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Abstract

Perovskite ceramics (Ba0.6Pb0.4)TiO3 modified with PbO-B2O3-Al2O3-WO3 special glass was prepared with the
conventional mixed oxide method. X-ray diffraction analysis (XRD) of the obtained materials confirmed single-
phase and pure tetragonal structure. The Rietveld method was used to determine unit cell parameters. Uniform
deformation of the tetragonal parameter was observed with addition of the glass. Dielectric measurements
revealed the remarkable influence of special glass admixture on the value of dielectric permittivity and dielec-
tric losses, as well as the Curie temperature. However, the most important achievement of the investigations is
obtaining a significant PTCR effect in the sample containing 6 wt.% of special glass admixture.
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I. Introduction

The barium lead titanate is one of the best known fer-

roelectric materials. The ceramics belonging to the sys-

tem has various applications in electrics and mechatron-

ics as ceramic capacitors, piezoelectric transducers and

actuators [1,2], due to their desirable dielectric, pyro-

electric and piezoelectric properties [3–5]. For applica-

tions in microelectronics, the anomalous positive tem-

perature coefficient of resistance (PTCR) is of particu-

lar interest. (Ba0.35Pb0.65)TiO3 and (Ba0.2Pb0.8)TiO3 ce-

ramics serve as the example of such materials, however

they have a very high Curie point, equal to 360 °C and

420 °C, respectively [6–8]. To sum up, (Ba1-xPbx)TiO3

(BPT) ceramics is technologically important and the

electrical properties thereof should be tailored to prac-

tical applications. One way of such modification is the

addition of special glass.

Plenty of well-known ferroelectric systems were

modified by glass. The presence of molten glass be-

tween growing grains during sintering process signifi-
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cantly influences the properties of obtained materials,

which has been broadly and exhaustively described in

the literature for different glass-ceramics systems. In-

ter alia Divya and Kumar [9] reported the preparation

of [1-y](Ba0.7Sr0.3)TiO3–y(B2O3-xSiO3) glass-ceramics

system with the sol-gel method. The investigations of

the possible formation of (Pb,Ba)TiO3 solid solution

phase in the glassy matrix of BaO-PbO-TiO2-B2O3-

SiO2 system were describe by Mandal et al. [10]. The

authors discovered that crystal damping occurs in glass-

ceramics solely and exclusively when the glass tran-

sition temperature of residual glass is higher than the

paraelectric-ferroelectric phase transition temperature

of the constituent crystalline phase [10,11]. Shyu and

Yang [12] investigated the influence of glass admixture

on the Curie temperature (Tc) and the spontaneous de-

formation of tetragonal perovskite phase. The presence

of PbO-Al2O3-2 SiO2 as surface layers around grains

promotes the coexistence of coarse and fine perovskite

crystallites. The increasing concentration of glass ad-

mixture causes an increase in the size of crystallites.

Moreover, literature reports indicate that the admixture

of glass reduces the sintering temperature due to a vis-

cous sintering effect [13] as well as contributes to crys-
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tallites cleaving processes by the diffusion of impurities

and defects of the glass layers. The admixture of glass

is also the source of additional ions, which improve the

properties of based ceramics.

The present paper describes the influence of PbO-

B2O3-Al2O3-WO3 special glass modification on the

electric and dielectric properties of (Ba0.6Pb0.4)TiO3 ce-

ramics. The mentioned glass significantly improves not

only crystallization ability, but it is also a source of W6+

ions, which replace titanium ions and make the material

more attractive for the applications in the field of elec-

tronics.

II. Experimental procedure

The process of making special modified glass com-
menced with the weighting stoichiometric quantities of
PbO, B2O3, Al2O3 and WO3 which were subsequently
milled and mixed together with an agate mortar for 2 h.
Melting of the oxides was carried out at 900 °C. Con-
secutively, the liquid mixture solidified rapidly after be-
ing poured onto a steel surface. Consequently, the con-
gealed glass was crushed and milled in a planetary mill
for 1 h. At the same time, the fabrication process of
(Ba0.6Pb0.4)TiO3 ceramics was carried out on the basis
of the following formula:

BaCO3+2 PbO+5 TiO2 −−−→ 5 (Ba0.6Pb0.4)TiO3 +3 CO2 ↑ (1)

Proper amounts of oxides and carbonates (BaCO3,

PbO and TiO2) were weighed and milled in planetary

mill with the usage of ethanol as a mixing medium.

The obtained powder was dried and pressed into pellets.

The synthesis process was carried out at T = 950 °C

for 4 h. Next, the obtained material was crushed and

milled again. The final part of the technological pro-

cess involved the introduction of the special glass ad-

mixture into the base material, in the quantities of 2, 4,

6 and 8 wt.% of the basic ceramics powder. The com-

bined powders were milled in a planetary mill for 24 h

in ethanol medium, dried and uniaxially pressed (at

10 MPa) into pellets. First sintering was carried out at

T = 1050 °C for 4 h and consecutively the milling pro-

cedures were repeated. Final sintering was conducted

at T = 1200 °C for 4 h. In both sintering steps, the

pressed pellets were placed in a double crucible with

some amount of PbO, in order to avoid the loss of PbO

caused by its sublimation and to maintain the estab-

lished composition.

The obtained samples became the basic material for

further study and analysis. The crystalline structure of

the obtained ceramic samples was tested with the us-

age of X-ray diffraction (XRD). Measurements were

performed on powdered samples using a high resolu-

tion INEL Diffractometer with filtered Cu Kα1 radiation

(40 kV, 30 mA). Microstructure of the discussed ceram-

ics was tested with scanning electron microscope (SEM;

JEOL JSM-7100 TTL LV, Japan). Grain size measure-

ments were performed on the fractured surface of ce-

ramic samples, which were coated with gold to provide

electrical conductivity and to avoid any charging effects.

The investigations of dielectric permittivity as a func-

tion of temperature were carried out in the range of 0.1–

20 kHz by using Quadtech 9200 LCR meter. DC electric

conductivity as a function of temperature was investi-

gated with an automatic system based on Keithley 6485

picoammeter.

III. Results and discussion

3.1. Crystal structure

XRD studies were carried out in order to determine

the influence of special glass admixture on the crys-

tal structure of the obtained ceramics. X-ray diffrac-

tion patterns of the discussed materials are presented in

Figure 1. Evolution of X-ray diffraction peaks of (Ba0.6Pb0.4)TiO3 ceramics with increasing concentration of
PbO-B2O3-Al2O3-WO3 glass
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Table 1. Value of lattice parameters, deformation coefficient, theoretical and experimental density of special glass modified
(Ba0.6Pb0.4)TiO3 ceramics

Sample
Lattice parameter V

δT
ρt ρexp

a [nm] c [nm] [nm3] [kg/m3] [kg/m3]

PBT – 0% glass 0.3959 0.4057 6.3588 0.0247 6869.7 5743

PBT – 2% glass 0.3958 0.4059 6.3587 0.0258 6869.8 5826

PBT – 4% glass 0.3957 0.4061 6.3586 0.0262 6869.9 6131

PBT – 6% glass 0.3955 0.4063 6.3553 0.0273 6873.5 6348

PBT – 8% glass 0.3954 0.4065 6.3552 0.0280 6873.6 6411

Figure 2. SEM images of (Ba0.6Pb0.4)TiO3 ceramics with: a) 0, b) 2, c) 4, d) 6 and e) 8 wt.% of glass

Fig. 1. The intensity of diffraction maxima decreased

with the increase of glass modifier amount. The loca-

tion and intensity of all diffraction lines in the range of

measured angle were compared with the reference pat-

terns from JPCDS-ICDD database. The results of the

analysis indicate that at room temperature, the materi-

als are single-phase and exhibit a tetragonal structure

(a = b , c, α = β = γ = 90°). The symmetry

of the crystal lattice may be described by space group

(P4mm) belonging to the class of tetragonal bipyramids

and has four planes of symmetry intersecting in a four-

fold symmetry axis of the pole. The Rietveld method

was used to determinate the unit cell parameters, vol-

ume (V) and uniform deformation of the tetragonal pa-
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rameter (δT = |1 − c/a|). The values of δT coefficients

for all ceramics are collected in Table 1.

The observed change of δT indicates that the admix-

ture of lead-boron glass is connected with a simultane-

ous decrease of a parameter and an increase of the c unit

cell parameter, resulting in a unit cell volume change

(Table 1). The observed reduction of V with the increase

of glass admixture amount can be attributed to the par-

tial substitution of Ti4+ ions with W6+ ions. The process

may be described with the following chemical reaction:

(Ba2+
1−xPb2+

x )Ti4+O2−
3 + yW6+O2−

3 −−−→

(Ba2+
1−xPb2+

x )(Ti4+1−yW6+
y )O2−

3 + ye− (2)

Tungsten ions are smaller than the titanium ions – the

atomic radius of tungsten is 0.137 nm, and the ionic ra-

dius for W2+ is 0.042 nm, whereas the titanium atomic

radius and ionic radius are 0.1460 nm and 0.0605 nm,

respectively. The observed decrease of BPT unit cell

volume might be a direct confirmation of the incorpo-

ration of tungsten ions in (Ba0.6Pb0.4)TiO3 lattice. On

the basis of the results of XRD measurements and the

weight of unit cell theoretical density (ρt) was deter-

mined, whereas the Archimedes displacement method

was used to obtain experimental density (ρexp). Val-

ues for both densities are given in Table 1. The admix-

ture of glass caused a growth of the ρexp/ρt ratio and

improved the quality of ceramics. The aforementioned

may be attributed to the phenomena which occurred dur-

ing the sintering processes. At high sintering tempera-

ture the added glass forms a liquid phase, which has two

roles: fills empty places and assists the process of grains

movement. As a result, the volume occupied by grains

decreases significantly and the content of pores reduces

drastically.

The microstructure of the ceramics is shown in Fig.

2. The microstructure of the pure (Ba0.6Pb0.4)TiO3 ce-

ramics is characterized by small grains with a rounded

shape. Moreover, the grain boundaries are not very

well developed. The addition of 2 wt.% of special glass

changed the microstructure. Namely, the ceramics con-

sists of larger grains, which are well-shaped and angu-

lar. The angular shape of grains is also characteristic for

the ceramics with 4 wt.% of glass. Higher concentration

of admixture results in a change of the shape into cubic

grains. An increase in grain size occurs simultaneously.

Changes of grains size caused by glass admixture were

described by other authors [14,15]. Moreover, SEM im-

ages revealed that during the process of fracturing of the

ceramics modified with special glass fractures occurred

through grains (transcrystalline cracks), which indicates

significant hardness of the ceramics and a high degree of

packing.

3.2. Electric and dielectric properties

The next stage of the research was to determine the

temperature dependence of dielectric permittivity (ε).

This dependencies for the pure (Ba0.6Pb0.4)TiO3 ceram-

ics are presented in Fig. 3.

The obtained material at room temperature shows

a low ε value, not exceeding 300. This value is al-

most completely frequency-independent and changes

insignificantly up to 450 K. Nonetheless above that

point a rapid increase of ε takes place. The maximum

of dielectric permittivity (εmax) is achieved at tempera-

ture Tc = 598 K and the value is frequency dependent.

The observed anomaly is characteristic for ferroelectric-

paraelectric phase transition. The comparison of pre-

sented results with results described by Chaimongkon

et al. [16] shows that the (Ba0.6Pb0.4)TiO3 ceramics ob-

tained with the conventional mixed oxide method ex-

hibit a higher value of dielectric constant and the Curie

temperature than the same ceramics obtained with the

combustion technique [16].

The temperatures corresponding to the maximum of

dielectric permittivity and the minimum of loss factor

are consistent, which is a feature characteristic for the

classic ferroelectric-paraelectric phase transition. The

loss factor in the vicinity of the temperature of phase

transition also strongly depends on the frequency of ap-

plied electric field (Fig. 3). Describing temperature de-

Figure 3. Dielectric constant and loss factor as a function of
temperature, measured at various frequencies

Table 2. Characteristic data obtained from dielectric measurements

Sample Tc [K] ε at Tr εmax at Tc tan δ at Tr tan δ at Tc

PBT – 0% glass 598 276 5250 0.02 0.30

PBT – 2% glass 601 294 5990 0.02 0.23

PBT – 4% glass 600 584 17490 0.12 0.89

PBT – 6% glass 598 11600 41700 0.29 1.02

PBT – 8% glass 597 9085 32570 0.43 0.77
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(a) (b)

Figure 4. Dielectric permittivity (a) and loss factor (b) as a function of temperature, measured at frequency 1 kHz,
for (Ba0.6Pb0.4)TiO3 ceramics with various glass contents

pendence of tan δ, extremely low value at room temper-

ature should be emphasized (Table 2).

Introduction of a small amount of special glass to the

base material caused an increase of both dielectric per-

mittivity and loss factor values, which can be attributed

to the elimination of micropores in the ceramic bodies

[15]. The changes of dielectric properties are particu-

larly visible for the higher concentrations of modifier (6

and 8 wt.%), as can be seen in Fig. 4. Also, the temper-

atures of phase transitions shifted to the lower values

(Table 2).

The described changes are caused by a partial substi-

tution of titanium ions with tungsten ions in the sublat-

tice B of perovskite structure, which is compliant with

the results of XRD measurements. The special glass

modifier was added to the pure BPT ceramics in order to

create the PTCR effect. The results of XRD and dielec-

tric measurements seem to confirm the assumed thesis

about the role of liquid phase in the prevention of lead

escape, as well as the partial exchange of titanium ions

by tungsten ions, deriving from special glass.

Such scenario should be reflected in the changes of

DC conductivity. Namely, the pure BPT ceramics is

characterized by a significantly higher concentration of

lead vacancies in comparison with the oxygen vacan-

cies, resulting in a p-type conductivity. The introduction

of W6+ ions to the lattice should change the type and

value of conductivity. In order to finally confirm the the-

sis DC measurements were conducted in a wide range

of temperatures. The results are presented as a graph of

resistivity versus temperature in Fig. 5.

The obtained results indicate that the introduction of

tungsten ions to crystalline lattice is a two-step process.

The first step involves the insertion of a small concentra-

tion of W6+ ions, which exchange the titanium cations.

The process is associated with the appearance of re-

dundant electrons in order to keep the electric neutralit,

Eq. 2. These electrons are responsible for decreasing the

concentration of holes, which leads to a decrease in con-

ductivity. The second step is connected with an increase

of tungsten concentration and, consequently, an increase

of the concentration of redundant electrons. The number

of electrons is high enough not only to neutralize the

holes, but also to create an additional donor level. As

a result, the ceramics with high concentration of glass

modifier reveals the n-type conductivity.

(a) (b)

Figure 5. Electric resistivity vs temperature for (Ba0.6Pb0.4)TiO3 ceramics with various glass contents
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Figure 6. Natural logarithm of electric conductivity vs inverse temperature for (Ba0.6Pb0.4)TiO3 ceramics with: a) 0, b) 2, c) 4,
d) 6 and e) 8 wt.% of glass

Electrons from ionized donors are trapped by accep-

tors at the grain boundary and the potential barrier is

created [17]. The barrier makes the grain boundary more

resistive than the grain interior. Heywand [1] attributed

the resistivity jump, above the Curie temperature, to the

change of dielectric permittivity in grain boundaries.

Jonker [18] explains the low resistivity observed be-

low Tc with the presence of spontaneous polarization,

which effectively cancel out the barrier potential in re-

gions along the grain boundary.

The dependences of lnσ vs 1/T for all discussed ce-

ramic materials are shown in Fig. 6. In case of the pure

(Ba0.6Pb0.4)TiO3 ceramics as well as ceramics modified

by a small amount of glass (up to 4 wt.%) plots con-

sist of three linear segments with different slopes. The

linear shape of segments indicates the activation char-

acter of conductivity and allows to determine the acti-

vation energy of processes. The temperature of bound-

ary between I and II is close to the Curie temperature.

The value of activation energy of paraelectric phase is

higher than ferroelectric phase, which is connected to

the change of distance between atoms. The change of

distance is responsible for a change of band gap width

and the position of dopant levels. The second reason of

such behaviour is the change of effective polarization

value connected with disappearance of domain struc-

ture and spontaneous polarization. The second change

of segments slopes (between area II and III) is probably

related to the transition between free electron states in

the conduction band (spontaneous conductivity in area

II and the conductivity of dopant in area III).

The image of conductivity drastically changes in

case of (Ba0.6Pb0.4)TiO3 ceramics modified with 6 and

8 wt.% of special glass. Solely and exclusively one
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change in the slope of linear segments in plots lnσ(1/T )

is observed. It takes place at the temperature of phase

transition. This change is related both to the transi-

tion between the ferroelectric and paraelectric phases,

as well as to the transition to the region with a positive

temperature coefficient of resistance.

IV. Conclusions

The technology described above allows to obtain

the single-phase ceramics, which was confirmed by the

XRD results. The admixture of special glass improved

the quality of ceramics and had an influence on the di-

electric behaviour and DC conductivity. The value of

dielectric permittivity increases with an increasing con-

centration of glass additive. All investigated ceramics

are characterized by fairly sharp transition from ferro-

electric to paraelectric phase. The temperature of the

transition shifts to lower values with an increasing glass

concentration in the material. For ceramics contain-

ing a higher concentration of glass, the PTCR effect is

observed in graphs presenting the temperature depen-

dences of ceramics resistivity. The results are explained

according to Heywang’s and Jonker’s models. The bar-

rier formed at grain boundary regions acts as a trap for

electrons available from ionized donors and provides a

positive temperature resistivity coefficient.
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