ is at
least 2.

Proof. The first assertion was shown in the proof of Theorem 3 of [16]. The second assertion
is a direct consequence of the first one.

Lemma 2.39. Take an algebraic field extension (K(a)|K, v), where a is a pseudo limit of a
pseudo Cauchy sequence (aν)ν<λ in (K, v) without a pseudo limit in K. Then (aν)ν<λ does
not fix the value of the minimal polynomial of a over K.

Proof. We denote the minimal polynomial of a over K by f(X) =
∏n

i=1(X − σia) with
σi ∈ Gal (K̃|K). Since a is a pseudo limit of (aν)ν<λ, the values v(aν − a) are ultimately
increasing. If v(a− σia) > v(aν − a) for all ν < λ, then also the values

v(aν − σia) = min{v(aν − a), v(a− σia)} = v(aν − a)

are ultimately increasing. If on the other hand, v(a − σia) ≤ v(aν0 − a) for some ν0 < λ,
then for ν0 < ν < λ, the value

v(aν − σia) = min{v(aν − a), v(a− σia)} = v(a− σia)

is fixed. We conclude that the values vf(aν) =
∑n

i=1 v(aν−σia) are ultimately increasing.

By the above lemma we have that if (aν)ν<λ is a pseudo Cauchy sequence admitting a
pseudo limit algebraic over K, then (aν)ν<λ is of algebraic type. The converse does not
need to be true. Suppose that (aν)ν<λ is a pseudo Cauchy sequence of algebraic type with
an algebraic pseudo limit a. Take an element y transcendental over K(a) in some valued
field extension (F, v) of (K(a), v) such that v(y) > v(aν+1 − aν), for every ν < λ. Then
Lemma 2.35 shows that y + a is also a pseudo limit of (aν)ν<λ.

The following facts will be of particular meaning for our further studies of immediate
extensions (cf. Theorem 2 and Theorem 3 of [16]):
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Theorem 2.40. Take a valued field (K, v) and an element x in some valued field extension
(L, v) of (K, v). If x is a pseudo limit of a pseudo Cauchy sequence (aν)ν<λ in (K, v) of tran-
scendental type, then (K(x)|K, v) is an immediate transcendental extension. If (K(y), w) is
another valued field extension of (K, v) such that y is a limit of (aν)ν<λ, then y is tran-
scendental over K and the isomorphism between K(x) and K(y) sending x to y is valuation
preserving.

Theorem 2.41. Take a pseudo Cauchy sequence (aν)ν<λ in (K, v) of algebraic type and
an associated minimal polynomial f for the sequence. If a is a root of f , then there is an
extension of v to K(a) such that (K(a)|K, v) is an immediate extension and a is a pseudo
limit of (aν)ν<λ.

The next theorem characterizes maximal fields with the use of pseudo Cauchy sequences
(cf. Theorem 4 of [16]).

Theorem 2.42. A valued field (K, v) is maximal if and only if every pseudo Cauchy sequence
in K admits a limit in this field.

The following is a special case of Lemma 3.7 of [22]:

Lemma 2.43. Let (K(x)|K, v) be an extension of valued fields and choose any extension

of v to K̃(x). Take Kh and K(x)h to be the henselizations of K and K(x), respectively,

in (K̃(x), v). If the element x is a pseudo limit of a pseudo Cauchy sequence in (K, v) of
transcendental type, then Kh is relatively algebraically closed in K(x)h, that is,

Kh = IC(K(x)|K, v).

Example 2.44. We consider now an important class of valued fields introduced by Hahn
in [13]. For an ordered abelian group Γ and a field k take k((xΓ)) to be the set of all maps
f from Γ to k with well ordered support {γ ∈ Γ | f(γ) 6= 0}. If f(γ) = cγ, γ ∈ Γ, then for
simplicity we will write

f =
∑
γ∈Γ

cγx
γ.

Endow this set with componentwise addition:(∑
γ∈Γ

cγx
γ
)

+
(∑
γ∈Γ

dγx
γ
)

=
∑
γ∈Γ

(cγ + dγ)x
γ

and multiplication defined in the following way:(∑
γ∈Γ

cγx
γ
)
·
(∑
γ∈Γ

dγx
γ
)

=
∑
γ∈Γ

( ∑
α+β=γ

cαdβ

)
xγ.

Hahn proved that the set k((xΓ)) with operations of addition and multiplication defined
above is a field. Such a field is called a (generalized) power series field.

We introduce the valuation v of k((xΓ)) by setting vf = min suppf , for every f ∈ k((xΓ)),
and v0 =∞. That is, for every nonzero power series we have that

v

(∑
γ∈Γ

cγx
γ

)
= min{γ ∈ Γ | cγ 6= 0}.
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This valuation is called the canonical valuation or x-adic valuation of k((xΓ)). Directly
from the definition of the valuation it follows that vk((xΓ)) = Γ and k((xΓ))v = k. Krull
in [20] proved that (k((xΓ)), v) is a maximal field.

Take Γ to be the p-divisible hull 1
p∞
Z of Z and set k =: Fp. Set further

K := Fp(x1/pi | i ∈ N) ⊆ Fp
((
x

1
p∞ Z)),

which is the prefect hull of the rational function field Fp(x). Take the restriction of the

canonical valuation of Fp
((
x

1
p∞ Z)) to the field K and denote it again by v. Since

vK =
1

p∞
Z = vFp

((
x

1
p∞ Z)) and Kv = Fp = Fp

((
x

1
p∞ Z))v,

the extension
(
Fp
((
x

1
p∞ Z))|K, v) is immediate.

For every n ∈ N we define

an :=
n∑
i=1

x−1/pi ∈ K.

Since for k < n < m we have that v(an− ak) = − 1
pk+1 < − 1

pn+1 = (am− an), we deduce that

(an)n∈N is a pseudo Cauchy sequence. Similarly, one can check that equation (2.14) holds
for the sequence (an)n∈N and the element

a :=
∞∑
i=1

x−1/pi ∈ Fp
((
x

1
p∞ Z)).

Thus, a is a pseudo limit of (an)n∈N.
Since v(apn− an− 1

x
) = v(−x−1/pn) = − 1

pn
, the pseudo Cauchy sequence (an)n∈N does not

fix the value of the polynomial Y p − Y − 1
x
∈ K[Y ] and thus, (an)n∈N is of algebraic type.

As moreover (K(a)|K, v) is a subextension of the immediate extension
(
Fp
((
x

1
p∞ Z))|K, v),

also the extension (K(a)|K, v) is immediate.

Consider now the power series field Fp
((
xQ)) ⊇ Fp((x 1

p∞ Z)) with the extension of v to
the canonical valuation of Fp

((
xQ)). Denote this extension again by v. Take a prime number

q 6= p. Since v(x1/q) = 1
q
> − 1

pn+1 = v(an+1 − an) for every n ∈ N, from Lemma 2.35 it

follows that a+x1/q is also a pseudo limit of the pseudo Cauchy sequence (an)n∈N. However,
the extension (K(a+ x1/q)|K, v) is not immediate, since

v

(
(a+ x1/q)p − (a+ x1/q)− 1

x

)
= v

(
xp/q − x1/q

)
=

1

q
/∈ 1

p∞
Z = vK.

This shows that not every limit of a pseudo Cauchy sequence of algebraic type generates an
immediate extension. �

2.5.2 Cauchy sequences and completions

Assume that (K, v) is a valued field and take a pseudo Cauchy sequence (aν)ν<λ in K. if
the set of the values v(aν+1 − aν), ν < λ, is cofinal in vK, then (aν)ν<λ is called a Cauchy
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sequence. Note that if a Cauchy sequence (aν)ν<λ admits a pseudo limit a ∈ K, then by
equation (2.14) the sequence of the values v(a− aν), ν < λ, is cofinal in vK. Furthermore,
from Lemma 2.35 it follows that the pseudo limit a is unique in K. The element a will be
also called the limit of the Cauchy sequence (aν)ν<λ. Note that if (L, v) is a valued field
extension of (K, v) such that vK is cofinal in vL, then every Cauchy sequence in (K, v) is
also a Cauchy sequence in (L, v).

Remark 2.45. The usual definition of Cauchy sequences (as for instance presented in [11])
is slightly more general. However, every Cauchy sequence in the general sense is ultimately
constant or contains a subsequence which satisfies the condition of the above definition of
Cauchy sequence. In the construction of the completion and in the argument that leads up
to Lemma 2.48, one should also view constant sequences as Cauchy sequences in order to
simplify the arguments. But otherwise, they will play no role in our investigations.

The proof of the following equivalence is straightforward.

Lemma 2.46. Take a valued field extension (L|K, v) and an element a ∈ L \K. Then the
following conditions are equivalent:

1) a is the limit of a Cauchy sequence in (K, v),

2) for every γ ∈ vK there is c ∈ K such that v(a− c) ≥ γ,

3) v(a−K) = vK,

4) dist (a,K) =∞.

If (L, v) is a valued field and A ⊆ L is such that for every a ∈ L and α ∈ vL there
is c ∈ A such that v(a − c) > α, then we say that A is dense in (L, v). In particular, if
(L|K, v) is an extension of valued fields and K is dense in (L, v), then the extension (L|K, v)
is immediate. Indeed, take an element a ∈ L. Then there is c ∈ K such that v(a− c) > va.
Thus va = vc ∈ vK. If va = 0, then v(a− c) > 0 and consequently av − cv = (a− c)v = 0.
Thus av = cv ∈ Kv. The property “dense” is transitive: if (K, v) is dense in (F, v) and
(F, v) is dense in (E, v), then (K, v) is dense in (E, v).

An immediate consequence Lemma 2.46 is the following:

Corollary 2.47. Take a valued field extension (L|K, v). If K is dense in L, then every
element in L is a limit of a Cauchy sequence in (K, v).

Take a valued field extension (L|K, v) with vK cofinal in vL. Note that if a, b ∈ L are
both limits of Cauchy sequences in (K, v), then so are a+b, ab and 1/a. This is a consequence
of the continuity of addition, multiplication and inversion in valued fields. By an induction
over the complexity of the representation of elements in K(a) one proves:

Lemma 2.48. Take a valued field extension (K(a)|K, v) such that vK is cofinal in vK(a).
If a is the limit of a Cauchy sequence in (K, v), then K is dense in K(a).

A valued field (K, v) is called complete if every Cauchy sequence in (K, v) admits a limit
in K. Every valued field (K, v) admits a unique (up to valuation preserving isomorphism)
valued field extension which is complete and in which (K, v) is dense (see [11], Theorem 2.4.3).
Such a field is called the completion of (K, v) and denoted by (K, v)c or Kc if v is fixed.
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From Corollary 2.47 it follows that the completion of (K, v) is an extension that is maximal
with respect to the property that K is dense in it.

Since a valued field (K, v) is dense in its completion (Kc, v), the extension (Kc|K, v) is
immediate. Thus in particular, every maximal field is complete. If moreover v is a valuation
of rank one, then the completion of K is henselian, hence it contains a henselization of K
(see Theorem 17.18 of [10]).

Proposition 2.49. Assume that (L|K, v) is a valued field extension such that vK is cofinal
in vL. If (L, v) is complete, then it contains the completion of (K, v).

Proof. Denote by K ′ the maximal subfield of L in which K is dense. We wish to show that
(K ′, v) is complete. If it is not, then there is a Cauchy sequence in (K ′, v) without a limit
in K ′. Since vK ′ = vK is cofinal in vL, this is also a Cauchy sequence in (L, v). As (L, v)
is complete, the Cauchy sequence has a limit a ∈ L. Then by the foregoing lemma, K ′ and
hence also K is dense in K ′(a), which contradicts the maximality.

Corollary 2.50. Take a valued field extension (L|K, v) such that vK cofinal in vL. If a ∈ L
is a limit of a Cauchy sequence in (K, v), then a lies in the completion of (K, v).

Proof. By passing to the completion of (L, v), we can assume that L is complete. Hence
by the above proposition, it contains a completion Kc of K. Assume that a is a limit of
a Cauchy sequence (aν)ν<λ in (K, v). Since vK is cofinal in vL, (aν)ν<λ is also a Cauchy
sequence in (L, v). Take b to be the limit of (aν)ν<λ in Kc. As Kc ⊆ L, we obtain that
a, b ∈ L are limits of the same Cauchy sequence in (L, v). From the uniqueness of the limit
of a Cauchy sequence we obtain that a = b ∈ Kc.

The next lemma shows in particular that a finite extension of a complete field is also
complete. For the proof, see Lemma 6.25 of [29].

Lemma 2.51. Take a finite extension (L|K, v) of valued fields. Then there is a unique
extension of v from Kc to L.Kc which coincides with v on L. With this extension, Lc = Kc.L.

2.5.3 Approximation types

Pseudo Cauchy sequences are a very handy tool in studies of immediate extensions of val-
ued fields, but an element of an immediate extension (L|K, v) of valued fields can be a pseudo
limit of many different pseudo Cauchy sequences in (K, v). We can eliminate the problem
of non-uniqueness by replacing pseudo Cauchy sequences by approximation types. Take an
extension (L|K, v) of valued fields and an element x ∈ L. For every α ∈ vK∞ := vK ∪ {∞}
set

appr (x,K)α := {c ∈ K | v(x− c) ≥ α}.
Note that for α ≤ β we have that appr (x,K)β ⊆ appr (x,K)α. Furthermore, appr (x,K)α 6= ∅
if and only if there is c ∈ K such that v(x− c) ≥ α. Hence if x /∈ K, then

S := {α ∈ vK∞ | appr (x,K)α 6= ∅} = v(x−K) ∩ vK = v(x−K) ∩ vK∞.

and the set S is an initial segment of vK (cf. Section 2.3). If x ∈ K, we obtain that
S = vK∞ = v(x−K) ∩ vK∞. The set

appr (x,K) := {appr (x,K)α | α ∈ v(x−K) ∩ vK∞}

will be called the approximation type of x over (K, v).
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Lemma 2.52. Take an extension (L|K, v) of valued fields, and elements x, x′ ∈ L. Then
the following assertions hold.

a) For every α ∈ v(x−K) ∩ vK∞,

appr (x,K)α = appr (x′, K)α if and only if v(x− x′) ≥ α.

b) If appr (x,K) = appr (x′, K), then v(x− x′) ≥ dist (x,K) = dist (x′, K).

c) If v(x− x′) ≥ max{dist (x,K), dist (x′, K)}, then appr (x,K) = appr (x′, K).

For the proof, see [33], Lemma 3.1.
Take a valued field extension (L|K, v) and an element x ∈ L. Set S := v(x−K)∩ vK∞.

The approximation type appr (x,K) is called immediate if⋂
α∈S

appr (x,K)α = ∅.

Note that if x ∈ K, then S = vK∞ and
⋂
α∈S appr (x,K)α = appr (x,K)∞ = {x}. Hence, if

the approximation type appr (x,K) is immediate, then the extension K(x)|K is nontrivial.
The next lemma shows the relation between immediate approximation types and imme-

diate extensions of valued fields (cf. Lemma 4.1 of [33]).

Lemma 2.53. Assume that (L|K, v) is an extension of valued fields. If x ∈ L, then the
approximation type appr (x,K) is immediate if and only if the set v(x−K) has no maximal
element. If this holds, v(x−K) ∩ vK∞ = v(x−K). Furthermore, the extension (L|K, v) is
immediate if and only if for every x ∈ L\K the approximation type appr (x,K) is immediate.

Take a valued field (K, v) and an element x in some valued field extension (L, v) of
(K, v). Similarly to the case of pseudo Cauchy sequences, we say that the approximation
type appr (x,K) fixes the value of f ∈ K[X] if there is α ∈ v(x −K) ∩ vK∞ such that
vf(c) = vf(d) for every c, d ∈ appr (x,K)α. Since appr (x,K)β ⊆ appr (x,K)α, for every
β ≥ α, it follows that in this case vf(c) = vf(d) for every c, d ∈ appr (x,K)β and every
β ≥ α. Assume that appr (x,K) is an immediate approximation type. If appr (x,K) fixes
the value of every polynomial f ∈ K[X], then we call it a transcendental approximation
type. Otherwise, appr (x,K) is called an algebraic approximation type.

Assume that appr (x,K) is algebraic and take a polynomial f of minimal degree whose
value is not fixed by appr (x,K). The same arguments an in the case of pseudo Cauchy
sequences show that f is irreducible and can be chosen to be monic. Such a polynomial
will be called an associated minimal polynomial for appr (x,K). Take a polynomial
g = X − a ∈ K[X]. Since appr (x,K) is immediate, there is α ∈ v(x − K) such that
a /∈ appr (x,K)α. Then for every c, c′ ∈ appr (x,K)α we have that v(x− c) ≥ α > v(x− a)
and similarly v(x− c′) > v(x− a). Hence,

v(c− a) = v(c− x+ x− a) = v(x− a) = v(x− c′ + c′ − a) = v(c′ − a).

This shows that appr (x,K) fixes the value of g. Consequently, an immediate approximation
type appr (x,K) fixes the value of every linear polynomial in K[X].
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Lemma 2.54. Assume that appr (x,K) is an immediate approximation type over (K, v),
where x is an element in some valued field extension of K.

a) If x is algebraic over K, then appr (x,K) does not fix the value of the minimal polynomial
of x over K.

b) If appr (x,K) is an algebraic approximation type and f an associated minimal polynomial
for appr (x,K), then for every g ∈ K[X] such that deg g <deg f , the approximation type
appr (g(x), K) is also immediate.

For the proof, see Corollary 5.5 and Lemma 8.2 of [33]. Assertion a) of the above lemma
yields that if x is algebraic over K then appr (x,K) is an algebraic approximation type.

The next theorem is an approximation type version of Theorem 2.41 (cf. Theorem 6.4
of [33]).

Theorem 2.55. Assume that appr (x,K) is an immediate algebraic approximation type
over (K, v), where x is an element in some valued field extension over K. If f is an
associated minimal polynomial for appr (x,K) and a is a root of f , then there is an ex-
tension of the valuation v to K(a) such that (K(a)|K, v) is an immediate extension and
appr (x,K) = appr (a,K).

The next proposition is a consequence of the above theorem and the Lemma of Ostrowski
(for the details of the proof, see [33], Proposition 6.5).

Proposition 2.56. Assume that appr (x,K) is an algebraic approximation type over a
henselian field (K, v), where x is an element of some valued field extension over K. Then
the degree of an associated minimal polynomial for appr (x,K) is greater than 1 and is a
power of the residue characteristic of (K, v). Hence in particular, charKv > 0.

31



3. Distances of elements in valued field
extensions

In this chapter we present an alternative definition of the distance of elements in valued
field extensions. We consider further the case of valued field extensions of prime degree to
show that the new notion of distance carries more information about the field extension than
the previous one, given in Section 2.3. However, with the use of the new definition we can
define only distances of elements in algebraic extensions of a given field. We then describe
possible distances of elements in defectless extensions of prime degree of a henselian field.
Finally, we give an upper bound for the number of distinct distances of immediate elements
in the extensions of a given degree.

3.1 Distances of elements in algebraic extensions

In Section 2.3 we have introduced a notion of the distance of an element in a valued
field extension. The notion enables us to define distances of elements in any valued field
extension (L, v) of a given field (K, v). Nevertheless, since for an element z ∈ L the lower
cut set of dist (z,K) depends only on v(z−K)∩ vK, in the case of a nontrivial value group
extension we can lose some information about v(z −K). The next easy observation shows
that v(b−K) and v(b−K) ∩ vK differ by at most one element.

Lemma 3.1. Assume that (K(b)|K, v) is an algebraic extension of valued fields.

1) If v(b−K) has no maximal element, then v(b−K) ⊆ vK.

2) If v(b−K) admits a maximal element α, then v(b−K) \ {α} ⊆ vK and

v(b−K) \ {α} = {β ∈ vK : β < α}. (3.1)

If moreover α ∈ vK, then v(b−K) ⊆ vK and for any c, d ∈ K such that v(b− c) = α = vd
we have that d−1(b− c)v /∈ Kv.

Proof. Assume that v(b − K) has no maximal element. Take any c ∈ K. Then there is
d ∈ K such that (b− c) < v(b− d). Hence

v(b− c) = v(b− c− (b− d)) = v(d− c) ∈ vK.

Suppose that v(b−K) admits a maximal element α. Take c ∈ K such that v(b− c) = α.
Then for any c′ ∈ K with v(b− c′) < α we obtain that

v(b− c′) = v(b− c′ − (b− c)) = v(c− c′) ∈ vK.
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This proves that v(b−K) \ {α} ⊆ vK.
Since α is the maximl element of v(b−K), the inclusion v(b−K)\{α} ⊆ {β ∈ vK : β < α}

is obvious. For the proof of the converse, take any β ∈ vK, β < α. If β = vd and α = v(b−c),
for some c, d ∈ K, then

β = vd = v(b− c+ d) ∈ v(b−K).

Assume now that α ∈ vK. Then from the first part of the proof we obtain that
v(b−K) ⊆ vK. Take c, d ∈ K such that v(b− c) = α = vd. Suppose that d−1(b− c)v ∈ Kv.
Take d′ ∈ K with d′v = d−1(b−c)v. Then (d−1(b−c)−d′)v = 0 and thus v(d−1(b−c)−d′) > 0.
It follows that

α = vd < v(b− c− dd′) ∈ v(b−K),

a contradiction.

Assume that (K, v) is a henselian field with vK densely ordered, and (L, v) is a finite
extension of (K, v) such that (vL : vK) = [L : K]. Then (L|K, v) is defectless and from
Lemma 2.25 if follows that for every a ∈ L \K the set v(a−K) admits a maximal element
αa /∈ vK. By the previous lemma,

v(a−K) ∩ vK = {β ∈ vK : β < αa}.

Since vK is densely ordered and αa ∈ ṽK, from the above equality it follows that the set
v(a−K) ∩ vK has no maximal element.

Take now an immediate algebraic extension (E, v) of (K, v). From Theorem 2.22 we infer
that also in this case, for every a ∈ E \K the set v(a−K)∩ vK = v(a−K) has no maximal
element. On the other hand, if for every a ∈ E \K the set v(a−K) has no maximal element,
then by Lemma 2.53, the extension is immediate. The above paragraph shows that the last
assertion may not hold if we replace the sets v(a−K) by v(a−K) ∩ vK.

Note that for every b ∈ K̃, the distance of b from K depends only on v(b−K)∩vK. Hence
the distances of elements of a given valued field extension may not carry any information if
the considered extension is immediate or not. We introduce now a different notion of distance
which gives us more complete information about algebraic extensions of valued fields.

Take a valued field (K, v). Fix an extension of v to the algebraic closure K̃ of K and

denote it again by v. For an element b ∈ K̃ define the distance of b from K over K̃ to
be the cut in ṽK of the form

dist K̃(b,K) := v(b−K)+

(cf. the definition of the distance of an element of a valued field from a subset of this field

as presented in [33]). Hence, dist K̃(b,K) is the cut in ṽK having as the lower cut set the

smallest initial segment in ṽK containing v(b − K). Note that as the initial segment of
dist K̃(b,K) contains the whole set v(b−K), this notion of distance carries more information
about the set v(b−K) than dist (b,K).

We have introduced the new notion of distance only for elements algebraic over (K, v),

since for every a, b ∈ K̃, the sets v(a −K) and v(b −K) are contained in the divisible hull

of vK. Hence, we can consider the cuts v(a −K)+ and v(b −K)+ in the same group ṽK.
This enables us to compare the distances dist K̃(a,K) and dist K̃(b,K).

As a direct consequence of the above definition we obtain the following properties of the
distance (cf. Lemma 2.24).
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Lemma 3.2. Take an element b algebraic over K. Then for any c ∈ K we have that

1) dist K̃(b+ c,K) = dist K̃(b,K),

2) dist K̃(cb,K) = vc+ dist K̃(b,K).

Take an element b ∈ K̃. As v(b − K) ∩ vK ⊆ v(b − K), from the definitions of the
distances it follows that

dist (b,K) ≤ dist K̃(b,K). (3.2)

Furthermore, if v(b − K) ⊆ vK, then dist (b,K) = dist K̃(b,K). Hence both definitions of
distance coincide in particular in the case of algebraic extensions with trivial value group
extensions, thus also for immediate extensions.

For elements a, b ∈ K̃ define a ≈K b to mean that

v(a− b) ≥ max{dist K̃(a,K), dist K̃(b,K)}.

By inequality (3.2) we obtain that in this case also v(a− b) ≥ max{dist (a,K), dist (b,K)}.
Together with Lemma 2.52, this yields:

Lemma 3.3. If a, b ∈ K̃ are such that a ≈K b, then appr (a,K) = appr (b,K).

The next lemma gives an important characterization of the relation ≈K .

Lemma 3.4. Take elements a and b algebraic over K. Then a ≈K b if and only if
v(a− c) = v(b− c) for every c ∈ K.

Proof. Assume that a ≈K b. Take an element c ∈ K. Then v(a− c) ≤ v(a− b), by definition
of ≈K . If v(a − c) < v(a − b), then v(a − c) = v(a − c − (a − b)) = v(b − c). Assume that
v(a− c) = v(a− b). Then

v(b− c) = v(a− c− (a− b)) ≥ min{v(a− c), v(a− b)} = v(a− b).

On the other hand, as a ≈K b, we have that dist K̃(b,K) ≤ v(a − b). Thus in particular,
v(b− c) ≤ v(a− b). Therefore, v(b− c) = v(a− b) and consequently, v(b− c) = v(a− c).

Suppose now that v(a− c) = v(b− c) for every c ∈ K. Take any element c in K. Then

v(a− b) = v(a− c− (b− c)) ≥ min{v(a− c), v(b− c)} = v(a− c) = v(b− c).

By definition of the distance of an element from K over K̃, we obtain that

v(a− b) ≥ dist K̃(a,K) = dist K̃(b,K)

and thus a ≈K b.

As direct consequences of the lemma we obtain the following properties, which correspond
to the ones that hold for dist (a,K) and the relation ∼K , defined in Section 2.3.

Corollary 3.5. If a, b ∈ K̃ are such that a ≈K b, then dist K̃(a,K) = dist K̃(b,K).
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Corollary 3.6. Take any elements a and b algebraic over K. Then for every c ∈ K we
have:

1) if a ≈K b, then a+ c ≈K b+ c;

2) if a ≈K b and c 6= 0, then ca ≈K cb.

We know already that in the case of an immediate algebraic extension (K(a)|K, v), the
two notions of distances dist K̃(a,K) and dist (a,K) coincide. The next lemma shows in
particular that if (K(b)|K, v) is another immediate extension, also the relation a ≈K b can
be equivalently replaced by a ∼K b.

Lemma 3.7. Take elements a, b algebraic over K. If the sets v(a−K) and v(b−K) have
no maximal elements, then

a ≈K b if and only if a ∼K b.

Proof. Assume that a ≈K b. Then by Corollary 3.5 we have that

v(a− b) ≥ dist K̃(a,K) = dist K̃(b,K).

Since v(a−K) has no maximal element, v(a− b) > dist K̃(a,K). Furthermore, Lemma 3.1
yields that the sets v(a − K) and v(b − K) are contained in vK. It follows that
dist K̃(a,K) = dist (a,K) and dist K̃(b,K) = dist (b,K). Hence

v(a− b) > dist (a,K) = dist (b,K),

which gives a ∼K b.
Assume now that a ∼K b. Then

v(a− b) > dist (a,K) = dist (b,K).

As we have already noticed, dist (a,K) = dist K̃(a,K) and dist (b,K) = dist K̃(b,K). To-
gether with the previous inequality this gives

v(a− b) > dist K̃(a,K) = dist K̃(b,K).

Therefore, a ≈K b.

Take an algebraic extension L of K with the extension of the valuation of K to K̃ = L̃
that we have previously fixed. Take an element b which is algebraic over K and hence also
over L. Since ṽK = vK̃ = vL̃ = ṽL, we have that dist L̃(b, L) and dist K̃(b,K) are cuts in
the same group. Hence we can compare the distances.

Lemma 3.8. Take an algebraic extension L|K and an element b algebraic over K. Then
dist K̃(b,K) ≤ dist L̃(b, L). Furthermore, if

dist K̃(b,K) < dist L̃(b, L),

then there is a ∈ L such that a ≈K b. Then in particular,

dist K̃(b,K) = dist K̃(a,K).
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Proof. The first inequality follows immediately from the definition of the distance.
Assume that dist K̃(b,K) < dist L̃(b, L). The there is an element a ∈ L such that

v(b− a) > v(b−K).

Then for any c ∈ K we have that v(b−c) = v(b−c−(b−a)) = v(a−c), which by Lemma 3.4
yields that a ≈K b. Thus in particular, dist K̃(b,K) = dist K̃(a,K), by Corollary 3.5.

Corollary 3.9. Take Kh to be the henselization of K with respect to the valuation v of K̃.
Assume that b ∈ K̃ is such that b ≈K a for some a ∈ Kh. Then Kh and K(b) are not
linearly disjoint over K.

Proof. Suppose that b ≈K a. Then in particular, v(b − a) ≥ dist K̃(a,K) ≥ dist (a,K).
Since a ∈ Kh, the extension (K(a)|K, v) is immediate. Thus v(a − K) has no maximal
element, by Theorem 2.22. Therefore, v(b − a) > dist (a,K) and consequently, a ∼K b.
From Theorem 2.23 it follows that Kh and K(b) are not linearly disjoint over K.

Proposition 3.10. Take an algebraic extension L|K such that the valuation of K admits a
unique extension to L. Then for every b ∈ L \K,

dist K̃(b,Kh) = dist K̃(b,K).

Proof. Take Kh to be the henselization of K with respect to the fixed valuation v of K̃. As
v extends uniquely to L, the extension L|K is linearly disjoint from Kh|K, by Lemma 2.12.
Suppose that dist K̃(b,Kh) > dist K̃(b,K). Then by Lemma 3.8 there would be an element
d ∈ Kh such that d ≈K b. From the previous corollary it would follow that K(a) and Kh

are not linearly disjoint over K, a contradiction.

We consider now the following property of an algebraic extension (K(a)|K, v) of degree n:

(EF) for every polynomial g ∈ K[X] of degree less than n there is α ∈ v(a−K) such that
for every c ∈ K with v(a− c) ≥ α the value vg(c) is fixed.

Note that the property (EF) states that the approximation type appr (a,K) fixes the value
of every polynomial of degree less than n. If in addition appr (a,K) is immediate, then
the above property together with Lemma 2.54, part a) yields that the minimal polynomial
of a over K is an associated minimal polynomial for appr (a,K). Hence, every associated
minimal polynomial for appr (a,K) is of degree n. On the other hand, if g is an associated
minimal polynomial for appr (a,K) of degree n, then by the definition, appr (a,K) fixes the
value of every polynomial of degree less that n. We thus obtain the following property.

Lemma 3.11. Assume that (K(a)|K, v) is an algebraic extension of degree n. If the approx-
imation type appr(a,K) is immediate, then K(a)|K has property (EF) if and only if every
associated minimal polynomial for appr (a,K) is of degree n.

Lemma 3.12. Take an algebraic extension (K(a)|K, v) with the property (EF).

1) If v(a-K) has no maximal element, then (K(a)|K, v) is an immediate extension.

2) Assume that (K(a)|K, v) is an immediate extension. If b ∈ K̃ is such that a ≈K b and
[K(a) : K] = [K(b) : K], then the extension (K(b)|K, v) is also immediate.
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Proof. Assume that v(a −K) has no maximal element. Then by Lemma 2.53, the approx-
imation type appr (a,K) is immediate. Lemma 2.54 yields that appr (a,K) is an algebraic
approximation type. Take any element b ∈ K(a). Then b = h(a) for some polynomial
h ∈ K[X] of degree less than n := [K(a) : K]. From the previous lemma and part b)
of Lemma 2.54 it follows that appr (b,K) = appr (h(a), K) is an immediate approximation
type. Hence by Lemma 2.53, the extension (K(a)|K, v) is immediate.

For the proof of part 2), assume that b ∈ K̃ is such that a ≈K b and that
[K(a) : K] = [K(b) : K]. By Lemma 3.3 we obtain that appr (a,K) = appr (b,K). As
property (EF) says that the approximation type appr (a,K) fixes the value of every polyno-
mial of degree less than n, the same holds for appr (b,K). Thus also (K(b)|K, v) has property
(EF). Furthermore, by Lemma 3.4 we have that v(b − K) = v(a − K). If (K(a)|K, v) is
an immediate extension, then from Theorem 2.22 we deduce that v(a − K) has no maxi-
mal element. Therefore, (K(b)|K, v) satisfies the assumptions of part 1) of the lemma and
consequently is an immediate extension.

Lemma 3.13. Take an algebraic extension K(a)|K with property (EF). If b ∈ K̃ is such
that a ≈K b, then for every polynomial f ∈ K[X] of degree less than [K(a) : K],

f(a) ≈K f(b).

For the proof we will need the following property (cf. Lemma 5.2 of [33]).

Lemma 3.14. Take an algebraic approximation type appr (a,K) and a polynomial f ∈ K[X]
of degree less than or equal to the degree of an associated minimal polynomial for appr (a,K).
Assume that appr (a,K) fixes the value of g and take an element α ∈ v(a−K) ∩ vK∞ such
that vg(c) is fixed for every c ∈ K with v(a− c) ≥ α. Then vg(a) = vg(c).

Proof of Lemma 3.13 As a ≈K b, by Lemma 3.3 we obtain that appr (a,K) =
appr (b,K). By the assumption on K(a)|K, the approximation type appr (a,K) fixes the
value of every polynomial of degree less than n := [K(a) : K]. Take such a polynomial f
and an element c ∈ K. Then also deg(f − c) < n. Hence there is α ∈ v(a−K) such that for
all d ∈ K with v(a− d) > α the value v((f − c)(d)) = v(f(d)− c) is fixed. Lemma 3.4 yields
that α ∈ v(b − K) and for every d ∈ K with v(b − d) > α the value v(f(d) − c) is fixed.
Applying the above lemma to g = f − c and elements a and b respectively, we obtain that

v(f(a)− c) = v(f(d)− c) = v(f(b)− c).

Since the equality v(f(a)− c) = v(f(b)− c) holds for every c ∈ K, by Lemma 3.4 we obtain
the relation f(a) ≈K f(b). 2

3.2 Distances of elements in extensions of prime degree

We apply now the notions of the distance and the relation ≈K considered in the previous
section to the case of algebraic extensions of prime degree. We show that for such extensions
the relation a ≈K b implies a strong connection between the value group and between the
residue field extensions of the extensions (K(a)|K, v) and (K(b)|K, v). We also consider
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possible distances of elements in defectless extensions of prime degree, which are linearly
disjoint from the henselization.

Throughout this section we assume that (K, v) is a valued field, fix an extension

of v to the algebraic closure K̃ of K and denote it again by v. Furthermore, we
take p to be a prime number.

Note that if K(a)|K is an extension of degree p such that the valuation v admits a
unique extension from K to K(a), then from the Lemma of Ostrowski it follows that either
(K(a)|K, v) is an immediate extension (which is possible only in the case of p = charKv),
(vK(a) : vK) = p and the residue field extension is trivial, or [K(a)v : Kv] = p and the
value group extension is trivial.

Assume that (vK(a) : vK) = p or [K(b)v : Kv] = p. Then the extension K(a)|K is
defectless. As from Proposition 3.10 it follows that dist K̃(a,K) = dist K̃(a,Kh), we deduce
that v(a−K) has a maximal element, equal to the maximal element of v(a−Kh).

If the value group extension vK(a)|vK is nontrivial, then by Lemma 2.25 the maximal
element α of v(a − Kh), hence also of v(a − K), lies in vK(a) \ vK. Thus α has order p
modulo vK and vK(a) = vK + αZ. Obviously, if v(a−K) has a maximal element α /∈ vK,
then the value group extension is nontrivial and as before we deduce that vK(a) = vK+αZ.

A similar argumentation together with Lemma 3.1 shows that the residue field extension
K(a)v|Kv is nontrivial if and only if v(a−K) admits a maximal element which lies in vK.
Then K(a)v = Kv(d−1(a− c)v) for c, d ∈ K such that v(a− c) = α = vd.

By Theorem 2.22 we obtain that if K(a)|K is an immediate extension, then the set
v(a − K) has no maximal element. Note that also the converse holds. It follows from the
fact that if the extension K(a)|K is not immediate, then the above arguments show that
K(a)|K is defectless and v(a−K) admits a maximal element.

We thus can read off the information about the value group and the residue field exten-
sions from the distance.

Lemma 3.15. Take an algebraic extension K(a)|K of degree p and assume that the valuation
v of K extends in a unique way to K(a).

1) The set v(a − K) has no maximal element if and only if the extension (K(a)|K, v) is
immediate.

2) The set v(a − K) admits a maximal element α /∈ vK if and only if the value group
extension vK(a)|vK is nontrivial. If this holds, vK(a) = vK + αZ.

3) The set v(a − K) admits a maximal element α ∈ vK if and only if the residue field
extension K(a)v|Kv is nontrivial. If this holds, for every c, d ∈ K such that v(a−c) = α = vd
we have that K(a)v = Kv(d−1(a− c)v).

Proposition 3.16. Take algebraic extensions K(a)|K and K(b)|K of degree p and assume
that the valuation v of K extends in a unique way to the fields K(a) and K(b). Assume
moreover that a ≈K b.

1) If (K(a)|K, v) is an immediate extension, then also the extension (K(b)|K, v) is imme-
diate.

2) If the value group extension vK(a)|vK is nontrivial, then vK(a) = vK(b).

3) If the residue field extension K(a)v|Kv is nontrivial, then also the extension K(b)v|Kv
is nontrivial. If moreover v(b− a) > dist K̃(a,K), then K(a)v = K(b)v.
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Proof. If v(a−K) has no maximal element, then by Corollary 3.5 also the set v(b−K) has
no maximal element. Now part 1) of the proposition follows from Lemma 2.26.

Assume that the group vK(a)/vK is nontrivial. Then by the previous lemma v(a−K)
has a maximal element α ∈ vK(a)\vK and vK(a) = vK+αZ. Since a ≈K b, by Lemma 3.4
we have that v(a−K) = v(b−K). Therefore α ∈ v(b−K) ⊆ vK(b) is the maximal element
of v(b−K). Together with the previous lemma this yields that vK(b) = vK +αZ = vK(a).

Suppose now that the extension K(a)v|Kv is nontrivial. Then [K(a)v : Kv] = p and
vK(a) = vK. This yields that also K(b)v|Kv is of degree p, since otherwise K(b)|K would
be immediate or the value group extension vK(b)|vK would be nontrivial. By parts 1) and 2)
of the lemma, that would imply that also K(a)|K is immediate or vK(a)|vK is nontrivial,
respectively, a contradiction.

Assume additionally that v(a− b) > dist K̃(a,K). By the above lemma, the set v(b−K)
admits a maximal element α ∈ vK and for elements c, d ∈ K such that v(b − c) = α = vd
we have that ξ := d−1(b − c)v generates the extension K(b)v|Kv. By the assumption on
dist K̃(a,K) = dist K̃(b,K) we have that v(b− a) > α = vd. Hence

v(d−1(b− c)− d−1(a− c)) = vd−1(a− b) > 0.

Thus d−1(b − c)v = d−1(a − c)v and ξ ∈ K(a)v. From the fact that K(a)v|Kv is of prime
degree, we deduce that K(a)v = Kv(ξ) = K(b)v.

Another easy consequence of Lemma 2.25 is the following fact, which describes the pos-
sible distances of elements of a defectless extension (K(a)|K, v) of degree p with unique
extension of the valuation v from K to K(a).

Corollary 3.17. Take a defectless extension (L|K, v) of degree p and assume that the valu-
ation v of K extends in a unique way to L.

1) If vL = vK, then the distance of every element b ∈ L \ K from K over K̃ is of the
form α+ for some α ∈ vK. Conversely, for every α ∈ vK there is b ∈ L \ K such that
dist K̃(b,K) = α+.

2) If the value group extension vL|vK is nontrivial, then the distance of every element

b ∈ L \K from K over K̃ is of the form α+ for some α ∈ vL \ vK. Furthermore, for every
α ∈ vL \ vK there is b ∈ L \K such that dist K̃(b,K) = α+.

Proof. Assume first that vL = vK. As (L|K, v) is defectless, the Lemma of Ostrowski
yields that [Lv : Kv] = p. Take an element a ∈ L such that av /∈ Kv. Then the elements
1, av, . . . , avp−1 areKv-linearly independent and thus 1, a, . . . , ap−1 form a standard valuation
basis of (L|K, v). Take an element b ∈ L. Then b =

∑p−1
i=0 cia

i for some ci ∈ K and
Lemma 2.25 together with Lemma 2.7 yield that the set v(b−K) admits a maximal element

α = v(b− c0) = min{vci | 1 ≤ i ≤ p− 1} ∈ vK.

Thus dist K̃(b,K) = α+ with α ∈ vK. Take now an element β in vK. Then from the first
part of the proof we have that dist K̃(a,K) = 0+. Hence, Lemma 3.2 yields that for b = ca
with c ∈ K of value β we have that

dist K̃(b,K) = vc+ dist K̃(a,K) = β+.
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Assume that vL|vK is nontrivial. Then vL = vK + γZ for some element γ ∈ ṽK of order p
modulo vK. Similarly to the previous case, we deduce that for an element a ∈ L of value γ
the elements 1, a, . . . , ap−1 form a standard valuation basis of (L|K, v). Furthermore, for an
element b =

∑p−1
i=0 cia

i ∈ L \K, with ci ∈ K, the set v(b−K) admits a maximal element

α = v(b− c0) = min{vci + iγ | 1 ≤ i ≤ p− 1} ∈ vL \ vK.

Hence dist K̃(b,K) = α+ with α ∈ vL\vK. On the other hand, if β is an element of vL\vK,
then it is of the form vc+ iγ for some c ∈ K and 1 ≤ i ≤ p− 1, since the order of γ + vK in
vL/vK is equal to p. As we have seen, dist K̃(ai, K) = (iγ)+. Then for an element b = cai,
Lemma 3.2 yields that

dist K̃(b,K) = vc+ dist K̃(ai, K) = β+.

Assume that (L|K, v) is a defectless extension of degree p such that the valuation v
admits a unique extension from K to L. The previous corollary shows that then the number
of distinct distances dist K̃(b,K) modulo vK of elements b ∈ L \K is at most p. In the next
section we consider the number of distinct distances of elements in immediate extensions in
the case of fields of positive characteristic.

3.3 The number of distinct distances in immediate el-

ements in valued field extensions

Throughout this section we shall work under the following assumptions. We
take (K, v) to be a valued field of positive characteristic p and finite p-degree n, that is,
[K1/p : K] = pn. We assume that v is a valuation of finite rank r such that (1

p
vK : vK) = pk

and that d(K1/p|K, v) = pm for some nonnegative integers k,m. Then m+ k ≤ n. We fix an

extension of the valuation v to K̃ and denote it again by v. We further denote by Kh the
henselization of K with respect to this valuation.

Take an element b algebraic over K. Assume that v extends in a unique way from K to
K(b). We say that the element b is immediate over K if the set v(b−K) has no maximal
element. By Lemma 2.53, this means that appr (b,K) is an immediate approximation type.
Note that if b is immediate over K, then ∞ /∈ v(b − K), hence the extension K(b)|K is
nontrivial.

If the extension (K(b)|K, v) is immediate, then Theorem 2.22 yields that the set v(b−K)
has no maximal element. The converse does not hold. As an example consider the extension
(K(a + x1/q)|K, v) constructed in Example 2.44. Since the extension (K(a)|K, v) is imme-
diate, the set v(a−K) has no maximal element. More precisely, in Example 3.12 of [27] it
is shown that

v(a−K) =
1

p∞
Z<0,

where 1
p∞
Z<0 is the set of all negative elements of 1

p∞
Z. Since for every c ∈ K we have

that v(x1/q) = 1
q
> 0 > v(a − c), we deduce that v(a − c) = v(a + x1/q − c). Consequently,
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v(a+x1/q−K) = v(a−K) has no maximal element, but we have seen in Example 2.44 that
the extension (K(a+ x1/q)|K, v) is not immediate.

Take an algebraic extension (L|K, v) such that the valuation v admits a unique extension
from K to L. We define ndd (L|K, v) to be the number of essentially distinct distances of
elements of L immediate over K modulo vK, by which we mean the minimal nonnegative
integer j such that there are elements a1, . . . , aj ∈ L immediate over K so that for every
b ∈ L immediate over K we have that

dist (b,K) = α + dist (ai, K)

for some i ∈ {1, . . . , j} and α ∈ vK. If for every element b ∈ L the set v(b −K) admits a
maximal element, then we set ndd (L|K, v) = 0. Note that if an element b ∈ L is immediate
over K, then by Lemma 3.1 we obtain that dist (b,K) = dist K̃(b,K). Hence the definition
of ndd (L|K, v) does not depend on the choice of the definition of distance and in our further
investigation we will use the notion of dist K̃(b,K).

If dist (a,K) = α + dist (b,K) for some a, b algebraic over K and α ∈ vK, then we will
also write that dist (a,K) ≡ dist (b,K) (mod vK).

Lemma 3.18. Assume that (E(a)|E, v) is an immediate extension of degree pj with prop-
erty (EF) and such that the valuation v admits a unique extension from E to E(a). Then
for every nonconstant polynomial f ∈ E[X] of degree less than [E(a) : E] there is α ∈ vE
and i ∈ {0, . . . , j − 1} such that

dist Ẽ(f(a), E) = α + pidist Ẽ(a,E).

Proof. Since the extension (E(a)|E, v) is immediate, Lemma 2.53 implies that appr (a,E) is
an immediate approximation type. Now the assertion of the lemma follows from Lemma 8.2
of [33].

Corollary 3.19. If E(a)|E is an immediate extension of degree p such that the valuation v
admits a unique extension from E to E(a), then for every b ∈ E(a) \ E, there is α ∈ vE
such that

dist Ẽ(b, E) = α + dist Ẽ(a,E).

Proof. Take an extension of v from E to Ẽ and denote it again by v. Take Eh to be the
henselization of E with respect to this extension. From Proposition 3.10 we deduce that
dist Ẽ(a,E) = dist Ẽ(a,Eh) and dist (b, E) = dist (b, Eh). Since E(a)|E is an immediate
algebraic extension,

vEh(a) = vE(a)h = vE(a) = vE = vEh and Eh(a)v = E(a)hv = E(a)v = Ev = Ehv.

Thus also the extension (Eh(a)|Eh, v) is immediate. Furthermore, Lemma 2.12 yields that
the extension is of degree p. Hence without loss of generality we can assume that the field
(E, v) is henselian.

Since (E(a)|E, v) is an immediate extension, Lemma 2.53 implies that the approximation
type appr (a,E) is immediate. By Proposition 2.56 this implies that the extension (E(a)|E, v)
has property (EF). The assertion of the corollary follows now from the previous lemma.

The above observation allows us to prove the following fact.
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Proposition 3.20. Under the assumptions on (K, v) in this section, we have that

ndd (K1/p|K, v) ≤ m.

Furthermore, if j := ndd (K1/p|K, v) > 0, then there are elements a1, . . . , aj ∈ K1/p such
that (K(a1, . . . , aj)|K, v) is a nontrivial immediate subextension of K1/p|K and for every
b ∈ K1/p immediate over K,

dist (b,K) ≡ dist (ai, K) (mod vK).

Proof. Suppose first that (K1/p|K, v) is a defectless extension, that is, m = 0. Then
Lemma 2.25 yields that v(b − K) admits a maximal element for every b ∈ K1/p and thus
ndd (K1/p|K, v) = 0.

Assume now that ndd (K1/p|K, v) > 0. This means that K1/p contains elements that are
immediate over K. Take a1 to be such an element. Since v admits a unique extension from K
to the purely inseparable extension K1/p, it follows from Lemma 3.15 that (K(a1)|K, v)
is an immediate extension. Take any b ∈ K(a1) \ K. By Corollary 3.19 we have that
dist K̃(b,K) ≡ dist K̃(a1, K) (mod vK).

Assume that we have chosen a1, . . . , ai ∈ K1/p in such a way that K(a1, . . . , ai)|K is
an immediate extension of degree pi and dist K̃(ai1 , K) 6≡ dist K̃(ai2 , K) (mod vK) for any
distinct i1, i2 ∈ {1, . . . , i}. Assume also that i ≤ m and for every b ∈ K(a1, . . . , ai) \K there
is t ∈ {1, . . . , i} such that dist K̃(b,K) ≡ dist K̃(at, K) (mod vK).

If for every element b ∈ K1/p immediate over K there is a natural number t ≤ i such that

dist K̃(b,K) ≡ dist K̃(ai, K) (mod vK),

then the proposition holds with j = i. Otherwise, there is an element ai+1 ∈ K1/p immediate
over K and such that

dist K̃(ai+1, K) 6≡ dist K̃(at, K) (mod vK)

for every t ∈ {1, . . . , i}. Then, by the assumption on K(a1, . . . , ai), we have that

dist K̃(ai+1, K) 6≡ dist K̃(b,K) (mod vK)

for every b ∈ K(a1, . . . , ai). Hence ai+1 /∈ K(a1, . . . , ai) and by Lemma 3.8,

dist K̃(ai+1, K) = dist K̃(ai+1, K(a1, . . . , ai)). (3.3)

Since the set v(ai+1 − K) has no maximal element, from the above equality it follows
that also the set v(ai+1 − K(a1, . . . , ai)) has no maximal element. We thus obtain that
K(a1, . . . , ai+1)|K(a1, . . . , ai) is an extension of degree p such that the element ai+1 is
immediate over K(a1, . . . , ai). Therefore, it follows from Lemma 3.15 that the extension
(K(a1, . . . , ai+1)|K(a1, . . . , ai), v) is immediate. Consequently, also (K(a1, . . . , ai+1)|K, v) is
an immediate extension. Then in particular, i + 1 ≤ m, since otherwise we would have an
immediate purely inseparable subextension of K1/p|K of degree pm+1. That would imply
that d(K1/p|K, v) ≥ pm+1, a contradiction.

Take an element b ∈ K(a1, . . . , ai+1). Suppose that dist K̃(b,K) = dist K̃(d,K) for some
d ∈ K(a1, . . . , ai). Then, by the assumption on K(a1, . . . , ai),

dist K̃(b,K) ≡ dist K̃(at, K) (mod vK)
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for some t ∈ {1, . . . , i}. Otherwise, b ∈ K(a1, . . . , ai+1) \ K(a1, . . . , ai) and applying again
Lemma 3.8 we obtain that

dist K̃(b,K) ≡ dist K̃(b,K(a1, . . . , ai)) (mod vK).

This together with Corollary 3.19 and equation (3.3) yields that

dist K̃(b,K) ≡ dist K̃(ai+1, K(a1, . . . , ai)) ≡ dist K̃(ai+1, K) (mod vK).

Since we have seen that the number of elements at cannot be greater than m, the construction
finishes after j steps with j ≤ m. Then K(a1, . . . , aj) is an immediate extension of K. From
the above construction if follows that for every b ∈ K1/p immediate over K we have that

dist K̃(b,K) ≡ dist K̃(at, K) (mod vK)

for some t ≤ j.
Hence in particular, ndd (K1/p|K, v) = j ≤ m.

Take an Artin-Schreier defect extension (K(ϑ)|K, v). In Section 2.4 we mentioned that
(K(ϑ)|K, v) is an independent Artin-Schreier defect extension if and only if dist K̃(ϑ,K) = H−

for some proper convex subgroup H of vK. By Corollary 3.19 the distance of every element
of K(ϑ) \K from K is equal to H− modulo vK. Therefore, the number of the possible dis-
tances of elements of independent Artin-Schreier defect extensions modulo vK is bounded
by r.

If (K(ϑ)|K, v) is a dependent Artin-Schreier defect extension, then ϑ ∼K η for some
η ∈ K1/p which generates an immediate extension of K. Then dist K̃(ϑ,K) = dist K̃(η,K).
Again, from Corollary 3.19 we deduce that the distance of every element of K(ϑ)\K from K
is equal to dist K̃(η,K) modulo vK. By the above proposition, we have at most m possible
distances dist K̃(η,K) modulo vK. This proves the following fact.

Proposition 3.21. The number of distinct distances of elements in Artin-Schreier defect
extensions of (K, v) modulo vK is bounded by m+ r.

For every natural number i denote by ndd i(K, v) the number of distinct distances modulo

vK of elements b ∈ K̃ \K satisfying the following conditions:

[K(b) : K] ≤ pi,
v extends in a unique way from K to K(b),
b is immediate over K.

 (3.4)

We will show now that for every i ∈ N the number ndd i(K, v) is finite. To prove it, we need
the following fact.

Lemma 3.22. Take an algebraic extension (L|E, v) and a defectless algebraic extension
(F |E, v) such that v extends in a unique way from E to F . Then every b ∈ L immediate
over E is also immediate over F , with

dist F̃ (b, F ) = dist Ẽ(b, E).
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Proof. Suppose that there is an element b ∈ L immediate over E, but not immediate over F .
Since v(b−E) ⊆ v(b−F ), the inclusion is proper and consequently dist F̃ (b, F ) > dist Ẽ(b, E).
By Lemma 3.8 there is an element a ∈ F such that dist Ẽ(b, E) = dist Ẽ(a,E). It follows
that v(a − E) has no maximal element, as the set v(b − E) has no maximal element. On
the other hand, since (E(a)|E, v) is defectless, as a subextension of a defectless extension,
Lemma 2.25 yields that the set v(a − E) has a maximal element, a contradiction. Hence
v(b− F ) has no maximal element and dist F̃ (b, F ) = dist Ẽ(b, E).

Theorem 3.23. Under the assumptions on (K, v) of this section, for every natural number i
we have that

ndd i(K, v) ≤ (r +m)
i−1∑
s=0

pks.

Proof. Take an element b ∈ K̃ satisfying the assumptions (3.4). From Proposition 3.10
we deduce that dist K̃(b,K) = dist K̃(b,Kh). This implies in particular that v(b −Kh) has
no maximal element, that is, b is immediate over Kh. Furthermore, the assumptions (3.4)
together with Lemma 2.12 yield that [Kh(b) : Kh] = [K(b) : K]. Hence, for every natural
number i we have that ndd i(K, v) ≤ ndd i(K

h, v) and we can assume that (K, v) is henselian.
Take Kr to be the absolute ramification field of K. Since the extension Kr|K is tame, it is

defectless and Lemma 3.22 yields that every element b ∈ K̃ immediate over K is immediate
also over Kr, with dist K̃r(b,Kr) = dist K̃(b,K). Moreover, [Kr(b) : Kr] ≤ [K(b) : K].
Therefore, ndd i(K, v) ≤ ndd i(K

r, v) for any i ∈ N, and we can assume that Kr = K. Note
that by Lemma 2.19 this means that for every element b algebraic over K the extension
K(b)|K is a tower of normal extensions of degree p. In particular, it is of degree pt for
some t ≥ 0.

Take an element b of degree p over K and assume that b is immediate over K. By
Lemma 3.15, the extension (K(b)|K, v) is immediate. If K(b)|K is purely inseparable,
it follows from Proposition 3.20 that we have at most m possible distances dist K̃(b,K)
modulo vK. Assume now that K(b)|K is not purely inseparable. Since it is of degree p, this
means that the extension is separable. Since furthermore K(b)|K is a normal extension, it is
Galois. As (K, v) is a henselian field of characteristic p and the extension K(b)|K is imme-
diate, it is an Artin-Schreier defect extension. If the Artin-Schreier extension is dependent,
then we have already seen that the distance dist K̃(b,K) is equal modulo vK to a distance
of an element η ∈ K1/p \K, immediate over K. If K(b)|K is an independent Artin-Schreier
defect extension, then we have proved that the number of distinct distances dist K̃(b,K)
modulo vK is bounded by r. Consequently, we obtain that there are at most m+ r distinct
distances of immediate elements of degree p modulo vK. This proves the theorem in the
case of i = 1.

Take i ≥ 2 and assume that

ndd i−1(K, v) ≤ (r +m)
i−2∑
s=0

pks.

To give an upper bound for ndd i(K, v), it is enough to consider elements of degree pi over
K, immediate over the field. This follows from the fact that the distance of any element
b of degree at most pi−1, immediate over K, is already counted in the upper bound of

44



ndd i−1(K, v). Take an element b immediate over K and assume that [K(b) : K] = pi.
Since v(b −K) has no maximal element, the approximation type appr (b,K) is immediate,
by Lemma 2.53. Take g to be an associated minimal polynomial for appr (b,K). If the
extension K(b)|K does not have the property (EF), then deg g < pi, by Lemma 3.11. Take

d ∈ K̃ to be a root of g. Since (K, v) is henselian, Theorem 2.55 yields that (K(d)|K, v) is
an immediate extension and

appr (b,K) = appr (d,K).

Hence, by part b) of Lemma 2.52,

dist K̃(b,K) = dist K̃(d,K).

Since [K(d) : K] < pi, it follows that [K(d) : K] ≤ pi−1. Therefore, the distance dist K̃(b,K)
appears already as a distance of some immediate element of degree at most pi−1.

Hence, it is enough to consider the case when b is immediate over K and the extension
K(b)|K is of degree pi with property (EF). By Lemma 3.12 this yields that the exten-
sion is immediate. Assume first that the extension K(b)|K is purely inseparable. Then
from Lemma 3.8 we deduce that dist K̃(b,K) = dist K̃(d,K) for some d ∈ K1/pi−1

or

dist K̃(b,K) = dist K̃(b,K1/pi−1
). In the former case, dist K̃(b,K) appears already as a dis-

tance of some immediate element of degree pi−1. Assume that the second case holds. Then
K1/pi−1

(b)|K1/pi−1
is a purely inseparable extension of degree p and the element b is immediate

over K1/pi−1
. Since d(K1/pi |K1/pi−1

, v) = d(K1/p|K, v) = pm, Proposition 3.20 yields that
there are at most m distinct distances of elements of K1/pi immediate over K1/pi−1

, modulo
vK1/pi−1

= 1
pi−1vK. Let δ1, . . . , δj with j ≤ m be these distances. Then

dist K̃(b,K) = dist K̃(b,K1/pi−1

) = δt + α

for some t ≤ j and α ∈ 1
pi−1vK. As

(
1
p
vK : vK

)
= pk, we have that

(
1

pi−1vK : vK
)

= pk(i−1).

This gives jpk(i−1) possible distances dist K̃(b,K) modulo vK. As j ≤ m, we have at most
mpk(i−1) such distances.

Suppose now that K(b)|K is not purely inseparable. Then E := (K(b)|K)sep is a non-
trivial separable subextension of K(b)|K. Furthermore, E|K is a tower of Galois extensions
of degree p, as K(b)|K is a tower of normal extensions of degree p. This yields that K
admits an Artin-Schreier extension K(ϑ) ⊆ K(b), where ϑ is an Artin-Schreier generator.
Since K(b)|K is an immediate extension of henselian fields, the same holds for K(ϑ)|K and
thus K(ϑ)|K is an Artin-Schreier defect extension. Take a polynomial f ∈ K[X] such that
ϑ = f(b) and deg f < pi. Then, by Lemma 3.18,

dist K̃(ϑ,K) = dist K̃(f(b), K) = α + psdist K̃(b,K) (3.5)

for some α ∈ vK and s < i. Take c ∈ K such that vc = α.
Assume that the Artin-Schreier defect extension K(ϑ)|K is dependent. Then ϑ ∼K η,

for some η ∈ K1/p, such that the extension K(η)|K is immediate. Hence,

dist K̃(η,K) = dist K̃(ϑ,K) = vc+ psdist K̃(b,K).

By Lemma 3.2, this yields that

psdist K̃(b,K) = dist K̃
(η
c
,K
)
.
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Therefore, we obtain that

dist K̃(b,K) = dist K̃

((η
c

)1/ps

, K1/ps
)
, (3.6)

since 1
ps
v(η

c
− K) = v

(
(η
c
)1/ps − K1/ps

)
. As v(b − K) has no maximal element, it follows

from equation (3.6) that also v
(
(η
c
)1/ps −K1/ps

)
has no maximal element, and thus (η

c
)1/ps

is immediate over K1/ps . Moreover, K1/ps((η
c
)1/ps)|K1/ps is a purely inseparable extension of

degree p. Hence, the argument used above for the case of K(b)|K purely inseparable shows
that dist K̃

(
(η
c
)1/ps , K1/ps

)
is already considered as a possible distance of an immediate purely

inseparable element over K of degree ps+1 ≤ pi over the field.
Suppose that K(ϑ)|K is an independent Artin-Schreier defect extension. Then Proposi-

tion 2.30 yields that
dist K̃(ϑ,K) = psdist K̃(ϑ,K).

Hence, from equation 3.5 we obtain that

psdist K̃(ϑ,K) = vc+ psdist K̃(b,K)

and consequently,

dist K̃(b,K) = − 1

ps
vc+ dist K̃(ϑ,K). (3.7)

Since the valuation v is of rank r, we have already noticed that there are r possible distances
dist K̃(ϑ,K) modulo vK. Moreover, ( 1

ps
vK : vK) ≤ ( 1

pi−1vK : vK) = pk(i−1). Hence in the

case under consideration we have at most rpk(i−1) possible distances dist K̃(b,K) modulo vK.
Consequently, we obtain that

ndd i(K, v) ≤ ndd i−1(K, v) + rpk(i−1) +mpk(i−1).

By the induction hypothesis, it follows that

ndd i(K, v) ≤ (r +m)
i−1∑
s=0

pks.
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4. Infinite towers of Galois defect ex-
tensions of prime degree

In this chapter we develope constructions of towers of Galois defect extensions of prime
degree. We give criteria for valued fields of positive residue characteristic p with p-divisible
value group and perfect residue field to admit an infinite tower of such extensions. As we
have noticed in Section 2.4, towers of Galois defect extensions of prime degree play a central
role in the problem of defect extensions. While in that case we consider mainly finite towers
of Galois defect extensions of prime degree, we will see in Chapter 7 that for some problems
the existence of infinite towers of such extensions is crucial. We prove first a useful criterion
for a valued field of positive characteristic p with p-divisible value group and perfect residue
field to admit an infinite tower of dependent Artin-Schreier defect extensions.

4.1 Towers of dependent Artin-Schreier defect exten-

sions of valued fields

Throughout this section we assume that (K, v) is a valued field of positive
characteristic p with perfect residue field and p-divisible value group. Due to the
importance of the dependent Artin-Schreier defect extensions for the problems related to
local uniformization which we have mentioned in the introduction, an interesting question
is under which conditions the field (K, v) admits dependent Artin Schreier defect extensions
or towers of such extensions, and how to construct them.

Take a valued field (L, v) and suppose that the field L admits an immediate purely
inseparable extension L(η)|L of degree p such that η ∈ L1/p \ Lc. For any element b ∈ L
consider the polynomial

fb = Y p − bp−1Y − ηp.

With each of the polynomials fb we can associate through the transformation Y = bX the
Artin-Schreier polynomial

gb(X) = Xp −X −
(η
b

)p
.

Note that ϑb is a root of the polynomial gp if and only if bϑb is a root of fb. The next
theorem shows when such deformation of a polynomial Y p − ηp generating a purely insepa-
rable extension into an Artin-Schreier polynomial leads to a dependent Artin-Schreier defect
extension.
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Theorem 4.1. Suppose that the polynomial Xp−ηp ∈ L[X] induces an immediate extension
of (L, v) which does not lie in the completion of L. Then for each b ∈ L× such that

(p− 1)vb > p dist (η, L)− vη (4.1)

the polynomial gb = Xp − X − (η
b
)p induces a dependent Artin-Schreier defect extension.

Moreover, every root ϑb of gb satisfies

ϑb ∼L
η

b
.

Proof. Take ϑ to be a root of the polynomial gb. If condition (4.1) holds, then

(p− 1)vb+ vη > p dist (η, L) > pvη, (4.2)

by Theorem 2.22. Thus vb > vη and consequently v(η
b
)p < 0. By Lemma 2.27 it follows that

vϑ = v
η

b
= vη − vb. (4.3)

By definition of ϑ,

ηp + bpϑ = bp
((η

b

)p
+ ϑ
)

= (bϑ)p. (4.4)

Take an element c ∈ L. By equalities (4.3), (4.2) and from the definition of dist (η, L) we
have that

vbpϑ = pvb+ vη − vb = (p− 1)vb+ vη > pdist (η, L) > pv(η − c) = v(ηp − cp).

Together with equation (4.4) this implies that

v(η − c) =
1

p
v(ηp − cp) =

1

p
v(ηp − cp + bpϑ) =

1

p
v((bϑ)p − cp) = v(bϑ− c). (4.5)

Hence v(η − L) = v(bϑ − L). Since L(η)|L is immediate, from Theorem 2.22 follows that
v(η − L) = v(η − L) ∩ vL has no maximal element. Now Lemma 2.21 together with (4.5)
imply that bϑ ∼L η. Hence part d) of Lemma 2.24 yields that

ϑ ∼L
η

b
.

Furthermore, v(bϑ−L) has no maximal element, thus from Lemma 2.26 we deduce that the
extension (L(ϑ)|L, v) is immediate.

Since ϑ ∼L η
b

and η
b

is purely inseparable over L, from Theorem 2.23 it follows that
ϑ /∈ Lh. As L(ϑ)|L is of prime degree, this implies that the extension is linearly disjoint from
Lh|L. By Lemma 2.12 this means that the valuation v admits a unique extension from L
to L(ϑ). Since moreover (L(ϑ)|L, v) is immediate, equation (1.1) shows that the extension
has nontrivial defect. From the relation ϑ ∼L η

b
it follows that (L(ϑ)|L, v) is a dependent

Artin-Schreier defect extension.

Theorem 4.1 was proved in [25]. The above argument fills a gap in the proof of the fact
that the valuation v admits a unique extension from L to L(ϑ).

We use the deformation of purely inseparable extensions to prove the following fact.
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Theorem 4.2. If there is a purely inseparable extension of (K, v) which does not lie in the
completion of the field, then K admits an infinite tower of dependent Artin-Schreier defect
extensions. If every purely inseparable extension of degree p lies in the completion of K, then
the field admits no dependent Artin-Schreier defect extensions.

Proof. Suppose there is an element a ∈ K such that a1/pn does not lie in the completion Kc

of K. Take
k := min{i ∈ N | a1/pi /∈ Kc}.

As a1/pk /∈ Kc, by Corollary 2.50 and Lemma 2.46 there is γ ∈ vK such that v(a1/pk−K) < γ.
By definition of k, the element a1/pk−1

lies in the completion of K. Hence, v(a1/pk−1−d) > pγ
for some d ∈ K. Thus

v(a1/pk −K) < γ <
1

p
v(a1/pk−1 − d) = v(a1/pk − d1/p).

It follows that also v(d1/p −K) < γ and consequently d1/p /∈ Kc.
Since the value group of the field K is p-divisible and its residue field is perfect, d1/p gen-

erates an immediate purely inseparable extension of K which does not lie in the completion
of K. By Theorem 4.1, we can choose an element b1 ∈ K× of large enough value, such that
a root ϑ1 of the polynomial

f1 = Y p − Y − d

bp1

generates a dependent Artin-Schreier defect extension K1 = K0(ϑ1) of K0 := K.
Take a natural number n and assume that we have chosen K1, . . . , Kn to be algebraic

extensions of K such that each Ki = Ki−1(ϑi) is a dependent Artin-Schreier defect extension
of Ki−1, where ϑi is a root of the polynomial

fi = Y p − Y − 1

bpi
ϑi−1

for some bi ∈ K×. Assume in addition that ϑ
1/p
i /∈ Kc

i for every i ≤ n − 1. Note that

then also ϑ
1/p
n does not lie in the completion of Kn. Indeed, suppose that ϑ

1/p
n ∈ Kc

n. By

Lemma 2.51 we have that Kc
n = Kc

n−1(ϑn), hence ϑ
1/p
n ∈ Kc

n−1(ϑn). Since ϑpn − ϑn = 1
bpn
ϑn−1,

we have that ϑn − ϑ1/p
n = 1

bn
ϑ

1/p
n−1. Therefore,

ϑ
1/p
n−1 = bn(ϑn − ϑ1/p

n ) ∈ Kc
n−1(ϑn).

By assumption ϑ
1/p
n−1 /∈ Kc

n−1, thus we would obtain that Kc
n−1(ϑ

1/p
n−1) = Kc

n−1(ϑn), but

Kc
n−1(ϑ

1/p
n−1) is a nontrivial purely inseparable and Kc

n−1(ϑn) a separable extension of Kc
n−1,

a contradiction.
Then, using the same argument as before, we can choose an element bn+1 ∈ K× such

that the polynomial

fn+1 = Y p − Y − 1

bpn+1

ϑn

induces a dependent Artin-Schreier defect extension Kn(ϑn+1)|Kn, where ϑn+1 is a root of
the polynomial fn+1. By induction we obtain an infinite chain Kn|Kn−1 of dependent Artin-
Schreier defect extensions.
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Assume now that every purely inseparable extension of (K, v) lies in the completion of K.
Suppose there were a dependent Artin-Schreier defect extension (K(ϑ)|K, v). Then there
would be η ∈ K1/p such that η ∼K ϑ, that is,

v(ϑ− η) > v(η −K).

Since η ∈ K1/p ⊆ Kc we would obtain η = ϑ, a contradiction.

The above theorem shows that (K, v) either admits an infinite tower or admits no Artin-
Schreier defect extensions at all. In particular, this yields the following property:

Corollary 4.3. If (K, v) admits at least one dependent Artin-Schreier defect extension, then
it admits an infinite tower of such extensions.

We modify now the above construction to obtain infinitely many parallel dependent
Artin-Schreier defect extensions of the field K. Set L0 := K. As before, we choose an
element d ∈ K whose p-th root does not lie in the completion of K and take c1 ∈ K× such
that a root η1 of the polynomial

h1 = Y p − Y − d

cp1

generates a dependent Artin-Schreier defect extension L1 = L0(η1) of L0 := K. Take a
natural number n and assume that we have chosen L1, . . . , Ln to be algebraic extensions of
K such that Li = Li−1(ηi) is a dependent Artin-Schreier defect extension of Li−1 generated
by a root ηi of the polynomial

hi = Y p − Y − d

cpi

for some ci ∈ K×. Assume in addition that d1/p /∈ Lci for every i ≤ n − 1. Suppose that
d1/p ∈ Lcn = Lcn−1(ηn). Since d1/p does not lie in the completion of Ln−1, we have that
[Lcn−1(d1/p) : Lcn−1] = p. Therefore we would obtain Lcn−1(d1/p) = Lcn−1(ηn), but Lcn−1(d1/p)
is a nontrivial purely inseparable extension of Lcn−1 and the extension Lcn−1(ηn)|Lcn−1 is
separable, a contradiction. Consequently d1/p /∈ Lcn. By Theorem 4.1, we can choose an
element cn+1 ∈ K× of large enough value, such that a root ηn+1 of the polynomial

hn+1 = Y p − Y − d

cpn+1

generates a dependent Artin-Schreier defect extension Ln+1 = Ln(ηn+1) of Ln. Hence we
obtain an infinite chain of dependent Artin-Schreier defect extensions Ln|Ln−1.

Take a natural number n. Since every polynomial hn has coefficients in K, the field
K(ηn) is an Artin-Schreier extension of K. By what we have shown, the valuation v of K
has a unique extension to the field Ln and the extension Ln|K is immediate. Since K(ηn)|K
is a subextension of Ln|K, we deduce that v has also a unique extension to K(ηn) and
K(ηn)|K is immediate. Hence K(ηn)|K has nontrivial defect. From Theorem 4.1 it follows
that ηn ∼Ln−1

1
cn
d1/p. This means that

v

(
ηn −

d1/p

cn

)
> dist

(
d1/p

cn
, Ln−1

)
≥ dist

(
d1/p

cn
, K

)
.
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It follows that ηn ∼K 1
cn
d1/p and K(ηn)|K is a dependent Artin-Schreier defect extension.

Since for every n ∈ N the extension Ln|Ln−1 is nontrivial, we deduce that K admits infinitely
many dependent Artin-Schreier extensions.

Take n ∈ N, any distinct natural numbers i1, . . . , in and consider the compositum
K(ηi1 , . . . , ηin) of the fields K(ηi1), . . . , K(ηin). Since K(ηi1 , . . . , ηin)|K is a subextension of
some Lm|K, we deduce that the valuation v of K has a unique extension to K(ηi1 , . . . , ηin)
and the extension K(ηi1 , . . . , ηin)|K is immediate. Consequently, the defect of the extension
is equal to its degree. By what we have proved, Lm|K is of degree pm. From the definition
of Lm it follows that K(ηi1 , . . . , ηin)|K must be of degree pn. Furthermore the extension is
Galois, as a compositum of Galois extensions of the field K. We have thus proved:

Proposition 4.4. If there is a purely inseparable extension of (K, v) which does not lie in
the completion of the field, then K admits infinitely many dependent Artin-Schreier defect
extensions such that the compositum of any n of the extensions is a Galois extension of K
of degree and defect pn.

Corollary 4.5. If (K, v) admits at least one dependent Artin-Schreier defect extension, then
it admits infinitely many dependent Artin-Schreier defect extensions such that the composi-
tum of any n of the extensions is a Galois extension of K of degree and defect pn.

From the above corollary it follows immediately that if the field (K, v) admits only finitely
many Artin-Schreier defect extensions, then all of the extensions are independent.

4.2 Towers of Galois defect extensions of prime degree

of Kaplansky fields

Assume that (K, v) is a valued field of positive characteristic p with p-divisible value
group and perfect residue field. In the previous section we proved that if the field admits
at least one dependent Artin-Schreier defect extension, then it admits an infinite tower of
Artin-Schreier defect extensions, that is, an infinite tower of Galois defect extensions of
prime degree. We consider now the case of Kaplansky fields by assuming additionally that
Kv admits no finite separable extensions of degree divisible by p. Under this assumption we
can relax the condition that the field admits a dependent Artin-Schreier defect extension. We
prove that in this case it is enough to assume that (K, v) admits any Artin-Schreier extension,
linearly disjoint from the henselization of K. We also give conditions for Kaplansky fields of
characteristic 0 and positive residue characteristic to admit an infinite tower of Galois defect
extensions of prime degree.

We start with general remarks about the existence of infinite towers of Galois extensions
of degree p for any field of positive characteristic p. As for such a field an extension of degree
p is Galois if and only if it is an Artin-Schreier extension, we consider the existence of infinite
towers of Artin-Schreier extensions. The basis for the constructions of such towers will be
the following lemma, proved in Chapter 8 of [17] (cf. Lemma 1.10).

Lemma 4.6. Take a field L of positive characteristic p and an element a ∈ L. Assume that
the polynomial f = Xp−X−a is irreducible over L. If ϑ is a root of f , then the polynomial
Xp −X − aϑp−1 is irreducible over L(ϑ).
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Lemma 4.7. Assume that K is a field of positive characteristic. If it admits an Artin-
Schreier extension, then it admits already an infinite tower of such extensions.

Proof. Assume that K0 := K admits an Artin-Schreier extension K1 of degree p = charK.
ThenK1 = K0(ϑ1), where ϑ1 is a root of an irreducible polynomial f1 = Xp −X − a1 ∈ K[X].
Consider the following construction. For every n > 1:

if Kn = Kn−1(ϑn) with ϑpn − ϑn = an ∈ Kn−1,
take Kn+1 = Kn(ϑn+1) with ϑn+1 a root of fn+1 := Xp −X − anϑp−1

n .

}
(4.6)

Take a natural number n and suppose that Kn|Kn−1 is an Artin-Schreier extension, that
is, the polynomial fn is irreducible over Kn−1. Then Lemma 4.6 yields that the polynomial
fn+1 is irreducible over Kn and Kn+1|Kn is an Artin-Schreier extension.

By induction on n we obtain an infinite tower of Artin-Schreier extensions Kn|Kn−1.

We now apply the above result to the valued field extensions of Kaplansky fields.

Theorem 4.8. Take a Kaplansky field (K, v) of positive characteristic. Assume that K
admits an Artin-Schreier extension E|K such that v extends in a unique way to a valuation
of E. Then (E|K, v) has nontrivial defect and (K, v) admits an infinite tower of Artin-
Schreier defect extensions.

Proof. Set p := charK. Since K1 := E is an Artin-Schreier extension of K, it is of the form
K(ϑ1), where ϑ1 is a root of a polynomial f1 = Xp −X − a1 ∈ K[X]. From Lemma 4.7 we
deduce that K0 := K admits an infinite tower of Artin-Schreier extensions Kn|Kn−1, which
can be obtained by construction (4.6).

By our assumption, the valuation v admits a unique extension from K0 to K1. Take
n ∈ N and assume that we have already shown that v admits a unique extension from Kn−1

to Kn. From Lemma 2.12 it follows that Kn|Kn−1 is linearly disjoint from Kh
n−1|Kn−1. Hence

[Kh
n−1(ϑn) : Kh

n−1] = p and thus the polynomial fn is irreducible over Kh
n−1. By Lemma 4.6

the polynomial fn+1 is irreducible over Kh
n−1(ϑn) = Kh

n . Hence [Kh
n(ϑn+1) : Kh

n ] = p and
Kn+1|Kn is linearly disjoint from Kh

n |Kn. Applying again Lemma 2.12 we deduce that v
admits a unique extension from Kn to Kn+1. By induction on n, this holds for every extension
in the tower.

Take a natural number n. By the Lemma of Ostrowski,

p = [Kn : Kn−1] = d(Kn|Kn−1, v)(vKn : vKn−1)[Knv : Kn−1v].

Since (K, v) is a Kaplansky field, vK is p-divisible and Kv admits no finite extension
of degree divisible by p. This yields that the extension (Kn|Kn−1, v) is immediate and
d(Kn|Kn−1, v) = p. As E = K1, we have that also (E|K, v) is a defect extension.

Note that if (K, v) is a Kaplansky field of positive characteristic p, then vK is p-divisibe
and Kv is perfect. Thus (K, v) satisfies the assumptions of the previous section. From
Theorem 4.2 we know that (K, v) admits an infinite tower of Galois extensions of degree and
defect p if the perfect hull of K is not contained in the completion of the field.

For fields of characteristic 0 we will consider separately the case of odd primes and
p = 2. A field extension E|K is called irreducible radical if it is generated by a root of
an irreducible polynomial Xn − a ∈ K[X]. If K is a field of characteristic 0 containing a
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primitive n-th root of unity, then a field extension E|K of degree n is cyclic if and only if
it is irreducible radical (cf. Lemma 1.1, Chapter 8 of [17]). We will consider the existence
of infinite towers of Galois extensions of prime degree p of fields admitting primitive p-th
root of unity. Hence we will investigate when such fields admit infinite towers of irreducible
radical extensions of degree p. We treat first the case of an odd prime p. The next lemma
is a special case of Theorem 1.6, Chapter 8 of [17].

Lemma 4.9. Let L be an arbitrary field. Take an element a ∈ L and an odd prime p. Then
for any natural number n, the polynomial Xpn−a is irreducible over L if and only if a /∈ Lp.

Lemma 4.10. Assume that K is a field of characteristic 0. Take an odd prime p and εp ∈ K̃
to be a primitive p-th root of unity. If K admits a Galois extension of degree p, then K(εp)
admits an infinite tower of Galois extensions of degree p.

Proof. Assume that L|K is a Galois extension of degree p. Set K0 := K(εp). Then
K1 := L.K0 = L(εp) is a Galois extension of K0 of degree p. Hence K1 = K0(η1), where
η1 is a root of an irreducible polynomial f1 := Xp − a ∈ K0[X]. By the previous lemma,
a /∈ Kp

0 and consequently, for every natural number n the polynomial

fn := Xpn − a (4.7)

is irreducible over K0. Denote by Kn, n > 1 the extension of K0 generated by a root ηn of
the polynomial fn. Then [Kn : Ko] = pn, n ∈ N. Hence each of the extensions Kn|Kn−1 is
of degree p. Assume additionally that we have chosen the roots ηn in a way that ηpn+1 = ηn,
n ∈ N. Then for every natural number n, the extension Kn|Kn−1 is generated by a root ηn
of the polynomial Xp − ηn−1 ∈ Kn−1[X]. As [Kn : Kn−1] = p, the extension Kn|Kn−1 is
irreducible radical, hence Galois.

It remains to consider the case of charK = 0 and p = 2. We will need the following
lemma (cf. Lemma 1.5, Chapter 8 of [17]).

Lemma 4.11. Assume that L is a field of characteristic distinct from 2. Take an element
a ∈ L and a natural number n. Then the polynomial X2n − a is irreducible over L if and
only if a /∈ F 2 and a /∈ −4F 4.

Lemma 4.12. Take a field K of characteristic 0 and assume that at least one of the following
conditions holds:

1) K contains a square root i of −1 and admits a Galois extension of degree 2,

2) K admits a tower of two Galois extensions of degree 2.

Then the field admits an infinite tower of Galois extensions of degree 2.

Proof. Assume that the first case holds and take K1|K0 with K0 := K to be a Galois
extension of degree 2. As −1 ∈ K, the extension is generated by a root η1 of an irreducible
polynomial X2 − a ∈ K[X]. By the previous lemma, a is not a square in K and a /∈ −4K4.
Therefore, the same lemma yields that for every n ∈ N the polynomial

fn := X2n − a (4.8)

is irreducible over K0. As in the proof of Lemma 4.10 we construct an infinite tower of Galois
extensions of degree 2.
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Assume now that case 2) holds and take E|K to be a tower of two Galois extensions of
degree 2. Then E(i)|K(i) is either again a tower of two Galois extension of degree 2 or a
Galois extension of degree 2. In both cases K(i) satisfies the assumptions of the case 1).
Thus, from the first part of the proof we deduce that K(i) admits an infinite tower of Galois
extensions of degree 2. Since K(i)|K is either trivial or a Galois of degree 2, the assertion
holds already for the field K.

Assume that K is a field of characteristic 0. Note that if the field admits a Galois
extension E of degree 4, then Gal(E|K) is abelian and thus E|K is a tower of two Galois
extensions of degree 2. Also, if a square root i of −1 does not lie in K and the field admits
a Galois extension E of degree 2 distinct from K(i), then K ⊆ K(i) ⊆ E(i) form a tower of
two Galois extensions of degree 2. Hence, in both cases the field K satisfies the assumptions
of part 2) of the above lemma.

We are now able to prove the counterpart of Theorem 4.8 in the case of Kaplansky fields
of characteristic 0 and positive residue characteristic.

Theorem 4.13. Take a Kaplansky field (K, v) of characteristic 0 and charKv = p > 0.
Assume that at least one of the following cases holds:

1) p 6= 2, the field K contains a primitive p-th root εp of unity and admits a Galois extension
E of degree p such that v extends in a unique way to a valuation of E,

2) p = 2, the field K contains a square root i of −1 and admits a Galois extension E of
degree 2 such that v extends in a unique way to a valuation of E,

3) p = 2, the field K admits an extension E which is a tower of two Galois extensions of
degree 2 and v extends in a unique way to a valuation of E(i).

Then (E|K, v) has defect equal to the degree of the extension and (K, v) admits an infinite
tower of Galois extensions of degree and defect p.

Proof. Fix an extension of the valuation v to K̃ and call it again v. If charKv 6= 2 or
i ∈ K, then set K0 := K. Otherwise define K0 := K(i). In the latter case, from point 3) it
follows that E(i)|K(i) is a Galois extension of degree 2 or a tower of two such extensions.
Furthermore, as the valuation v extends in a unique way from K to E(i), we have that v
admits also a unique extension from K(i) to E(i). Hence, in each of the cases K0 admits a
Galois extension E ′ of degree p, and the valuation v extends in a unique way from K0 to E ′.
As εp ∈ K0, the extension is generated by a root η1 of a polynomial f1 = Xp − a ∈ K0[X].
From Lemmas 4.10 and 4.12 it follows that K0 admits an infinite tower of Galois extensions
Kn|Kn−1 of degree p. Furthermore, we can choose K1 = E ′ and Kn = K0(ηn), where ηn is a
root of a polynomial (4.7) or (4.8), depending on charKv, and ηpn = ηn−1, for every n ≥ 2.

Since by assumption the valuation v extends uniquely to K1 = K0(η1), by Lemma 2.12
we have that K1 is linearly disjoint from Kh

0 over K0, and we obtain that [Kh
0 (η1) : Kh

0 ] = p
and f1 is irreducible over Kh

0 . By Lemmas 4.9 and 4.11, this yields that also the polynomials
fn, n ≥ 2, are irreducible over Kh

0 . Hence, [Kh
0 (ηn) : Kh

0 ] = pn and the extensions Kn|K0

and Kh
0 |K0 are linearly disjoint. It follows that v has a unique extension from Kn−1 to Kn

for every n.
As in the proof of Theorem 4.8 we deduce that each of the extensions Kn|Kn−1 is imme-

diate and thus has defect equal to the degree of the extension. Additionally, in the case of
p = 2 the valuation v admits a unique extension from K to K(i), thus if i /∈ K, then also
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the Galois extension K0|K has defect equal p. This yields that in each of the cases (K, v)
admits an infinite tower of Galois extensions of degree and defect p.

Repeating the above arguments, we obtain that also E|K has defect equal to the degree
of the extension.
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5. Towers of Artin-Schreier defect ex-
tensions of rational function fields

In this section we study the problem of constructing infinite towers of Artin-Schreier
defect extensions of rational function fields. We consider various types of valuations of the
rational function field and investigate for which it admits an infinite tower of dependent or
independent Artin-Schreier defect extensions.

5.1 Constructions of towers of Artin-Schreier defect

extensions of rational function fields

Throughout this section we shall work under the following assumptions. We
assume that K is a field of positive characteristic p. We take (K(x)|K, v) to be the rational
function field equipped with the x-adic valuation v, that is, v is trivial on K and vx = 1.
The field can be considered as a subfield of the power series field (K((xΓ)), vx) with the
canonical valuation vx and a group Γ ⊆ Q.

In the following constructions we choose the element y ∈ K((xΓ)) to be a pseudo limit
of a pseudo Cauchy sequence of transcendental type in some subfield of K((xΓ)) containing
K(x). The field K(x, y) is equipped with the restriction v of the x-adic valuation vx of
K((xΓ)). By Theorem 2.40, such element y is transcendental over K(x). Hence (K(x, y), v)
can be viewed as a rational function field with valuation v described by its restriction to
K(x) and the choice of y.

Take y to be a power series

y =
∞∑
i=1

xnip
−ei ∈ K

((
x

1
p∞ Z
))

, (5.1)

where (ei)i∈N is a strictly increasing sequence of natural numbers such that

ei+1 − ei ≥ i

for every i ∈ N, and (ni)i∈N is a sequence of integers coprime with p and such that (nip
−ei)i∈N

is strictly increasing.

56



Then (K(x, y), v) is a subfield of
(
K
((
x

1
p∞ Z
))

, vx

)
defined by the following conditions:

K is a field of characteristic p > 0,
K(x)|K is the rational function field,

y ∈ K
((
x

1
p∞ Z
))

is of the form (5.1),

v is the restriction of the valuation vx to the field K(x, y).

 (5.2)

Consequently we obtain that

K(x, y)v ⊆ K
((
x

1
p∞ Z
))

v = K and vK(x, y) ⊆ vK
((
x

1
p∞ Z
))

=
1

p∞
Z.

Moreover, sinceK = K(x)v ⊆ K(x, y)v, it follows thatK(x, y)v = K. We show that equality
holds also for the value groups of K(x, y) and the power series field. For any natural number
j we have that

zj :=
∞∑

i=j+1

xnip
ej−ei

= yp
ej −

j∑
i=1

xnip
ej−ei ∈ K(x, y),

by the assumption on (ei)i∈N. Thus vzj = nj+1p
ej−ej+1 . Since ej − ej+1 ≤ −j, the element

nj+1p
−j lies in vK(x, y). As nj+1 is coprime with p, also p−j lies in vK(x, y). This yields

that 1
p∞
Z ⊆ vK(x, y) and consequently

vK(x, y) =
1

p∞
Z = vxK

((
x

1
p∞ Z
))

.

Therefore in particular,
(
K
((
x

1
p∞ Z
)) ∣∣K(x, y), vx

)
is an immediate extension.

Consider the subfield L := K(xp
−i | i ∈ N) of the power series field. For every natural

number n, set

an :=
n∑
i=1

xnip
−ei ∈ L.

Then (an)n∈N satisfies condition (2.12), hence is a pseudo Cauchy sequence in L. Further-
more, y is a pseudo limit of the pseudo Cauchy sequence (an)n∈N, since it satisfies inequal-
ity (2.13). We show that the sequence is of transcendental type. Suppose the sequence is of
algebraic type. Then by Theorem 2.41, there exists an algebraic extension (L(b)|L, v) such
the element b is a pseudo limit of the sequence. Thus also the extension K(x, b)|K(x) is
algebraic and consequently finite. On the other hand, 1

p∞
Z ⊆ vK(x, b). Indeed, for every

j ∈ N consider the value of the element

bp
ej − ap

ej

j = bp
ej −

j∑
i=1

xnip
ej−ei ∈ K(x, b).

Since b is a pseudo limit of (an)n∈N, we have

v(bp
ej − ap

ej

j ) = pejv(b− aj) = pejv(aj+1 − aj) = nj+1p
ej−ej+1 .

As before we deduce that also p−j ∈ vK(x, b). Therefore, we have that 1
p∞
Z ⊆ vK(x, b) and

(vK(x, b) : vK(x)) =∞, a contradiction to the fundamental inequality. Hence the pseudo
Cauchy sequence (an)n∈N is of transcendental type and from Theorem 2.40 it follows that y
is transcendental over K(x).
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Lemma 5.1. The ring K
[
x, 1

x
, y
]

is dense in the field (K(x, y), v).

Proof. Take any element u ∈ K(x, y)\K
[
x, 1

x
, y
]
. Choose f, g ∈ K

[
x, 1

x
, y
]

such that u = f
g
.

Without loss of generality we may assume that vg = 0. This can be seen as follows: suppose
that vg = a

pk
, where a, k are integers and k ≥ 0. Then

u =
x−afgp

k−1

x−agpk
,

with vx−agp
k

= 0. Hence we can replace f, g by x−afgp
k−1, x−agp

k ∈ K[x, 1
x
, y] if necessary

to obtain that vg = 0.
Therefore, g is of the form ∑

q∈ 1
p∞ Z, q≥0

aqx
q

with aq ∈ K and a0 6= 0. Set f̃ := a−1
0 f and h = −a−1

0 (g − a0). Then f̃ and h are elements
of K

[
x, 1

x
, y
]

such that vh > 0 and

u =
f

g
=

f̃

1− h
.

Since u /∈ K
[
x, 1

x
, y
]
, the element h is nonzero.

Take any α ∈ vK(x, y). As vh > 0, there is a natural number N such that vf̃+Nvh > α.
Hence for

uN := f̃
N−1∑
j=0

hj ∈ K
[
x,

1

x
, y

]
we obtain that

v(u− uN) = v

(
f̃

1− h
− f̃

N−1∑
j=0

hj

)
= vf̃ + v

(
hN

1− h

)
= vf̃ +Nvh > α.

This shows that K
[
x, 1

x
, y
]

is dense in K(x, y).

5.1.1 Towers of independent and dependent Artin-Schreier defect
extensions of rational function fields

Throughout this section we will assume that (K(x, y), v) is a valued rational func-
tion field satisfying the assumptions (5.2), unless stated otherwise. This section is
devoted to the proof of Theorem 1.1. We show also that all infinite towers of Artin-Schreier
defect extensions constructed in the proof of Theorem 1.1 consist of independent extensions.
(cf. Theorem 5.6). Furthermore, we give an example of a valuation of the rational func-
tion field K(x, y) under which it admits infinite towers of dependent Artin-Schreier defect
extensions (Theorem 5.7).

To prove Theorem 1.1, we will need the following lemmas:
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Lemma 5.2. Assume that K is a field of positive characteristic p and take a rational function
field K(x, y)|K. For any a ∈ K take La|K(y + a

x
) to be a separable algebraic extension such

that K is relatively algebraically closed in La. Then for any two distinct elements a, b ∈ K
the extensions La(x) and Lb(x) are linearly disjoint over K(x, y).

Proof. Take two distinct elements a and b of K. Since K(y+ a
x
, y+ b

x
) = K(x, y), the elements

y + a
x

and y + b
x

are algebraically independent over K. Thus the extensions K(y + a
x
)|K

and K(y + b
x
)|K are algebraically disjoint. Furthermore, La|K(y + a

x
) and Lb|K(y + b

x
)

are algebraic extensions, hence also La|K and Lb|K are algebraically disjoint. Since K is
relatively algebraically closed in La and Lb|K is a separable extension, Lemma 2.5 implies
that La and Lb are K-linearly disjoint.

Applying Lemma 2.1 to the tower K ⊆ K(y + a
x
) ⊆ La and the extension Lb|K we

deduce that La and Lb.K(y + a
x
) = Lb(x) are linearly disjoint over K(y + a

x
). Again, since

K(y + a
x
) ⊆ K(x, y) ⊆ Lb(x), from the same lemma it follows that the extensions Lb(x) and

La.K(x, y) = La(x) are linearly disjoint over K(x, y).

Lemma 5.3. Take an element

u =
∞∑
i=m

aix
−p−i ∈ K

((
x

1
p∞ Z
))

,

where m is an integer and the coefficients ai lie in some perfect subfield E of K. Then for
every natural number n a root η of the polynomial Y pn − Y − u can be chosen to be of the
form

η =
∞∑

i=m+n

cix
−p−i

with ci ∈ E.

Proof. One can easily check that the element

ϑ =
∞∑

i=m+n

cix
−p−i ,

where ci ∈ E are of the form

ci = ap
−n

i−n for i = m+ n, . . . ,m+ 2n− 1,

ci = (ai−n + ci−n)p
−n

for i ≥ m+ 2n,

satisfies ϑp
n − ϑ = u.

Now we are able to give the

Proof of Theorem 1.1: Assume that (K(x, y), v) satisfies the assumptions (5.2) with
ni = −1 for every i ∈ N in (5.1). Then the element y is of the form

y =
∞∑
i=1

x−p
−ei .
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Suppose that E is a perfect subfield of K of cardinality κ. Take any a ∈ E and consider
the field (K(y + a

x
), v). Since v(y + a

x
) = −1 and the valuation v is trivial on K, for any

f = cn(y + a
x
)n + . . .+ c1(y + a

x
) + c0 ∈ K[y + a

x
] with cn 6= 0 we have that v(f) = −n. This

yields that vK(y + a
x
) = Z. We show now that the element y is a pseudo limit of a pseudo

Cauchy sequence in the perfect hull Fa := K(y + a
x
)1/p∞ of K(y + a

x
). More precisely, we

construct a sequence of elements bk ∈ Fa of the form

bk = y −
∞∑

i=mk

a
(k)
i x−p

−i
, (5.3)

where (mk)k∈N is a strictly increasing sequence of natural numbers and a
(k)
i ∈ K, a

(k)
mk 6= 0.

Then for every k and l such that k < l we obtain v(bk−bl) = −p−mk . Hence, (bk)k∈N satisfies
condition (2.12) and thus is a pseudo Cauchy sequence. Since

v(y − bk) = −p−mk = v(bk+1 − bk)

for k ∈ N, the element y is a pseudo limit of the pseudo Cauchy sequence (bk)k∈N.
We start the construction with

b1 := a−p
−e1
(
y +

a

x

)p−e1
= x−p

−e1 + a−p
−e1yp

−e1 .

Then, using the fact that (ei)i∈N is a strictly increasing sequence of natural numbers we
obtain that

y − b1 =
∞∑
i=1

x−p
−ei − x−p−e1 − a−p−e1

∞∑
i=1

x−p
−ei−e1

=
∞∑
i=2

x−p
−ei − a−p−e1

∞∑
i=1

x−p
−ei−e1 =

∞∑
i=m2

a
(2)
i x−p

−i
,

where m2 ≥ 2 and a
(2)
m2 6= 0. Assume that we have constructed b1, . . . , bj ∈ Fa of the

form (5.3) for every k ≤ j. Set

bj+1 := bj + a−p
−mj

a(j)
mj

(
y +

a

x

)p−mj
= bj + a−p

−mj
a(j)
mj
yp
−mj

+ a(j)
mj
x−p

−mj ∈ Fa.

Then we have

y − bj+1 = y − bj − a−p
−mj

a(j)
mj
yp
−mj − a(j)

mj
xp
−mj

=
∞∑

i=mj+1

a
(j)
i x−p

−i − a−p
−mj

a(j)
mj

∞∑
i=1

x−p
−ei−mj

=
∞∑

i=mj+1

a
(j+1)
i x−p

−i
,

for some a
(j+1)
i ∈ K and a natural number mj+1 such that amj+1

6= 0. Since e1 +mj ≥ mj +1
we have that mj+1 > mj.

We now use a similar argument as before to show that the pseudo Cauchy sequence
(bk)k∈N is of transcendental type. Suppose the sequence were of algebraic type. Then, by
Theorem 2.41 there would exist an algebraic extension (Fa(b)|Fa, v) with b a pseudo limit of
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the sequence. Then the element b would be also algebraic over K(y+ a
x
). Thus the extension

K(y + a
x
, b)|K(y + a

x
) would be finite. On the other hand, vK(y + a

x
, b) = 1

p∞
Z. Indeed, for

any j ∈ N consider the value of the element

uj := bp
ej −

j∑
i=1

(
a−1

(
y +

a

x
− b
))pej−ei

= bp
ej −

j∑
i=1

x−p
ej−ei −

j∑
i=1

(
a−1(y − b)

)pej−ei
.

Using Lemma 2.11 for the field L = K(y + a
x
) we can extend the valuations of K(y + a

x
, b)

and K(x, y) to a valuation of K(x, y, b). Denote this extension again by v. Then

vuj = v

(
(b− y)p

ej
+ yp

ej −
j∑
i=1

x−p
ej−ei −

j∑
i=1

(
a−1(y − b)

)pej−ei)
.

Since v(b− bk) = v(y − bk) = v(bk+1 − bk) = −p−mk , we have that

v(b− y) = v(b− bk + bk − y) ≥ min{v(b− bk), (bk − y)} − p−mk ≥ −p−k

for every natural number k. Hence v(b− y) ≥ 0. Moreover,

v

(
yp

ej −
j∑
i=1

x−p
ej−ei

)
= v

(
∞∑

i=j+1

x−p
ej−ei

)
= −pej−ej+1

and thus vuj = −pej−ej+1 , where ej − ej+1 ≤ −j. It follows that p−j ∈ vK(y + a
x
, b) and the

value group is p-divisible. This contradicts the fundamental inequality, since the extension
K(y+ a

x
, b)|K(y+ a

x
) was finite and vK(y+ a

x
) = Z. Therefore, the pseudo Cauchy sequence

(bk)k∈N must be of transcendental type.
Using Lemma 2.43, we conclude that the field F h

a is relatively algebraically closed in
Fa(y)h. Since K(x, y)h|K(y+ a

x
) is separable and therefore linearly disjoint from Fa|K(y+ a

x
),

Lemma 2.1 shows that K(x, y)h and K(y + a
x
)h.Fa =

(
K(y + a

x
)h
)1/p∞

are linearly dis-
joint over K(y + a

x
)h. Hence the extension K(x, y)h|K(y + a

x
)h is separable. We show

that from these facts follows that K(y + a
x
)h is relatively algebraically closed in K(x, y)h.

Assume towards a contradiction that there is an element z ∈ K(x, y)h \K(y + a
x
)h alge-

braic over K(y + a
x
)h. Then z is separable over K(y + a

x
)h. Since K(x, y)h ⊆ Fa(y)h and

F h
a = K(y + a

x
)h.Fa is a purely inseparable extension, we obtain that F h

a (z)|F h
a is a nontrivial

separable-algebraic subextension of Fa(y)h|F h
a . This contradicts the fact that F h

a is relatively
algebraically closed in Fa(y)h.

Set ηa,0 := y + a
x
. By induction on i ∈ N choose ηa,i to be a root of the polynomial

Y p − Y − ηa,i−1.

Since v(y + a
x
) = −1 we obtain v(ηa,i) = − 1

pi
for every natural number i. Furthermore,

vK(y+ a
x
)h = vK(y+ a

x
) = Z, hence the extension K(y+ a

x
)h(ηa,i)|K(y+ a

x
)h has ramification

index at least pi. On the other hand, the degree of this extension is at most pi. Thus

61



the fundamental inequality shows that it has degree and ramification index pi. The same
arguments hold for the extension K(y + a

x
)(ηa,i)|K(y + a

x
). Therefore,[

K
(
y +

a

x
, ηa,i

)
: K

(
y +

a

x

)]
=

[
K
(
y +

a

x

)h
(ηa,i) : K

(
y +

a

x

)h]
and the chain of the extensions K(y+ a

x
, ηa,i) is linearly disjoint from K(y+ a

x
)h over K(y+ a

x
).

Moreover, K(y + a
x
)h(ηa,i | i ∈ N) is a separable-algebraic extension of K(y + a

x
)h. Since

K(y + a
x
)h is relatively algebraically closed in K(x, y)h, from Lemma 2.4 we deduce that

K(y+ a
x
)h(ηa,i | i ∈ N) and K(x, y)h are linearly disjoint over K(y+ a

x
)h. Hence, by Lemma 2.1

the extensions K(y + a
x
)(ηa,i | i ∈ N) and K(x, y)h are linearly disjoint over K(y + a

x
). Using

again Lemma 2.1 we deduce finally that K(x, y)(ηa,i | i ∈ N) is linearly disjoint from K(x, y)h

over K(x, y). By Lemma 2.12 it follows that the valuation v of K(x, v) admits a unique
extension to the field K(x, y)(ηa,i | i ∈ N). Since y is transcendental over K(y + a

x
) and

K(y + a
x
, y) = K(x, y), the extensions K(x, y, ηa,j)|K(x, y, ηa,j−1) remain nontrivial. We

therefore obtain an infinite tower of Arin-Schreier extensions K(x, y, ηa,j)|K(x, y, ηa,j−1) such
that for every j the valuation v of K(x, y, ηa,j−1) has unique extension to K(x, y, ηa,j).

Since

ηa,0 = ax−1 +
∞∑
i=1

x−p
−ei ,

from Lemma 5.3 by induction on i, if follows that each of the Artin-Schreier generators ηa,j
can be chosen to be of the form

ηa,j =
∞∑
i=j

c
(i)
a,jx

−p−i ∈ E
((
x

1
p∞ Z
))

(5.4)

with c
(i)
a,j ∈ E ⊆ K. Therefore (K(x, y, ηa,j)|K(x, y), v) is a subextension of the immediate ex-

tension
(
K
((
x

1
p∞ Z))∣∣K(x, y), vx

)
, hence it is also immediate. ThusK(x, y, ηa,j)|K(x, y, ηa,j−1)

is an Artin-Schreier defect extension for every j ∈ N.
Taking La := K(y + a

x
)(ηa,i | i ∈ N) in Lemma 5.2 we obtain that for every two distinct

a, b ∈ E the infinite towers of Artin-Schreier defect extensions La(x) = K(x, y)(ηa,i | i ∈ N)
and Lb(x) = K(x, y)(ηb,i | i ∈ N) are linearly disjoint extensions of K(x, y). 2

Remark 5.4. Note that if the field K admits no finite extensions of degree divisible by p,
we can prove Theorem 1.1 using the construction from the proof of Theorem 4.8. Indeed,
by the additional assumption, K is perfect, and from the above proof we know that for any
a ∈ K a root ηa,1 of the polynomial Y p − Y − (y + a

x
) induces an Artin-Schreier extension

such that v admits a unique extension from K(x, y) to a valuation of K(x, y, ηa,1). As
vK(x, y) is p-divisible and K(x, y)v = K admits no finite extensions of degree divisible by p,
(K(x, y), v) is a Kaplansky field. Thus it satisfies the assumptions of Theorem 4.8 with
E := K(x, y, ηa,1). Therefore, we obtain that K(x, y) admits an infinite tower of Artin-
Schreier defect extensions, defined by construction (4.6) with a1 = y + a

x
, ϑ1 = ηa,1 and

K0 = K(x, y).
From the construction it follows that roots of the polynomials fn also generate separable-

algebraic extension La of K(y + a
x
). Thus, the assumptions of Lemma 5.2 are satisfied and

the same arguments as in the proof of Theorem 1.1 show that we obtain |K| many infinite
towers of Artin-Schreier defect extensions, pairwise linearly disjoint.
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The next lemma enables us to approximate the Artin-Schreier roots ηa,i by elements from
the field K(x, y).

Lemma 5.5. Assume that ni = −1 for every i ∈ N in (5.1). For every power series

η =
∞∑
i=1

aix
−p−i ∈ K

((
x

1
p∞ Z
))

(5.5)

there is a sequence (ζn)n∈N of elements of K(x, y) such that v(η − ζn) ≥ − 1
pn+1 for every

natural number n.

Proof. Assume that η is of the form (5.5). We construct a sequence (ζn)n∈N of elements of
K(x, y) such that

η − ζn =
∞∑

i=n+1

b
(n)
i x−p

−i
, (5.6)

where b
(n)
i ∈ K for i ≥ n + 1. Then, in particular, v(η − ζn) ≥ − 1

pn+1 for every natural
number n. Set

ζ1 := a1y
pe1−1 = a1

∞∑
i=1

x−p
−ei+e1−1

= a1x
−p−1

+
∞∑
i=2

a1x
−p−ei+e1−1

.

By the assumption on (ei)i∈N we have −e2 + e1 − 1 ≤ −2. Hence,

η − ζ1 =
∞∑
i=2

aix
−p−i −

∞∑
i=2

a1x
−p−ei+e1−1

=
∞∑
i=2

b
(1)
i x−p

−i

for some b
(1)
i ∈ K. Assume now that ζn is an element of K(x, y) such that equation (5.6)

holds for some b
(n)
i ∈ K. Take jn+1 := en+2 − en+1 − (n + 1). It is a nonnegative integer,

since en+2 − en+1 ≥ (n+ 1). Putting

ζ̃n+1 :=

(
yp

en+1 −
n+1∑
i=1

x−p
en+1−ei

)pjn+1

∈ K(x, y)

we obtain that

ζ̃n+1 =

(
∞∑

i=n+2

x−p
en+1−ei

)pjn+1

= x−p
−(n+1)

+
∞∑

i=n+3

x−p
en+1−ei+jn+1

.

Set ζn+1 := ζn + b
(n)
n+1ζ̃n+1. Then

η − ζn+1 =
∞∑

i=n+1

b
(n)
i x−p

−i − b(n)
n+1x

−p−(n+1) −
∞∑

i=n+3

b
(n)
n+1x

−pen+1−ei+jn+1

=
∞∑

i=n+2

b
(n)
i x−p

−i −
∞∑

i=n+3

b
(n)
n+1x

−pen+1−ei+jn+1
.
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Since en+1 − en+2 + jn+1 = −(n+ 1) and the sequence (ei)i∈N is strictly increasing, we have
that en+1 − ei + jn+1 ≤ −(n+ 2) for i ≥ n+ 3. Therefore,

η − ζn+1 =
∞∑

i=n+2

b
(n+1)
i x−p

−i
,

where b
(n+1)
i ∈ K for i ≥ n+ 2.

By this simple observation one can easily show that each of the towers of Artin-Schreier
defect extensions constructed in the proof of Theorem 1.1 consist of independent extensions.
Therefore we obtain the following theorem:

Theorem 5.6. Take a field K of positive characteristic and assume that it admits a perfect
subfield of cardinality κ. Then there is a valuation v of the rational function field K(x, y)|K,
trivial on K, such that (K(x, y), v) admits κ many pairwise linearly disjoint infinite towers
of independent Artin-Schreier defect extensions.

Proof. Take the valued rational function field (K(x, y), v), the subfield E of K and elements

ηa,j ∈ K̃(x, y) as in the proof of Theorem 1.1. Since for every a ∈ E and j ∈ N the Artin-
Schreier extension K(x, y, ηa,j)|K(x, y, ηa,j−1) has nontrivial defect, from Corollary 2.29 it
follows that dist (ηa,j, K(x, y, ηa,j−1)) ≤ 0−.

On the other hand, since ηa,j can be chosen to be of the form (5.4), from the above
lemma we deduce that the set ( 1

p∞
Z)<0 of all negative elements of vK(x, y) is contained in

the initial segment v(ηa,j −K(x, y, ηa,j−1)). Consequently,

dist (ηa,j, K(x, y, ηa,j−1)) = 0−.

By Corollary 2.31, this implies that K(x, y, ηa,j)|K(x, y, ηa,j−1) is an independent Artin-
Schreier defect extension.

Due to the importance of the classification of Artin-Schreier defect extensions for the
problems related to local uniformization, an interesting question is whether such construc-
tions are also possible with dependent in the place of independent Artin-Schreier defect
extensions. The following theorem gives an answer:

Theorem 5.7. If K is a perfect field of positive characteristic, then there is a valua-
tion v of the rational function field K(x, y)|K, trivial on K, such that (K(x, y), v) admits
max{|K|,ℵ0} many pairwise linearly disjoint infinite towers of dependent Artin-Schreier de-
fect extensions.

For the construction of towers of dependent extensions we use the idea of the transfor-
mation of purely inseparable polynomials into Artin-Schreier polynomials (cf. Theorem 4.2).

Lemma 5.8. Assume that the field K is perfect and the sequence (nip
−ei)i∈N of exponents of

y is bounded from above. Then for every a ∈ K and every nonnegative integer r the element
( y
xr

+ a
x
)1/p does not lie in the completion of (K(x, y), v).
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Proof. Set
γ := sup{nip−ei | i ∈ N} ∈ R.

Take a ∈ K and a nonnegative integer r. We show first that

v

(( y
xr

+
a

x

)1/p

− f
)
<

1

p
γ

for every f ∈ K
[
x, 1

x
, y
]
. Every such f can be written in a form

f =
∑

−n≤i≤m
0≤j≤l

aijx
iyj,

for some aij ∈ K and m,n, l ∈ N0. For every i ∈ {−n, . . . ,m} and j ∈ {0, . . . , l}, set

hij := aijx
iyj =

∑
(m1,...,mj)∈Nj

aijx
i+nm1p

−em1 +...+nmj p
−emj

.

Take any j ∈ {0, . . . , l}. We claim that there is Nj ∈ N such that for every i ∈ {−n . . . ,m},
(m1, . . . ,mj) ∈ Nj and N ≥ Nj we have

i+ nm1p
−em1 + . . .+ nmjp

−emj 6= nNp
−eN−1 − p−1r

and consequently nNp
−eN−1 − p−1r /∈ supp hij. Since( y
xr

+
a

x

)1/p

= ap
−1

x−p
−1

+
∞∑
i=1

xnip
−ei−1−p−1r,

the condition means that supp
(
y
xr

+ a
x

)1/p
and supp hij have at most finitely many common

elements.
If j = 0 then we can choose Nj = 1. Let 0 < j ≤ l and suppose that

i+ nm1p
−em1 + . . .+ nmjp

−emj = nNp
−eN−1 − rp−1 (5.7)

for some natural numbers m1, . . . ,mj and N . Without loss of generality we may assume that
m1 ≤ . . . ≤ mj. Since ni is coprime with p for every i ∈ N, comparing denominators of both
sides of the above inequality, we obtain that emj ≥ eN + 1 and consequently, emj ≥ eN+1.

Set d := min{i | 1 ≤ i < j and mi = mj} and k := j − d + 1. Multiplying both sides of
equation (5.7) by pemj we obtain

knmj = nNp
emj−eN−1 − rpemj−1 − ipemj −

d−1∑
t=1

nmtp
emj−emt .

Moreover, since eN+1 − eN ≥ N , we have emj − eN − 1 ≥ N − 1 and

emj − ems ≥ emj − emj−1 ≥ eN+1 − eN ≥ N

for every 1 ≤ s < d. By assumption, nmj is coprime with p. Therefore, pN−1 divides k.
Choose Nj such that j < pNj−1 and take N ≥ Nj. Then, since k ≤ j, we have that k is not
divisible by pN−1 and consequently, equality (5.7) does not hold for any m1, . . . ,mj ∈ N.
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Therefore, setting Nf to be the maximum of the Nj for 0 ≤ j ≤ l, we have that
nNp

−eN−1 − rp−1 is not an element of supp f for any N ≥ Nf . Hence,

v

(( y
xr

+
a

x

) 1
p − f

)
≤ nNfp

−eNf−1 − rp−1 <
1

p
γ.

Lemma 5.1 yields that for every element u of K(x, y) there is f ∈ K
[
x, 1

x
, y
]

such that
v(f − u) > 1

p
γ. Then

v

(( y
xr

+
a

x

) 1
p − u

)
= min

{
v

(( y
xr

+
a

x

) 1
p − f

)
, v(f − u)

}
<

1

p
γ.

It follows that
(
y
xr

+ a
x

) 1
p /∈ K(x, y)c.

We will also need the following observation:

Lemma 5.9. Take a field K of characteristic p > 0 and a rational function field K(x, y)|K.
For any nonnegative integer r take Lr|K( y

xr
) to be a (possibly infinite) tower of Artin-Schreier

extensions such that K is relatively algebraically closed in Lr. Then for every two distinct
nonnegative integers r, s the extensions Lr(x)|K(x, y) and Ls(x)|K(x, y) are linearly disjoint.

Proof. Take r and s to be two distinct nonnegative integers. Without loss of generality we
may assume that t := r − s > 0. Elements y

xs
and y

xr
are algebraically independent over

K, thus the extensions K( y
xs

)|K, K( y
xr

)|K are algebraically disjoint. Moreover, Lr|K( y
xr

)
and Ls|K( y

xs
) are algebraic extensions, K is relatively algebraically closed in Lr and Ls|K

is separable, hence we can deduce as in the proof of Lemma 5.2 that Lr|K and Ls|K are
linearly disjoint.

Applying Lemma 2.1 to the tower K ⊆ K( y
xs

) ⊆ Ls and the extension Lr|K we obtain
that Ls and Lr.K( y

xs
) = Lr(x

t) are linearly disjoint over K( y
xs

). Using again Lemma 2.1 for
the tower K( y

xs
) ⊆ K( y

xr
, y
xs

) ⊆ Lr(x
t) and the extension Ls|K( y

xs
) we deduce that Lr(x

t)
and Ls.K( y

xr
, y
xs

) = Ls(x
t) are linearly disjoint over K( y

xr
, y
xs

) = K( y
xr
, xt).

We now show that the extensions Ls(x
t) and K(x, y) are linearly disjoint over K( y

xs
, xt).

By assumption, Ls =
⋃
i∈I Ls,i, where Ls,i|Ls,i−1 is a nontrivial Artin-Schreier extension for

every i ∈ I, Ls,0 := K( y
xs

) and I = {0, . . . , n} for some natural number n or I = N. We
prove, by induction on i, that each of the the extensions L′s,i := Ls,i(x

t) is linearly disjoint
from K(x, y) over K( y

xs
, xt). Write t = pkl, where k is a nonnegative integer and l ∈ N

is coprime with p. Since xt is transcendental over Ls, also Ls,i(x
t)|Ls,i−1(xt) is a nontrivial

Artin-Schreier extension for very i ∈ I. In the case of i = 1, L′s,1|K( y
xs
, xt) is an Arin-Schreier

extension, hence Galois extension of degree p. Suppose that L′s,1 andK(x, y) were not linearly
disjoint over K( y

xs
, xt). Then by Lemma 2.2, there would exist a ∈ L′s,1 ∩K(x, y) such that

a /∈ K( y
xs
, xt). Since a ∈ L′s,1 \K( y

xs
, xt), we would have K( y

xs
, xt, a) = L′s,1, as L′s,1|K( y

xs
, xt)

is of prime degree. On the other hand a ∈ K(x, y), hence K(x, y)|K( y
xs
, xt) would contain

a separable subextension of degree p. But K(x, y) = K( y
xs
, xt)(x) is an irreducible radical

extension of degree t of the field K( y
xs
, xt) and the separable degree of the extension is equal

to l, which is not divisible by p, a contradiction.
Take i ∈ I, i ≥ 1 and assume that L′s,i and K(x, y) are linearly disjoint over K( y

xs
, xt).

Hence, in particular, L′s,i.K(x, y) = L′s,i(x) is an extension of L′s,i of degree t. Suppose
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that L′s,i+1 and K(x, y) were not linearly disjoint over K( y
xs
, xt). Then by Lemma 2.1,

also the extensions L′s,i+1 and L′s,i.K(x, y) would not be linearly disjoint over L′s,i. However,
L′s,i.K(x, y) is an irreducible radical extension of L′s,i of degree t and L′s,i+1|L′s,i is a nontrivial
Artin-Schreier extension. The same argument as in the case of i = 1 leads to a contradiction.

Therefore, Ls(x
t) is linearly disjoint from K(x, y) over K( y

xs
, xt). This yields that

Ls(x)|Ls(xt) is an irreducible radical extension of degree t. Since Lr(x
t)|K( y

xs
, xt) and

Ls(x
t)|K( y

xs
, xt) are linearly disjoint, Ls(x

t).Lr(x
t) = Ls(x

t).Lr is a separable-algebraic
extension of Ls(x

t), being a tower of Artin-Schreier extensions. Repeating the above reason-
ing we deduce that the extensions Ls(x) and Ls(x

t).Lr(x
t) are linearly disjoint over Ls(x

t).
As we have shown, the extensions Lr(x

t) and Ls(x
t) are linearly disjoint over K( y

xr
, xt). Thus

from Lemma 2.1 it follows that also Lr(x
t) and Ls(x) are linearly disjoint over K( y

xr
, xt).

Finally, applying Lemma 2.1 to the tower K( y
xs
, xt) ⊆ K(x, y) ⊆ Ls(x) and the extension

Lr(x
t)|K( y

xs
, xt), we obtain that Ls(x) and Lr(x

t).K(x, y) = Lr(x) are linearly disjoint over
K(x, y).

Proof of Theorem 5.7: With the general assumptions (5.2) on (K(x, y), v), take K to be
a perfect field and suppose that the sequence (nip

−ei)i∈N of exponents of y is bounded from
above.

Take any a ∈ K. Define Ka,0 := K(x, y) and ϑa,0 := y + a
x
. By Lemma 5.8, we have

that ϑ
1/p
a,0 does not lie in the completion (Kc

a,0, v) of (Ka,0, v). Since the value group of Ka,0

is p-divisible and the residue field Ka,0v = K is perfect, the polynomial Y p−ϑa,0 induces an
immediate extension which does not lie in the completion of Ka,0. Thus, from Theorem 4.2
we obtain that Ka,0 admits an infinite tower of dependent Artin-Schreier defect extensions
Ka,n|Ka,n−1, n ∈ N.

From the proof of Theorem 4.2 it follows that the tower can be constructed in the following
way. By induction on n we choose ϑa,n ∈ K̃a,0 to be a root of the polynomial

fa,n = Y p − Y − 1

bpa,n
ϑa,n−1

with ba,n ∈ K(y + a
x
)× of large enough value. We set Ka,n := Ka,n−1(ϑa,n). Then, for every

natural number n we obtain a dependent Artin-Schreier defect extension Ka,n|Ka,n−1.
We thus have an immediate algebraic extension Fa :=

⋃
n∈NKa,n of K(x, y), which is an

infinite tower of dependent Artin-Schreier defect extensions. By the choice of ba,n, the field
La = K(y + a

x
)(ϑa,n |n ∈ N) is an algebraic extension of K(y + a

x
). From Lemma 5.2 we

deduce that for two distinct elements a, b ∈ K the extensions Fa|K(x, y) and Fb|K(x, y)
are linearly disjoint. Hence (K(x, y), v) admits |K| many pairwise linearly disjoint infinite
towers of dependent Artin-Schreier defect extensions. This proves the theorem in the case
of an infinite field K.

If K is finite, then repeating the above construction for ϑr,0 = y
xr

with r ∈ N ∪ {0}, we
obtain an immediate extension

Fr := K(x, y)(ϑr,i | i ∈ N)

of K(x, y) being an infinite tower of dependent Artin-Schreier defect extensions
K(x, y, ϑr,1, . . . , ϑr,i)|K(x, y, ϑr,1, . . . , ϑr,i−1), where ϑr,i is a root of the polynomial

Y p − Y − 1

bpr,i
ϑr,i−1
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with br,i ∈ K( y
xr

)×. From Lemma 5.9 it follows that for any two distinct r, s ∈ N ∪ {0}
the extensions Fr|K(x, y) and Fs|K(x, y) are linearly disjoint. Hence (K(x, y), v) admits
infinitely many pairwise linearly disjoint infinite towers of dependent Artin-Schreier defect
extensions. 2

Putting, as in the proofs of the previous theorems, ni = −1 for i ∈ N we obtain the series

y =
∞∑
i=1

x−p
−ei

with the sequence of exponents bounded from above by 0. Theorems 5.6 and 5.7 imply that if
K is perfect, then the field (K(x, y), v) admits infinite towers of both types of Artin-Schreier
defect extensions. More precisely, from the theorems we obtain:

Corollary 5.10. Assume that K is a perfect field and

y =
∞∑
i=1

x−p
−ei .

Then the valued field (K(x, y), v) admits |K| many pairwise linearly disjoint infinite towers
of independent and max{|K|,ℵ0} many pairwise linearly disjoint infinite towers of dependent
Artin-Schreier defect extensions.

5.1.2 Valued rational function fields admitting no dependent Artin-
Schreier defect extensions.

As in the previous section we take (K(x, y), v) to be a field satisfying the assump-
tions (5.2). In the foregoing constructions of Artin-Schreier defect extensions we chose y
to be a series with a bounded sequence of exponents nip

−ei . We show that in the case of
a perfect field K this assumption is necessary for the existence of dependent Artin-Schreier
defect extensions. Throughout this section, we assume that the sequence (nip

−ei)i∈N
is unbounded.

Under this additional condition we obtain:

Lemma 5.11. For every natural number n the elements xp
−n

and y1/p lie in the completion
of K(x, y).

Proof. Since the field
(
K
((
x

1
p∞ Z)), vx) is maximal and thus complete, by Proposition 2.49

it contains the completion (K(x, y)c, v) of (K(x, y), v). We show first that xp
−N ∈ K(x, y)c

for every natural number N . Take N, j ∈ N with j ≥ N . Set sj := ej+1 − ej − N . By
assumption, ej+1 − ej ≥ j, thus sj is a nonnegative integer. Set

ξ̃j :=

(
yp

ej −
j∑
i=1

xnip
ej−ei

)psj

=

(
∞∑

i=j+1

xnip
ej−ei

)psj

= xnj+1p
−N

+
∞∑

i=j+2

xnip
sj+ej−ei

.
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Since p and nj+1 are coprime, there are integers l and k > 0 such that

knj+1 + lpN = 1.

Hence, putting ξj := xl(ξ̃j)
k ∈ K(x, y) we obtain

ξj = xl

(
xnj+1p

−N
+

∞∑
i=j+2

xnip
sj+ej−ei

)k

= xl+knj+1p
−N

+ . . . = xp
−N

+ . . . ,

where

v
(
ξj − xp

−N
)

= l + (k − 1)nj+1p
−N + nj+2p

ej+sj−ej+2

= p−N − nj+1p
−N + nj+2p

−N−ej+2+ej+1

= p−N + p−N+ej+1
(
−nj+1p

−ej+1 + nj+2p
−ej+2

)
.

Note that −nj+1p
−ej+1 + nj+2p

−ej+2 > p−j for infinitely many j ≥ N . Indeed, suppose
that −nj+1p

−ej+1 + nj+2p
−ej+2 ≤ p−j for all but finitely many j. Then the fact that

−nj+1p
−ej+1 + nj+2p

−ej+2 > 0 and the series
∞∑
j=1

p−j is convergent contradicts the assump-

tion that the sequence (njp
−ej)j∈N is unbounded. Therefore,

v
(
ξj − xp

−N
)
≥ p−N + p−Npej+1−j ≥ p−N + p−Npej

for infinitely many j ≥ N . By assumption (ej)j∈N is a strictly increasing sequence of natural
numbers, hence for arbitrary large elements γ ∈ 1

p∞
Z we can choose j ≥ N such that

v
(
xp
−N − ξj

)
> γ. Thus by Lemma 2.46 and Corollary 2.50 we obtain that xp

−N ∈ K(x, y)c.

Consider now the element y1/p. Since (njp
−ej)j∈N is a strictly increasing unbounded

sequence and

v

(
y1/p −

k∑
i=1

xnip
−ei−1

)
= nk+1p

−ek+1−1 = p−1(nk+1p
−ek+1)

for every k ∈ N, the values are cofinal in 1
p∞
Z. By what we have shown,

k∑
i=1

xnip
−ei−1 ∈ K(x, y)c.

Therefore also y1/p lies in the completion of K(x, y).

Proposition 5.12. If the field K is perfect then (K(x, y), v) admits no dependent Artin-
Schreier defect extensions.

Proof. Since K is perfect, by the above lemma K(x, y)1/p = K(x1/p, y1/p) ⊆ K(x, y)c. Then,
from Theorem 4.2 if follows that K(x, y) admits no dependent Artin-Schreier defect exten-
sions.
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Nevertheless, the next proposition shows that the field (K(x, y), v) can still admit inde-
pendent Artin-Schreier defect extensions.

Proposition 5.13. Assume that the element y is of positive value. If K admits a perfect
subfield of cardinality κ then (K(x, y), v) admits κ many pairwise linearly disjoint infinite
towers of independent Artin-Schreier defect extensions.

Proof. Take an extension of the valuation v to the algebraic closure of K(x, y) and denote
it again by v. Since y is a pseudo limit of a pseudo Cauchy sequence of transcendental
type in L := K(xp

−i | i ∈ N), then by Lemma 2.43 the field Lh is relatively algebraically
closed in L(y)h. Furthermore, Lh = K(x)h.L is a purely inseparable extension of K(x)h

and K(x, y)h|K(x)h is separable. Hence, using the fact that K(x, y)h ⊆ L(y)h we deduce
that K(x)h is relatively algebraically closed in K(x, y)h. Indeed, if there were an element
z ∈ K(x, y)h \ K(x)h algebraic over K(x)h, then z would be separable over K(x)h. Thus
Lh(z)|Lh would be a nontrivial separable-algebraic subextension of L(y)h|Lh, a contradiction.

Assume that E is a perfect subfield of cardinality κ and take a ∈ E. Set Ka,0 := K(x, y),
ξa,0 := a

x
and by induction on n choose ξa,n to be a root of the polynomial

Y p − Y − ξa,n−1.

Set Ka,n := Ka,n−1(ξa,n) = K(x, y, ξa,n). Since v
(
a
x

)
= −1, for every natural number n we

have v(ξa,n) = − 1
pn

. Therefore, from the fact that vK(x)h = vK(x) = Z we obtain

(vK(x)h(ξa,n) : vK(x)h) ≥ pi.

On the other hand, the degree of the extension K(x)h(ξa,n)|K(x)h is at most pi. Hence,
the fundamental inequality shows that it has degree and ramification index pi. This im-
plies in particular that the extension K(x, ξa,n)|K(x) is also of degree pi. Consequently,
chain of the extensions K(x, ξa,i) is linearly disjoint from K(x)h over K(x). Moreover,
K(x)h(ξa,i | i ∈ N) is a separable-algebraic extension of K(x)h. As we have shown, K(x)h is
relatively algebraically closed in K(x, y)h. Thus from Lemma 2.4 we deduce that the exten-
sions K(x)h(ξa,i | i ∈ N) and K(x, y)h are linearly disjoint over K(x)h. Hence, by Lemma 2.1
the extensions K(x)(ξa,i | i ∈ N)|K(x) and K(x, y)h|K(x) are linearly disjoint. Using again
Lemma 2.1 we deduce finally that K(x, y)(ξa,i | i ∈ N) is linearly disjoint from K(x, y)h over
K(x, y). Since y is transcendental over K(x) and [K(x, ξa,n) : K(x)] = pn, we obtain that
also each of the extensions Ka,n|K(x, y) has degree pn and, as we have shown, is linearly
disjoint from K(x, y)h|K(x, y).

As ξa,0 = ax−1, from Lemma 5.3 by induction on n it follows that each of the Artin-
Schreier generators ξa,n can be chosen to be of the form

ξa,n =
∞∑
i=n

d(i)
a,nx

−p−i .

Hence K(x, y) ⊆ Ka,n ⊆ K
((
x

1
p∞ Z
))

. The fact that
(
K
((
x

1
p∞ Z
))
|K(x, y), vx

)
is an

immediate extension implies that also (Ka,n|K(x, y), v) is immediate.
Set ξ0 := y. Since vy > 0, from Lemma 2.27 if follows that there is a root ξ1 of the

polynomial Y p − Y − ξ0 of positive value. Take a natural number m. Suppose that for
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n ≤ m we have chosen ξn to be a root of the polynomial Y p − Y − ξn−1 such that vξn > 0.
Again, by Lemma 2.27 we can choose a root ξm+1 of the polynomial Y p−Y − ξm of positive
value.

For every n ≥ 0 set
ηa,n := ξn + ξa,n.

By the additivity of the Artin-Schreier polynomial Y p − Y , for every natural number n the
element ηa,n is a root of the polynomial

Y p − Y − ηa,n−1.

Since vηa,0 = −1, we deduce that vK(ηa,0) = Z. Furthermore, vηa,n = − 1
pn

and as in

the proof of Theorem 1.1 one can show that (K(y + a
x
, ηa,n)|K(y + a

x
, ηa,n−1), v) is an Artin-

Schreier extension of ramification index p. Since the element y is transcendental over K(y+ a
x
)

and K(y + a
x
, y) = K(x, y), the extension K(x, y, ηa,n)|K(x, y, ηa,n−1) remains nontrivial.

We use now the properties of the extensions Ka,n|Ka,n−1 we have constructed to show
that the extensions K(x, y, ηa,n)|K(x, y, ηa,n−1) form an infinite tower of independent Artin-
Schreier defect extensions. Consider the henselizations of K(x, y, ξn) with respect to the
fixed extension of the valuation v of K(x, y) to the algebraic closure of K(x, y). Then
K(x, y, ξn)h = K(x, y)h for every natural number n. Indeed, since vξ0 > 0, by Lemma 2.28
the Artin-Schreier generator ξ1 lies in the henselization of K(x, y). Thus K(x, y, ξ1)h =
K(x, y)h. Take any n ∈ N and assume that K(x, y, ξn)h = K(x, y)h. By our choice, vξn > 0
hence using again Lemma 2.28 we deduce that

K(x, y, ξn+1)h = K(x, y, ξn)h(ξn+1) = K(x, y, ξn)h = K(x, y)h.

Set La,0 := K(x, y) and La,n := La,n−1(ηa,n) for every n ∈ N. We claim that for every
natural number n the extension La,n|La,n−1 is linearly disjoint from Lha,n−1|La,n−1. Since
ξ1 ∈ K(x, y)h we obtain that

Lha,1 = K(x, y)h(ξ1 + ξa,1) = K(x, y)h(ξa,1) = Kh
a,1.

Take n ∈ N and assume that Lha,n = Kh
a,n. As we have shown ξn+1 ∈ K(x, y)h ⊆ Lha,n, hence

Lha,n+1 = Lha,n(ξn+1 + ξa,n+1) = Lha,n(ξa,n+1) = Kh
a,n(ξa,n+1) = Kh

a,n+1.

Therefore, by induction we obtain the equality Lha,n = Kh
a,n for every n ∈ N.

Suppose that the Artin-Schreier extension La,n|La,n−1 were not linearly disjoint from
Lha,n−1|La,n−1 for some natural number n. Then ηa,n ∈ Lha,n−1. Since ηa,n = ξn + ξa,n
and ξn ∈ K(x, y)h ⊆ Lha,n−1, we would have that ξa,n ∈ Lha,n−1 = Kh

a,n−1. On the other
hand, we have proved that the valuation v of Ka,n−1 has a unique extension to the field
Ka,n = Ka,n−1(ξa,n), a contradiction with Lemma 2.12. Therefore, again by Lemma 2.12, the
valuation v of La,n−1 has a unique extension to the field La,n for every n ∈ N.

Since the value group of K(x, y) is p-divisible, each of the extensions La,n|La,n−1 has
ramification index equal to 1. Take a natural number n. Using the fact that the henselization
is an immediate field extension, we obtain that

La,nv = Lha,nv = Kh
a,nv = Ka,nv = K.
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Therefore La,nv = La,n−1v and the extension La,n|La,n−1 is immediate. Consequently, each
of the Artin-Schreier extensions La,n|La,n−1 has nontrivial defect.

Take a natural number n. From Corollary 2.29 it follows that dist (ηa,n, La,n−1) ≤ 0−.
Note that

ηa,n =
∞∑
i=n

d(i)
a,nx

−p−i + ξn

with vξn > 0. By Lemma 5.11, for every j ≥ n we have that

j∑
i=n

d(i)
a,nx

−p−i ∈ K(x, y)c.

Thus there is un,j ∈ K(x, y) such that v

(
j∑
i=n

d
(i)
a,nx−p

−i − un,j
)
> 0. Then

v(ηa,n − un,j) = v

((
j∑
i=n

d(i)
a,nx

−p−i − un,j + ξn

)
+

∞∑
i=j+1

d(i)
a,nx

−p−i
)

= v

(
∞∑

i=j+1

d(i)
a,nx

−p−i
)

= −p−(j+1).

Thus the set of values v(ηa,n−un,j) is cofinal in
(

1
p∞
Z
)<0

. Hence dist (ηa,n, La,n−1) = 0−. From

Corollary 2.31 it follows that La,n|La,n−1 is an independent Artin-Schreier defect extension.
Using Lemma 5.2 we obtain that for any two distinct elements a, b ∈ E the extensions⋃

n∈N
La,n|K(x, y) and

⋃
n∈N

Lb,n|K(x, y) are linearly disjoint.

Assume that the field K is perfect and vy > 0. Then from Proposition 5.12 it follows
that (K(x, y), v) admits no dependent Artin-Schreier defect extensions. However, by Propo-
sition 5.13 the field admits |K| many pairwise linearly disjoint infinite towers of independent
Artin-Schreier defect extensions. In Chapter 7 we will give an example of a rank 1 valuation
of a rational function field L(x, y) of positive characteristic p, with p-divisible value group
and perfect residue field, admitting neither dependent not independent Artin-Schreier de-
fect extensions. However, the constructed valuation will not be trivial on the field L. An
open question is how to construct a rank 1 valuation w on L(x, y), trivial on L, such that
(L(x, y), w) admits no Artin-Schreier defect extensions, or more generally, is a defectless
field.

Note also that the above construction of towers
⋃
n∈N La,n|K(x, y) of Artin-Schreier defect

extensions does not depend on the fact that the sequence (nip
−ei)i∈N of exponents of y

is unbounded. We use the assumption only to show that all of the Artin-Schreier defect
extensions in the towers are independent. Hence, we obtain the following corollary to the
proof of Proposition 5.13:

Corollary 5.14. Take a valued rational function field (K(x, y), v) satisfying conditions (5.2).
Assume that the element y is of positive value, but not necessarily that its exponents are
unbounded. If K admits a perfect subfield of cardinality κ, then (K(x, y), v) admits κ many
pairwise linearly disjoint infinite towers of Artin-Schreier defect extensions.

Therefore, the construction of towers of Artin-Schreier defect extensions as in the proof
of Proposition 5.13 gives us another proof of Theorem 1.1.
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5.2 p-elementary extensions of rational function fields

Take a field L of characteristic p > 0. If a polynomial f ∈ L[X] is of the form f = A+ c,
where A ∈ L[X] is an additive polynomial and c is a constant in L, then f is called a
p-polynomial. An important example of p-polynomials are Artin-Schreier polynomials
Xp−X − c with c ∈ L. We have already mentioned, that if an Artin-Schreier polynomial is
irreducible, any of its roots generates a Galois extension of degree p.

We consider now a more general class of Galois extensions of degree a power of p. An
algebraic extension L′|L is called a p-elementary extension if it is a finite Galois extension
and its Galois group Gal(L′|L) is an elementary-abelian p-group, that is, Gal(L′|L) is an
abelian p-group such that every nonzero element of the group has order p; if [L′ : L] = pn,
then the group is a direct sum of n cyclic subgroups of order p. Hence L′|L is a compositum
of n many parallel Galois extensions of degree p, thus a tower of Artin-Schreier extensions.
Every Artin-Schreier extension is generated by a root of a p-polynomial of degree p over L.
More generally, one can show that every p-elementary extension is generated by a root of
some irreducible p-polynomial (cf. Theorem 34 of [23]).

Take any natural number n and assume that Fpn ⊆ L. Consider the polynomial

f = Xpn −X − a ∈ L[X].

Note that for n = 1 we obtain an Artin-Schreier polynomial. Assume that f is irreducible
over L and consider the extension L(ϑ)|L generated by a root ϑ of f . Since the elements ϑ+c
with c ∈ Fpn form the set of all roots of f , the extension L(ϑ)|L is normal and separable,
hence Galois. Furthermore,

Gal(L(ϑ)|L) = {σc | c ∈ Fpn},

where σc(ϑ) = ϑ + c. Thus the Galois group of L(ϑ)|L is an elementary-abelian p-group.
Consequently, L(ϑ)|L is a p-elementary extension of degree pn. As in the case of Artin-
Schreier extensions, for the extensions of valued fields generated by roots of polynomials
Xpn −X − a we obtain the following facts.

Lemma 5.15. Assume that (L, v) is a valued field and ϑ a root of the polynomial
f = Xpn −X − a ∈ L[X]. If va ≤ 0, then vϑ = 1

pn
va. If va > 0, then exactly one of

the conjugates of ϑ has value va and the other roots of f have value 0.

Proof. If vϑ 6= 0 then vϑp
n 6= vϑ. Therefore from equality ϑp

n − ϑ = a it follows that
va = min{vϑ, pnvϑ}. Thus, if va = 0, we have that vϑ = 0. Assume that va < 0. Then also
vϑ < 0 and consequently va = pnvϑ. This yields that vϑ = 1

pn
va. Note that

a = ϑp
n − ϑ =

∏
c∈Fpn

(ϑ+ c).

Thus, if va > 0, there must be a conjugative ϑ′ = ϑ + c of ϑ of positive value. Since
v(ϑ′ + d) = 0 for every d ∈ F∗pn , the other roots of f have value 0.

Lemma 5.16. Assume that (L, v) is a valued field of positive characteristic p and Fpn ⊆ Lv
for some n ∈ N. Take a polynomial f = Xpn − X − a ∈ L[X]. If va > 0 or va = 0 and
Xpn−X−av has a root in Lv then every root of f lies in the henselization of L (with respect
to every extension of v to L̃).

73



Proof. If va > 0, then the polynomial Xpn − X is the reduction of f modulo v. Since
Fpn ⊆ Lv, the polynomial Xpn −X splits into linear factors in Lv. Assume that va = 0 and
Xpn − X − av has a root ϑ in Lv. Since all other roots of the polynomial are of the form
ϑ+ c with c ∈ Fpn , also in this case the reduction of f modulo v splits into linear factors in
Lv. Therefore, in both cases it follows from Hensel’s Lemma that Xpn − X − a splits into
linear factors in every henselization of (L, v).

The similarities between the Artin-Schreier extensions and the more general class of
p-elementary extensions generated by roots of polynomials Xpn − X − a give rise to the
question if we can use the techniques from Theorems 1.1 and 5.7 to construct towers of
p-elementary extensions of degree and defect pn. The next theorem shows that the construc-
tions from the proof of Theorem 1.1 can indeed be generalized in this way.

Theorem 5.17. Take a field K of positive characteristic p and a natural number n such
that Fpn ⊆ K. Assume that K contains a perfect subfield of cardinality κ. Then there is
a valuation v of the rational function field K(x, y)|K, trivial on K, such that (K(x, y), v)
admits κ many pairwise linearly disjoint infinite towers of p-elementary extensions of degree
and defect pn.

Proof. Take (K(x, y), v) to be the valued rational function field defined as in the proof of
Theorem 1.1. Namely, we assume that (K(x, y), v) satisfies assumptions (5.2) with ni = −1
for every i ∈ N in (5.1). Then y is of the form

y =
∞∑
i=1

x−p
−ei .

Take a natural number n such that Fpn ⊆ K. Suppose that E is a perfect subfield of
K of cardinality κ and choose a ∈ E. From the proof of Theorem 1.1 we know that y
is a pseudo limit of a pseudo Cauchy sequence of transcendental type in the perfect hull
Fa = K(y+ a

x
)1/p∞ of K(y+ a

x
) and consequently, K(y+ a

x
)h is relatively algebraically closed

in K(x, y)h.

Set η
(n)
a,0 := y + a

x
. By induction on i ∈ N choose η

(n)
a,i to be a root of the polynomial

Y pn − Y − η(n)
a,i−1.

Since v(y+ a
x
) = −1 we obtain that vK(y+ a

x
)h = vK(y+ a

x
) = Z and vη

(n)
a,i = − 1

pin
for every

i ∈ N. Therefore, using arguments similar to those in the proof of Theorem 1.1 we deduce
that [

K
(
y +

a

x

)h (
η

(n)
a,i

)
: K

(
y +

a

x

)h]
= pin

and K(x, y, η
(n)
a,i )|K(x, y, η

(n)
a,i−1) is an extension of degree pn such that the valuation v of

K(x, y, η
(n)
a,i−1) has a unique extension to the field K(x, y, η

(n)
a,i ) for every i ∈ N. Since

[K(x, y, η
(n)
a,i ) : K(x, y, η

(n)
a,i−1)] = pn, the polynomial Y pn − Y − η(n)

a,i−1 is irreducible. Thus,

K(x, y, η
(n)
a,i )|K(x, y, η

(n)
a,i−1) is a p-elementary extension for every i ∈ N.

Note that the element η
(n)
a,0 is of the form

η
(n)
a,0 = ax−1 +

∞∑
i=1

x−p
−ei ∈ E

((
x

1
p∞ Z
))

,
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thus from Lemma 5.3 by induction on i, it follows that each of the generators η
(n)
a,j can be

chosen to be of the form

η
(n)
a,j =

∞∑
i=nj

c
(n)
a,j (i)x

−p−i

with c
(n)
a,j (i) ∈ E ⊆ K. Therefore (K(x, y, η

(n)
a,j )|K(x, y), v), as a subextension of the imme-

diate extension (K
((
x

1
p∞ Z
)) ∣∣K(x, y), vx), is also immediate. Hence we obtain an infinite

tower of p-elementary extensions K(x, y, η
(n)
a,j )|K(x, y, η

(n)
a,j−1) of degree and defect pn.

Finally, from Lemma 5.2 it follows that for every two distinct a, b ∈ E the extensions
K(x, y)(η

(n)
a,i | i ∈ N)|K(x, y) and K(x, y)(η

(n)
b,i | i ∈ N)|K(x, y) are linearly disjoint.

Note that since every p-elementary extension is a tower of Artin-Schreier extensions,
K(x, y)(η

(n)
a,i | i ∈ N)|K(x, y) is in particular an infinite tower of Artin-Schreier defect exten-

sions.
Consider now the methods used in the proof of Theorem 5.7, or more generally in the

proof of Theorem 4.2, to show the existence of infinite towers of dependent Artin-Schreier
defect extensions. The constructions of dependent extensions are based on the deformation
of purely inseparable polynomials into Artin-Schreier polynomials. Take a valued field (L, v)
of characteristic p > 0. From Theorem 4.1 we know that a suitable deformation of a purely
inseparable polynomial Xp − ηp ∈ L[X] with η /∈ Lc into a polynomial Xp−X − (η

b
)p yields

a dependent Artin-Schreier defect extension generated by a root ϑ of the Artin-Schreier
polynomial. The proof of Theorem 4.1 shows that the fact that (L(ϑ)|L, v) has nontrivial
defect follows from the relation ϑ ∼L η

b
between the generators of the purely inseparable and

the Artin-Schreier extension.
The following lemma shows that also a suitable deformation of purely inseparable poly-

nomials of higher degrees into separable p-polynomials induces a relation between roots of
the two polynomials. We obtain it by replacing in the first part of the proof of Theorem 4.1
the prime p by its power pn.

Lemma 5.18. Assume that (L, v) is a valued field of positive characteristic p. Take an
immediate purely inseparable extension L(η)|L of degree at most pn such that η does not lie
in the completion (Lc, v) of (L, v). Then for every b ∈ L× such that

(pn − 1)vb+ vη > pndist(η, L), (5.8)

a root ϑ of the polynomial

gb = Xpn −X −
(η
b

)pn
satisfies the condition

ϑ ∼L
η

b
. (5.9)

Nevertheless, the next example shows that in the case of extensions of degree higher
than the characteristic of the field, the relation (5.9) does not suffice to prove that L(ϑ)|L
is disjoint from the henselization. Therefore, the direct generalization of Theorem 4.1 to the
purely inseparable extensions of higher degrees is not possible.
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Example 5.19. Take a perfect field K of characteristic p > 0 and consider the valued
rational function field (K(x, y), v) defined by the conditions (5.2). Assume that ni = −1 for
every i ∈ N in (5.1). Then

y =
∞∑
i=1

x−p
−ei .

Take any extension of v to K (̃x, y) and denote by K(x, y)h the henselization of K(x, y) with
respect to v.

We construct a p-elementary extension K(x, y, ϑ)|K(x, y) of degree p2 generated by a root
ϑ of some polynomial Xp2 −X − z such that K(x, y, ϑ)|K(x, y) is not linearly disjoint from
K(x, y)h|K(x, y), even though it is derived from an immediate purely inseparable extension
of degree p2 not contained in the completion (K(x, y)c, v) of (K(x, y), v).

Set d := y−p
e1 ∈ K(y) and consider the Artin-Schreier polynomial

h1 := Y p − Y − 1

dp
y.

Since the value group ofK(x, y) is p-divisible and the residue fieldK(x, y)v = K is perfect, by
Lemma 5.8 the polynomial Y p−y induces an immediate purely inseparable extension, which
does not lie in the completion K(x, y)c of K(x, y). Moreover, from the proof of Lemma 5.8
it follows that dist (y1/p, K(x, y)) ≤ 0−. Since vy = − 1

pe1
and vd = 1, we have that

(p− 1)vd+ vy > 0 ≥ p dist (y1/p, K(x, y)).

Thus the element d satisfies the condition (4.1) of Theorem 4.1 and consequently a root η of
the polynomial h1 generates a dependent Artin-Schreier defect extension K(x, y, η)|K(x, y).
Note that η is a root of the polynomial

h̃1 := Y p2 − Y − 1

dp
y − 1

dp2
yp.

Set n = pe1+2 + 1 and take a p-polynomial

h2 := Y p2 − Y − 1

dp2
y−n.

Since v 1

dp2
y−n = −p2 + n

pe1
= 1

pe1
> 0 and Fp2 ⊆ K = K(x, y)v, from Lemma 5.16 it follows

that a root ϑ′ of the polynomial h2 generates an extension K(x, y, ϑ′) of K(x, y) contained
in the henselization K(x, y)h of K(x, y).

Define ϑ = η+ϑ′ ∈ K̃(x, y). By the additivity of the polynomial Y p2 −Y , the element ϑ
is a root of the polynomial

f := Y p2 − Y − 1

dp
y − 1

dp2
yp − 1

dp2
y−n.

We show that the extension K(x, y, ϑ)|K(x, y) is of degree p2. Consider the rational function
field K(y)|K with the y-adic valuation w. Then

w
1

dp2
y−n = pe1+2 − n = −1,
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and w 1
dp
y, w 1

dp2
yp > 0. Hence

w

(
1

dp
y +

1

dp2
yp +

1

dp2
y−n
)

= −1 < 0

and consequently wϑ = − 1
p2

, by Lemma 5.15. Therefore (wK(y, ϑ) : wK(y)) ≥ p2. On

the other hand [K(y, ϑ) : K(y)] ≤ p2, hence by the fundamental inequality we obtain that
K(y, ϑ)|K(y) is of degree p2. The element x is transcendental over K(y), thus we have also
that

[K(x, y, ϑ) : K(x, y)] = p2.

Since K(x, y, η)|K(x, y) is an Artin-Schreier defect extension, the valuation v of K(x, y)
admits a unique extension to K(x, y, η). From Lemma 2.12 it follows that K(x, y, η)|K(x, y)
is linearly disjoint from K(x, y)h|K(x, y). As ϑ′ ∈ K(x, y)h, from the equality ϑ = η+ ϑ′ we
deduce that

[K(x, y)h(ϑ) : K(x, y)h] = [K(x, y)h(η) : K(x, y)h] = p < p2 = [K(x, y, ϑ) : K(x, y)].

Therefore K(x, y, ϑ)|K(x, y) is not linearly disjoint from K(x, y)h|K(x, y).
On the other hand, the polynomial f can be derived by a deformation of a purely insep-

arable polynomial inducing an immediate extension which does not lie in the completion of
K(x, y) in the following way. Define

ξ := d1−p−1

yp
−2 − yp−1 − y−np−2

.

The value group of K(x, y) is p-divisible and the residue field of K(x, y) is perfect, there-
fore K(x, y, ξ)|K(x, y) is an immediate purely inseparable extension of degree p2. Since
dist (y1/p, K(x, y)) ≤ 0−, we have that v(y1/p − K(x, y)) < 0. The values vd1−p−1

yp
−2

and
vy−np

−2
are positive, thus also v(ξ −K(x, y)) < 0. It follows that

dist (ξ,K(x, y)) ≤ 0−

and consequently ξ does not lie in the completion of K(x, y). Note that

vξ = vy1/p = − 1

pe1+1

and thus

(p2 − 1)vd+ vξ = p2 − 1− 1

pe1+1
> 0 ≥ p2dist (ξ,K(x, y)).

Therefore, from Lemma 5.18 it follows that every root of the polynomial

Y p2 − Y −
(
ξ

d

)p2
= Y p2 − Y − 1

dp
y − 1

dp2
yp − 1

dp2
y−n = f

is in relation ∼K(x,y) with ξ
d
. Thus ϑ ∼K(x,y)

ξ
d
.

Hence by the deformation of the purely inseparable polynomial Y p2 − ξp2 we obtain the
p-polynomial f = Y p2 − Y − ( ξ

d
)p

2
generating the extension K(x, y, ϑ)|K(x, y) which is not

linearly disjoint from the henselization of K(x, y). This is because while only the element
1

dp2
yp matters for the approximation of ξ and hence of ϑ, the elements 1

dp2
y−n and 1

dp
y are

responsible for the extensions K(x, y, ξ)|K(x, y) and K(x, y, ϑ)|K(x, y) having degree p2. �
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As we have seen, the deformation of a polynomial inducing an immediate purely in-
separable extension of prime degree not contained in the completion of the field leads to
an Artin-Schreier defect extension, because of the relation between the generators of the
purely inseparable and the Artin-Schreier extensions. From that relation, by Theorem 2.23,
it follows in particular that the Artin-Schreier extension is disjoint from the henselization
(see proof of Theorem 4.1). Example 5.19 shows that for extensions of higher degrees this
implication does not hold. Note that this example also shows that we cannot generalize
Theorem 2.23 by replacing the condition “a lies in Kh” by “K(a)|K is not linearly disjoint
from Kh|K”. Indeed, as we have shown, ϑ ∼K(x,y)

ξ
d

and K(x, y, ϑ)|K(x, y) is not linearly

disjoint from K(x, y)h|K(x, y). On the other hand, the element ξ
d

is purely inseparable over

K(x, y). It follows that K(x, y, ξ
d
)|K(x, y) is linearly disjoint from K(x, y)h|K(x, y), as the

henselization is a separable extension of K(x, y).
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6. Algebraic independence of elements
in immediate extensions of valued
fields

This chapter is devoted to the proof of Theorem 1.2 and its applications. The theorem
gives several criteria for a valued field that guarantee that all of its maximal immediate
extensions have infinite transcendence degree. We apply the criteria to the question which
algebraic extensions of a maximal valued field are again maximal. We give further examples
of applications of Theorem 1.2 to the problems related to valued rational function fields.
In the case of valued fields of infinite p-degree, Theorem 1.2 enables us also to prove the
existence of valued fields which admit an algebraic maximal immediate extension as well as
one of infinite transcendence degree.

6.1 Valued fields admitting immediate extensions of

infinite transcendence degree

In this section we give the proof of Theorem 1.2. Our first goal is a basic independence
lemma. For the proof we will need a Taylor expansion that works in all characteristics.

Take a polynomial f ∈ K[X] of degree n. We define the i-th formal derivative of f
as

fi(X) :=
n∑
j=i

(
j

i

)
cjX

j−i =
n−i∑
j=0

(
j + i

i

)
cj+iX

j . (6.1)

Then regardless of the characteristic of K, we have the Taylor expansion of f at c in the
following form:

f(X) =
n∑
i=0

fi(c)(X − c)i . (6.2)

Take i ∈ N, any field K and a polynomial f ∈ K[X1, . . . , Xi]. With respect to the
lexicographic order on Zi, let (µ1, . . . , µi) be maximal with the property that the coefficient
of Xµ1

1 · · ·X
µi
i in f is nonzero. Then define cf to be this coefficient and call (µ1, . . . , µi) the

crucial exponent of f .

For our basic independence lemma, we consider the following situation. We choose a
function

ϕ : N× N −→ N
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such that

ϕ(k, `) > max{k, `} and ϕ(k + 1, `) > ϕ(k, `) for all k, ` ∈ N,

and for each i ∈ N a strictly increasing sequence (Ei(k))k∈N of integers ≥ 2 such that for all
k ≥ 1 and i ≥ 2,

E1(k + 1) ≥ ϕ(k,E1(k)) + 1,
Ei(k + 1) ≥ Ei−1(ϕ(k,Ei(k)) + 1) .

}
(6.3)

From the above assumptions it follows that for every i, k ∈ N,

Ei(k) > k and Ei(k + 1) ≥ ϕ(k,Ei(k)) + 1 > Ei(k) + 1 . (6.4)

Further, we take an extension (L|K, v) of valued fields, choose elements

aj ∈ L and αj ∈ vL for all j ∈ N,

and K-subspaces
Sj ⊆ L , j ∈ N .

We assume that for all i, k, ` ∈ N, the following conditions are satisfied:

(A1) 0 ≤ vak ≤ αk < vak+1 and kαEi(k) ≤ αϕ(k,Ei(k)) ,

(A2) a1, . . . , ak ∈ Sk and Sk ⊆ Sk+1 ,

(A3) if d0, . . . , dk ∈ Sk and u ∈ S` , then

d0 + d1u+ . . .+ dku
k ∈ Sϕ(k,`) ,

(A4) if m ≤ k and d0, . . . , dm ∈ Sk , then

v(d0 + d1ak+1 + . . .+ dma
m
k+1) ≤ vdm +mαk+1 .

For every natural number i consider the sequence

Ai :=

(
k∑
j=1

aEi(j)

)
k∈N

. (6.5)

From the choice of the numbers Ei(j) and elements ak it follows that (Ei(j))j∈N is a strictly
increasing sequence of natural numbers and vak < vak+1 for every k ∈ N. Thus the sequence
Ai satisfies condition (2.12) and is a pseudo Cauchy sequence in (L, v). Now we choose
any maximal immediate extension (M, v) of (L, v). By Theorem 2.42, the pseudo Cauchy
sequence Ai admits a pseudo limit in M . Take yi ∈M to be an arbitrary pseudo limit of Ai.
In this situation, we can prove the following basic independence lemma:

Lemma 6.1. Suppose that k ≥ 2 is an integer and f ∈ L[X1, . . . , Xi] is a polynomial with
coefficients in Sk−1 ∩ OL such that αEi(k) ≥ vcf and that f has degree less than k in each
variable. Then

vf(y1, . . . , yi) < vaEi(k+1) . (6.6)
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Proof. We shall prove the lemma by induction on i. We start with i = 1. Set m = deg f
and define

u :=
k∑
j=1

aE1(j) and z := y1 − u .

Then u ∈ SE1(k) because of (A2) and the fact that the Sk are vector spaces. Since y1 is a
pseudo limit of A1, assertion (2.14) shows that vz = vaE1(k+1). Hence by (A1), the definition
of E1 and our assumption that αE1(k) ≥ vcf ,

vz ≥ vaϕ(k,E1(k))+1 > αϕ(k,E1(k)) ≥ kαE1(k) ≥ vcf + (k − 1)αE1(k) . (6.7)

We use the Taylor expansion

f(y1) = f(u+ z) = f(u) + zf1(u) + z2f2(u) + . . . + zmfm(u) (6.8)

where fj(X) ∈ OL[X] is the j-th formal derivative of f as defined in (6.1). As vak > 0 for
every k, we have that z, fj(u) ∈ OL for all j. Thus f1(u) + zf2(u) + . . . + zm−1fm(u) ∈ OL
and

v(zf1(u) + z2f2(u) + . . . + zmfm(u)) ≥ vz . (6.9)

We wish to prove that vf(u) < vz. We set

u′ :=
k−1∑
j=1

aE1(j) ∈ SE1(k−1)

so that u = u′ + aE1(k). We use the Taylor expansion

f(u) = f(u′ + aE1(k)) = f(u′) + f1(u′)aE1(k) + . . .+ fm(u′)amE1(k)

where m = deg f < k. By definition, cf is the leading coefficient of f , which in turn is equal
to the constant fm(u′) = fm(X) ∈ L. Since f has coefficients in the vector space Sk−1 , we
know from (6.1) that also all fj have coefficients in Sk−1 . Thus, (A3) and (A2) together
with (6.4) show that

f(u′), fj(u
′) ∈ Sϕ(k−1,E1(k−1)) ⊆ SE1(k)−1

for each j. Further, m ≤ k − 1 ≤ E1(k)− 1. Hence by (A4) and (6.7),

vf(u) ≤ vfm(u′) +mαE1(k) ≤ vcf + (k − 1)αE1(k) < vz .

From this together with (6.8) and (6.9), we deduce that

vf(y1) = vf(u) < vz = vaE1(k+1) ,

which gives the assertion of our lemma for the case of i = 1.

In the case of i > 1 we assume that the assertion of our lemma has been proven for i− 1
in place of i, and we set

u :=
k∑
j=1

aEi(j) ∈ SEi(k) , u′ :=
k−1∑
j=1

aEi(j) ∈ SEi(k−1) , and z := yi − u .
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As in the case of i = 1 we deduce that vz = vaEi(k+1). Then by (6.4), (A1) and our
assumption that αEi(k) ≥ vcf ,

vz ≥ vaϕ(k,Ei(k))+1 > αϕ(k,Ei(k)) ≥ kαEi(k) ≥ vcf + (k − 1)αEi(k) .

We use the Taylor expansion

f(y1, . . . , yi−1, u+ z) = f(y1, . . . , yi−1, u) + zf1(y1, . . . , yi−1, u)

+ z2f2(y1, . . . , yi−1, u) + . . . + zmfm(y1, . . . , yi−1, u)

where fj ∈ OL[X1, . . . , Xi] is the j-th formal derivative of f with respect to Xi and
m = degXi f . We obtain the analogue of inequality (6.9); hence it will suffice to prove that

vf(y1, . . . , yi−1, u) < vz . (6.10)

We set
g(X1, . . . , Xi−1) := f (X1, . . . , Xi−1, u)

so that g(y1, . . . , yi−1) = f(y1, . . . , yi−1, u). Viewing f as a polynomial in the variables
X1, . . . , Xi−1 with coefficients in L[Xi], we denote by h(Xi) the coefficient of Xµ1

1 · · ·X
µi−1

i−1

in f . Note that h has coefficients in Sk−1, its leading coefficient is cf and its degree is µi < k.
Again, since h has coefficients in Sk−1 , definition (6.1) shows that the same is true for the
j-th formal derivative hj of h, for all j. Thus, (A3), (6.4) and (A2) imply that

h(u′), hj(u
′) ∈ Sϕ(k−1,Ei(k−1)) ⊆ SEi(k)−1

for each j. As in the first part of our proof we find that

vh(u) ≤ vhµi(u
′) + µiαEi(k) = vcf + µiαEi(k) (6.11)

since hµi(u
′) = cf . In particular, this shows that h(u) 6= 0. Hence if (µ1, . . . , µi) is the

crucial exponent of f , then (µ1, . . . , µi−1) is the crucial exponent of g, and

cg = h(u) .

We set
k′ := ϕ(k,Ei(k)) > max{k,Ei(k)} .

Since µi ≤ k − 1 and vcf ≤ αEi(k) by assumption, and by virtue of (6.11), (A1) and (6.4), it
follows that

vcg = vh(u) ≤ vcf + (k − 1)αEi(k) ≤ kαEi(k) ≤ αk′ < αEi−1(k′) .

Since every coefficient of g is of the form h(u) with h a polynomial of degree less than k and
coefficients in Sk−1 , we know from (A3), our conditions on ϕ and (A2) that the coefficients
of g lie in

Sϕ(k−1,Ei(k)) ⊆ Sϕ(k,Ei(k))−1 = Sk′−1 .

Also, its degree in each variable is less than k, hence less than k′. Therefore, we can apply
the induction hypothesis to the case of i− 1, with k′ in place of k. We obtain, by (A1) and
our choice of the numbers Ei(k):

vf(y1, . . . , yi−1, u) < vaEi−1(ϕ(k,Ei(k))+1) ≤ vaEi(k+1) = vz .

This establishes our lemma.
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By (A2),

S∞ :=
⋃
k∈N

Sk

contains ak for all k. We set
K∞ := K(S∞) .

Further, we note that condition (A1) implies that

Γ := {α ∈ vK∞ | −vak ≤ α ≤ vak for some k}

is a convex subgroup of vK∞ .

Corollary 6.2. Assume that every element of K∞ with value in Γ can be written as a
quotient r/s with r, s ∈ S∞ such that 0 ≤ vs ∈ Γ. Then the elements yi , i ∈ N, are
algebraically independent over K∞ .

Proof. We have to check that g(y1, . . . , yi) 6= 0 for all i ∈ N and all nonzero polynomials
g(X1, . . . , Xi) ∈ K∞[X1, . . . , Xi]. After division by some coefficient of g with minimal value
we may assume that g has coefficients in K∞ ∩ OL and at least one of them has value 0.
We write all its coefficients which have value in Γ in the form as given in our assumption.
We take s̃ to be the product of all appearing denominators. Then vs̃ ∈ Γ and vs̃ ≥ 0.
After multiplication with s̃, all coefficients of g with value in Γ are elements of S∞. There
is at least one coefficient with value vs̃ ∈ Γ, so at least one coefficient is an element of S∞.
Furthermore, all coefficients of g have nonnegative value. Now we write g(X1, . . . , Xi) =
f(X1, . . . , Xi) + h(X1, . . . , Xi) where every coefficient of f is in S∞ and has value less than
vak for some k, and every coefficient of h has value bigger than vak for all k (we allow h to
be the zero polynomial). Since g has coefficients of value vs̃, the polynomial f is nonzero.
Since yi is a pseudo limit of the pseudo Cauchy sequence Ai, from equation (2.14) it follows
that v(yi − aEi(1)) = vaEi(2) > vaEi(1). Thus, vyi = vaEi(1) ≥ 0 for all i, we have that
vh(y1, . . . , yi) > vak for all k.

We choose k such that the assumptions of Lemma 6.1 hold; note that k exists since by
our definition of f , the coefficient cf has value less than vaj for some j and f has coefficients
in S∞ ∩ OL. We obtain that

vf(y1, . . . , yi) < vaEi(k+1) < vh(y1, . . . , yi) .

This gives that

vg(y1, . . . , yi) = v(f(y1, . . . , yi) + h(y1, . . . , yi)) = vf(y1, . . . , yi) < vaEi(k+1) < ∞ ,

that is, g(y1, . . . , yi) 6= 0.

Now we are able to give the

Proof of Theorem 1.2:

In all cases of the proof, we will choose functions ϕ that have the previously required prop-
erties. We will choose a suitable sequence (bk)k∈N of elements in L and a sequence (ck)k∈N
in K. Then we will set ak := ckbk and choose some values αk ≥ vak .
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First, let us consider the valuation-transcendental case. We set

ϕ(k, `) := k + k` ,

and note that equations (6.3) now read as follows:

E1(k + 1) ≥ k + kE1(k) + 1,
Ei(k + 1) ≥ Ei−1(k + kEi(k) + 1) .

}
(6.12)

Further, we will work with a suitable element t ∈ OL transcendental over K and set, after a
suitable choice of the sequence (ck)k∈N ,

ak := ckt
k ,

αk := vak ,

Sk := K[t]k = K +Kt+ . . .+Ktk .

Conditions (A2) and (A3) are immediate consequences of our choice of Sk as the set of all
polynomials in K[t] of degree at most k.

Suppose that vL/vK is not a torsion group. Then we pick t ∈ OL such that vt is
rationally independent over vK (that is, nvt /∈ vK for all integers n > 0). Further, for all
k we set bk = tk and ck = 1 so that ak = tk. Then condition (A1) is satisfied since we have
that

0 ≤ vak = αk = vtk = kvt < (k + 1)vt = vtk+1 = vak+1

and
kαEi(k) = kvaEi(k) = kvtEi(k) = kEi(k)vt < (k + kEi(k))vt = αϕ(k,Ei(k)) .

Suppose now that vL/vK is a torsion group. In this case, Kv|Lv is transcendental by
assumption, and we note that since v is assumed nontrivial on L, it must be nontrivial on K.
We pick t ∈ OL such that vt = 0 and tv is transcendental over Kv. Further, we choose a
sequence (ck)k∈N in OK such that

vck+1 ≥ kvck

for all k. Since vak = vck + kvt = vck , we obtain that vak = αk < vak+1 and

kαk = kvak ≤ vak+1 . (6.13)

Then by (6.4),

kαEi(k) < Ei(k)αEi(k) ≤ vaEi(k)+1 ≤ vaϕ(k,Ei(k)) ≤ αϕ(k,Ei(k)) . (6.14)

Hence again, condition (A1) is satisfied.
Now we have to verify (A4), simultaneously for all of the above choices for ak . Take

d0, . . . , dm ∈ Sk , m ≤ k, and write dj =
∑k

ν=0 djνt
ν with djν ∈ K. Then

d0 + d1ak+1 + . . .+ dma
m
k+1 =

m∑
j=0

k∑
ν=0

cjk+1djνt
j(k+1)+ν .

In this sum, each power of t appears only once. So we have, by Lemma 2.6,

v(d0 + d1ak+1 + . . .+ dma
m
k+1) = min

j,ν
vcjk+1djνt

j(k+1)+ν := β .
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If this minimum is obtained at j = j0 and ν = ν0 , then

β = vcj0k+1dj0ν0t
j0(k+1)+ν0 = min

ν
vcj0k+1dj0νt

j0(k+1)+ν

= (min
ν
vdj0νt

ν) + vaj0k+1 = vdj0a
j0
k+1 ,

where the last equality again holds by Lemma 2.6. For all j,

β ≤ min
ν
vcjk+1djνt

j(k+1)+ν = (min
ν
vdjνt

ν) + vajk+1 = vdja
j
k+1 .

This gives that

v(d0 + d1ak+1 + . . .+ dma
m
k+1) = β = min

j
vdja

j
k+1 ≤ vdm +mvak+1 = vdm +mαk+1 ,

as required. Finally, we have to verify the assumption of Corollary 6.2. Each element in
K∞ = K(t) can be written as a quotient r/s of polynomials in t with coefficients in K, that
is, of elements of S∞. After multiplying both r and s with a suitable element from K we
may assume that s has coefficients in OK and one of them is 1. If this is the coefficient of ti,
say, then it follows by Lemma 2.6 that 0 ≤ vs ≤ vti ≤ vai and thus, vs ∈ Γ.

Now we take any maximal immediate extension (M, v) of (L, v) and yi as defined preceed-
ing to Lemma 6.1. Then we can infer from Corollary 6.2 that the elements yi are algebraically
independent over K∞ ; that is, the transcendence degree of M over K∞ is infinite. Since the
transcendence degree of L over K and thus also that of L over K∞ is finite, we can conclude
that the transcendence degree of M over L is infinite.

Next, we consider the value-algebraic case and the residue-algebraic case. We will assume
for now that there is an algebraic subextension L0|K of L|K such that vL0/vK contains
elements of arbitrarily high order, or L0v contains elements of arbitrarily high degree overKv.
The remaining cases will be treated at the end of the proof of our theorem.

For the present case as well as the separable-algebraic case, we work with any function ϕ
that satisfies the conditions outlined in the beginning of this section, and with

Sk := K(a1, . . . , ak) .

Then S∞ is a field and the assumption of Corollary 6.2 are trivially satisfied (taking s = 1).
Further, condition (A2) is trivially satisfied. To prove that condition (A3) holds, take any
u ∈ S` = K(a1, . . . , a`) . If n = max{k, `}, then d0, . . . , dk, u ∈ K(a1, . . . , an) = Sn and
therefore,

d0 + d1u+ . . .+ dku
k ∈ Sn ⊆ Sϕ(k,`) .

This shows that (A3) holds.
By induction, we define ak ∈ L0 as follows, and we always take αk = vak. We start with

a1 = 1 and α1 = 0. Suppose that a1, . . . , ak are already defined. Since K(a1, . . . , ak)|K is
a finite extension, also vK(a1, . . . , ak)/vK and K(a1, . . . , ak)v|Kv are finite. Hence by our
assumption in the algebraic case, there is some bk+1 ∈ L0 such that

0, vbk+1, 2vbk+1, . . . , kvbk+1 lie in distinct cosets modulo vK(a1, . . . , ak), or (6.15)

1, bk+1v, (bk+1v)2, . . . , (bk+1v)k are K(a1, . . . , ak)v-linearly independent. (6.16)
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If L0v contains elements of arbitrarily high degree over Kv, we always choose bk+1 such
that (6.16) holds; in this case, vbk+1 = 0 and we choose the elements ck as in the residue-
transcendental case above. Otherwise, vL0/vK contains elements of arbitrarily high order,
and we always choose bk+1 such that (6.15) holds. In this case, we choose ck+1 such that
for ak+1 := ck+1bk+1 we obtain kαk = kvak ≤ vak+1 ; this is possible since the values of bk
and hence of all ak lie in the convex hull of vK in vL. As in the residue-transcendental case
above, we obtain (6.13) and (6.14), showing that condition (A1) is satisfied.

To prove that (A4) holds, take any k ≥ 1 and d0, . . . , dk ∈ Sk = K(a1, . . . , ak). By
Lemma 2.7 applied to bk+1 ,

v(d0 + d1ak+1 + . . .+ dka
k
k+1) = v(d0 + d1ck+1bk+1 + . . .+ dkc

k
k+1b

k
k+1)

= min
i
vdic

i
k+1b

i
k+1 = min

i
vdia

i
k+1 .

This shows that (A4) holds.
As in the valuation-transcendental case, we can now deduce our assertion about the

transcendence degree of the maximal immediate extensions of (L, v).

Next, we consider the separable-algebraic case. We can assume that v is nontrivial on K,

since otherwise we are in the valuation-transcendental case. Take (Lh, v) to be a henselization
of (L, v) such that for the henselizations Lh0 and Kh of L0 and K contained in Lh, the
extension Lh0 |Kh is infinite. Assume that (Lh(v′), v′) is another henselization of (L, v). Then
there is a valuation preserving isomorphism σ ∈ Gal (L) such that σ(Lh) = Lh(v′). Take Kh

and Kh(v′) to be the henselization of (K, v) inside of Lh and Lh(v′) respectively. Since σ is
also a valuation preserving K-isomorphism, σ(Kh) = Kh(v′). Furthermore, σ(L0) = L0, as
L0 ⊆ L. Therefore,

σ(Lh0) = σ(Kh.L0) = σ(Kh).σ(L0) = Kh(v′).L0 = L
h(v′)
0 ,

where L
h(v′)
0 is the henselization of L0 contained in Lh(v′). Since Lh0 |Kh is infinite, so is

L
h(v′)
0 |Kh(v′). It follows that Lh0 |Kh is infinite inside of every henselization Lh of (L, v).

Note that we can without loss of generality assume that (K, v) is henselian. Indeed, each
maximal immediate extension of (L, v) contains a henselization Lh of (L, v) and hence also a
henselization Kh of (K, v), and our assumption on L0 implies that the subfield Lh0 = L0.K

h

of Lh is an infinite separable-algebraic extension of Kh.
We take Sk and ϕ(k, `) as in the previous case, so that again, (A2), (A3) and the as-

sumption of Corollary 6.2 hold. Then we take a1 = b1 to be any element in OL0 \ K and
choose some α1 ∈ vK such that α1 ≥ kras(a1, K) ∈ vK̃; this is possible since vK is cofi-

nal in its divisible hull, which is equal to vK̃. Inequality (2.7) of Lemma 2.16 shows that
kras(a1, K) ≥ va1 , so that α1 ≥ va1 . Suppose we have chosen a1, . . . , ak ∈ OL0 . Since L0|K
is infinite and separable-algebraic, the same is true for L0|K(a1, . . . , ak). By the Theorem of
the Primitive Element, we can therefore find an element bk+1 ∈ L0 such that

[K(a1, . . . , ak, bk+1) : K(a1, . . . , ak)] ≥ k + 1 .

We choose ck+1 ∈ K such that for ak+1 := ck+1bk+1 we have that kαk ≤ vak+1 . Finally, we
choose αk+1 ∈ vK such that

αk+1 ≥ kras(ak+1, K) ≥ vak+1 .
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Again, we obtain that (6.14) and (A1) hold.
It only remains to show that (A4) holds. But this follows readily from inequality (2.8)

of Lemma 2.16, where we take K(a1, . . . , ak) in place of K and a = ak+1, together with the
fact that kras(ak+1, K(a1 . . . , ak)) ≤ kras(ak+1, K).

As before, we now obtain our assertion about the transcendence degree of the maximal
immediate extensions of (L, v).

It remains to prove the value-algebraic case and the residue-algebraic case for transcen-
dental valued field extensions (L|K, v) of finite transcendence degree. We assume that vL/vK
is a torsion group containing elements of arbitrarily high order or the extension Lv|Kv is
algebraic and such that Lv contains elements of arbitrarily high degree over Kv.

Take any subextension E|K of L|K. Then (L|K, v) satisfies the above assumption if and
only if at least one of the extensions (L|E, v) and (E|K, v) satisfies the assumption. Choose
a transcendence basis (x1, . . . , xn) of L|K and set

F := K(x1, . . . , xn) .

Then L|F is algebraic. By what we have already proved, if vL/vF contains elements of
arbitrarily high order or Lv contains elements of arbitrarily high degree over Fv, then any
maximal immediate extension of (L, v) has infinite transcendence degree over L.

Suppose now that (F |K, v) satisfies the assumption on the value group or the residue
field extension. Take s ∈ N minimal such that vK(x1, . . . , xs)/vK contains elements of
arbitrarily high order or K(x1, . . . , xs)v contains elements of arbitrarily high degree over
Kv. Then the assertion holds also for the value group or the residue field extension of
(K(x1, . . . , xs)|K(x1, . . . , xs−1), v). We can replace K by K(x1, . . . , xs−1) and we will write
x in place of xs so that now we have a subextension (K(x)|K, v) that satisfies the assertion
for its value group or its residue field extension.

In both the value-algebraic and the residue-algebraic case we define bk ∈ K[x] by induc-
tion on k and set

Sk := K[x]Nk = K +Kx+ . . .+KxNk with Nk := deg bk.

Assume that vK(x) contains elements of arbitrarily high order modulo vK. Then such
elements can already be chosen from vK[x], as for any f

g
with f, g ∈ K[x] we have that

v(f
g
) = vf − vg. Set b1 = 1. Suppose that b1, . . . , bk are already chosen with deg bi−1 < deg bi

for 1 < i ≤ k. From Corollary 2.10 we know that vSk contains only finitely many values that
represent distinct cosets modulo vK. Since all of these values are torsion modulo vK, the
subgroup 〈vSk〉 of vK(x) generated by vSk satisfies (〈vSk〉 : vK) <∞. By assumption, there
is bk+1 ∈ K[x] for which the order of vbk+1 modulo vK is at least (k + 1)(〈vSk〉 : vK); this
forces 0, vbk+1, 2vbk+1, . . . , kvbk+1 to lie in distinct cosets modulo 〈vSk〉. Since bk+1 /∈ K[x]Nk ,
we have that Nk+1 = deg bk+1 > Nk .

Assume now that K(x)v contains elements of arbitrarily high degree over Kv. Without
loss of generality we can assume that vK(x)/vK is then a torsion group with a finite expo-
nent N . Otherwise, vL/vK is not a torsion group and we are in the valuation-transcendental
case or vK(x)/vK contains elements of arbitrarily high order and we are in the value-
algebraic case.
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The elements of arbitrarily high degree over Kv can be chosen from K[x]v. Indeed,
suppose there is m ∈ N such that [Kv(fv) : Kv] ≤ m for every polynomial f of nonnegative
value. Take any r = h

g
, where g, h ∈ K[x] and vr = 0. By the assumption on vK(x)/vK we

have that nvh = vd for some natural number n ≤ N and d ∈ K. Then

r =
d−1hn

d−1hn−1g

and vd−1hn−1g = vd−1hn = 0, since vh = vg. Therefore we may assume that vh = vg = 0.
Hence,

[Kv(rv) : Kv] ≤ [Kv(rv, gv) : Kv] = [Kv(hv, gv) : Kv] ≤ m2

for every r ∈ K(x) with vr = 0, a contradiction to our assumption.
As in the value-algebraic case, we set b1 = 1. Suppose that b1, . . . , bk are already chosen

with deg bi−1 < deg bi for 1 < i ≤ k. By Corollary 2.10, there are at most NNk + 1 many
Kv-linearly independent elements in K[x]NNkv, and as all of them are algebraic over Kv, it
follows that the extension Kv (K[x]NNkv) |Kv is finite. By assumption, there is bk+1 ∈ K[x]
such that vbk+1 = 0 and the degree of bk+1v over Kv is at least (k + 1)[Kv (K[x]NNkv) : Kv],
which forces the elements 1, bk+1v, (bk+1v)2, . . . , (bk+1v)k to be Kv (K[x]NNkv)-linearly inde-
pendent. Since bk+1 /∈ K[x]NNk , we have that Nk+1 = deg bk+1 > NNk ≥ Nk .

For the value-algebraic as well as for the residue-algebraic case we set

ϕ(k, l) := Nk +NkNl.

Since in both cases (Nk)k∈N is a strictly increasing sequence of natural numbers, ϕ has the
required properties. As in the first part of the proof of the value-algebraic and the residue-
algebraic case, one can show that the elements ck ∈ K can be chosen in such a way that
condition (A1) holds for ak := ckbk and αk := vak. Since (Nk)k∈N is strictly increasing,
condition (A2) is trivially satisfied. Moreover, Nk ≥ k for every k ∈ N. Hence for any
d0, . . . , dk ∈ Sk and u ∈ Sl ,

deg(d0 + d1u+ · · ·+ dku
k) ≤ Nk + kNl ≤ ϕ(k, l) ≤ Nϕ(k,l) .

Thus, d0 + d1u+ · · ·+ dku
k ∈ Sϕ(k,l). This shows that (A3) holds.

To verify (A4), we take any k,m ∈ N with m ≤ k, and d0, . . . , dm ∈ Sk. We wish to
estimate the value of the element d0+d1ak+1+· · · dmamk+1. We discuss first the value-algebraic
case. Note that the values v(dia

i
k+1), 0 ≤ i ≤ m, lie in distinct cosets modulo vK. Indeed,

vdia
i
k+1 = vdic

i
k+1 + ivbk+1, where dic

i
k+1 ∈ Sk. Therefore, if

vdia
i
k+1 + vK = vdja

j
k+1 + vK

for some 0 ≤ i ≤ j ≤ m, then also

ivbk+1 + 〈vSk〉 = jvbk+1 + 〈vSk〉 ,

which by our choice of bk+1 yields that i = j. Hence, from Lemma 2.7 it follows that

v(d0 + d1ak+1 + · · · dmamk+1) = min
i
vdia

i
k+1 = min

i
(vdi + iak+1) ≤ vdm +mvak+1 .
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We obtain the same assertion also in the residue-algebraic case. If di = 0 for all i, then
it is trivially satisfied. If not, take i0 so that

vdi0c
i0
k+1 = min

i
vdic

i
k+1 = min

i
vdia

i
k+1 .

We have that vdNi0 = vc for some c ∈ K. Setting d := c−1c−i0k+1d
N−1
i0

, we obtain that

v(d0 + d1ak+1 + · · · dmamk+1) = −vd+ vξ

with ξ := dd0 + dd1ck+1bk+1 + · · · + ddmc
m
k+1b

m
k+1. Note that ddi ∈ K[x]NNk for 0 ≤ i ≤ m,

and that
vddic

i
k+1 ≥ vddi0c

i0
k+1 = vc−1dNi0 = 0.

In particular, vξ ≥ 0, and

ξv = (dd0)v + (dd1ck+1)vbk+1v + · · ·+ (ddmc
m
k+1)v(bk+1v)m

is a linear combination of 1, bk+1v, (bk+1v)2, . . . , (bk+1v)m with coefficients fromKv (K[x]N ·Nkv).
Since at least one of them, the element ddi0c

i0
k+1v, is nonzero, also the linear combination is

nontrivial by our choice of bk+1. Hence vξ = 0 and

v(d0 + d1ak+1 + · · · dmamk+1) = −vd = vdi0c
i0
k+1 ≤ vdm +mvak+1 .

Therefore, condition (A4) is satisfied in both cases.

It suffices now to verify the assumptions of Corollary 6.2. Take any element h
g

of

K∞ = K(x), where g, h ∈ S∞ = K[x]. In both the value-algebraic and the residue-algebraic
case we assumed that vK(x)/vK is a torsion group. Therefore, as in the residue-algebraic
case above one can multiply h and g by a suitable polynomial to obtain that vg = 0 ∈ Γ.
Hence the assumptions of the corollary are satisfied.

Since the transcendence degree of the extension L|K(x) is finite, we can now deduce
the assertion about about the transcendence degree of the maximal immediate extensions of
(L, v) as in the previous cases.

In the value-algebraic case, we still have to deal with the case where there is a subgroup
Γ ⊆ vL containing vK such that Γ/vK is an infinite torsion group and the order of each of
its elements is prime to the characteristic exponent of Kv. We may assume that Lv|Kv is
algebraic and vL/vK is a torsion group since otherwise, the assertion of our theorem follows
from the valuation-transcendental case. Since every maximal immediate extension of (L, v)
contains a henselization of (L, v), we may assume that both (L, v) and (K, v) are henselian.
We take L′ to be the relative separable-algebraic closure of K in L. Then by Lemma 2.14,
vL/vL′ is a p-group, which yields that Γ ⊆ vL′. In view of the fundamental inequality, we
find that L′|K must be an infinite extension. Now the assertion of our theorem follows from
the separable-algebraic case.

Finally, we have to deal with our additional assertion about the completion. Since the
transcendence degree of L|K is finite, we know that vL/vK has finite rational rank. There-
fore, vK is cofinal in vL or there exists some α ∈ vL such that the sequence (iα)i∈N is cofinal
in vL. In the latter case (which always holds if vL contains an element γ such that γ > vK),
we are in the value-transcendental case and we choose the element t such that vt = α. In
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the former case, provided that the cofinality of vL is countable, we choose the elements ci
such that the sequence (vcibi)i∈N is cofinal in vL. In all of these cases, the sequence (vai)i∈N
will be cofinal in vL. Take any maximal immediate extension (M, v) of (L, v) and yi as
defined preceeding to Lemma 6.1. Since (M, v) is a maximal field, it is complete. Hence by
Proposition 2.49 it contains a completion (Lc, v) of (L, v). Fix i ∈ N. Then

v

(
k+1∑
j=1

aEi(j) −
k∑
j=1

aEi(j)

)
= vaEi(k+1),

hence this sequence of values is cofinal in vL. Thus, Ai defined by (6.5), is a Cauchy sequence
in (L, v). By Corollary 2.50 this yields that the element yi lies in Lc. 2

Note that the condition in the residue-algebraic case of Theorem 1.2 always holds when
Lv|Kv contains an infinite separable-algebraic subextension; this is a consequence of the
Theorem of the Primitive Element. There is no analogue of this theorem in abelian groups;
therefore, the first condition in the value-algebraic case does not follow from the second. As
an example, take q to be a prime different from charKv and consider the case where vL/vK
is an infinite product of Z/qZ. Under the second condition, however, the result can easily
be deduced from the separable-algebraic case, as we have seen in the proof.

The key assumption in the separable-algebraic case is that the separable-algebraic subex-
tension remains infinite when passing to the respective henselizations. We show that this
condition is crucial. To prove this, we need the following lemma.

Lemma 6.3. Take a nontrivially valued field (k(T ), v), where T is a nonempty set of el-
ements algebraically independent over k. Then the henselization of (k(T ), v) inside of any
henselian valued extension field is an infinite extension of k(T ).

Proof. Set F := k(T ) and take a henselization F h of F inside of some henselian valued
extension field. Pick an arbitrary t ∈ T . Without loss of generality we can assume that
vt > 0. Then the reduction of the polynomial X2 − X − t is X2 − X. Since 0 is a simple
root of the polynomial X2−X, by Hensel’s Lemma, F h contains a root ϑ1 of the polynomial
X2 − X − t such that ϑ1v = 0. Thus vϑ1 > 0. We proceed by induction. Once we have
constructed ϑi with vϑi > 0 for some i ∈ N, we again use Hensel’s Lemma to obtain a root
ϑi+1 ∈ F h of the polynomial X2 −X − ϑi with vϑi+1 > 0.

It now suffices to show that the extension F (ϑi | i ∈ N)|F is infinite. To this end, we
consider the t−1-adic valuation w on F = k(T \ {t})(t−1) which is trivial on k(T \ {t}). We
note that wF = Z. Since wt < 0, we obtain that wϑ1 = 1

2
wt and by induction, wϑi = 1

2i
wt.

Therefore, the 2-divisible hull of Z is contained in wF (ϑi | i ∈ N). In view of the fundamental
inequality (2.5), this shows that F (ϑi | i ∈ N)|F cannot be a finite extension.

Take a valued field (k, v) which has a transcendental maximal immediate extension (M, v).
We know that (M, v) as a maximal field is henselian. Take a transcendence basis T of M |k
and set K := k(T ). Then from Lemma 6.3 it follows that the henselization Kh of K inside
of (M, v) is an infinite separable-algebraic subextension of (M |K, v). But M is a maximal
immediate extension of L := Kh and M |L is algebraic. Hence the assertion of Theorem 1.2
does not necessarily hold without the condition that Lh0 |Kh is infinite.
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Example 6.4. Take any field K and consider the rational function field K(t) with the
t-adic valuation v. Then the power series field

(
K((t)), v

)
, where v is the t-adic valuation

of the field, is an immediate extension of the field (K(t), v). On the other hand, the power
series field is maximal. Hence,

(
K((t)), v

)
is a maximal immediate extension of (K(t), v).

As v is trivial on K, the extension (K(t)|K, v) satisfies the valuation-transcendental case of
Theorem 1.2. Hence, we obtain the well known fact that the transcendence degree of the
extension K((t))|K(t) is infinite. From the proof of the theorem we know that the power
series yi, i ∈ N, algebraically independent over K(t), can be chosen to be of the form

yi =
∞∑
k=1

cEi(k)t
Ei(k),

where cEi(k) ∈ K× and the natural numbers Ei(k) satisfy conditions (6.12). A special case
of the above construction is the proof of the fact that the extension K((t))|K(t) is of infinite
transcendence degree, presented by MacLane and Schilling (cf. [37], Lemma 1). �

6.2 Extensions of maximal fields

An interesting problem is given when (K, v) is itself a maximal field and we ask about
the form of maximal immediate extension of a given extension (L, v) of (K, v). In this case,
it is well known that if (L|K, v) is a finite extension, then (L, v) is again a maximal field
(cf. Theorem 2.33). So we would like to know what happens if (L|K, v) is infinite algebraic,
or transcendental of finite transcendence degree. Under which conditions could (L, v) be
again a maximal field? We consider these problems in this section.

We start with the following theorem which gives a partial answer to the above question
in the case of algebraic extensions.

Theorem 6.5. Take a nontrivially valued maximal field (K, v) and an infinite algebraic
extension (L|K, v). Assume that L|K contains an infinite separable subextension or that

(vK : pvK)[Kv : Kvp] < ∞ , (6.17)

where p is the characteristic exponent of Kv. Then every maximal immediate extension of
(L, v) has infinite transcendence degree over L.

Proof. Take a maximal field (K, v) which satisfies (6.17), and denote by p the characteristic
exponent of Kv. Further, take an infinite algebraic extension (L|K, v). Denote the relative
separable-algebraic closure of K in L by L′. Assume that L′|K is infinite. Since K as a
maximal field is henselian, Kh = K and L′h = L′. Thus the separable-algebraic case of The-
orem 1.2 shows that any maximal immediate extension of (L, v) has infinite transcendence
degree over L.

Assume now that L′|K is a finite extension. Then from Theorem 2.33, the field (L′, v)
is maximal. Furthermore (vL′ : pvL′)[L′v : L′vp] = (vK : pvK)[Kv : Kvp] <∞, and L|L′ is
an infinite purely inseparable extension. Therefore at least one of the extensions vL|vL′ or
Lv|L′v is infinite. Indeed, suppose that (vL : vL′) and [Lv : L′v] were finite. Take any finite
subextension E|L′ of L|L′ such that [E : L′] > (vL : vL′)[Lv : L′v]. Then

[E : L′] > (vL : vL′)[Lv : L′v] ≥ (vE : vL′)[Ev : L′v] ,
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which contradicts the fact that L′ as a maximal field is defectless. If vL/vL′ contains elements
of arbitrarily high order or Lv contains elements of arbitrarily high degree over L′v, then from
the value-algebraic or residue-algebraic case of Theorem 1.2 we deduce that any maximal
immediate extension of L is of infinite transcendence degree over L. Otherwise, vL/vL′ is
a p-group of finite exponent, Lv|L′v is a purely inseparable extension with (Lv)p

n ⊆ L′v
for some natural number n, and vL/vL′ or Lv|L′v is infinite. But this is not possible if
[L′v : L′vp](vL′ : pvL′) <∞.

It remains to discuss the case where L|K is an infinite extension, its maximal separable
subextension L′|K is finite, and condition (6.17) fails. Since then also (L′, v) is maximal by
Theorem 2.33, we can replace K by L′ and simply concentrate on the case where L|K is
purely inseparable. We will start with a following easy observation.

Lemma 6.6. If (K, v) is a maximal field of characteristic p > 0, then also K1/p with the
unique extension of the valuation v is a maximal field.

Proof. If (aν) is a pseudo Cauchy sequence in K1/p, then from the definition of a pseudo
Cauchy sequence it follows that (apν) is a pseudo Cauchy sequence in K. Since (K, v) is maxi-
mal, by Theorem 2.42 it has a pseudo limit b ∈ K. But then, with the use of condition (2.14),
we obtain that a = b1/p ∈ L is a pseudo limit of (aν).

Note that if the maximal field (K, v) is of characteristic p, then condition (6.17) implies
that the p-degree of K is finite, as it is equal to (vK : pvK)[Kv : Kvp]. If condition (6.17)
does not hold, then since vK1/p = 1

p
vK and K1/pv = (Kv)1/p, we have that vK1/p/vK has

exponent p, every element in K1/pv \Kv has degree p over Kv, and at least one of the two
extensions is infinite. By the fundamental inequality, also the purely inseparable extension
K1/p|K is infinite. On the other hand, Lemma 6.6 shows that the field (K1/p, v) is again
maximal. This case shows that the assertion of Theorem 1.2 may fail even when vL/vK
is an infinite torsion group or Lv|Kv is an infinite algebraic extension. In fact, all possible
cases can appear for infinite p-degree:

Theorem 6.7. Take a maximal field (K, v) of characteristic p > 0 for which condition (6.17)
fails (which is equivalent to K having infinite p-degree). Assume that the valuation v is
nontrivial and take κ to be the maximum of (vK : pvK) and [Kv : Kvp], considered as
cardinals. Then:

1) The valued field (K1/p, v) is again maximal, although vK1/p/vK is an infinite torsion
group or K1/pv|Kv is an infinite algebraic extension.

2) For every n ∈ N and every infinite cardinal λ ≤ κ, there are subextensions (Ln|K, v) and
(Lλ|K, v) of (K1/p|K, v) such that (K1/p|Lλ, v) is an immediate algebraic extension of degree
λ and (K1/p|Ln, v) is an immediate algebraic extension of degree pn.

3) There is a purely inseparable extension (L|K, v) with

• vL = 1
p
vK and Lv = Kv if (vK : pvK) =∞,

• vL = vK and Lv = (Kv)1/p if [Kv : Kvp] =∞,

such that every maximal immediate extension of (L, v) has transcendence degree at least κ.
In both cases, L can also be taken to simultaneously satisfy vL = 1

p
vK and Lv = (Kv)1/p.
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If the cofinality of vK is countable, then in 2), K1/p can be replaced by the completion
of Lλ or Ln, respectively, and in 3), “maximal immediate extension” can be replaced by
“completion”.

We prove first the following observation.

Lemma 6.8. Take a henselian field (K, v) of positive characteristic p and a pseudo Cauchy
sequence (aν)ν<λ in (K, v) without a pseudo limit in K. If (K(a)|K, v) is a valued field
extension of degree p such that a is a pseudo limit of (aν)ν<λ , then (K(a)|K, v) is immediate.

Proof. By Lemma 2.39, the sequence (aν)ν<λ does not fix the value of the minimal polynomial
f of a over K. On the other hand, we will show that (aν)ν<λ fixes the value of every
polynomial of degree less than deg f = p. We take g ∈ K[X] to be a polynomial of smallest
degree such that (aν)ν<λ does not fix the value of g. Since (aν)ν<λ admits no pseudo limit
in (K, v), from Lemma 2.38 it follows that the polynomial g is of degree at least 2. Take
a root b of g. By Theorem 2.41, there is an extension of the valuation v from K to K(b)
such that (K(b)|K, v) is immediate. Since [K(b) : K] ≥ 2 and (K, v) is henselian, the
Lemma of Ostrowski implies that [K(b) : K] ≥ p. This shows that f is a polynomial of
smallest degree whose value is not fixed by (aν)ν<λ. Hence again by Theorem 2.41, there is
an extension of the valuation v from K to K(a) such that (K(a)|K, v) is immediate. Since
(K, v) is henselian, this extension coincides with the given valuation on K(a) and we have
thus proved that the extension (K(a)|K, v) is immediate.

Proof of Theorem 6.7: Part 1) follows immediately from Lemma 6.6.

To prove assertions 2) and 3) we consider the following subsets of K. We take A to be a
set of elements of K such that the cosets 1

p
va+ vK, a ∈ A, form a basis of the Z/pZ-vector

space 1
p
vK/vK. Similarly, we take B to be a set of elements of the valuation ring of (K, v)

such that the residues (bv)1/p, b ∈ B, form a basis of (Kv)1/p|Kv. Then

1

p
vK = vK +

∑
a∈A

1

p
vaZ and (Kv)1/p = Kv((bv)1/p | b ∈ B) .

In order to prove assertion 2) of our theorem, we set

L∞ := K(a1/p, b1/p | a ∈ A, b ∈ B) ⊆ K1/p (6.18)

and obtain that vL∞ = 1
p
vK and L∞v = (Kv)1/p. So the extension (K1/p|L∞, v) is imme-

diate. Lemma 6.6 shows that (K1/p, v) is a maximal immediate extension of (L∞, v). Our
goal is now to show that under the assumptions of the theorem, this extension is of degree at
least κ. Once this is proved, we can take X ⊆ K1/p to be a minimal set of generators of the
extension K1/p|L∞. Then the elements of X are p-independent over L∞. Take any natural
number n. AsX is infinite, we can choose x1, . . . , xn ∈ X and set Ln := L∞(X\{x1, . . . , xn}).
Then K1/p|Ln is an immediate extension of degree pn. Similarly, for any infinite cardinal
λ ≤ κ, take Y ⊆ X of cardinality λ and set Lλ := L∞(X \Y ). Then K1/p|Lλ is an immediate
algebraic extension of degree λ.

We assume first that κ = (vK : pvK), so the set A is infinite. Then we take a partition
of A into κ many countably infinite sets Aτ , τ < κ. We choose enumerations

Aτ = {aτ,i | i ∈ N} .
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For every µ < κ we set Aµ :=
⋃
τ<µAτ and

Kµ := K(a1/p | a ∈ Aµ) .

Note that A0 = ∅ and K0 = K. We claim that

vKµ = vK +
∑
a∈Aµ

1

p
vaZ and Kµv = Kv . (6.19)

The inclusions “⊇” are clear. For the converses, we observe that value group and residue
field of Kµ are the unions of the value groups and residue fields of all finite subextensions of

Kµ|K. Such subextensions can be written in the form F = K(a
1/p
1 , . . . , a

1/p
k ) with distinct

a1, . . . , ak ∈ Aµ . We have that 1
p
va1, . . . ,

1
p
vak ∈ vF , hence

pk ≥ [F : K] ≥ (vF : vK)[Fv : Kv] ≥ pk · 1 ,

so equality holds everywhere. Consequently, vF = vK +
∑k

i=1 vaiZ and Fv = Kv. This
proves our claim.

For every τ < κ we choose a sequence (cτ,i)i∈N of elements in K such that the sequence
of values

(vcτ,ia
1/p
τ,i )i∈N (6.20)

is strictly increasing. For every n ∈ N, we set

ξτ,n :=
n∑
i=1

cτ,ia
1/p
τ,i ∈ Kτ+1 . (6.21)

Then (ξτ,n)n∈N satisfies condition (2.12), hence is a pseudo Cauchy sequence. By Theo-
rem 2.42, the sequence (ξτ,n)n∈N admits a pseudo limit ξτ in the maximal field (K1/p, v).
In order to show that the degree of K1/p|L∞ is at least κ, we prove by induction that for
every µ < κ and each K ′ such that Kµ+1 ⊆ K ′ ⊆ L∞, the pseudo Cauchy sequence (ξµ,n)n∈N
admits no pseudo limit in K ′(ξτ | τ < µ) and the extension

(K ′(ξτ | τ ≤ µ)|K ′, v) (6.22)

is immediate.
Take µ < κ and assume that our assertions have already been shown for all µ′ < µ. If

µ = µ′ + 1 is a successor ordinal, then from (6.22) we readily get that the extension

(K ′(ξτ | τ < µ)|K ′, v) (6.23)

is immediate for every K ′ such that Kµ ⊆ K ′ ⊆ L∞ . If µ is a limit ordinal, then (6.23)
follows from the induction hypothesis since Kµ′ ⊆ Kµ ⊆ K ′ for each µ′ < µ and since the
union over the increasing chain of immediate extensions K ′(ξτ | τ ≤ µ′), µ′ < µ, of (K ′, v) is
again an immediate extension of (K ′, v).

In order to prove the induction step, suppose towards a contradiction that (ξτ,n)n∈N
admits a pseudo limit ηµ in K ′(ξτ | τ < µ) for some K ′ such that Kµ+1 ⊆ K ′ ⊆ L∞. Then
ηµ lies already in a finite extension

E := Kµ(ξτ | τ < µ)(a
1/p
1 , . . . , a

1/p
k , b

1/p
1 , . . . , b

1/p
` ) (6.24)
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of Kµ(ξτ | τ < µ) in L∞(ξτ | τ < µ), with distinct elements a1, . . . , ak ∈ A \ Aµ and
b1, . . . , b` ∈ B. We claim that

vE = vKµ +
k∑
i=1

1

p
vaiZ and Ev = Kµv((b1v)1/p, . . . , (b`v)1/p) . (6.25)

As the extension (6.23) is immediate for Kµ in place of K ′, the inclusions “⊇” are clear.
Conversely, from these inclusions together with the equations in (6.19) and our assumption
on the ai , it follows that (vE : vK) ≥ pk as well as [Ev : Kv] ≥ p`. Therefore, we have that
pk ·p` ≥ [E : K] ≥ (vE : vK)[Ev : Kv] ≥ pk ·p`, so equality holds everywhere. Consequently,
(vE : vK) = pk and [Ev : Kv] = p`, which proves that the inclusions are equalities.

Now we take n to be the minimum of all i ∈ N such that aµ,i is not among the a1, . . . , ak .
We set ξE := 0 if n = 1, and ξE := ξµ,n−1 otherwise. Then ηµ− ξE ∈ E. In contrast, the fact
that ηµ is a pseudo limit, together with the first equation of (6.25), yields that

v(ηµ − ξE) = v(ξµ,n − ξE) = vcµ,n +
1

p
vaµ,n /∈ vKµ +

k∑
i=1

1

p
vaiZ = vE .

This contradiction proves that (ξµ,n)n∈N admits no pseudo limit in K ′(ξτ | τ < µ). Thus in
particular, ξµ /∈ K ′(ξτ | τ < µ). As Kµ+1 ⊆ K ′, we have that (ξµ,n)n∈N is a pseudo Cauchy
sequence in (K ′(ξτ | τ < µ), v). Since [K ′(ξτ | τ < µ)(ξµ) : K ′(ξτ | τ < µ)] = p is a prime and
K ′(ξτ | τ < µ), as an algebraic extension of the henselian fieldK, is also henselian, Lemma 6.8
shows that the extension (K ′(ξτ | τ ≤ µ)|K ′(ξτ | τ < µ), v) is immediate. As also the exten-
sion (6.23) is immediate, we find that the extension (K ′(ξτ | τ ≤ µ)|K ′, v) is immediate.
This completes our induction step. Since every extension L∞(ξτ | τ ≤ µ)|L∞(ξτ | τ < µ) is
nontrivial, it follows that the degree of K1/p|L∞ is at least κ.

It remains to prove the assertion about field completions. Since (K1/p, v) as a maximal
field is complete, Proposition 2.49 implies that K1/p contains a completion Lc∞ of L∞. If the
cofinality of vK is countable, then the elements cτ,i can be chosen in such a way that the

sequence (vcτ,ia
1/p
τ,i )i∈N is cofinal in 1

p
vK. Then the sequence

v(ξτ,n+1 − ξτ,n) = vcτ,n+1a
1/p
τ,n+1,

n ∈ N, is cofinal in 1
p
vK = vL∞ and thus (ξτ,n)n∈N is a Cauchy sequence in L∞. By

Corollary 2.50, this proves that the element ξτ lies in Lc∞. Consequently, Lc∞|L∞ is of degree
at least κ. Now as in the case of maximal immediate extensions we choose subextensions Lλ
and Ln of Lc∞|L∞ such that Lcλ|Lλ and Lcn|Lλ are of the required degrees.

A simple modification of the above arguments allows us to show the assertion of part 2)
of the theorem in the case of κ = [Kv : (Kv)p], in which the set B is infinite. Let us describe
these modifications.

We take a partition of B into κ many countably infinite sets Bτ , τ < κ, and choose
enumerations

Bτ = {bτ,i | i ∈ N} .
For every µ < κ we set Bµ :=

⋃
τ<µBτ and

Kµ := K(b1/p | b ∈ Bµ) .
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Similarly as before, it is shown that

vKµ = vK and Kµv = Kv((bv)1/p) | b ∈ Bµ) . (6.26)

We choose a sequence (ci)i∈N of elements in K with strictly increasing values. For every
τ < κ and n ∈ N, we set

ξτ,n :=
n∑
i=1

cib
1/p
τ,i ∈ Kτ+1 . (6.27)

Now the only further part of the proof that needs to be modified is the one that shows that
ηµ ∈ E, where ηµ is a pseudo limit of (ξµ,n)n∈N, leads to a contradiction. In the present case,
we take n to be the minimum of all i ∈ N such that bµ,i is not among the b1, . . . , b` . As
before, we set ξE := 0 if n = 1, and ξE := ξµ,n−1 otherwise. Then ηµ − ξE ∈ E. In contrast,
the fact that ηµ is a pseudo limit, together with the second equation of (6.25), yields that

c−1
n (ηµ − ξE)v = c−1

n (ξµ,n − ξE)v = (b1/p
µ,n)v = (bµ,nv)1/p

/∈ Kµv((b1v)1/p, . . . , (b`v)1/p) = Ev ,

a contradiction. This completes our modification and thereby the proof that the extension
(K1/p|L∞, v) is of degree at least κ.

Again, if the cofinality of vK is countable, then the elements ci can be chosen in such
a way that the sequence of their values is cofinal in vK. Repeating the argument from the
first part of the proof, we deduce the assertion about field completion.

We now turn to part 3) of the theorem. Again, we consider separately the cases of
κ = (vK : pvK) and of κ = [Kv : (Kv)p].

We assume first that κ = (vK : pvK) and take a partition of A as in the proof of part 2).
Further, we set s(1) = 0 and s(m) = 1 + 2 + · · ·+ (m− 1) for m > 1. For every τ < µ and
every m ∈ N, we set

zτ,m :=
m∑
i=1

dτ,s(m)+ia
p−i

τ,s(m)+i ∈ K
1/p∞ ,

where dτ,j are elements from K such that for every m ∈ N,

1) the sequence (vdτ,s(m)+ia
p−i

τ,s(m)+i)1≤i≤m is strictly increasing,

2) vdτ,s(m)+ma
p−m

τ,s(m)+m < vdτ,s(m+1)+1a
p−1

τ,s(m+1)+1 .

If the cofinality of vK is countable, then the elements dτ,i can be chosen in such a way that
the sequence that results from 1) and 2) is cofinal in 1

p
vK. Then also the sequence of the

values (vzτ,m)m∈N is cofinal in 1
p
vK.

We note that zp
m

τ,m ∈ K with

[K(zτ,m) : K] = pm and
1

p
vaτ,s(m)+1, . . . ,

1

p
vaτ,s(m)+m ∈ vK(zτ,m) . (6.28)

We set
Lµ := K(zτ,m | τ < µ, m ∈ N) for µ ≤ κ , and L := Lκ .
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Further, we fix a maximal immediate extension (M, v) of (L, v). We claim that

vLµ = vK +
∑
a∈Aµ

1

p
va and Lµv = Kv . (6.29)

In particular, this shows that

vL =
1

p
vK and Lv = Kv . (6.30)

To prove our claim, we observe that the first inclusion “⊇” in (6.29) follows from (6.28).
We choose any µ < κ, k ∈ N, τ1, . . . , τk < µ and m1, . . . ,mk ∈ N such that the pairs (τi,mi),
1 ≤ i ≤ k, are distinct. Then we compute, using (6.28):

pm1 · . . . · pmk ≥ [K(zτ1,m1 , . . . , zτk,mk) : K]

≥ (vK(zτ1,m1 , . . . , zτk,mk) : vK)[K(zτ1,m1 , . . . , zτk,mk)v : Kv]

≥ (vK(zτ1,m1 , . . . , zτk,mk) : vK)

≥
(
vK +

k∑
j=1

mj∑
i=1

1

p
vaτj ,s(mj)+iZ : vK

)
≥ pm1 · . . . · pmk ,

showing that equality holds everywhere. Therefore,

vK(zτ1,m1 , . . . , zτk,mk) = vK +
k∑
j=1

mj∑
i=1

1

p
vaτj ,s(mj)+iZ ⊆ vK +

∑
a∈Aµ

1

p
va

and
K(zτ1,m1 , . . . , zτk,mk)v = Kv .

Since the value group and residue field of Lµ are the unions of the value groups and residue
fields of all subfields of the above form, this proves our claim.

For every τ < κ and n ∈ N, we set

ζτ,n :=
n∑

m=1

zτ,m ∈ L.

Then (ζτ,n)n∈N satisfies condition (2.12), thus is a pseudo Cauchy sequence in (L, v). Hence
the sequence admits a pseudo limit ζτ in the maximal field (M, v). In order to show that the
transcendence degree of M |L is at least κ, we prove by induction that for every µ < κ and
every field L′ such that Lµ+1 ⊆ L′ ⊆ L, the pseudo Cauchy sequence (ζµ,n)n∈N is of tran-
scendental type over L′(ζτ | τ < µ), so that the extension (L′(ζτ | τ ≤ µ)|L′(ζτ | τ < µ), v) is
immediate and transcendental and then also the extension

(L′(ζτ | τ ≤ µ)|L′, v) (6.31)

is immediate.
Take µ < κ and assume that our assertions have already been shown for all µ′ < µ. If

µ = µ′ + 1 is a successor ordinal, then from (6.31) we readily get that the extension

(L′(ζτ | τ < µ)|L′, v) (6.32)
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is immediate for every L′ such that Lµ ⊆ L′ ⊆ L. If µ is a limit ordinal, then (6.32) follows
from the induction hypothesis since Lµ′ ⊆ Lµ ⊆ L′ for each µ′ < µ and since the union over
an increasing chain of immediate extensions of (L′, v) is again an immediate extension of
(L′, v).

In order to prove the induction step, take any L′ such that Lµ+1 ⊆ L′ ⊆ L. Sup-
pose towards a contradiction that the pseudo Cauchy sequence (ζµ,n)n∈N in Lµ+1 is of al-
gebraic type over (L′(ζτ | τ < µ), v) (which includes the case where it has a pseudo limit
in L′(ζτ | τ < µ)). Then by Theorem 2.41 there exists an immediate algebraic extension
(L′(ζτ | τ < µ)(d)|L′(ζτ | τ < µ), v) with d a pseudo limit of the sequence. The element d is
also algebraic over Lµ(ζτ | τ < µ). On the other hand, we will now show that from the fact
that d is a pseudo limit of (ζµ,n)n∈N it follows that the value group vLµ(ζτ | τ < µ)(d) is an
infinite extension of vLµ(ζτ | τ < µ). Take n ∈ N and define

ηµ,n := ζp
n−1

µ,n − d
pn−1

µ,s(n)+na
1/p
µ,s(n)+n = ζp

n−1

µ,n−1 +
n−1∑
i=1

dp
n−1

µ,s(n)+ia
pn−1−i

µ,s(n)+i ∈ K .

Since d is a pseudo limit of the pseudo Cauchy sequence (ζµ,n)n∈N, we deduce that

v(d−ζµ,n) = v(ζµ,n+1−ζµ,n) = vzµ,n+1 = vdµ,s(n+1)+1a
1/p
µ,s(n+1)+1 > vdµ,s(n)+na

p−n

µ,s(n)+n . (6.33)

Therefore,

v
(
dp

n−1 − ηµ,n
)

= v
(
dp

n−1 − ζpn−1

µ,n + dp
n−1

µ,s(n)+na
1/p
µ,s(n)+n

)
= pn−1v

(
d− ζµ,n + dµ,s(n)+na

p−n

µ,s(n)+n

)
= pn−1 min

{
v(d− ζµ,n) , v

(
dµ,s(n)+na

p−n

µ,s(n)+n

)}
= pn−1v

(
dµ,s(n)+na

p−n

µ,s(n)+n

)
= pn−1vdµ,s(n)+n +

1

p
vaµ,s(n)+n ,

which shows that
1

p
vaµ,s(n)+n ∈ vLµ(ζµ | µ < τ)(d)

for all n ∈ N. In view of (6.29), these values are not in vLµ . Since the extension (6.32) is
immediate for Lµ in place of L′, they are also not in vLµ(ζτ | τ < µ). It follows that the index
(vLµ(ζτ | τ < µ)(d) : vLµ(ζτ | τ < µ)) is infinite. Together with the fundamental inequality
this contradicts the fact that the extension Lµ(ζτ | τ < µ)(d)|Lµ(ζτ | τ < µ) is finite. This
contradiction proves that the pseudo Cauchy sequence (ζµ,n)n∈N is of transcendental type
over L′(ζτ | τ < µ). From Theorem 2.40 it follows that (L′(ζτ | τ ≤ µ)|L′(ζτ | τ < µ), v) is
an immediate transcendental extension. Since the extension (6.32) is immediate, we obtain
that also (L′(ζτ | τ ≤ µ)|L′, v) is immediate.

This completes our induction step. By induction on µ we have therefore shown that
(L(ζτ | τ < µ), v) is an immediate extension of (L, v) for each µ < κ, which yields that
also the union (L(ζτ | τ < κ), v) of these fields is an immediate extension of (L, v). As
every extension L(ζτ | τ ≤ µ)|L(ζτ | τ < µ) is transcendental, the transcendence degree of
L(ζτ | τ < κ) over L is at least κ.
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If the cofinality of vK is countable, then as we have already noticed, the elements dτ,i
can be chosen in such a way that the sequence (vzτ,n)n∈N is cofinal in vL. Then also the
sequence of the values

v(ζτ,n+1 − ζτ,n) = vzτ,n+1,

n ∈ N, is cofinal in vL. Hence (ζτ,n)n∈N is a Cauchy sequence in (L, v). Similarly to the
proof of part b) we deduce that (M, v) contains a completion Lc of L and every ζτ lies in Lc.

Note that if we replace Lµ by the field

K(zτ,m, b
1/p | τ < µ, m ∈ N, b ∈ B) = Lµ(b1/p | b ∈ B),

for µ ≤ κ, and L by Lκ(b
1/p | b ∈ B), then the above arguments remain true. However,

vLκ(b
1/p | b ∈ B) = 1

p
vK and Lκ(b

1/p | b ∈ B)v = (Kv)1/p simultaneously. This proves the

additional assertion of the case 3).

A simple modification of the above arguments allows us to show the assertion of part 3)
of the theorem in the case of κ = [Kv : (Kv)p]. We take the partition of B as in the proof
of part 2). We now list the modifications.

Since the vb = 0 for all b ∈ B, the only requirement for the elements dτ,i that we need is
that vdτ,i < vdτ,j for i < j. If the cofinality of vK is countable, then the elements dτ,i can
be chosen in such a way that the sequence of their values is cofinal in 1

p
vK = vL. We set

zτ,m :=
m∑
i=1

dτ,s(m)+ib
p−i

τ,s(m)+i ∈ K
1/p∞ ,

Equation (6.28) is replaced by

[K(zτ,m) : K] = pm and (bτ,s(m)+1v)1/p, . . . , (bτ,s(m)+mv)1/p ∈ K(zτ,m)v . (6.34)

One proves in a similar way as before that

vLµ = vK and Lµv = Kv((bv)1/p | b ∈ Bµ) . (6.35)

In particular, this shows that

vL = vK and Lv = (Kv)1/p . (6.36)

Now the only further part of the proof that needs to be modified is the one that shows that
the extension Lµ(ζτ | τ < µ)(d)|Lµ(ζτ | τ < µ) cannot be finite. We define ηµ,n as before,
with “b” in place of “a”. Also (6.33) holds with “b” in place of “a”, whence

v d−p
n−1

µ,s(n)+n

(
dp

n−1 − ζpn−1

µ,n

)
= pn−1vd−1

µ,s(n)+n (d− ζµ,n) > 0 .

This leads to

d−p
n−1

µ,s(n)+n

(
dp

n−1 − ηµ,n
)
v = d−p

n−1

µ,s(n)+n

(
dp

n−1 − ζpn−1

µ,n + dp
n−1

µ,s(n)+nb
1/p
µ,s(n)+n

)
v

=
(
d−p

n−1

µ,s(n)+n(dp
n−1 − ζpn−1

µ,n ) + b
1/p
µ,s(n)+n

)
v

= (b
1/p
µ,s(n)+n)v = (bµ,s(n)+nv)1/p ,
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which shows that
(bµ,s(n)+nv)1/p ∈ Lµ(ζτ | τ < µ)(d)v

for all n ∈ N. In view of (6.35), these residues are not in Lµv. As before, this is shown
to contradict d being algebraic over Lµ(ζτ | τ < µ). This completes our modification and
thereby the proof that (M |L, v) is of transcendence degree at least κ.

To prove the additional assertion of case 3), we replace Lµ by the field

K(zτ,m, a
1/p | τ < µ, m ∈ N, a ∈ A) = Lµ(a1/p | a ∈ A),

µ ≤ κ and L by Lκ(a
1/p | a ∈ A). 2

We note that in contrast to part 1) and 2), the field L of part 3) is not contained in K1/p.
Case 2) of this theorem is a generalization of Nagata’s example ([38, Appendix, Exam-
ple (E3.1), pp. 206-207]). Similar to that example, the valued fields in 2) are nonmaximal
fields admitting an algebraic maximal immediate extension.

Example 6.9. As an example of a field satisfying the conditions of Theorem 6.7 we can
take a power series field k

((
xΓ
))

with the x-adic valuation v, where chark = p > 0 and the
quotient group Γ/pΓ is infinite or k is of infinite p-degree. The first case holds for instance
for K1 := Fp

((
xG
))

, where G is an ordered subgroup of the reals of the form
⊕

i∈N riZ. In
the second case we can choose K2 := k

((
xZ)) with k := Fp(ti | i ∈ N), where ti , i ∈ N, are

algebraically independent over Fp .
Consider now the field (K2, v). Set

L∞ := K2

(
x1/p, t

1/p
i | i ∈ N

)
.

Then L∞ is a subfield of K
1/p
2 . It fits the definition in (6.18) with K2 in place of K, A = {x}

and B = {ti | i ∈ N}. From the proof of Theorem 6.7 it follows that (K
1/p
2 , v) is a maximal

immediate extension of (L∞, v). We show that in this case we have even more: K
1/p
2 is the

completion of L∞. As vL∞ = vK
1/p
2 , Proposition 2.49 yields that K

1/p
2 contains a completion

Lc∞ of L∞. For the proof of the converse inclusion, note first that K
1/p
2 = k′

((
x

1
p

Z)), with

k′ = Fp(t1/pi | i ∈ N). Take any ξ ∈ K1/p
2 \ L∞. Then the element is of the form

ξ =
∞∑
i=1

cix
ni
p

with ci ∈ k′ and a strictly increasing sequence of integers (ni)i∈N. Since ξ /∈ L∞, infinitely
many of the elements ci are nonzero. Thus we can omit the summands with coefficients
equal to zero, and we can assume that all the coefficients ci are nonzero.

For every natural number N set

ξN :=
N∑
i=1

cix
ni
p ∈ L∞.

Then (ξN)N∈N satisfies condition (2.12), hence is a pseudo Cauchy sequence in L∞. Further-
more, from the equation (2.14) it follows that ξ is a pseudo limit of the sequence. Since the
sequence of the values v(ξN+1 − ξN) = nN+1

p
, N ∈ N, is cofinal in 1

p
Z = vL∞, we obtain that
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(ξN)N∈N is a Cauchy sequence in L∞. By Corollary 2.50 this yields that ξ ∈ Lc∞. Therefore,

K
1/p
2 = Lc∞. Hence the maximal immediate extension of L∞ is unique up to isomorphism.

The next theorem will show that if we replace K2 by K1, the assertion about uniqueness
of maximal immediate extension is very far from being true. �

Theorem 6.10. Assume that (K, v) is a maximal field of characteristic p > 0 satisfying one
of the following conditions:

1) vK/pvK is infinite and vK admits a set of representatives of the cosets modulo pvK
which contains an infinite bounded subset, or

2) the residue field extension Kv|(Kv)p is infinite and the value group vK is not discrete.

Then there is an infinite purely inseparable extension (L, v) of (K, v) which admits (K1/p, v)
as an algebraic maximal immediate extension, but also admits a maximal immediate exten-
sion of infinite transcendence degree.

Proof. Note that a field (K, v) which satisfies the assumptions of Theorem 6.10 also satisfies
the assumptions of Theorem 6.7. We choose the sets A,B ⊆ K1/p and define L := L∞ as in
the proof of part 2) of Theorem 6.7. Then, as we have already seen, (K1/p, v) is a maximal
immediate extension of (L, v).

To show the existence of an immediate extension of L of infinite transcendence degree
over L, we consider separately the cases 1) and 2) of the theorem. We assume first that
the conditions of case 1) hold. Then the set A can be chosen so as to contain an infinite
countable subset A′ such that the set of values S = {va | a ∈ A′} is bounded. It must contain
a bounded infinite strictly increasing or a bounded infinite strictly decreasing sequence. If it
does not contain the former, we replace A′ by {a−1 | a ∈ A′}, thereby passing from S to −S.
Now we can choose a sequence (aj)j∈N of elements in A′ such that the sequence (vaj)j∈N is
strictly increasing and bounded by some γ ∈ vK. We partition the sequence (aj)j∈N into
countably many subsequences

(aN,i)i∈N (N ∈ N) .

As in the proof of Theorem 6.7, we define KN := K(a
1/p
n,i | n < N , i ∈ N) ⊆ K1/p.

For every N ∈ N we consider the pseudo Cauchy sequence (ξN,m)m∈N defined by

ξN,m :=
m∑
i=1

a
1/p
N,i ∈ KN+1

and the pseudo limit ξN of the sequence in the maximal immediate extension (K1/p, v)
of (L, v). We show that for every N the pseudo limit ξN does not lie in the completion Lc

of (L, v). Fix N ∈ N and take any d ∈ L. Then d lies already in some finite extension

E := K(a
1/p
1 , . . . , a

1/p
k , b

1/p
1 , . . . , b

1/p
l )

of K in L. Choosing ξE as in the proof of Theorem 6.7, we obtain that ξE − d ∈ E. But
from equalities (6.25) with µ = 0 it follows that v(ξN − ξE) = 1

p
vaN,n /∈ vE. Thus,

v(ξN − d) = min{v(ξN − ξE), v(ξE − d)} ≤ 1

p
vaN,n <

1

p
γ .
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Hence the values v(ξN − d), d ∈ L, are bounded by 1
p
γ and consequently, ξN /∈ Lc.

Again from the proof of Theorem 6.7 it follows that for every field K ′ such that
K1 ⊆ K ′ ⊆ L the extension (K ′(ξ1)|K ′, v) is immediate and purely inseparable of degree p.
Since ξ1 /∈ Lc, from Theorem 4.1 we deduce that for an element d1 ∈ K× satisfying
inequality (4.1) with η = ξ1, a root ϑ1 of the polynomial

f1 := Xp −X −
(
ξ1

d1

)p
generates an immediate Galois extension (L(ϑ1)|L, v) of degree p. Take any field K ′ such
that K1 ⊆ K ′ ⊆ L. Then, Proposition 2.49 yields that K ′c ⊆ Lc. Thus ξ1 /∈ K ′c. Moreover,
dist (ξ,K ′) ≤ dist (ξ, L) and thus the element d1 satisfies inequality (4.1) with K ′ in place
of L. Therefore also (K ′(ϑ1)|K ′, v) is an immediate extension of degree p.

Take any m > 1. Suppose that we have shown that for every l < m there is dl ∈ K×
such that a root ϑl of the polynomial

fl := Xp −X −
(
ξl
dl

)p
generates, for any field K ′ with Kl+1 ⊆ K ′ ⊆ L, an immediate Galois extension
(K ′(ϑ1, . . . , ϑl)|K ′(ϑ1, . . . , ϑl−1), v) of degree p. It follows in particular, that the extension
(Km+1(ϑ1, . . . , ϑm−1)|Km+1, v) is immediate. Take any field K ′ such that Km+1 ⊆ K ′ ⊆ L.
Replacing in the argumentation of the proof of part 2) of Theorem 6.7 the field K ′(ξl | l < m)
by K ′(ϑl | l < m), we deduce that (K ′(ϑ1, . . . , ϑm−1)(ξm)|K ′(ϑ1, . . . , ϑm−1), v) is an imme-
diate purely inseparable extension of degree p. Since ξm /∈ Lc and L(ϑ1, . . . , ϑm−1)c =
Lc(ϑ1, . . . , ϑm−1) is a separable extension of L, linearly disjoint from the purely inseparable
extension Lc(ξm)|Lc, we obtain that

[Lc(ϑ1, . . . , ϑm−1)(ξm) : Lc(ϑ1, . . . , ϑm−1)] = p.

Therefore, ξm does not lie in L(ϑ1, . . . , ϑm−1)c. Thus, from Theorem 4.1 it follows that for
an element dm ∈ K× satisfying inequality (4.1) with η = ξm and L(ϑ1, . . . , ϑm−1) in place
of L, a root ϑm of the polynomial fm := Xp−X − (ξm/dm)p generates an immediate Galois
extension (L(ϑ1, . . . , ϑm)|L(ϑ1, . . . , ϑm−1), v) of degree p. As in the case of m = 1 we deduce
that also the extension (K ′(ϑ1, . . . , ϑm)|K ′(ϑ1, . . . , ϑm−1), v) is immediate.

By induction, we obtain an infinite immediate separable-algebraic extension
F := L(ϑm | m ∈ N) of L. Since K as a maximal field is henselian and L|K is an al-
gebraic extension, L is also a henselian field. Hence from the separable-algebraic case of
Theorem 1.2 it follows that each maximal immediate extension (M, v) of (F, v) has infinite
transcendence degree over F . Since (F |L, v) is immediate, M is also a maximal immediate
extension of L.

Similar arguments allow us to prove the assertion in the case of an infinite residue field
extension Kv|(Kv)p when the value group vK is not discrete. Let us describe the modifica-
tions.

Take an infinite countable subset B′ of B and an infinite partition of B′ into infinite sets

BN = {bN,i | i ∈ N} (N ∈ N) .
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Since vK is not discrete, we can choose elements ci ∈ K such that the sequence (vci)i∈N of
their values is strictly increasing and bounded by some element γ ∈ vK. For every N we
consider the pseudo Cauchy sequence (ξN,m)m∈N defined by (6.27).

The only further part of the proof that needs to be modified is the one that shows
that ξN /∈ Lc. More precisely, we need to show that for any element d ∈ E we have that
v(ξN − d) < γ. Take ξE as in the second case of the proof of part 2) of Theorem 6.7. From
the equalities (6.25) with µ = 0 we deduce that c−1

n (ξN − ξE)v = (bN,nv)1/p /∈ Ev. Suppose
that v(ξN − d) > v(ξN − ξE). Then

v
(
c−1
n (ξN − ξE)− c−1

n (ξE − d)
)
> vc−1

n (ξN − ξE) = 0.

It follows that c−1
n (ξN − ξE)v = c−1

n (ξE − d)v ∈ Ev, a contradiction. Consequently,

v(ξN − d) ≤ v(ξN − ξE) = vcn < γ .

This completes our modification and thereby the proof that (L, v) admits a maximal imme-
diate extension of infinite transcendence degree over L.

Finally, let us discuss the case of transcendental extensions (L, v) of a maximal field
(K, v). In view of the valuation-transcendental case of Theorem 1.2, it remains to consider
the valuation-algebraic case where vL/vK is a torsion group and Lv|Kv is algebraic.

Theorem 6.11. Take a maximal field (K, v) and a transcendental extension (L, v) of (K, v)
of finite transcendence degree. Assume that Lv|Kv is separable-algebraic and vL/vK is a
torsion group such that the characteristic of Kv does not divide the orders of its elements.
Then Lv|Kv or vL/vK is infinite and every maximal immediate extension of (L, v) has
infinite transcendence degree over L.

Proof. Take an extension (L|K, v) as in the assumptions of the theorem. In view of the
value-algebraic and residue-algebraic cases of Theorem 1.2, it suffices to show that at least
one of the extensions vL|vK or Lv|Kv is infinite.

Take K ′ to be the relative algebraic closure of K in Lh. By the assumptions on the residue
field and value group extensions of (L|K, v), it follows from Lemma 2.14 that vK ′ = vLh = vL
and K ′v = Lhv = Lv. Therefore, (Lh|K ′, v) is an immediate transcendental extension.

Suppose that the value group extension and the residue field extension of (L|K, v) and
hence of (K ′|K, v) were finite. Since K is henselian and a defectless field by Theorem 2.32,
the degree [K ′ : K] is equal to (vK ′ : vK)[K ′v : Kv] and hence would be finite, so (K ′, v)
would again be a maximal field, which contradicts the fact that (Lh|K ′, v) is a nontrivial
immediate extension.

6.3 Valued rational function fields

We will apply now Theorem 1.2 to the problem of describing the possible extensions of a
valuation from a given valued field (K, v) to a rational function field over K. The problem
was considered in [22]. The following theorem is a generalization of one of the cases treated
in Theorem 1.6 of that paper.
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Theorem 6.12. Take a nontrivially valued field (K, v), an ordered abelian group extension
Γ of vK such that Γ/vK is finite, and a finite field extension k|Kv. Assume that there is a
separable-algebraic extension (L, v) of (K, v) such that vL ⊆ Γ, Lv ⊆ k, and that with respect
to some extension of v to the algebraic closure of L, the corresponding extension Lh|Kh is
infinite. Then for any natural number n there is an extension w of the valuation v of K to
the rational function field K(x1, . . . , xn)|K such that

wK(x1, . . . , xn) = Γ and K(x1, . . . , xn)w = k.

For the proof we will need the following facts (cf. Theorem 2.14 and Lemma 3.13 of [22]).

Lemma 6.13. Let (K, v) be a non-trivially valued field, Γ an ordered abelian group extension
of vK such that Γ/vK is finite and k a finite extension of Kv. Then there is a simple
separable-algebraic extension (L, v) of (K, v) such that vL = Γ and Lv = k.

Lemma 6.14. Assume that K(a)|K is a separable-algebraic extension. Assume further that

K(x) is a rational function field over K and v is a valuation of K̃(x) such that

v(x− a) > kras(a,K).

Then vK(a) ⊆ vK(x) and K(a)v ⊆ K(x)v.

Proof of Theorem 6.12: Assume that (Lh|Kh, v) is an infinite extension. Since
(Lh|L, v) is an immediate extension, vK ⊆ vLh ⊆ Γ and Kv ⊆ Lhv ⊆ k. Thus Γ/vLh

is a finite group and k|Lhv is a finite extension. As the valuation v is nontrivial on K,
hence also on Lh, from Lemma 6.13 it follows that there is a separable-algebraic extension
(Lh(a), v) of (Lh, v) such that vLh(a) = Γ and Lh(a)v = k. Then (L(a), v) is a separable-
algebraic extension of (K, v) and Lh(a) = L(a)h is an infinite extension of Kh. Therefore,
without loss of generality we can assume that vL = Γ and Lv = k.

Since Lh|Kh is an infinite separable-algebraic extension, from the separable-algebraic
case of Theorem 1.2 it follows that (L, v) admits an immediate extension (M, v) of infinite
transcendence degree. Take elements x1, . . . , xn−1, y ∈ M algebraically independent over L
and set

E := K(x1, . . . , xn−1) ⊆M.

As (L(x1, . . . , xn−1)|L, v) is an immediate extension, we obtain that

vE ⊆ vL(x1, . . . , xn−1) = Γ and Ev ⊆ L(x1, . . . , xn−1)v = k.

Since L|K is a separable-algebraic extension, vL/vK is a finite group and the extension
Lv|Kv is finite, there is a finite subextension L′|K of L|K such that vL′ = vL and L′v = Lv.
Moreover, by the Theorem of Primitive Element, we can choose L′|K to be a simple exten-
sion K(b)|K for some b ∈ L. Then E(b) ⊆ L(x1, . . . , xn−1), hence vE(b) = vL = Γ and
E(b)v = Lv = k.

Multiplying y by an element in K× of large enough value if necessary, we can assume
that

vy > kras(b, E) ∈ ṽE = ṽK.

Since E(b) ⊆ E(y, b) ⊆ L(x1, . . . , xn−1, y) ⊆ M , the extension (L(x1, . . . , xn−1, y)|E(b), v)
and hence also the extension (E(y, b)|E(b), v) is immediate. Take an element xn in some field
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extension of E, transcendental over E and define by y 7→ xn − b an isomorphism of E(y, b)
onto E(xn, b). This isomorphism induces a valuation w on E(xn, b), which is an extension
of the valuation v of E(b) with w(xn − b) = vy. Hence, w(xn − b) >kras(b, E) and from
Lemma 6.14 we deduce that

vL = vE(b) ⊆ wE(xn) = vE(y + b) ⊆ vL(x1, . . . , xn−1, y) = vL,

vL = E(b)v ⊆ E(xn)w = E(y + b)v ⊆ L(x1, . . . , xn−1, y)v = Lv,

since (L(x1, . . . , xn−1, y)|L, v) is an immediate extension. Thus equality holds everywhere
and w is an extension of v from K to K(x1, . . . , xn) such that

wK(x1, . . . , xn) = wE(xn) = vL = Γ and K(x1, . . . , xn)w = E(xn)w = Lw = k.

2

Theorem 6.12 was proved in [22] in the case of an immediate extension L|K. However, the
assumption that the extension Lh|Kh remains infinite is there omitted. The next example
shows that without this assumption Theorem 6.12 may not hold.

Example 6.15. Assume that (F, v) is a valued field admitting a unique maximal immediate
extension (M, v), transcendental over F . Take a transcendence basis T of M |F and set
K := F (T ). Then (M, v) is the unique maximal immediate extension of (K, v), as every im-
mediate extension of K is also an immediate extension of F . Furthermore, M |K is algebraic.
From Lemma 6.3 it follows that L = Kh is an infinite separable-algebraic extension of K.

Set Γ := vK, k := Kv and take any natural number n. Suppose there was an ex-
tension w of the valuation v of K to the rational function field K(x1, . . . , xn) such that
wK(x1, . . . , xn) = Γ = vK and K(x1, . . . , xn)w = k = Kv. Then (K, v) would admit a
transcendental immediate extension (K(x1, . . . , xn), w). This contradicts the fact, that the
unique maximal immediate extension of (K, v) is algebraic over the field. �

Assume that (K, v) is a valued field. Take F = K(x1, . . . , xn) to be a rational function
field over K. Assume that there is an extension v of the valuation of K to F such that
vF/vK is a torsion group and the residue field extension Fv|Kv is algebraic. Then for any

extension of v from K to K̃, the field (K̃, v) admits an immediate extension of transcendence
degree n (cf. Theorem 1.7 of [22]). In certain cases, the above assertion holds already for
possibly smaller algebraic extensions of K.

Lemma 6.16. Take a field K and a natural number n. Assume that v is a valuation on the
rational function field F = K(x1, . . . , xn) such that vF/vK is a torsion group and Fv|Kv is

an algebraic extension. Fix an extension of v to F̃ and set L0 := IC(F |K, v).

1) If the order of each element of vF/vK is prime to the characteristic exponent of Kv and
Fv|Kv is separable, then vL0 = vF and L0v = Fv, and the extension (L0(x1, . . . , xn)|L0, v)
is immediate.

2) If p = charK > 0, then in general for L := L
1/p∞

0 , the extension (L(x1, . . . , xn)|L, v) is
immediate.

Proof. Fix an extension of the valuation v to F̃ and denote it again by v. Denote by F h the
henselization of F with respect to v. Take p to be the characteristic exponent of Kv. Then
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from Lemma 2.14 it follows that vF h/vL0 is a p-group and the extension F hv|L0v is purely
inseparable. As (F h|F, v) is an immediate extension, the same assertions hold for vF/vL0

and Fv|L0v.
Assume first that every element of vF/vK is of degree coprime with p and Fv|Kv is

a separable-algebraic extension. Then vF = vL0 and Fv = L0v. Since L0(x1, . . . , xn) =
F.L0 ⊆ F h, we obtain that

vF = vL0 ⊆ vL0(x1, . . . , xn) ⊆ vF h = vF,

Fv = L0v ⊆ L0(x1, . . . , xn)v ⊆ F hv = Fv.

Hence, equality holds everywhere and we obtain that the extension (L0(x1, . . . , xn)|L0, v) is
immediate.

Suppose now that charK = p > 0. Then for L := L
1/p∞

0 we obtain that vL = 1
p∞
vL0 and

Lv = (L0v)1/p∞ . As moreover E := L(x1, . . . , xn) = F.L and L0 ⊆ F h, we have that

Eh = F h.L
1/p∞

0 ⊆ (F h)1/p∞ .

Together with the fact that vF/vL0 is a p-group and the extension Fv|L0v is purely insep-
arable, this yields that

vE = vEh ⊆ 1

p∞
vF h =

1

p∞
vF =

1

p∞
vL0 = vL ⊆ vE,

Ev = Ehv ⊆ (F hv)1/p∞ = (Fv)1/p∞ = (L0v)1/p∞ = Lv ⊆ Ev.

Hence, equality holds everywhere and the extension (L(x1, . . . , xn)|L, v) is immediate.

The next example shows that in general, even if the assumptions of the lemma hold,
(K, v) itself may not admit a transcendental immediate extension.

Example 6.17. Take a nontrivially valued maximal field (K, v) and denote the unique

extension of the valuation from K to K̃ again by v. Assume that the value group vK is not
divisible or the residue field Kv is neither real closed nor algebraically closed. If the former
holds, vK̃/vK contains elements of arbitrarily high order. Otherwise, K̃v contains elements

of arbitrarily high degree over Kv. In both cases, by Theorem 1.2, the field K̃ admits a
maximal immediate extension (M, v) of infinite transcendence degree.

Take a natural number n and choose elements x1, . . . , xn ∈M algebraically independent
over K. Set F := K(x1, . . . , xn) and take the restriction of the valuation v of M to the
field F . Then (F, v) is the rational function field over K in n variables with a valuation v

such that (K̃(x1, . . . , xn)|K̃, v) is immediate. On the other hand, (K, v) is maximal, hence
admits no proper immediate extensions. �

Take a valued field (K, v) and an extension of the valuation of K to K̃. Denote this

extension again by v. It is stated in [22] that if (K̃, v) admits a transcendental immediate
extension, then also (K, v) admits such an extension, provided that (K, v) is a Kaplansky
field. Since we can assume additionally in the above example that the considered field (K, v)
is a Kaplansky field, it shows that the assertion is not true. However, in Chapter 7 we
prove that the statement holds for a tame field K and finite extensions vF |vK, Fv|Kv
(cf. Theorem 7.16).

106



7. Immediate extensions of fields with
p-divisible value group and perfect
residue field

In Chapter 4 we gave conditions for a valued field of positive characteristic p with p-
divisible value group and perfect residue field, or for a henselian Kaplansky field, to admit
an infinite tower of Galois defect extensions of prime degree, hence an infinite immediate
separable-algebraic extension. In this chapter we consider a more general question: what is
the form of maximal immediate extensions of such fields? We will give also an example of
valued fields, other than Kaplansky fields, for which the uniqueness of maximal immediate
extensions holds. We will start with remarks about fields admitting maximal immediate
extensions of finite transcendence degree.

Lemma 7.1. Assume that (K, v) is a henselian field admitting a maximal immediate ex-
tension (M, v) of finite transcendence degree over K. Then the relative separable-algebraic
closure of K in M is a finite extension of K.

Proof. Take L to be the relative separable-algebraic closure of K in M . Suppose that L|K
is an infinite extension. Since K is henselian, the separable-algebraic case of Theorem 1.2
implies that every maximal immediate extension of (L, v) is of infinite transcendence degree
over L. On the other hand, (M, v) is a maximal immediate extension of (L, v) of finite
transcendence degree over L, a contradiction.

In particular, if charK = 0 and the maximal immediate extension M is algebraic over K,
we obtain that M |K is finite. A valued field (K, v) is called maximal-by-finite if it is not
maximal, but a finite extension (L, v) of (K, v) is a maximal field. If this holds and (K, v) is
a henselian field, then (L|K, v) is a defect extension. Indeed, if the extension were defectless,
then Lemma 2.18 would imply that for every nontrivial immediate extension (F |K, v) the
extension (F.L|L, v) would be also nontrivial and immediate. This is not possible, since
(L, v) is a maximal field. The fact that a finite extension of a tame field is tame, together
with the next theorem, proved in [29] (Theorem 14.51), shows that in the above situation
neither K nor L can be tame.

Theorem 7.2. Assume that (L|K, v) is a finite extension of henselian fields. If (L, v) is a
tame field, then also (K, v) is a tame field and the extension (L|K, v) is defectless.

This shows in particular that a henselian field (K, v) of positive residue characteristic p,
with p-divisible value group and perfect residue field cannot be maximal-by-finite. This
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follows from the fact that a maximal immediate extension (M, v) of (K, v) is a tame field,
as vM = vK is p-divisible, Mv = Kv is perfect and a maximal field (M, v) is defectless,
by Theorem 2.32. Hence, if M |K were finite and nontrivial, it would be defectless by the
above theorem. This means that if (K, v) is not maximal, then every maximal immediate
extension of K is an infinite extension of the field. We extend this result by showing that a
maximal immediate extension of K can be algebraic only in very particular cases. We will
need the following fact (cf. Lemma 4.15 of [28]).

Lemma 7.3. Assume that (L, v) is a tame field and K is a relatively algebraically closed
subfield of L. If in addition Lv|Kv is an algebraic extension, then K is also a tame field.

Throughout the remaining part of the chapter we will assume that (K, v) is a
valued field of positive residue characteristic p, with p-divisible value group and
perfect residue field, unless stated otherwise.

Proposition 7.4. Assume additionally that (K, v) is henselian and admits a maximal im-
mediate extension (M, v) of finite transcendence degree over K. If L denotes the relative
algebraic closure of K in M , then the following assertions hold:

1) if charK = 0, then L = K;

2) if charK = p, then K is relatively separable-algebraically closed in M and L = K1/p∞.

Proof. As we have already shown, (M, v) is a tame field. Since L is relatively algebraically
closed in M , from Lemma 7.3 we deduce that (L, v) is also a tame field.

If charK = 0 then set F = K, otherwise define F to be the prefect hull K1/p∞ of
K. In the latter case F ⊆ M1/p∞ . As vM = vK is p-divisible and Mv = Kv is perfect,
(M1/p∞|M, v) is an immediate extension. Since M is maximal, it follows that M1/p∞ = M
and thus F ⊆ L. In both cases L|F is a separable-algebraic extension. If L|F were infinite,
then as F is henselian, by the separable-algebraic case of Theorem 1.2 we would obtain that
every maximal immediate extension of L is of infinite transcendence degree over L. On
the other hand, M is a maximal immediate extension of L of finite transcendence degree, a
contradiction. Thus L|F is a finite extension. Since (L, v) is tame, by Theorem 7.2 we obtain
that (L|F, v) is defectless. As it is an immediate extension of henselian fields, it follows that
L = F . This proves that K is relatively separable-algebraically closed in M , and in the case
of positive characteristic, that L = K1/p∞ .

Corollary 7.5. Assume that (K, v) is henselian and admits a maximal immediate extension
(M, v) algebraic over K.

1) If charK = 0, then M = K, that is, (K, v) is a maximal field.

2) If charK = p, then K is relatively separable-algebraically closed in M and M = K1/p∞= Kc.

Proof. Assertions 1) and 2), except for the last equality, follow directly from the above propo-
sition. Assume that charK = p. Suppose that there is an element ζ ∈ K1/p∞ , which does
not lie in the completion of K. As vK is p-divisible and Kv is perfect, by Theorem 4.2 we
obtain that the henselian field (K, v) admits an infinite immediate separable-algebraic ex-
tension (E, v). Since M = K1/p∞ , the extension M.E|E is purely inseparable. Furthermore,
vE = vK is p-divisible and Ev = Kv is perfect, hence the extension (M.E|E, v), with the
unique extension of the valuation v to M.E, is immediate. Consequently, (M.E|K, v) is an
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immediate extension. Thus also (M.E|M, v) is immediate. As M |K is a purely inseparable
extension, M.E|M is a nontrivial separable-algebraic extension. This contradicts the fact
that (M, v) is maximal and shows that M ⊆ Kc. Since Kc|K is an immediate extension, we
deduce finally that M = Kc.

A valued field (L, v) is called almost maximal if the completion of L is a maximal
immediate extension of K. Since the completion of a valued field is unique up to valuation
preserving isomorphism, the maximal immediate extensions of almost maximal fields are
unique up to isomorphism. Assume that the valuation v of K is of rank one and (K, v)
admits a maximal immediate extension (M, v) algebraic over K. As M is henselian by
Theorem 2.32, it contains the henselization Kh of K. Since v is a rank one valuation,
the henselization Kh is contained in the completion of K. Moreover, (M, v) is a maximal
immediate extension of (Kh, v), which is algebraic over Kh. Thus, Corollary 7.5 yields that
M = (Kh)c = Kc. This proves:

Corollary 7.6. Assume that the valuation v of K is of rank one. If (K, v) admits a maximal
immediate extension algebraic over the field, then (K, v) it is almost maximal.

The next theorem shows that the uniqueness of maximal immediate extensions of (K, v)
holds not only in the cases described in the last two corollaries.

Theorem 7.7. Assume that (K, v) admits a maximal immediate extension of finite tran-
scendence degree. Then the maximal immediate extension of K is unique up to valuation
preserving isomorphism.

For the proof we will need the following lemma.

Lemma 7.8. Assume that (K, v) is algebraically maximal. If (K(x), v) is an immediate
transcendental extension of (K, v), then (K(x), v) can be K-isomorphically embedded into
every maximal immediate extension of K.

Proof. Since (K(x), v) is an immediate extension of (K, v), Theorem 2.36 yields that x is
a pseudo limit of a pseudo Cauchy sequence (aν)ν<λ in (K, v) without a pseudo limit in
the field. As by assumption K admits no algebraic immediate extensions, it follows from
Theorem 2.41 that the pseudo Cauchy sequence (aν)ν<λ is of transcendental type. Take
a maximal immediate extension (M,w) of (K, v). Then (aν)ν<λ admits a pseudo limit y
in M , by Theorem 2.42. From Theorem 2.40 we obtain that there is a valuation preserving
K-isomorphism between (K(x), v) and (K(y), w), which gives a K-isomorphic embedding of
(K(x), v) into (M,w).

Proof of Theorem 7.7: Assume that (M, v) is a maximal immediate extension of (K, v)
and trdegM |K is finite. Take (N,w) to be another maximal immediate extension of (K, v).
It suffices to show that (M, v) can be K-isomorphically embedded in N , as a valued field.
Indeed, if φ is the embedding, then (φ(M), w) is a maximal immediate extension of (K, v).
Since the extension (N |K,w) is immediate, also (N |φ(M), w) is immediate and hence trivial;
so we obtain that φ(M) = N . Thus the fields (M, v) and (N,w) are isomorphic.

Consider the family of all subextensions E of M |K admitting a valuation preserving
K-embedding τ : E → N . By Zorn’s Lemma, there is a maximal such embedding σ : L→ N ,
where (L|K, v) is a subextension of (M |K, v). We wish to show that L = M .
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Since M,N as maximal fields are henselian, M contains the henselization Lh of L and
the embedding extends uniquely to an embedding σ1 : Lh → N . By the maximality of σ we
have that Lh = L, that is, L is henselian.

Take F to be the relative algebraic closure of L in M . Proposition 7.4 yields that F = L
if charK = 0 and F = L1/p∞ otherwise. Assume that charK = p. We know that in
this case N , as a maximal immediate extension of a field with p-divisible value group and
perfect residue field, is perfect. Hence, σ can be extended in a unique way to an embedding
σ2 : F → N . From the maximality of σ it follows that L = F . Thus, regardless of the
characteristic of K, we obtain that L is relatively algebraically closed in M . Furthermore,
(M, v) is tame, as a maximal immediate extension of (K, v). Therefore, Lemma 7.3 implies
that also (L, v) is a tame field.

Suppose that L  M . We identify (L, v) with its isomorphic image (σ(L), w) in (N,w).
Take an element x ∈M \L. Then (L(x)|L, v) is an immediate extension, and it is transcen-
dental since L is relatively algebraically closed in M . Since every tame field is defectless,
(L, v) admits no proper immediate algebraic extensions. Hence by Lemma 7.8, the field
L(x) can be L-isomorphically embedded into (N,w), a contradiction to the maximality of σ
and L. Thus we obtain the required equality M = L. 2

An immediate consequence of the above theorem is the following fact.

Corollary 7.9. If (K, v) admits an immediate extension of infinite transcendence degree over
K, then every maximal immediate extension of (K, v) is of infinite transcendence degree over
this field.

Assume that (K, v) is a henselian field and admits a maximal immediate extension (M, v)
of finite transcendence degree over K. Suppose that (K, v) admits an immediate separable-
algebraic extension (E, v). Then (E, v) is contained in some maximal immediate extension
(N,w) of (K, v). Theorem 7.7 implies that N |K is of finite transcendence degree, hence
by Proposition 7.4 the field K is relatively separable-algebraically closed in N . Thus the
extension E|K is trivial and consequently, (K, v) admits no proper immediate separable-
algebraic extensions.

Assume additionally that charK = p and denote by L the relative algebraic closure
of K in M . From Proposition 7.4 we know that L = K1/p∞ . If M |K is algebraic, then
moreover every element purely inseparable over K lies in the completion of the field, by
Corollary 7.5. The last paragraph allows us to deduce the same if only trdegM |K is finite.
Indeed, suppose there is an element ζ ∈ K1/p∞ , which does not lie in the completion of K,
then by Theorem 4.2 we obtain that the henselian field (K, v) admits an infinite immediate
separable-algebraic extension (E, v). But as we have seen, (K, v) admits no proper immediate
separable-algebraic extensions, a contradiction. We have thus proved:

Corollary 7.10. Assume that (K, v) is a henselian field. If the field admits a maximal imme-
diate extension of finite transcendence degree, then (K, v) is separable-algebraically maximal.
If additionally K is of positive characteristic, then the perfect hull of K is contained in the
completion of the field.

We will use these facts to give the proof of Theorem 1.3. We will also need the following
lemma.
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Lemma 7.11. Take a normal extension F of a henselian field (K, v) and set L = F ∩Kr.
Then vF/vL is a p-group, Fv|Lv is purely inseparable and (L|K, v) is a tame extension.

Proof. Since L|K is a subextension of the tame extension Kr|K, it is also tame. The
assertions on value group and residue field follow from Theorem 7.16 and Lemma 7.20 of [29].

We are now able to give the

Proof of Theorem 1.3: Assume that the first of the two cases holds. Since d(F |K, v) =
d(F h|Kh, v) by equation (2.9), without loss of generality we can assume that K is a henselian
field. As the normal hull of F over K is again a separable-algebraic extension with nontrivial
defect, we can also assume that F |K is normal. Set L = F ∩Kr. Lemma 7.11 yields that
(L|K, v) is a finite tame extension. Furthermore, vF/vL is a p-group and the residue field
extension Fv|Lv is purely inseparable. Since vL is p-divisible and Lv is perfect, as this holds
already for the value group and the residue field of (K, v), the group vF/vL and the extension
Fv|Lv are trivial. Thus (F |L, v) is an immediate extension. From this and Proposition 2.20
it follows that

[F : L] = d(F |L, v) = d(F |K, v) > 1.

This shows that the immediate separable-algebraic extension (F |L, v) is nontrivial. Applying
Corollary 7.10 to the field (L, v) in place of (K, v), we obtain that every maximal immediate
extension of (L, v) is of infinite transcendence degree.

Take (E,w) to be a maximal immediate extension of (K, v). As E is henselian, w admits
a unique extension to a valuation of E.L. Denote this extension again by w. Since we
are assuming K to be henselian, the restriction of w to L coincides with v. As L|K is
tame, by Lemma 2.18 the extension (E.L|L,w) is immediate. Since by Theorem 2.33 a
finite extension of a maximal field is again maximal, we deduce that (E.L,w) is a maximal
immediate extension of (L, v). From the first part of the proof it follows that trdegE.L|L is
infinite. Therefore also the extension E|K is of infinite transcendence degree.

Assume now that the second case holds, i.e., charK is positive and there is an element
purely inseparable over K which does not lie in the completion of the field. Then from
Corollary 7.10 it follows that every maximal immediate extension of (K, v) is of infinite
transcendence degree over K. 2

Remark 7.12. Note that if (L|K, v) is a finite separable extension, then the perfect hull of
K is contained in the completion of K if and only if the same holds for L. Indeed, take (Lc, v)
to be the completion of (L, v). By Proposition 2.49 we obtain that Lc contains a completion
Kc of (K, v). Since the perfect hull K1/p∞ of K is a perfect field, also its algebraic extension
K1/p∞ .L is perfect. Thus L1/p∞ = K1/p∞ .L. As K1/p∞ ⊆ Kc ⊆ Lc and L ⊆ Lc, we obtain
that L1/p∞ = K1/p∞ .L ⊆ Lc. Conversely, suppose there is an element a purely inseparable
over K, which does not lie in Kc. Then a is purely inseparable also over Kc. Since L|K is
a finite extension, by Lemma 2.51 we obtain that Lc = Kc.L . Consequently the extension
Lc|Kc is finite and separable, as also L|K is a finite separable extension. Therefore a does
not lie in Lc. It follows that L1/p∞ is not contained in Lc.

This shows that we can replace condition 2) of Theorem 1.3 by the equivalent condition:

2’) charK = p and for some finite separable extension L of K, the perfect hull of L is not
contained in the completion of L.
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Remark 7.13. Note that for a Kaplansky field (K, v) of positive residue characteristic p,
where p 6= 2 or charK = p, the assertion of Theorem 1.3 in case 1) follows also from
Theorems 4.8 and 4.13. Indeed, suppose that (L|K, v) is a finite separable defect extension
such that the valuation v extends in a unique way from K to L. By equation (2.9) we have
that d(Lh|Kh, v) = d(L|K, v) > 1. Therefore, and because Lh = Kh.L is a finite separable
extension of Kh, we can assume without loss of generality that (K, v) is henselian. By
Lemma 2.19 there is a finite tame extension N of K such that L.N |N is a tower of Galois
extensions of degree p. From Proposition 2.20 it follows that

[L.N : N ] ≥ d(L.N |N, v) = d(L|K, v) > 1.

Thus the extension L.N |N is nontrivial. If charK = 0 and εp is a p-th primitive root of
unity, then N(εp)|N is also a tame extension. As the extension is trivial or of degree a divisor
of p− 1, it is linearly disjoint from L.N |N . Hence L.N(εp)|N(εp) remains a nontrivial tower
of Galois extensions of degree p and we can replace N by N(εp).

Regardless of the characteristic of K, the field N admits a Galois extension of degree p.
Furthermore, as an algebraic extension of a Kaplansky field, (N, v) is a Kaplansky field. Now
Theorems 4.8 and 4.13 imply that N admits an infinite tower of Galois extensions of defect
and degree p. Thus N admits an infinite immediate separable-algebraic extension F . By the
separable-algebraic case of Theorem 1.2 we have that every maximal immediate extension of
(N, v) is of infinite transcendence degree over N . As in the proof of Theorem 1.3, we deduce
that also every maximal immediate extension of (K, v) is of infinite transcendence degree
over K.

An easy consequence of the special properties of maximal immediate extensions of (K, v)
is the following fact.

Corollary 7.14. Assume that (K, v) is henselian and take a maximal immediate extension
(M, v) of (K, v). Assume additionally that there is an element a ∈M \K such that

dist (a,K) <∞.

Then M |K is a transcendental extension. If moreover a is algebraic over K, then M |K is
of infinite transcendence degree.

Proof. If a is transcendental over K, then the first assertion is trivial. Assume that the
element a is algebraic over K. If K is not relatively separable-algebraically closed in M ,
then the second assertion follows from Proposition 7.4. Otherwise, charK = p and a is a
purely inseparable element over K, which does not lie in the completion of the field. Thus
Theorem 1.3 yields that every maximal immediate extension of K is of infinite transcendence
degree.

Note that the condition dist (a,K) < ∞ is equivalent to the fact that a does not lie in
the completion of K.

Example 7.15. Take (K(x, y), v) to be a valued rational function field defined by condi-
tions (5.2). Assume additionally that the fieldK is perfect. As we have noticed in Section 5.1,

the power series field K
((
x

1
p∞ Z
))

with the canonical valuation vx is an immediate extension
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of (K(x, y), v). Since the power series field is maximal (cf. Example 2.44), it is the maxi-
mal immediate extension of (K(x, y), v). Furthermore, it is well known that the extension

K
((
x

1
p∞ Z
)) ∣∣K(x, y) is of infinite transcendence degree. This can be shown also with the

use of Theorem 1.2. Since vK(x) = Z and vK(x, y) = 1
p∞
Z, the group vK(x, y)/vK(x)

contains elements of arbitrarily high order. Thus the value algebraic case of Theorem 1.2
implies that every maximal immediate extension of (K(x, y), v) is of infinite transcendence
degree.

Take a transcendence basis T of the extension K
((
x

1
p∞ Z
)) ∣∣K(x, y) and a natural num-

ber n. Choose any t1, . . . , tn ∈ T . Set F := K(x, y)(T \ {t1, . . . , tn}) and take v to be the
restriction of the x-adic valuation of the power series field to F . Since (F |K(x, y), v) is a

subextension of the immediate extension
(
K
((
x

1
p∞ Z
)) ∣∣K(x, y), vx

)
, it is also immediate

and thus vF = 1
p∞
Z is p-divisible and Fv = K is perfect. As K

((
x

1
p∞ Z
))

is a maximal

immediate extension of F of finite transcendence degree, Theorem 7.7 yields that the power
series field is the unique (up to isomorphism) maximal immediate extension of (F, v).

Define L := K(T \{t1, . . . , tn}). Then F = L(x, y) and the elements x, y are algebraically
independent over L. From Corollary 7.10 we deduce that every henselization of (L(x, y), v) is
separable-algebraically maximal. It follows that (L(x, y), v) admits no Artin-Schreier defect
extensions. Indeed, every Artin-Schreier defect extension is in particular an immediate
separable-algebraic extension. Take a maximal separable-algebraic immediate extension of
L(x, y). Then it contains a henselization L(x, y)h of L(x, y) and, by what we have proved, it
is equal to the henselization. This shows that every immediate Artin-Schreier extension of
L(x, y) is contained in some henselization of L(x, y). On the other hand, an Artin-Schreier
defect extension is by Lemma 2.12 linearly disjoint from every henselization of L(x, y). �

We now go back to the question considered in Section 6.3. Theorem 1.6 of [22] and
Theorem 6.12 of this thesis give conditions for a valued field (L, v) to admit an extension
of v to a rational function field L(x1, . . . , xn) such that vL(x1, . . . , xn)/vL is torsion and
L(x1, . . . , xn)v|Lv is algebraic. The question if the conditions given in the theorems are
necessary for the valuation v to admit the required extension is open in the general case.
However, the next theorem answers the question positively for the class of fields considered
in this chapter.

Theorem 7.16. Take an ordered abelian group extension Γ of vK such that Γ/vK is a
torsion group, an algebraic extension k of Kv and a natural number n. Then there is an
extension of v from K to the rational function field F := K(x1, . . . , xn) with vF = Γ and
Fv = k if and only if at least one of the two extensions Γ|vK and k|Kv is infinite or (K, v)
admits an immediate extension of transcendence degree n. In this case, L := IC(F |K, v) is
a separable-algebraic extension of (K, v) with vL = Γ and Lv = k, and it is infinite over the
henselization of K if Γ|vK or k|Kv is infinite.

Proof. Assume that at least one of the two extensions Γ|vK and k|Kv is infinite or (K, v)
admits an immediate extension of transcendence degree n. Then parts A2) and B4) of
Theorem 1.6 of [22] state that in both cases the valuation v admits an extension to F such
that vF = Γ and Fv = k.
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Assume now that there is an extension of v to F with vF = Γ and Fv = k. Fix an
extension of this valuation to F̃ and denote it again by v. Take Kh and F h to be the
henselizations of K and F with respect to this extension. Set L := IC(F |K, v). Then L|Kh

is a separable-algebraic extension. Since Kh|K is also separable-algebraic, we obtain that L
is a separable-algebraic extension of K. As vK is p-divisible and Kv is perfect, the order
of each element of Γ/vK is prime to p and k|Kv is a separable-algebraic extension. Hence,
Lemma 6.16 yields that (L(x1, . . . , xn)|L, v) is an immediate extension with vL = Γ and
Lv = k. Moreover, if Γ/vK = vL/vKh is an infinite group or the extension k|Kv = Lv|Khv
is infinite, then by the fundamental inequality, also the extension L|Kh is infinite.

Suppose that the extensions Γ|vK and k|Kv are finite. Assume first that L|Kh is an
infinite extension. Take a finite subextension E|Kh of degree bigger than (Γ : vK)[k : Kv].
Then

[E : Kh] > (Γ : vK)[k : Kv] = (vL : vKh)[Lv : Khv] ≥ (vE : vKh)[Ev : Khv],

and thus the extension (E|Kh, v) has a nontrivial defect. In this case, or if L|Kh is itself
a finite defect extension, Theorem 1.3 yields that every maximal immediate extension of
(Kh, v) is of infinite transcendence degree. Thus the same holds for (K, v) and in particular,
(K, v) admits an immediate extension of transcendence degree n.

It remains to consider the case of (L|Kh, v) defectless. Since

(vL : vKh)[Lv : Khv] = (Γ : vK)[k : Kv] <∞,

the extension L|Kh is finite. Moreover, the order of each element of Γ/vK = vL/vKh is prime
to p and the extension k|Kv = Lv|Khv is separable. Therefore, the extension (L|Kh, v) is
tame. As (L(x1, . . . , xn)|L, v) is an immediate extension, Theorem 7.7 yields that every
maximal immediate extension of L is of transcendence degree at least n.

Take a maximal immediate extension (M,w) of (Kh, v). Take the unique extension of the
valuation w of M to M.L and call it again w. Since Kh is henselian, the restriction of w to L
coincides with v. As L|Kh is a finite defectless extension of henselian fields, by Lemma 2.18
it is linearly disjoint from M |Kh and the extension (M.L|L,w) is immediate. Since a finite
extension of a maximal field is again maximal by Theorem 2.33, the field (M.L,w) is a
maximal immediate extension of (L, v). As we have already shown, trdegM.L|L ≥ n. Hence
also trdeg M |Kh ≥ n. Since (M, v) is also a maximal immediate extension of (K, v), we
deduce that K admits an immediate extension of transcendence degree n.
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