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Abstract

In the present work we study the possible effects of physics beyond the
Standard Model in future neutrino oscillation experiments, where these lep-
tons will be produced in beta decays of accelerated radioactive ions — the
so-called beta-beam. Therefore, first we set the limits on the parameters
describing new scalar, vector and tensor currents. Then, we use the statis-
tical operator to describe the state of antineutrinos produced in the Fermi
and Gamow-Teller nuclear beta decays as such state will be mixed in gen-
eral. Next, we consider the antineutrinos oscillations in the vacuum and their
detection through quasielastic scattering on free protons. Finally, we give a
numerical estimate of the possible size of the influence of exotic vector currents
on the number of detected antineutrinos, produced in helium-6 decays.
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Introduction

In science, we are always open to surprises, and this is also the case for
neutrinos. They were introduced by W. Pauli1 in 1930 to save the energy
conservation principle and fermion/boson statistics in the /3-decay. It then
took 26 years after which neutrinos were finally proven to exist in an exper-
iment led by C. L. Cowan and F. Reines [2]. Soon after that these illusive
leptons participated in another /3-decay reaction, where the parity symmetry
was found to be broken (in the experiment led by C. S. Wu [3], after the
paper by T. D. Lee and C. N. Yang [4], where the parity non-conservation
was discussed). This was why neutrinos helped establish the structure of the
Standard Model, which has already been enlarged to accommodate the tiny
masses of these leptons as neutrinos oscillate. In the present work, we exam-
ine whether we should be prepared for another enlargement of the Standard
Model in the context of future neutrino oscillation experiments, where these
particles will be produced from beta decays of accelerated radioactive ions —
the so-called beta-beam [5].

In order to achieve our aim we will first study the neutron decay in the
context of a general interaction Hamiltonian, which consists not only of a
vector, but also of scalar and tensor currents. In principle we would like
to find up-to-date limits on parameters describing such exotic interactions.
These considerations will be presented in Chapter 1.

The main part of our work is presented in Chapter 2. After a brief exper-
imental introduction about the beta-beam concept in Section 2.1 we move to
main, more theoretical studies. The general interaction Hamiltonian includes
left and right neutrino fields. In such case, also in the massless limit, it is pos-
sible to produce relativistic antineutrinos not only with the Standard Model
positive helicity but also with the negative one. The state of antineutrinos

1 In his famous letter Pauli originally called the new particle a neutron and later Fermi
renamed it to neutrino. The English version of the letter can be found e.g. in Ref. [1].



produced in the process described by such general interaction will be mixed
in general and we have to use a statistical operator to describe it. This will be
covered in Section 2.2, where we consider the production of antineutrinos in
the Fermi and Gamow-Teller beta decays of radioactive ions and evolution of
the state of these illusive leptons on their way to a distant detector. Next, in
Section 2.3 we describe detection of antineutrinos through their quasielastic
scattering on protons. Finally, in Section 2.4 we finish our discussion with a
brief numerical analysis of the possible influence of nonstandard vector cur-
rents on the number of detected antineutrinos produced in helium-6 decays.
At the end we give a brief summary.



Chapter 1

New Physics in neutron
decay

1.1 General Hamiltonian

At the beginning of our considerations we will parametrise the physics
beyond the Standard Model (SM) by using the general, Lorentz invariant,
derivative-free, four fermion contact interaction Hamiltonian. The first such
parametrisation of New Physics (NP) for neutron beta decay, which includes
parity violating terms, was introduced by Lee and Yang [4] in the context
of symmetry breaking. The interaction proposed by Lee and Yang contains
effective field operators for nucleons (neutron and proton), which makes it
very convenient for studying low energy phenomena such as neutron beta
decay. However, such parametrisation is not sufficient for our later studies
of high energy scattering of antineutrinos. Therefore, here we will use the
Hamiltonian similar to that introduced in Ref. [6] (where the chiral fields of
quarks and leptons appear), that in the basis in which mass matrix of charged
leptons is diagonal has the form

where PL =\ (1 —75), PR =\ (1 + 75) and | " 7,] (the metric and
gamma matrices are the same as e.g. in Ref. [7]). Moreover, u, d, I, U are
the field operators for up and down quarks as well as for charged leptons i



and the i-th neutrino with a certain mass. The UL and UR are 3x 3 unitary
mixing matrices for the left and right-handed neutrinos, respectively. We
assume that ati, Aki, &k f°r k,I = L,R are real parameters. The SM is
restored when ajy = 0, Aki = 0, = 0 for k,I = L,R exceptan =afr =
Vud G £/\/2, where Gp is the usual Fermi constant and Vui is the element of
the Cabibbo-Kobayashi-Maskawa mixing matrix. In the SM the UL is the
Pontecorvo-Maki-Nakagawa-Sakata matrix. The a&, Aki, c*kk parameters
are not dimensionless. Therefore, we can factorise out the an in Eq. (1.1)

and use the following ratios (k, 1 =L, R)
K 7 A <k
aki= M an AT — S -
alLL O-LL aLL

The only dimensional parameter that remains is aLL- For our later purpose
let us rewrite the Hamiltonian in Eq. (1.1) as

U =Gp MHva +Usp + Hr) , (1.3)

where
Gp = aLL (1 + «Lfi) m (1-4)

The 'Hva is given by

'Hva = X1 H {ukhn (1- 75)UW=* (@@ - va7s)d

i=1£=e/ir "
+ utihp (1 + 75) (v+ + V-Vai*)) d |+ H.c., (1.5)
where
1l- alR aRR £ aRL ,
Va= T—.— , vi= ® - : (1.6)
1+ aLR--mmmmmmmmeeeeeeen 1+ OLR

While the Tisp and "Ht are

3

Usp =4 A 5Z UkiU%iiPkviuPld\+ H.c., (1.7)
*=1 e=e,/i,Tk,I=L,R" '

«t=4E v v L ~ fe w¢eE p td+H.c, (1.8)

i=l C=e,n,r k=L,R ~ n >

where for k,1 = L, R we have

Mi . otkk n
Skl = TX%r > tkk=TTagmp ® t1-9)



1.2 Structure of the nucleon

General parametrisation. In order to calculate amplitudes for the free
neutron beta decay (and for scattering of antineutrinos on free protons as we
will see later)

n —»p + e~ + Di, (1-10)

we need to know the following matrix elements

(=P, \p)\u(x)Oid{x)\n(j>n, An)) =
\I/P(x, Pp,\p)Hi(pp, p1)'l,(x,pn, An) , (1.11)

where i =S, P, V, A, T, while \p{pp, Ap)), [n(p.,, An)) are proton and neutron
states with corresponding four-momenta pp, pn and helicities Ap, An. The
operators o { are given by

Os=1 0Op=75,0y=7/ii0n=7~75,0t =a . (1-12)
The free proton and neutron wave functions are (j = p, n)
Mi{x,piNj) = Uj{pj, \j)e~tpix, (1.13)

where ursp(pn<p, A,,iP) are ordinary Dirac bispinors. The quantities Hi(pp,pn)
= Hi(P, q) = Hi, where P = pn + pp and g = pn —pp, can be parametrised
similarly as in Ref. B]:

Hs = 9s5(q2), (1.14a)
Hp =gp(q2) 75, (1.14b)
Hv = F Ifl+ 27~ -aflg” +~_~ - qil 1.14
v =Fia) Ampi & A"+ % g ail, (1.14c)
Ha = GA(q2) 7m75 + Gp(q "~ 75 + p 7s) (1,14d)
TV 771N
= grig ) <&, H-—srg- MV - quifi)

+7"(V R .-4 Jy
m N

197192 ong Fatu-1uq Rajiiy, (L.14¢)"

e

where m/y is a scaling parameter such that all form factors fi,23(<2),
GA,P,z{g2)j gs,P,r(g2), g"1,23"<2) are dimensionless. The mjv is taken as the



average nucleon mass m/v = (m, + mp)/2 with m,, and mp being neutron
and proton masses, respectively. All form factors are real functions as strong
interactions are time reversal invariant [8],

The corresponding matrix elements needed for scattering of antineutrinos
on free protons (t = e, /i, r)

Vi+p—®i++n (1-15)
can be obtained through the relation

(ra(pn, Xn)\d(x)Oiu(x)\p(pp, Ap)) =
6i(p(pp, Xp)\u(x)Oid(x)\n(pn, Xn))* , (1-16)

where 5s,v,a,t —1and ep = —.

The isospin symmetry. If we neglect the difference between up and down
quark masses then the QCD Lagrangian is invariant under the isospin sym-
metry of the form

GEY)-reie-/3(S)’ (r7)

where 0 = (#i, 62,03) are real parameters and a = (crL,a2,03) are Pauli
matrices. If we further set mn = mp in '&w>p(x,pn’p, A™p) we can show that

F32)= 0, G3<R)=0, g£V) =0. (1.18)

In fact, assuming mn = mp results in the isospin symmetry at the nucleon
level1 of the analogical form as given in Eq. (1-17) when the quark fields are
substituted with the corresponding fields for nucleons. In the further text we
will refer jointly to both these symmetries as simply the isospin symmetry.

Form factors in the SM. Let us explore the possible values of the form
factors in the SM. The isospin symmetry allows us to relate the Fermi Fi(q2)
and Dirac ~(g2) form factors to the electromagnetic nucleon form factors
(see e.g. Ref. [7] for a derivation) expressed conventionally in terms of the

'This leads to the Conserved Vector Current hypothesis (see e.g. Ref. [9]) as
dn (“p(xiPp, An)) = 0 for mn = mp, independent of the particular values of



electric GE and magnetic G8 Sachs form factors [10, 11] of proton j = p and
neutron j = n leading to

[Ge (Q2) - GE(Q2]-  [6Bm(Q2) - Gvi(<32)]
n
147

f2( « = (U9b)
I+

FIiQ ) = . (1.19)

H

where Q2 = —q2. The Sachs form factors can be parametrised in a simple
way as (see e.g. Ref. [12], a more sophisticated form can be found e.g. in
Ref. [13]):

GE(Q2)= G D(Q2), (1.20a)

GE(Q2)= 0, (1.20b)

G 2)- ~G D(Q2), 1.20C

m (Q2) i (Q2) (1.20¢)

Gh{Q2 = — Gd(Q2), 1.20d

{Q2 v (Q2) ( )

where fip « 2.793 and fin ~ —1.913 are proton and neutron magnetic

moments with ji* being the nuclear magneton, and

Gd(Q2) — 1 2, (1.21)

with My ~ 0.84 GeV that is taken from experiment (fitted from electron
scattering data) and we take its value as e.g. in Ref. [12].
The axial form factor is usually taken in the form of
°a{Q2) = 7 g"LN2 - (122)
1+ 4E-V
MI)
The Ga(Q2) form factor has two parameters: the gA and the Ma- The gA can
be taken e.g. from free neutron decay data (as we will see in the next chapter)
since for this decay the four-momentum transfer q as well as g2 = —Q2 are
small and then Ga.{Q2 ss 0) = ga- Given the value of the gA, the Ma can be
fitted from neutrino quasielastic scattering, where q and g2 are not negligible.
For gA = 1.2673 we have Ma — 1.026 £ 0.021 GeV from Ref. [12].
The pseudoscalar form factor Gp(Q2) can be related to Ga (Q?2) as follows
(see e.g. Ref. [12])

Gp(Q2) = Ga(02)J M 2, (1.23)
PV



where m” is the charged pion mass.
Let us briefly mention that the QCD lattice calculations of the gA give
rather a broad range of expectations for a value of this quantity [14] 11 <
< 1.34 and we have to rely on the experimental value that can be very
different when New Physics is taken into account in fits as we will see later.
Lattice calculations provide as with the estimates of experimentally unknown
values of gs,T = gs,t(q2 ~ 0) giving [14] gs = 0.8 + 0.4 and gx = 105 £ 0.35.

1.3 Limits on parameters describing New Physics

We would like to find the limits of the NP parameters of the general
Hamiltonian given at the beginning. The goal is to obtain the differential
decay width for neutron beta decay and express it in terms of the so-called
correlation coefficients. Given the experimental values for those coefficients
we will perform least squares analysis and find constraints on the parameters
of the interest. Finally, we briefly compare obtained limits with those from
other fields like nuclear and pion decays. The results of such analysis were
already published (Refs. [15, 16]).

1.3.1 Correlation coefficients

The general formula for the differential decay width for the decay as given
in Eq. (110) in the case of initially polarised neutrons is given by

ip 1 v-' d3Pv d3pe d?pp

i_ 2mni 4- 2-, (271)32£,, (2ir)*2Ee (2n)32Ep
X (2r)4g4)(pn -P p-P e - p,) [ALA, pln*n A*xJ (1.24)

where pa = (Ea,pa) and \ a denote the four-momentum and the helicity of the
respective particle a, Ai;xn = AX,,-,KAp,*{pv,P,,, Pp, Pe) is the amplitude for
the decay process (1.10) calculated using the Hamiltonian (1.1) and nucleon
matrix elements as given in Eqgs. (1.14). The

pn =\{Il +cr-\n) (1.25)

describes the initial polarisation of the neutron with An being the neutron
polarisation vector. Calculations of the differential decay width in Eq. (1.24)
were done in the neutron rest frame and we neglected neutrino masses in
kinematics as well as all terms proportional to me/mngp (me denotes the



electron mass) and to |p~/mj for i — v,e,p and j = n,p (in particular
Ep — Tp pp/m.£ ~ mp). Under such approximations and taking into
account that in the neutron beta decay the four momentum transfer is small
the tensors given in Egs. (1.14) simplify to (i —S, V, A, T)

Hi —H? = 9i0i, (1.26)
where Oi are given in Eq. (1.12), gv = Fi(g2 « 0), = Ga{*j2 « 0),
gs,T = gs,r(g2 ~ 0). There is no term containing gp(q2 ~ 0) since

UpB)75<(A,) « 0 (1.27)

independent of the particular values of AnP, where

un,p(*n,p) —un,p(|Pn,pl/7ZTIMP ~  ~nji) o (1-28)

In order to be consistent with our later derivations we assume gv = 1 (al-
though in the decay under consideration we cannot set mp = mn as required
for perfect isospin symmetry to hold) and we will limit ourselves to the case
of three light neutrinos as already indicated in the Hamiltonian (1.1). These
simplifications with respect to Refs. [15, 16] do not affect the results presented
in these papers. Then, after summing over antineutrino states Yli=i =dr
we obtain (in analogy to Ref. [17])

dT \pe\EeEz_Go <f1 + aPe Pv +b,fMe
dEedSledelv (275 ~OR EeEv  Be
A— + B~ +DPg*P 1.2
¥ Ee Ev %eEvV b (1.29)

where B has the form of
771
B =Bo+bv-", (1.30)

foe and Qv are the solid angles of electron and antineutrino emission and
Ev = mn —Trip —Ee. The D correlation coefficient we mention here only
for completeness, since D = 0 for real ay,, Aki, &k where k, I = L, R (and
because we neglected QED corrections — see Ref. [18], from experiments [19]
D = (—1.2+2.0) x 10-4). The formulas for the correlation coefficients a, b, A,
B as well as for the factor £ are given in the Appendix A as functions of the A
VrLi Vrr, sL, sR, T1I, Trr parameters (compare with Refs. [6, 15, 16, 20])
defined as (k = L, R)

*= gAVa, v+ = VRR+VRL, (1.31a)
sk = gs(skL + sjtfi), Tkk —grtkk , (1.31b)



where va, Vj- are defined in Eqgs. (1.6), while SKL, SkR and t"k are given by
Egs. (1.9). From the definition of v+ we have

aRL ~ aLRaRR QRR ~ olro-rl

ri = 4 rr = 132
AR P - R

1.3.2 Least Squares Analysis

In the SM b = 0 as well as 6, = 0 and unfortunately experimentalists
analyse their data assuming2 6 = 0 and by = 0. Therefore, we limit ourselves
to the cases of parameter combinations that give us b = 0 and bv = 0. In
particularly we have to set sl = 0 and Tn = 0. The limits on sl and T
will be given later.

The x2 = X*(\,Vr1,Vrr,sr,Trr), which was minimized with the fit
procedure, is of the form

Aj - A Bk-B
x2= £ ati +£ B6AI 6Bk (1.33)

where aj, Aj, Bk denote the central values of the respective decay parameters
in a certain experiment and da*, 6Aj, SBk denote the corresponding errors. In
the Table 1.1 we present our data selection (as given in Ref. [16], compare with
Ref. [15]) that is based on that of the PDG [19] with the following changes
(i) we used the corrected value for measurement in Ref. [26] given in Ref. [24],
(if) we added new measurements of A parameter given in Refs. [24, 25] and
dropped older measurements of this decay parameter given in Refs. [28, 29, 30]
as they are poorly consistent with the newer ones and finally (iii) we used only
the most precise measurements of a and B (6a,i/ai < 6% and 6Bk/Bk < 2%).
In the cases when statistical and systematic errors were reported separately
we added these two errors in quadrature. For asymmetric errors we took the
larger of the reported errors.

As we can see from the expressions listed in the Appendix A the Vrl,
Vrr, sr, Trr enter quadratically or as mixed terms between pairs of these
parameters in the formulas for the correlation coefficients. Therefore, the x2
function in Eq. (1.33) has the following symmetry

X2(-VVr1,VRR,sr,Trr) =

X2(",-Vri1,—Vrr,—sr,-Trr). (1-34)

2Presently there are no experimental indications for non-zero values of b and For the
limits on b and b,, see e.g. Ref. [21].



PAR. VALUE ERROR PAPER ID

a -0.1054 0.0055 BYRNE 02 [22]
-0.1017  0.0051 STRATOWA 78 [23]

A -0.11954 o0.00112 MENDENHALL 12 [24]

-0.11996 0.00058 MUND 12 [25]
-0.11942 0.00166 LIU 10 [26, 24]
-0.1189  0.0007  ABELE 02 [27]

B 0.980 0.005 SCHUMANN 07 [31]
0.967 0.012 KREUZ 05 [32]
0.9801 0.0046  SEREBROV 98 [33]

0.9894 0.0083 KUZNETSOV 95 [34]

Table 1.1: The values of correlation coefficients measured in free neutron beta
decay. All PAPER ID names are those from Ref. [19] (PDG) except the new
ones for Refs. [24, 25].



1.3.3 Results
The Avalue.

First, we consider the case when all aki, Aki, atkk parameters are zero
except an and cilrmThen, Vr1 =0, Vrr =0, Tkk =0, Sk =0 for t= L, R
and the only non-zero parameter is A = gAVa (as given in Eq. (1.31a), for
am = 0 we have A= g”). In this case the formulas for decay parameters
simplify to

a= -Lrri” (135,)
a-)

These are the well known SM expressions for A = ga- We performed the
one-parameter fit on Ato the data presented in the Table 1.1 and obtained
Xmin = 9-542 (the value of x2 at minimum) with

0.0011 (68.27% C.L.),
A= 12755+  0.0018 (90% C.L.), (1.36)
0.0022 (95.45% C.L.).

The PDG average given in Ref. [19] is3 A = 1.2701 + 0.0025, which differs
from our result because of different data selection (mainly of the A decay
parameter, compare with Ref. [15]).

Many—parameter fits.

Next, we consider the cases of all possible two- and three- parameter
combinations giving 6 =0 and bv = 0. These axe the cases when Vrl1, Vrr
or Tkk, sk parameters can be non-zero. Our results of such many-parameter
fits are presented in Figs. 1.1, 1.2 and 1.3. We cannot perform fits where
vector parameters are fitted together with scalar or tensor couplings since
such combinations would lead to b and bv being not identically zero. Because
of the lack of space below the plots we describe the results in the following
text.

3The error was scaled by PDG by 1.9. We changed the sign of the value given in
Ref. [19] since in our convention A> 0 and we set gv = 1 (the PDG allows this parameter
to differ from unity). These simplifications does not affect the overall result on A presented
in Ref. [19],



Xain=5.074 |
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Figure 1.1: The results of the two-parameter fits for the vector, tensor and
scalar parameters.
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Figure 1.2: The result of the three-parameter fit for the vector parameters.
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Figure 1.3: The result of the three-parameter fit for the tensor and scalar
parameters.



General remarks. In all figures we present the fitted parameters as argu-
ments of the x 2 function in the left upper corner of each plot, while the
remaining ones are set to 0 and A, if not fitted, is set to its central value
given in Eq. (1.36). The cross gives the position of the x2 minimum,
while the solid vertical lines mark area the 95.45% C.L. interval on Ain
Eq. (1.36).

Two-parameter fits. In the case of two-parameter fits presented in Fig. 1.1
there are always 2 equivalent minima since the x2 function has the
symmetry given in Eq. (1.34).

Three-parameter fits. In the case of the three-parameter fits presented in
Figs. 1.2 and 1.3 we show the two-dimensional slices through the corre-
sponding three-dimensional x2 volume with planes that include the x2
minimum point and are parallel to the respective planes spanned on the
main axes in the corresponding parameter space. In the case of these
three-parameter fits there are 2x2 = 4 equivalent minima. It is so
because the minimization procedure found 2 equivalent minima corre-
sponding to the different values of A that we call Ai,2, and for each such
value of Athere are 2 sets of vrl, Vrr ors., Trr parameters from \ 2
symmetry in Eq. (1.34). Therefore, we show the respective slices of the
three-dimensional x2 volume only in 2 equivalent minima that corre-
sponds to different values of A The slices belonging to Ai are grouped
in one column, separated from slices belonging to A2. The plots in
the remaining two minima can be easily obtained through appropriate
symmetries according to Eq. (1.34)

1.3.4 Limits from other low-energy probes

Let us now briefly summarise the constraints form other sources than free
neutron decay and compare them with our limits. All constraints presented
below are at the 90% C.L.

Left-handed neutrino couplings. Let us first start from the following
definition as given in Ref. [6]

aLL — (Il + aLL * (2-37)

Then, the strongest limit on (@LL +cilr)/af® when all other NP parameters
{cir1, ciRR, Am, otkk for k, I — L, R) are zero comes from the unitarity of the



CKM matrix as claimed in Ref. [] and recently in Ref. [35], The constraints
given in Ref. [35] translated to the parametrisation used in Ref. [6] are (see
also the discussion in Refs. [6, 36])

(1.38)

As stated in Ref. [14] the strongest limit on sI comes from superallowed
Fermi nuclear transitions analysed in Ref. [36]. The corresponding limit on
sl (when all other NP parameters are zero) is4 [14]

-1.0 x 10~3<sL <3.2x 10-3. (1.39)

Similarly, in Ref. [14] the authors conclude that the strongest limit on
tensor interactions comes from the radiative pion decay #+ —¥e+ + ve+ 7.
The corresponding limit given in Ref. [14] in the parametrisation used in
Ref. [6] takes the form

2.2 x 10-3< A <272 x 103 (1.40)
afp

and all other NP parameters are zero.

Right-handed neutrino couplings. Finally, let us remark that it is pos-
sible to obtain stronger limits than ours when nuclear decays are included
in the analysis. In particular from the joint analysis of neutron and nuclear
decays the limits on vector parameters are [6]

[6rr| < 6.3x 10 2 (1.41)
when all other parameters are zero (including ar1 = 0) and
|¢irl] < 3.7 x 10-2 (1.42)

if aRL is the only non-zero parameter. Similarly, if only ccrr contributes then
from nuclear decays the limits are [6]

(1.43)

Finally, the nuclear decays of 32Ar give the limit on |(Arr —Ar1)/afjf| at
the level of 0.1 as stated in Ref. [6].

4The s1 parameter used in Ref. [14] is roughly the same as in the present work, while
Ref. [36] uses a different parametrisation.






Chapter 2

Neutrinos from beta—beams

2.1 The beta-beam concept

The idea of beta-beam was first introduced by P. Zucchelli [5]. The
concept includes production of a large number of radioactive ions, their ac-
celeration and circulation in a properly shaped storage ring, where the ion
/3-decays produce a huge flux of ve or ve (without contamination of other
neutrino flavours — contrary to the case of muon or pion decays). These
(anti)neutrinos axe sent to a distant detector and the oscillation process can
be observed.

A good candidate, as suggested in Ref. [5], for a production site is CERN
with its PS and SPS accelerator system that allow to boost ions up to 7 = 150.
The storage ring could have two straight sections having 2 x 36% of its total
length of 6880 m — matching roughly the SPS circumference — see Fig. 2.1.

The right choice of an radioactive nuclei is a key issue. The candidates
are characterized by (i) their half-life times ~1/2 and (ii) through the so-
called Q”-values, that axe approximately the maximum energies of the emit-
ted (anti)neutrinos in the rest frame of decaying nuclei. Therefore, the ions
should decay quick enough to have many (anti)neutrinos at a given time but
not too fast in order to accelerate and store them in a large number. The
distance L to the detector determines the Lorentz factor 7 for the particular
value of Qs in order to observe a maximal oscillation signal.

Zucchelli suggested: 6He as the Pe emitter with Twv2 ~ 0.81s, Qp «
3.51 MeV and 18Ne as the ve emitter with Ti/2 « 1.67s, Qp « 3.41 MeV
(main decay fraction). The average (anti)neutrino energies after the Lorentz
boost with 7 = 150 axe then (Ev) « 581 MeV for 6He and (Ev) « 558 MeV



Figure 2.1: Schematic illustration of the beta-beam concept. Picture taken
from Ref. [37] — see a detailed description therein. The left part illustrates
the ion production facilities, the middle corresponds to the PS and SPS accel-
erator system in CERN and on the right part the storage ring is illustrated.

for 18Ne. These energies will roughly match 1st ue —  (ve —PM oscillation
maximum at Frejus Underground Laboratory — 130 km from CERN, opening
a window for CP-violation measurements, when production infrastructure is
combined with new water Cerenkov detector (see e.g. Refs. [38, 40]).

Since the original proposal [5] was published many other studies have been
carried outl that are reviewed e.g. in Refs [39, 40, 41]. In particular studies
were done for 7 = 100 (see e.g. Ref. [41]) since then the average neutrino
(antineutrino) energies better match the ve —¥  {ve —mv”) oscillation maxi-
mum for L — 130km (at the cost of lower detection cross sections). In present
work we will focus on the antineutrinos produced from 6He decays (since the
predicted flux in this case is the biggest among all considered ions) within
original scenario with 7 = 100.

'Also new ions have been proposed (see Ref. [42]): 8Li as the Pe emitter with T1/2 ~
0.83s, Qp ss 12.96 MeV and 8B as the ue emitter with T1/2 ~ 0.77s, Qp ~ 13.92 MeV.
These ions allow to study neutrino oscillations at larger distance (like CERN-Gran Sasso)
within present SPS technical abilities. Let us however mention that the profit of higher
cross sections (because of higher energies) does not overcome the lower flux in the larger
distance (see e.g. Refs. [40]). See also studies for the United States site [43].



2.2 State of produced antineutrinos

The general Hamiltonian presented at the beginning of our considerations
includes not only left but also right neutrino fields and both of these fields
can have different mixing matrices. Therefore, the state of antineutrinos
produced in the decay of radioactive ions will not be pure in general and we
have to describe it by the statistical operator. The considerations will be
carried out first in the center-of-mass (CM) frame that is the rest frame of
the decaying nucleus and then we transform the statistical operator to the
laboratory (LAB) frame, where the ions move in the decay ring. Finally, we
consider an evolution of the state of the produced antineutrinos on their way
to a distant detector.

2.2.1 Statistical operator in the CM frame

First, we would like to put the reaction of our interest
AHe+2 “m|Li+3 + e~+Pi (2.1)
in a more general context — as an example of the process of the type
X —Y +e + Di, (2-2)

where X and Y denote the initial and final nuclear states, respectively. We are
interested only in those antineutrinos that (after appropriate Lorentz boost to
the LAB frame) would reach the detector. The statistical operator describing
the state of such antineutrinos in the CM frame produced in the process (2.2)
may be written as2

where defines the angular size (with respect to the line defined by the
respective straight section of the decay ring) of the detector in the CM frame,
Aand 6 denote the helicities of the respective antineutrino mass states i and
k, while E™ax is the maximum energy of the emitted antineutrinos. The

2 As through all this thesis also here we assume that neutrinos have definite values of
momenta and energies. In the wave packet approach in general there will be also non-
zero off-diagonal matrix elements of the statistical operator under consideration in the
momentum-energy basis (see for e.g. the definition of the matrix elements in Ref. [44] and
the discussion in Refs. [45, 46, 47]).



non-zero matrix elements of the corresponding statistical operator (the so-
called density matrix elements) in the case of unpolarised parent nuclei and
without measuring the polarisations of the electrons and the daughter nuclei
are obtained from3 (compare with Refs. [44]47])

dspY dspe dspu
N , V , (2tt)32Ey (2tt)32Ee (2ir)32Eu

X 27)4j(4 (px -PY -P e- PV)AXiAXK, (2.4)

where pa = (Ea,pa) and Xa denote the four-momentum and the helicity of the
respective particle a, A\g = A\ i-\x A Le(Pt/iPx ,Py>Pe) is the amplitude for
the decay process (2.2) calculated using the Hamiltonian (1.1). As before, we
neglected the effect of neutrino masses in kinematics, so d3pu = EAdEvdQv.
The N is such that the density matrix is properly normalised4

3 />Qmax /,firnax
(2.)
t=LA=|

We will not show herein the details of the calculations of the nuclear
matrix elements as such calculations were presented in the literature (e.g.
in Refs. [48, 49, 50]) and we are more interested in the discussion of the
density matrix. Therefore, basing on Refs. [48, 49, 50], we will give only a
brief overview of such calculations pointing out the most important aspects
and then give the final result. First, we recall the free neutron beta decay.
Under the approximations given in Sec. 1.3.1 (in particular \pnpVrnnj> ~ 0)
the amplitude for the free neutron beta decay consist the following terms
Up(Xp)OiUp(Xp) for i = S,V,A, T (and Up(Xp)OpUp(Xp) « 0), where Oi axe
defined in Eq. (1.12) and u®,p(A,)P) = unip(jpnp|/m rp ss 0, Anj)) are simply

equal to (J = n,p)

uV(A,) = " ) (2.6)

where

X(Xj = +1) = 1 . XA, = -1) = | (2.7)

The off-diagonal elements in Aand S vanish because of the angular momentum conser-
vation.

4After diagonalizing the density matrix its elements give the densities of a probability of
finding the antineutrino in a particular state.



are the ordinary two component spinors. The terms containing Oy = 7/
are equal to u?(Ap)7°u® (An) = 2v’V * X +(™)x(*n) and u?(Ap)7 fw°(An) =
o for c = 1,2,3, while the terms containing Oa — 7775 are equal to
ui(V)7°75Un(An) = 0 and u?(Ap)7f75u° (A,) = 2ym nmpx +(Ap)afx(An),
where k = 1,2,3 as before. Similarly, from O5 = 1 we obtain terms pro-
portional to X+(\>)x("n), while from Ot = <V we get terms proportional
to x +(*p)(jkx(*n)- In the nuclear physics the x(*n,P) spinors are multiplied
by the orbital wave function of the nucleon in the nucleus. This is so if we
assume that at the time of the decay the nucleus can be treated as set of
non-interacting, non-relativistic particles. Therefore, the total wave function
of the initial and final nuclear states is obtained as an antisymmetric prod-
uct of the individual nucleon wave functions and we sum over all neutrons in
the nucleus that can decay. Moreover, we assume that once the leptons are
produced they do not interact with the nuclear medium and we can neglect
the terms r\g\ « 0, where q is the momentum transfer and r varies from 0 to
maximal radius of the nucleus. From this we conclude that there will be no
change of the orbital angular momentum in the decay under consideration.
Then, the X+(*p)x(-"n) = "ap,a, terms give rise to the so-called Fermi tran-
sitions in which the spin Sx of the initial nucleus is the same as the spin Sy
of the final nucleus. On the other hand, the terms x+ (~p)akx(~n) give rise
to the so-called Gamow-Teller transitions in which Sy —Sx —0,+1 except
the case when Sy = Sx = 0. The Fermi and Gamow-Teller transitions are
commonly called allowed transitions and form a subgroup of all nuclear beta
decays.

The non-zero antineutrino density matrix elements calculated in the rest
frame of decaying nucleus X after neglecting the momentum transfer from
nucleons to leptons as well as QED corrections and the recoil momentum py
of the daughter nucleus (Ey — myyj\ +py/my « my, where my is the
mass of the final nuclear state Y) are

with
\MgtVul + \Mf\2vi
L 2.9a
Pre (") = EIECPOL | iogul + wr) + \MA2(T 4 vr) (2.92)
\Mgt\2 \M f\2
P-,-{Ev) = E 28 e\pe\ SO o (2:50)

\Mgt\2(ul + ur) + \MA2(VI + vr) -



where Mp and Mgt denote the Fermi and Gamow-Teller reduced (in the
sense of the Wigner-Eckart theorem) matrix elements (see e.g. Refs. [48, 49]),
Ee=mx —my —E,, = Qp+m,, —Ev (the mx denotes the mass of the initial

nucleus X ) and )
-Qmax .gmai

w = dslv / dEVE 2Ee\pe\w (2-10)
Jo Jo

for w = ul,r,vLJi that are given by

“L=4T|l -4ATIIA + A2, (2.11a)
UR = A2(VRR - VRL)2- 4ATrr (Vrr - VRL)"C/ + 4Trr (2.11b)
VL = s\ + + 1, (2.11c)
VR = (Vrr + Vri1)2+ 2Sr (Vrr + VRL) -=I + SR ® (2.1id)

The density matrix elements (2.9a) and (2.9b) can be easily computed for the
pure Fermi transitions (|[M fp * 0, \Mmqt¥2 = 0) and for the pure Gamow-
Teller decays (\Mpw = 0, [M qt2 7°0), as well as for antineutrinos from free
neutron /3-decay (setting \mg t\v2/\Mmp\2 = 3 — free neutron /3-decay can be
viewed as a mixed Fermi and Gamow-Teller transition). The decay (2.1) is a
canonical example of the pure Gamow-Teller transition, when from spinless
®He nucleus the spin one |Li nucleus is formed (see e.g. Ref. [50]).

2.2.2 Statistical operator in the LAB frame

The statistical operator in the LAB frame p' (the prime denotes the respec-
tive quantities in the LAB frame) describing antineutrinos (produced from
the ions moving in the decay ring), that reach the detector, can be written in
general case as

fnT ax

iM2,3V==%1" =0 dEA

(2.12)
where defines the angular size of the detector in the LAB frame. First,
we would like to relate the density matrix elements in the LAB frame with
the respective elements in the CM frame. We will further focus on the case
described previously, when the parent nuclei were unpolarised and we did
not measure the polarisations of the electrons and the daughter nuclei. For
simplicity we assume that we are dealing with a cylindrical detector with a



radius D, placed at the distance L from the production point and situated
such that the z axis defined by the straight sections of the decay ring covers
the main axis cylindrical. Then, the azimuthal angle §¥ in dEl'v = d$vd cosflj,
is no more interesting, £*maa:(fi£,) = EJnax(cosff*) so we can easily integrate
over §% and obtain

2m .
2ir dpx,i,\,k

21
90 dE'.d cos (2.13)

Similarly, we can perform analogous integration in the case of the respective
matrix elements in the CM frame

= 2tt- 214
/@ d4>u((jtl¥vd§l\l§ 2ttdEvdcosO,, ( )

Then, after the Lorentz transformation (that is characterized by the usual 7
factor) along the z axis from the CM frame to the LAB frame we obtain the
following relation between density matrix elements in these two framess

dp\i-\k _ dp\yixik

det]| , 2.15
dcos O dEL  dcos O,,dEu| ev| ( )
where
dEu ddEu6
det = cos b (2.16)
d dcoseU .
&ETBV dcos 6L y/J2 —1005&,
withé
oSOV = y/12 —1—7 Cosol 2.17)
V72 —1c0s91 —7
Ev= (7- vV -lcos #) EI . (2.18)
Then, we obviously have
jpmax
E'™ x(cos01) = ) (2.19)
7 —yljz2—11 01
L
c0s0,] (2.20)
y/lL2+ D2

5Since we neglect the neutrino masses in kinematics there will be no Wick rotation of
states.
6The inverse relations are

vV - 1+ 7cosQy

coSOU = —mmmmmem e E s
V 72— lcosfl,, + 7

E,= (y+ yly2- lcos#” £, .



For practical reasons we are interested in the limit of very small
Then, we can make an approximation

E, « (7- \/l2~ 1)K (2-21)
as well as
£*"* (cos0,,) « Efnax(cos(0)) = E'max = (7+ vV - 1)E" . (2.22)

Then, the statistical operator in the LAB frame p' can be written as

-EVmax

E E ALANLE(* GC )> te (ASPM)I, (2-23)
ifc=1/2,3 A=+l dE"

with p'~ = (0,0,££) and

dh Ak =201 )

. dcos¢n ] (2-24)
di?,, Jcose'jnax dcos9l/dEN

The corresponding density matrix elements can easily be calculated and we
obtain

AN (ueky ZIT(L - GOSCOY)

X (7- VT2~ Dp+,+((7 ~yl72~ 1)K) , (2.25a)

uei (UdY ~ (1L - COS&rX)
X@- V72- 1)P--@7- VvV - 1K) (2.25b)
with p£,+(Ev) given in Egs. (2.9) and (see Eq. (2.17))
cosC“ = vV 1 je osOl-- ~N29)
y ¥2 —1c0s —7

The elements in Egs. (2.25) are independent of the particular value of cos Q™*
as the factor 2ir (1 —cos &‘iax) cancels with the corresponding one in the nor-
malisation of the p+,+(E,,) in Egs. (2.9). It can be also checked that the
density matrix is properly normalised as

3 r E,max j-

[ o n <227)



Let us also define (for the later purpose) the density of the flux of antineu-
trinos with helicities A= 1 and energy E'v as

«(FIN Np I- COS*-y- dp\i-Xi ,n no\
R 2 mmmeenee A W ( }
»=]
where cos is given in Eq. (2.26) and Np is the number of decays of the

radioactive ions per unit time. The (1 —cosQ ax) describes the fraction
of produced antineutrinos that reach the detector (when the decaying nuclei
were not polarised). The total density of the flux is obviously given by

i(El) = MK) s (2-29)
A==l



2.2.3 Evolution of the state

Once the antineutrinos are produced they travel the distance L and after
the time T they reach the detector. This evolution can be also described in
terms of the statistical operator and leads to the neutrino oscillations [51, 52,
53], We assume that oscillation length is not very big, so we can consider
that antineutrinos are moving practically in a vacuum. Let us first consider
a general situation, when the distance to the detector is given by vector L
that may not be equal to L = (0, 0, L). Then, the evolution of the statistical
operator in Eq. (2.12) can be described as

p'(L, T)=U(L,T)p’U+(L,T). (2.30)

Since all quantities are in the LAB frame so we will drop the prime in the
following text. As we concentrate on the oscillations of antineutrinos in the
vacuum the evolution operator is given by

U(L,T) = expi-iprXr) (2.31)

with X = (T, L) and the action of four momentum operator on the antineu-
trino states is defined as

(2.32)

where pj = (Ei,pv) is the four-momentum? and have to take non-zero an-
tineutrino masses m, ~ 0 at the moment of calculating the oscillation phases

Let us now consider the situation described in the previous section so that
L = (0,0,L) and p,, = pvz = (0,0, Eu). Since neutrinos are nearly massless
we take T « L and Ei ~ E,, + Tn?/(2EV) so that

where

2.34
dEv dEv (2.34)

with Am?e = rnf —m\.

7This corresponds to the so-called equal momentum approximation, since in general
antineutrino states with different masses rrii will have different energies Exand momenta pi.



2.3.1 Number of detected antineutrinos

The precise description of antineutrinos scattering on nuclei in the detec-
tor is a complicated task and it is a subject to the specialised programs —
the Monte Carlo event generators approach (see e.g. Ref. [54]). However, we
would like only to find the size of the possible NP on the beta-beam neutrino
phenomena and such details are not so important for us. Therefore, as a
detection reaction we will choose the scattering of antineutrinos on free pro-
tons as given in Eqg. (1.15). The corresponding number of produced leptons
£ = e, jj, t (that is also the respective number of detected antineutrinos in the
limit of no background) irrespective of their energy is given by

£ max

Ne= / Ne(Ev)dEv, (2.35)
JBih'1

where Ethe is the threshold energy of the antineutrino for the production of
the lepton £ and
wT 1 ___ ranes ffTnax

N{EV) = npto—pi-—--- "— ae”e(Ev,L) (2.36)

with rip being the number of scattering centres in the detector (i.e. the free
protons in our case), to is the time period during which measurements are
carried out. The Np, D, cosg”Lax were defined previously (for Eq. (2.28) — in
particular cosé denotes the respective quantity in the CM frame as given
in Eq. (2.17)), while the ae*i(Ev,L) in the LAB frame (defined before, in
which the detector is at rest) is given bys (compare with Refs. [45, 46])

A {E-L)"V5SF5 A £ (I /' wm< 1 w m

X (2T1)4<BN(Pp + Pv-T>n- Pe)A°( (A\k) >

(2.37)

where i and k denote the respective antineutrino mass states, pa = (Ea,pa)
and Xa mark the four-momentum and the helicity of the particle a, DE_

\t{PuiPn<PpiPd * the amplitude for the scattering process (1.15)

8We have averaged over the polarisation of the proton and summed over the polarisations
of the final particles.



calculated using the Hamiltonian (1.1) and the corresponding nucleon matrix
elements as given through Eqg. (1.16). We assume that the target protons in
the detector are at rest in our LAB frame, so pp = (mp,0).

Because, as usual, we also neglected the effect of non-zero antineutrino
masses in kinematics, we can factorise the amplitudes D Zin the following
way

= &&)' = (US)'M f1,, (2.38)

where M ~%e = ~x-xn xpxJ*Pv’'PmPpiPe) describes the scattering of massless
antineutrinos. Thus, we have

E ADe dp+ji;+jfe(Z) ( Ao,e _
+1* dEv VvV +W -~

i,k=1,2.3
E \M+ ivPe?(Ev,L) (2.39)
i=1 u

and similarly

E AD,e dp-,i-,-,k(L) ( ADe Y

. Lo -1 dEv I -w
i,k=1,2,3
Edij ZA WM-tf Per(Ev,L), (2.40)
i=1 u

where (j = L, R)

PLe(E. L)= uiiuk{uiky (uiYexpf-irL) (2.41)

j.fc=1,2,3 : S

has the form of the usual probability, such that "2(=eMTP~g = 1 forj =
L, R. Therefore, the Ng(Ev) can be decomposed into

Nt{Ev) = N+e{Ev) + N..t{EV), (2.42)

where
N+tl{E,,) = nDtDj+ (El)a+e(Et)P e (EI,L), (2.43)
N--e{Ev) = nDtDj_(Ev)a—(Ev)P " tt(Ev,L) (2.44)

with j+ (Eu) being the density of the flux of antineutrinos defined in Eq. (2.28)
and a\-*(Ev) denoting the cross-section for the production of lepton £ when
the incoming (massless) antineutrino has helicity A= +1.



Let us now briefly focus on the possible values of the cross-sections. We
will work in the limit of the perfect isospin symmetry (see Sec. 1.2). For
technical reasons, it is very convenient to express <J+-e(Ell) as

0x*{Ev) = / dQ2 , (2.45)
JQLnfr) dQz2
where9
2. fxe \ m~m\ - z o A
len\él/) = ltn, + mAi , (z.40a)
2 \ES' 2EImMN - mNmj + z n
Qmax\tJd') — i ein (2.46b)
with
z=Evm2- E,,\J(s—m2)2 —2(s+ mf)m&A - mA (2.47)
and s — 2Ei/mpf.

First, we consider the SM case. The formula for the respective differential
cross-section can be written in the usual form as (in analogy to Ref. [55])

d”su (G$M)2m Bl s —z (s—u\z"
A - AicB + 12— *—1 C (2.48)
dQ2 AttE2 IN N

where GM"M = VG pjy/¥ is the value of Gp within the SM (see Sec. 1.1),
s —u =4mj*"Ev —Q2 —mj and

A=m24 81+ G2 @ r)F2+ r@L_ r)F2+ 4rFiige

N
m2
Am% [(Fi +F2)2+ (Ga + 2Gp)2- 4(r + 1)GP\ }, (2.49a)
B = 4rGA(FI + F2), (2.49b)
C=\{G\+F2+rF2 (2.49c)

with mi being the mass of the lepton £ r = Q2/(4mRl), 2 = Fi"iQ2),
Gap = Gap(Q2)-

In general we do not know the form factors in the case of NP and therefore
we do not know the corresponding cross-sections. For our later purpose let

9Recall that we work under the approximation that the target protons in the detector
are at rest.



us however briefly discuss the case when only vector currents are present.
Then, the formulas for the cross-sections da+-*/dQ2 can be obtained form
the expression for the SM cross-section through the following substitutions1o

= dQ2 (GOM GP’Ga'P VclGap)’ (2.50a)
= "Q2 >Gp, Fr2 w+Fit2,Ga,p —¥vav-GA,p) m (2.50b)

Let us stress that in the SM the form factors have parameters fitted from
experiments. Therefore, if NP is included the formulas used in the fits change.
This implies that the values obtained through such a general analysis can
change also. This applies in particular to Ga (Q2) (and Gp(Q2) that is related
to Ga(Q?2) through Eq. (1.23)) form factor that is fitted from neutrino and
antineutrino scattering on nuclei and nucleons (the Fx”"iQ2) are expressed in
terms of the electromagnetic form factors fitted from electron scattering data,
as already stated in Sec. 1.2).

10When we set the NP parameters to 0 then the dcr--e/dQ2 vanishes and the da+,t/dQ2 =
dafM/dQ2.



2.4 Numerical results

Finally, we would like to estimate numerically how big are the NP effects
if the NP parameters satisfy the bounds described in the Section 1.3. For this
purpose we inspect the ratio

SM (E,,)

NNP{EY N fM(Ev (2:51)

1-

where Ne,’NP (E,,) are the corresponding number of events calculated in the
case of the SM or NP, respectively. The AN#1i(E,,) ratio is independent of
the detector size D and the number of radioactive ions (per unit time) Np as
well as of the values of rip, to, Gp and G*M. This can be easily understood
as the factors that contain those quantities cancel out between numerators
and denominators of the respective ratios. If the NP parameters are close to
0, then the ANEI(Ei,) ratio is also close to O.

We will focus on the antineutrinos produced in the decays of 6He ions in
case when the only non-zero NP parameters are the vector ones (i,k =
L, R). We will use the SM form factors for the NP cross sections. As discussed
previously the parameters of these form factors can change if they are fitted
to NP formulas rather than to SM expressions. This is the subject of the
values of Mg and gA as discussed in the Sec. 1.2. Therefore, to make our
discussion more clear we assume ¢.lr = 0 then from Egs. (1.6) and (1.31)
we see that A simplifies to A= g& as well as Vrl = arl, vrr = o,rr. We
choose the value g4 = 1.2755 as given in Eq. (1.36) as the SM value of this
parameter. We assume that for such value of gj1 we can setit Mg = 1.026
as given in the Sec. 1.2. We consider two cases, first we set Hrl = 0 and

= 0.06 and next we set ¢ir1 = 0.03 and qrr = 0. Both values of or1
and aRR obey the constrains on those parameters taken for g4 « 1.2755 (as
given in the Sec. 1.3).

The mixing matrices we parametrise through mixing angles and phases

(fc= L, R)

/e“f 0 0 \ /1 0 0 \
uk= 0 eia% O U(OKR,OK3,0R3,6KP) 0 eia* 0 , (2.52)
\ 0 0 eia3 J \ 0 0 eia> /

The m a —1.026 was extracted for gaA —1.2673.



where U = U(0i2,&13, 023, ¢>cp) we take in the same form as in the PDG [19]

( C12C13 S12C13 s13e~zScp \
U= —S12C23 — C]_2S23SizelScp C12C23 - Si2S23Si3elScp s23C13
\ SI2«23 - Ci2C23SI13ezScP —N"12723 — «S12C23«13el<5cp Cc23C13 J
(2.53)

with Gij = cos Oij, Sij = sin &j. The o*i? phases cancel out in the formulas
for Pdf e(Eu,L), therefore

ANEefi(Ev) = AN€fl(E,,; @L, &R), (2.54)

where ©ft = ("1217131723" cp)- calculate ANefl(Eu) varying the angles
= Ojj € [o,n/2] in the SM Limits recommended by the PDG [19]

sin2(2712) = 0.857 + 0.024 , (2.55a)
sin2(2023) > 0.95, (2.55b)
sin2(26»i3) = 0.098 + 0.013 (2.55¢)

and with eqP = 0, while 0* can change in the range [0,m/2] and eqP we take
from [0,27r]. The respective neutrino mass differences we set to the central
values of the PDG [19] limits

Am2i = (750+ 0.20) x 10-5eV2, (2.564a)
IAmM22| = 0.00232+°" eV2 (2.56b)

and we choose Am& > 0 (that corresponds to the so-called normal hierarchy).
The results of our analysis for L = 130km and 7 = 100 are presented in
Figs. 2.2 and 2.3.

Let us briefly discuss the accuracy in the future beta-beam experiments
looking for ve —  oscillations. The signal in such experiments is the number
of detected antimuons. The key issues are residual systematic errors of the
signal and the backgrounds. Both these errors were estimated in Ref. [56]
(compare also with Ref. [57]) to be not smaller than 2% in the case of a water
Cerenkov detector. Our calculations were made for antineutrinos scattering
on free protons in the case of perfect detector efficiency and no background.
Therefore, if we wish to compare our results with the predicted accuracy we
have to include in principle also nuclear effects in oxygen nuclei, which can
generate not only additional NP effects, but also uncertainties coming from a
modelling the nuclei. The calculated effects of NP are below 0.5% level, but
the full answer to the question of the influence of NP in the future beta-beam
experiments is still the subject of further investigations.
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Figure 2.2: The /SNefl(Ev) calculated for Lrl — 0 and o.rr = 0.06 when
antineutrinos were produced in the decays of 6He ions accelerated to 7 = 100.
The detector is located L = 130km away from the decay ring.
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Figure 2.3: The /SNefl(El/) calculated for Hrl, = 0.03 and ¢lrr = 0 when
antineutrinos were produced in the decays of 6He ions accelerated to 7 = 100.
The detector is located L = 130 km away from the decay ring.



Summary

In the present work we discussed the possible influence of physics beyond
the Standard Model in the future neutrino oscillation experiments, where
these particles will be produced from beta decay of accelerated radioactive
ions. In order to achieve this aim we conducted our research in a few steps.

First, we considered the general, Lorentz invariant, derivative-free, four
fermion contact interaction Hamiltonian at the quark-lepton level. Next, we
discussed the nucleon matrix elements needed to calculate the amplitudes for
antineutrino production and detection processes. We applied these consider-
ations to calculate the so-called correlation coefficients in free neutron beta
decay and performed the least squares analysis using the most precise and
recent experimental data for these coefficients. In such a way the limits on
parameters describing New Physics were found.

After these initial preparations, we studied the antineutrino production,
oscillation and detection in the future beta-beam experiments. We used the
statistical operator to describe the state of the antineutrinos produced in
the Fermi and Gamow-Teller nuclear beta decays, as in general such state
is mixed. In particular we found the formulas for the matrix elements of
such statistical operator in the rest frame of decaying nucleus and then in
the laboratory frame, when the radioactive ions move in the storage ring.
Next, we considered the evolution of the state of antineutrinos that leads to
oscillations and the detection of these particles in the distant detector. In
particular, we gave the formulas of antineutrino scattering on free protons
when only vector currents are present.

Finally, we estimated the influence of physics beyond the Standard Model
when antineutrinos were produced in helium-6 decays and detected through
their scattering on free protons. We considered the situation when only vector
currents are present. The obtained deviation of New Physics from the Stan-
dard Model signal is below the expected experimental accuracy. However, the
complete analysis requires further research, especially the calculation of the
nuclear effects in the detection process.






Appendix A

Formulas for correlation
coefficients

We would like to present formulas for the correlation coefficients a, b, A,
B = Bo + bume/E e given in Ref. [16], which are functions of the parameters
defined in Egs. (1.31). The presented formulas agree with those obtained
earlier in Ref. [17] after appropriate change of the parametrisation as given
in Ref. [6]. Thus, we have

£ = 3A2 [(Vr* - vrRLT + 1]
+ (Vrr + Vrr)2+ 1
+ +1'H) +s2 +s2, (A.D)

= —X2 - Vrh2+ 1]
+ (Vrr + Vri1)2+ 1

+ MTrr+ TRl) ~sr ~sL’ (A-2)

bE: -12A [Trre(Vrr - Vr1) +TLL}

2[sr(Vrr + Vri1) + sL], (A.3)

+

—2A2 [1- (Vrr - Vri1)2]

<
1l

ZA[l- (Ver + Vr1) (Vrr - Vri)]

+

- 4@ Rr + srTrer - 2TR1 - sITHL) , (A.4)



Bof = 2A2 [1- (VRR - VRL)Z]
+ 2A[l—(Vrr + VRL) (Vrr - VRL)]
42Trr - seTrr - 2Th + saTa1) , (A.5)

b,,E = 2A[(4Trr - sr)(Vrr - VRL)' (4TL£' $)]
+4 +Vr1)-Ti1] | (A.6)
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