
*Corresponding author.Address: Universidad Máximo Gómez Báez de Ciego de
Ávila. Carretera a Morón km 9 1/2, C.P. 67800, Ciego de Ávila, Cuba.

Tel.: +53 33 217010; Fax: +53 33 266365

MDD vs Traditional Software Development: a
practitioner subjective perspective

Yulkeidi Martínez 1,*, Cristina Cachero2,Santiago Meliá2

1Universidad Máximo Gómez Báez de Ciego de Avila, Cuba

yulkeidi@gmail.com
2Universidad de Alicante, Spain

{ccachero, santi}@dlsi.ua.es

Abstract. Context: Today practitioners have a myriad of methods from which
to choose for the development of software applications. However they lack
empirical data that characterize these methods in terms of usefulness, ease of
use or compatibility, all of them relevant variables to assess the developer's
intention to use them.
OBJECTIVE: To compare three methods, each following a different paradigm
(Model-Driven, Model-Based and the traditional, code-centric, respectively)
with respect to its intention to use by junior software developers while
developing the business layer of a Web 2.0 application.
METHOD: We have conducted an experiment with 26 graduate students of the
University of Alicante. The application developed was a Social Network, which
was organized in three different modules. Subjects were asked to use a different
method for each one of the three modules, and then answer a questionnaire that
gathered their perceptions during its use.
RESULTS: The results show that the method that followed the Model-Driven
development paradigm is regarded as the most useful, although it is also
regarded as the more difficult to use. They also show that junior software
developers feel comfortable with the use of models, and are likely to use them
if accompanied by a model-driven development environment.
CONCLUSIONS: Model-driven development methods seem to show a great
potential for adoption. However, further experimentation is needed to be able to
generalize the results to a different population, different methods, languages
and tools, different domains or different application sizes.

Keywords: MDD, MBD, code-centric development, experiment, usefulness,
ease of use, compatibility, intention to use

1 Introduction

It is a well-known fact the Software Engineering (SE) community advocates the
use of models in order to improve software development practices. Among this
community, the Unified Modeling Language (UML) is well established as the
standard modeling language. However, UML does not promote any particular
development process, and modeling practices may greatly differ from organization to
organization. One well-known way of classifying such modeling practices is

Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/19775064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

according to the extent to which modeling is used to support the development process.
In this sense, Fowler [1]describes three different modes in which modeling languages
(and UML in particular) can be used: sketch, blueprint and programming language.

• Sketches are informal diagrams used to communicate ideas. They usually
focus on a particular aspect of the system and are not intended to show every
detail of it. It is the most common use of the UML, and the recommended
practice in agile, code-centric frameworks like Scrum [2]. When models are
used as sketches, tools are rarely used, the modeling activity being mostly
performed in front of blackboards where designers join to discuss complex or
unclear aspects of the system.

• Blueprints are diagrams that show most of the details of a system in order to
foster its understanding or to provide views of the code in a graphical form.
Blueprints are widely used in Model-Based Development (MBD), which is at
the core of standard development practices like the ones promoted by the
Rational Unified Process (RUP) framework [3].

• Last but not least, fully-fledged models can be used to completely characterize
the application. If such is the case, the diagrams may even replace the code,
and be automatically transformed into executable binaries. This is the
modeling use that lies at the core of the Model-Driven Development (MDD)
paradigm.

This classification has led some authors to characterize the modeling maturity level
of organizations based on the role of modeling in their software development process
[4]. While code-centric development approaches require - at most - an informal use of
modeling techniques and languages (such as sketches), both MBD and MDD
approaches require a more formal use of models. Furthermore, MDD approaches rely
on models that need to be syntactically correct, but also semantically accurate,
consistent with each other and complete, so that they can be used as input for model
transformations [5]. Table 1 dives into the main differences between these three ways
of conceiving the development cycle, and compares, on a discipline (workflow) basis
(Model, Implementation and Test), the three paradigms with respect to their reliance
on models to help carry out the activities involved. The three disciplines used for
comparison are the ones that typically appear in an Agile UP development process [6]
during the construction phase.

Discipline Code-Centric Model-Based Model-Driven

Model

Sketch or absent

Blueprint

Fully-fledged

(DSL)

Implementation

Manual

Semiautomatic

Automatic or

Semiautomatic

Test

Manual

Manual

Semiautomatic

or Manual

Table 1: Correspondence between Agile UP disciplines and development paradigms

As we have aforementioned, code-centric approaches do not usually rely on
Computer Aided Software Engineering (CASE) tools [7] to represent the model
discipline. On the contrary, they usually promote the use of, at most, whiteboard
sketching that permits to communicate the main ideas among different team members
in a quick way. Also, the implementation and test disciplines are usually tackled
manually. When the Model-Based paradigm is followed, its model discipline
generates a blueprint, usually with the help of a UML tool. These UML tools usually
permit to obtain a partial implementation (usually plain classes with attributes and
empty methods). However, code testing is usually carried out in a manual way.
Finally, the Model-Driven paradigm typically relies on fully-fledged models that are
usually supported by a Domain-Specific Language (DSL). This paradigm requires
modeling to be carried out by means of a Model-Driven CASE tool that permits to
generate, either partially (semiautomatic) or in full (automatic), the final
implementation. The corresponding tests can, depending on the development
environment, be partially inferred from models or manually implemented.

As for the CASE tools available for MBD and MDD methods, and depending on
the particular paradigm for which they were devised, they may offer not only
modeling environments, which assure the syntax correctness of the models, but also
model checking and partial or complete software generation capabilities. Well known
MBD environments include MagicDraw [8], Poseidon [9], Visual Paradigm [10] and
Rational Software Modeler (RSM) [11]. Although all of them offer certain code
generation capabilities, they are not able to generate fully-fledged applications, and
most MBD approaches do not rely on them for the coding phase. Regarding MDD,
some of the best known currently available tools are TrueView Domain Modeller
[12], Borland Together [13], OOH4RIA IDE [14] and WebRatio [15], although more
tools claiming to provide powerful modeling environments and code-generation
capabilities are appearing by the day.

Behind all these efforts, it underlies the assumption that using development
methods that rely on models and tools with code generation capabilities improves the
global developer experience when developing applications, which in turn improves
their intention to adopt the method, particularly as systems become larger and more
complex [16,17]. This assumption has been reliably supported by different studies
that show MDD economical benefits and advantages over both MBD approaches and
traditional, code-centric, approaches [18,19]. Among these advantages we can cite
lower entire product life cycle and maintenance costs, higher end-user satisfaction
[20], shorter time-to-market and less human resources, short and long term
productivity gains, improved project communication and software quality
improvements or defect and rework reduction [21,22,23] . Also, these advantages are
justified in literature by the higher level of compatibility between systems, the
simplified design process, and the better communication between individuals and
teams working on the system that the MDD paradigm fosters [24,25].

However, in spite of these results, the purported paradigm shift from pure code-
centric approaches to MDD that has been expected in industry for years [26] is still to
come [27].

We agree with [27] in that this low level of adoption of MDD approaches may be
partly due to the fact that method assessment efforts still mostly revolve around
method technological features (such as separation of concerns, the availability of

tools or artifacts traceability, to name a few) while paying little attention to the
developers’ attitudes and perceptions of the method. Being software development a
human activity, it is these perceptions (which go beyond what technological elements
can explain) what determines the final acceptance of the method and, ultimately, of
the paradigm. As Moody [28], actual efficacy (whether the method improves
performance of a task) is only one of the -at least- two dimensions of success that
need to be considered in evaluating software design methods, the other one being
adoption in practice (whether the method is likely to be used in practice). Otherwise
stated, regardless of its performance, unless a method is used in practice, its benefits
cannot be realized. This need to understand the role of people in the method adoption
process is widely accepted by the Software Engineering (SE) community [29], and
has had it reflection in the use and adaptation of some well-known theoretical
technology adoption models in the discipline.

In this paper we present an empirical study that, based on a tailored method
adoption model, studies the variables that may impact the actual usage of methods
through three representatives of the three aforementioned paradigms (code-centric,
MBD and MDD). Contrary to other studies, the intra-subject design used in this study
favours the detection of perceived advantages-disadvantages of each approach with
respect to the others, putting the measures in context. The fact that, after the
experiment, the users had to choose one of the three methods to work with it during
the rest of the project mimics the decision process that developers and project
managers take on a daily basis at the workplace.

The paper is structured following the reporting guidelines for controlled
experiments in SE [30] as follows: Section 2 presents the most relevant theories that
may help to explain the software method adoption process. These constitute the
theoretical framework of our experiment, and they set the context for the definition of
goals, hypotheses and variables in Section 3, together with the experimental design
(subjects, instrumentation, operation and data collection mechanisms) and the
experiment threats to validity. In section 4 we discuss the main findings of the study,
and how they diverge from our original hypotheses. Section 5 presents
complementary research to our work. Last, section 6 concludes the paper and outlines
some further lines of research.

2 Conceptual Model

As aforementioned, there exist a number of models that establish the determinants
of user technology acceptance. Among them, TAM [31], TAM2 [32], PCI [33], TPB
[34] or MPCU [35] outstand, since they are theoretically grounded.

A comparative study of the fit of these models, initially devised to assess
individual's intention to use a given information technology tool, to predict intention
to adopt a given method [36] proved that some of the dimensions defined in those
models were useful to predict method adoption (namely Usefulness, Compatibility,
Subjective norm and Voluntariness), while others, given the differences between
adopting a method and a tool, could be dropped (e.g. Career Consequences, Perceived
behavioral control, etc.). This study also dismissed the impact of Ease of Use on

method adoption. This is surprising, since Ease of use is one of the main components
of the TAM model and regarded as highly correlated with intention of use in other
well-known method adoption theoretical models [27,28,37,38]. Given the controversy
of this dimension, we have decided to include Ease of Use as a potentially explainer
of method adoption variability. Also, in [27,37,38] tool performance (also called
Perceived Tool Maturity) was included as a potentially relevant variable to explain
both actual use and future intention of use of MDD methods. However, this
dimension was found not significant in their studies, nor was considered relevant in
any of the seminal theoretical models studied. For this reason, we have kept it out of
our conceptual model.

Summarizing, our conceptual model includes the following explaining variables:
 Usefulness: extent to which the person thinks that using the method will

enhance his or her job performance. The more useful a method is regarded
by developers, the more likely they are to form intentions to use it.

 Ease of use: the degree to which a person believes that using a particular
method would be free of effort. The easier developers believe the method to
be, the more likely they are to adopt it.

 Compatibility: degree to which an innovation is perceived as being
consistent with the existing values, needs and past experiences of potential
adopters. The more compatible a method is with how developers perform
their work, the more likely they are to form intentions to use it.

 Subjective norm: degree to which people think that others who are important
to them think they should perform the behavior. The more people think that
others who are important to them think they should use the method, the more
likely they are to form intentions to use it.

 Voluntariness: the extent to which potential adopters perceive the adoption
decision to be non-mandatory. The more voluntary the users regard the
adoption decision to be, the less likely they are to adopt it.

Figure 1 depicts the components of our conceptual model. In this figure we have
stressed the components and influences actually put to test by our experiment, whose
context implied a constant subjective norm and voluntariness across the methods
used. We will further dive into this issue in Section 3.

Figure 1: Synthesized method adoption conceptual model

3 Description of the Experiment

During the months of January and February 2011, an experiment was conducted at
the Alicante University. The goal was to evaluate the method adoption intentions of
users after developing a web application using three different approaches: a code-
centric approach (based on C# and the .NET framework), MBD based on UML
(supported by the Rational Software Modeler tool) and MDD based on OOH4RIA
approach [39] (supported by the OOH4RIA IDE tool).

3.1 Goals and context definition

Following the GQM template [40], our empirical study is aimed at Analyzing a
code-centric, an MBD and an MDD approach for the purpose of evaluating with
respect to its adoption intentions from the point of view of junior software developers.
The context of the study was a set of M.Sc. students developing the business layer of
a web application.

The design of this experiment was based on the framework for experimentation in
SE research suggested by [40]. The whole data set is included in the replication
package available at
http://www.dlsi.ua.es/~ccachero/labPackages/MethodIntention2Adopt.v1.rar. This
study is based on the theoretical method adoption model presented in Section 2, and
compares three methods, one representative of the code-centric paradigm, one
representative of the MBD paradigm and one representative of the MDD paradigm.

The research questions addressed in this study were formulated as follows:

 RQ1: Is the developer's perceived usefulness of the method significantly
different among methods, regardless of the particular application?

 RQ2: Is the developer's perceived ease of use of the method significantly
different among methods, regardless of the particular application?

 RQ3: Is the developer's compatibility with the method significantly different
among methods, regardless of the particular application?

 RQ4: Are the Perceived Usefulness (PU), Perceived Ease of Use (PEU) and
Perceived compatibility (PC) measures correlated?

 RQ5: After the experience using the three approaches to development (code-
centric, MBD and MDD), do the developer’s adoption intentions
significantly differ with respect to them, regardless of the particular
application being developed?

 RQ6: Which are the main perceived advantages/drawbacks of each method?

The first four research questions were devised to be answerable by quantitative

means, while the fifth research question was exploratory (no formal scale for
measuring the IA was devised) and the sixth one, qualitative in nature, was aimed at
gathering some possible explanations for the quantitative results.

Subjects and application

The subjects were 30 students of the Web Applications Developer Master at the
University of Alicante. These students were divided in six groups of 4 to 6 people.
From them, one group did abandon the experiment due to two of their components
abandoning the Master for work reasons, so the final set of observations corresponds
to the observations of the remaining five groups (26 subjects). Since the abandonment
of the experiment had nothing to do with the treatments that the group was applying
to his project nor the particular order in which they were applying them, we can
assume that the results of the experiments have not been compromised.

The final sample comprised 25 men and 1 woman, of whom 75% had more than 2
years of experience developing web applications. The mean age of the participants
was 25,6 years old and all of them were Computer Engineering graduates of the
University of Alicante.

Each group developed a module for a different domain (travel, events, hospitals,
academics and facework), although all the applications shared the application type (a
social network) and the complexity (which was controlled by defining a range of
functional requirements that all the applications had to support regardless of the
domain). From them, the three functional requirements that were included in our
experiment were:

 Support for the establishment of a community of users (from now on Group)
to create contents and relationships among people of different environments
(professional, personal, etc.).

 Support for the organization of events (from now on Events) where people
can invite their friends or colleagues to attend to a place where is realized a
celebration, a work meeting, etc.

 Support for an organizational section where companies, celebrities, etc. can
publish content, photos, etc. in a unidirectional way to the social network
community (from now on Organization).

Each one of these functional requirements was designed as a module. The subjects

were asked to implement each module following a different method. The order in
which students applied each method was randomized to avoid order effects. After the
experiment, the subjects were asked to choose their preferred approach out of the
three that they had used during the experiment in order to develop the remaining
modules (functional requirements) of the project.

In order to develop the different projects, the students had to follow the Agile
Unified Process (Agile UP) methodology [6] a streamlined approach to software
development that is based on the IBM's Rational Unified Process (RUP). The Agile
UP lifecycle is serial in the large, iterative in the small, and delivers incremental
releases over time. Specifically, our experiment was situated in the construction phase
of Agile UP, which is focused on developing the system to the point where it is ready
for pre-production testing. The construction phase is made up of a set of disciplines or
workflows that groups different tasks of this process. These disciplines, together with
the impact of modelling practices on each of them depending on the paradigm, were
presented in Table 1.

Implementation Language and CASE Tools

The development environment for the experiment was set up as follows:
• Development framework: .NET framework, Silverlight 4.0 and NHibernate

(Object-Relational Mapping).
• IDE (Integrated Development Environment) Development Tool: Visual Studio

2010.
• Languages: C# and XML Mapping (ORM mapping of NHibernate).
• Other tools: The set of questionnaires filled in by each developer were

published in http://www.surveymonkey.com/
The code-centric treatment relied solely on the coding tools provided by this

environment. The MBD treatment also required the students to work with RSM. Last
but not least, for the MDD treatment the students worked with the OOH4RIA IDE.
Both RSM and OOH4RIA IDE are based on the Eclipse Modeling Project [41].
Eclipse is a development of open source software whose main purpose is to provide a
highly integrated platform tools [42]. According to [43], Eclipse has contributed to
the successful implementation of the Model Driven Architecture (MDA, which is the
OMG standard for MDD [44]) providing an open source platform and a whole
implementation of the MDA specifications. The University of Alicante uses both
RSM and OOH4RIA IDE in SE undergraduate and graduate studies, and therefore all
the students were previously familiarized with them.

To standardize the code that had to be developed, the subjects had to
implement/generate four specific files: the Business Entities Component file (BEC),
the Data Access Component file (DAC), the Data Transfer Component file (DTC) and
the Data Base file (DB).

3.2 Experiment Planning

As shown in Figure 1, the idiosyncrasy of the experiment made some of the
dimensions of our initial theoretical model non relevant; namely, voluntariness and
subjective norm did not apply to our course environment, where the three paradigms
were equally valued and no obligation whatsoever was made about the method the
students had to use once the experiment was finished. This lack of relevance has been
outlined in Figure 1 by showing the corresponding dimensions in a lighter shadow of
grey.

Given the evidences gathered by our theoretical model and the research questions
presented in Section 2, we have defined the following Independent (experimentally
manipulated) Variables (IV) or factors:

• Meth: Method, a categorical variable with three levels: code-centric, MBD,
MDD.

• App: Application, a categorical variable with five possible values: Travels,
Hospitals, Events, Academics, Facework.

The dependent (measurable) variables (DV) are:
• PU: Perceived usefulness of each method, an interval measure based on a 7-

point Likert scale.
• PEU: Perceived ease of use of each method, an interval measure based on a 7-

point Likert scale.
• PC: Perceived compatibility of each method, an interval measure based on a 7-

point Likert scale.
• IA: Intention to Adopt a given method: a nominal measure with three possible

values: code-centric, MBD, MDD.

Also based on the research questions, we defined the following testable

hypotheses:
• HPU: PU(MDD)>PU(MBD)>PU(code-centric): Perceived usefulness of MDD

methods is greater than perceived usefulness of MBD methods, which in turn
is perceived as more useful than code-centric approaches for development
tasks. This fact holds regardless of the actual application developed. (RQ1).

• HPEU: PEU(MDD)<PEU(MBD)<PEU(code-centric): Perceived ease of use
of MDD methods is lower than perceived ease of use of MBD methods, which
in turn is perceived as more difficult to use than code-centric approaches for
development tasks. This fact holds regardless of the actual application
developed. (RQ2).

• HPC: PC(MDD)<PC(MBD)<PC(code-centric): Compatibility of MDD
methods is lower than Compatibility of MBD methods, which in turn is
perceived as less compatible than code-centric approaches for development
tasks. This fact holds regardless of the actual application developed. (RQ3).

• HCorr: PC is positively correlated with PU and PEU (RQ4)

In order to test the hypotheses, we defined the following measuring instruments:
 The PU, PEU and PC DV were measured through questionnaires.
 The perceived usefulness PU(Meth) was assessed through a 7-point Likert

scale that consisted of four items: subjective developer's throughput (with

respect to an expert), subjective developer's efficiency, subjective utility of the
method and subjective reliability of the results obtained from applying the
method.

• The perceived ease of use PEU(Meth) was assessed through a semantic-
differential scale that required developers to judge the development method on
8 pairs of adjectives describing their experience. Four adjectives were
formulated in positive and four in negative to control a possible acquiescence
bias. Developers could modulate their evaluation on 7 points (after recoding of
reversed items 1 = very negative, 7 = very positive).

• To measure PC(Meth) we defined a two-item scale, made up of a 7-point
rating of familiarity (1 = very odd, 7 = very familiar), and of level of previous
experience (1=very low 7=very high) with the techniques and tools involved in
code-based, MBD and MDD development respectively.

The IA DV was measured indirectly through a decision, made by the developers,
on which method to use for the rest of the project, once the experiment was finished.
Last but not least, the perceived advantages/disadvantages were asked through three
open questions, one for each method.

3.3 Data Analysis and interpretation of results

The statistical analysis was carried out with the PASW (Predictive Analytics
SoftWare) Statistics software [45].

Prior to the assessment of the hypotheses, we checked the reliability of the PU,
PEU and PC scales in the context of our experimental settings. We applied the Alpha
of Cronbach test, which revealed the following results:

 For the PU scale, all the items showed a correlation higher than 0.3, while the
global Cronbach alpha was 0.817, giving proof of a sufficient internal
consistency among the PU items. Subsequently we can calculate the mean and
consider this mean as a global rating of PU with each one of the three
treatments (code-centric, MBD, MDD).

 For the PEU scale, all the items showed a correlation higher than 0.3, while
the global Cronbach alpha was 0.896, giving proof of a high reliability of the
scale. Again, this means that we can calculate the mean and consider this mean
as a global rating of PEU with each one of the three treatments (code-centric,
MBD, MDD).

 For the PC scale, we found very low levels of correlation (although
significant) between the developers' perception of a method as 'odd' and their
level of experience reported with such method. Therefore, for the
measurement of the PC on subsequent analyses, we opted to rely solely on the
level of experience reported, since, from our point of view, it more clearly
reflects the definition of Compatibility given in our theoretical model.

RQ1: Perceived usefulness of the development approaches

To test the HPU hypothesis (concerning the existence of significant differences in
the perceived usefulness of the different methods), we applied a 3*5 Mixed Design
ANOVA [46], in which the application (Trips, Events, etc.) was the between-subjects
variable, and the PU ratings for each method was the within-subjects variables.

In order to assure that applying this statistical method made sense, we first checked
the homogeneity of covariance among groups with the Box’s M test (F=1,137,
p=0,295). Also, we verified that the principle of spherity was not violated by applying
the W Mauchly's test (W=0,909, p=0,387).

The results showed that MDD produced the highest PU (M = 4,90), followed by
code-centric (M=4,51) and then MBD (M=3,48). The results also showed that the
interaction application*method was not significant (F(8,42) = 1,919, p>0.05). We can
then safely examine the main effects of the two independent variables (application
and method) on these means without needing to qualify the results by the existence of
a significant interaction. The main effect of application did not attain significance
(F(4,21)=1,126, p=0,371), but the main effect of method did reach significance, (F (2,
42)=19,411, p<=0,01), that is, the differences in PU are significantly affected by the
method used, regardless of the particular application being developed.

Given the significance of the method, the last step of the analysis consisted on
studying the pair wise differences among methods through a matched T-test. In order
not to augment the risk of a type-1 error, a Bonferroni adjustment was applied. This
means reducing the significance threshold to 0.0167 (p = 0.05 / 3 = 0,0167). With this
adjustment, the PU differences between MBD and both code-centric (t=4,05,
p<0,001) and MDD approaches (t=5,24, p<0,001) were significant, while the
difference between code-centric and MDD PU scores was not.

We can graphically observe these results in Figure 2. The fact that the particular
application was not significant is reflected in the five lines more or less overlapping.
The Method variable influence is reflected in the acute ups and downs of the lines.
Finally, the method*application interaction lack of significance is reflected in the
lines being more or less parallel (all of them showing the same tendency with each
method). The same graphical clues hold for the remaining graphics.

Figure 2: PU means by method. Each line corresponds to one of the five

applications that were developed as part of the experiment.

RQ2: Perceived ease of use of the development approaches

We then tested the HPEU hypothesis related to the degree of perceived ease of use of
the different methods. Again, the chosen procedure was a 3*5 Mixed Design ANOVA
[46], in which the application (Trips, Events, etc.) was the between-subjects variable,
and the PU ratings for each method was the within-subjects variables.
In order to assure that applying this statistical method made sense, we first checked
the homogeneity of covariance among groups with the Box’s M test (F=0,768,
p=0,78). Also, we verified that the principle of spherity was not violated by applying
the W Mauchly's test (W=0,877, p=0,269).

The results showed that MDD produced the highest PEU (M = 4,87), followed by
code-centric (M=3,98) and then MBD (M=3,55). The results also showed that the
interaction application*method is significant (F(8,42) = 2,801, p<0.05). This means
that the results vary differently depending on the particular application being
developed.

Also, the results showed that, while the main effect of application did not attain
significance (F(4,21)=1,033, p=0,414), the main effect of method did reach
significance, (F(2,42)=24,704, p<0,01), that is, the differences in PU are significantly
affected by the method used, regardless of the particular application being developed.
This result, however, must be interpreted cautiously, because the effect of the method
is different in the different applications.

We can graphically observe these results in Figure 3. Here, it can be observed that
the significance of the method by application interaction is due to the Academic
application, whose MBD PEU follows a completely different trend than the remaining
applications; that it can be explained by the previous experience of the subjects, in the
use of RSM, in their degree studies.

Figure 3: PEU means by method. Each line corresponds to one of the five

applications that were developed as part of the experiment.

Given the significance of the Meth variable, a study of the follow-up comparisons

among methods was performed through a matched T-test with the Bonferroni
adjustment. The results show that the PEU differences between MDD and both code-
centric (t=-4,029, p<0,001) and MBD approaches (t=-5,67, p<0,001) were significant,
while the difference between code-centric and MBD PEU scores was not (t=1,949,
p>0,05).

RQ3: Perceived compatibility of the development approaches

To test the HPC hypothesis (concerning the existence of significant differences in
the perceived compatibility of the different methods), we dropped the inter-subject
factor and applied a one-way RM Anova, under the premise that, having all the
applications the same set of functional requirements and belonging to the same
domain, the method compatibility (the degree to which the method is perceived as

being consistent with the existing values, needs and past experiences of developers)
did not depend on the particular application being developed.

On a 3-point scale (1=low, 2=medium, 3=high), developers rated the method based
on MBD as slightly the most compatible (M=2,12) followed by the code-based
method (M=2) and, finally, the method based on MDD (M=1,54). This compatibility
was exclusively based on their previous experiences with the methods.

A check of the spherity threw a significant W (W=0,471, p<0,001), which made us
test the significance of the differences with a conservative Greenhouse-Geisser F. The
results showed that the main effect of method did reach significance
(F(1.3,50)=15,492, p<0,001), that is, the differences in PC are significantly affected
by the method used.

A follow-up pair wise analysis with a t-test with a Bonferroni adjustment showed
that MDD is perceived as significantly less compatible than code-based (t=3,33,
p=0,003) and MBD (t=5,09, p<0,001), while differences between code-based and
MBD are not significant (t=-1,806, p>0,05).

RQ4: Correlation among conceptual model dimensions

In order to study the correlation among the three conceptual model dimensions
included in our study, anon-parametric Sperman correlation analysis was performed.
The results of this analysis can be seen in Table 2.

 PU_Global PEU_Global PC_Global

PU_Global Rho Spearman 1,000 ,663** -,278*
 P . ,000 ,014
 N 78 78 78

PEU_Global Rho Spearman ,663** 1,000 -,288*
 P ,000 . ,011
 N 78 78 78

PC_Global Rho Spearman -,278* -,288* 1,000
 P ,014 ,011 .
 N 78 78 78

Table 2: Correlations among theoretical model dimensions (PU, PEU, PC)

The results show how PC is negatively correlated with both PEU and PU, which
means that, in this experiment, developers regarded the development methods with
which they were less familiar as more useful and easy to use. These results are hard to
explain and contradict the theoretical model, and need further investigation with a
more elaborated PC measurement scale.

Also, we can observe how, according to our data, PU and PEU are strongly
correlated: the more useful the method is perceived, the more easy to use (and vice
versa). Being the two variables dependent variables in our experiment, we cannot say
anything about whether there is a causality nor in which direction. More specific
research needs to be carried out in order to ascertain these aspects of the theory, and,
ideally, come up with more elaborate constructs that are independent from each other.

RQ5: Intention to adopt analysis

When, after the experiment, our subjects were asked to choose a given method to
go on with the project, 20 subjects out of 26 (that is, 76,9% of the sample) decided to
use the MDD approach.

RQ6: Perceived advantages and disadvantages of methods

For a better understanding of previous objective results, we complemented our
study with an opinion survey in which developers reported in a free-form format their
main perceived advantages and disadvantages of each method. After gathering the
results, and in order to organize the natural language responses, we classified each
advantage/disadvantage under a common epigraph (see the first column of Table 3).
Moreover, for a given method, these features could be reported either as an advantage
or a drawback.

Starting with the traditional code-centric approach (see second column of Table 3),
we can observe that 50% of subjects perceived the feeling of control that they
experienced when working with code as one important advantage of the code-centric
approach, while none regarded that as a disadvantage. In an order of decreasing size,
the rest of advantage responses are distributed into lower Learning curve (5), higher
Personalization (4) and higher Compatibility with respect to their previous
experiences (3). At the other end of the spectrum, according to subjects, the main
drawback of code-centric is that it requires a high development effort (with 20
subjects giving responses falling in that category) and has a low maintainability (5
subjects).

Regarding the MBD approach using RSM (see third column of Table 3), the
advantages of the method greatly varied. The most important ones were a reduced
development effort (10), a better maintainability (6) and a reduced learning curve (5).
However, these advantages are not universally appreciated as can be seen is we
observe how development effort and reduced learning curve were signaled as
disadvantages by 5 and 3 subjects, respectively. Also, subjects noted that the code
generation capabilities provided by RSM were clearly insufficient (5 subjects).This
noted, the main MBD reported drawback was a significant lack of perceived
reliability of the approach (12 responses), due to some detected errors in the RSM
code-generation process.

Last but not least, we asked the same question regarding the OOH4RIA approach
as an exponent of the MDD paradigm. The main reported disadvantages of the
method were a higher learning curve (6), a low compatibility with their previous

experience (5), probably due to the adaptation of a new development style, and a lack
of reliability (7), which may have been due to some bugs of the OOH4RIA IDE tool
that appeared during the development phase. However, an overwhelming majority of
students (24 out of 26) recognized an important increase in development speed and an
important effort reduction with repetitive tasks. Also maintanability was regarded as
an advantage by 3 subjects.

Reported Feature Code-based MBD MDD

Development

Effort

Advantage 1 10 24

Drawback 20 5 1

Feeling in

control

Advantage 13 - -

Drawback - - 3

Learning Curve Advantage 5 5 2

Drawback 1 3 6

Compatibility Advantage 3 - -

Drawback - 2 5

Maintainability Advantage - 6 3

Drawback 5 - -

Personalization Advantage 4 - -

Drawback - 1 -

Reliability Advantage - - -

Drawback - 12 7

Table 3: Reported advantages/drawbacks of each method

3.4 Threats to Validity

The threats to validity evaluate under which conditions our experiment is
applicable and offers benefits, and under which circumstances it might fail. Four
families of threats to validity are reported by Cook and Cambell [47]: internal,
external, construction and conclusion.

3.4.1 Threats to Conclusion Validity

They refer to the relationship between the treatment and the outcome. All the
statistical analyses have been preceded by tests that assured that the assumptions of
the statistical procedure were not being violated. The alpha has been adjusted
following the most conservative approach (Bonferroni), which also contributes to the

conclusion validity. The intra-subject design also protects the results against aleatory
heterogeneity of subjects, since all subjects were presented with the three methods.
This notwithstanding, given the duration of the different treatments (each subject was
working with each method for over a fifteen days) random irrelevancies in the
experimental setting might have occurred that may have affected the data. We can
assume however that such irrelevancies have affected all the levels of the treatment
equally.

3.4.2 Threats to Internal Validity

They are concerned with the possibility of hidden factors that may compromise the
conclusion that it is indeed the treatment what causes the differences in outcome. In
order to increase the internal validity of the design, subjects received similar training
in all three methods. Since all treatments were applied by all subjects in random
order(with only one order being left of the experiment due to a group dropping the
master soon after the experiment began), there was no reason for compensatory
rivalry, equalization or demoralization. All the applications and modules on which the
subjects worked were of similar complexity. The lack of influence of the particular
application on the results was statistically tested. This notwithstanding, given the
relatively small sample used (26 subjects), and the fact that the sample was not
random, but chosen based on their participation in a master degree, our experiment
still presents a threat to internal validity that can only be overcome with future
replications. Also, even if we counterbalanced the design by randomizing the order in
which the different subjects used the different methods, subjects still applied the three
methods in a row. This makes possible the appearance of carry-over effects (e.g.
subjects could benefit as the experiment takes place of an increased familiarity with
the experiment setting, the development environments, etc.) or, on the contrary,
fatigue effects (e.g. through a loss of interest in the registration of the experiment
data). Also, it is possible the diffusion of treatment imitation effect, that is, users
learning from the previous method and imitating the practices when applying the next
method assigned. In order to diminish such risks, we supervised the whole process,
and maintained the amount of information that needed to be provided by the users to a
minimum. We also automated the data gathering process to prevent coding errors.

Threats to Construct Validity

They refer to the relationship between theory and observation. During the
experiment, both the theoretical model and the hypotheses were carefully kept from
the subjects. No special emphasis was made over the pros and cons of any of the
methods until after the experiment was finished and the opinions gathered. The
particular technologies used to test each development approach are widely used in
practice.

However, to our knowledge extent there are not standard instruments to measure
the components of the theoretical model applied in this article. Although the
reliability of the scales has been checked to increase the construct validity, the

number of items of some of the used scales should be definitely increased and
validated through further research to become more robust.

Threats to External Validity

Last but not least, threads to external validity are concerned with the generalization
of the results. The type of application used for the experiment, far from being a toy
example, is a real application, defined based on true client requirements. The subjects
are graduate students, many of them already working as developers and therefore true
representatives of junior developers. This notwithstanding, we have used similar size
applications, all of the same type (social networks). Therefore we cannot generalize
the results to applications of different sizes or different application types without
more replicas.

4 Discussion

This study was designed under the premises that the use of models improved the
developers' perceived usefulness of the method, although it somehow made the
development process more difficult. Also, it aimed at confirming/refuting that code-
centric approaches were regarded by developers as more compatible with their current
practices.

It has been therefore somehow surprising to check the extent to which using
models in the context of an MBD environment is regarded as useless and difficult,
even if the subjects did not show a great degree of incompatibility with the approach
(probably due to all of them being junior developers, with an extensive training in
modeling). We think that the data gathered in this study should be regarded as a
warning for software engineering trainers, who should aim at teaching modeling
techniques in the context of MDD environments if they aim at increasing the
perceived value of the modeling activities.

As expected, the MDD method was regarded as the more difficult to grasp but the
more useful in the long run. This data seems to back the claim made in [36], where it
was assessed that usefulness had a much greater impact in intention to use a method
than ease of use. In fact, the experiment showed how 20 out of the 26 subjects chose
the MDD method to continue with the project development, although we cannot split
the effect of the paradigm from the effect of the particular MDD approach
(OOH4RIA) that was used in the experiment. This coupling between method and tool
makes especially necessary the replication of the experiment with other, both
commercial and academic, environments, to assess whether these results can be
generalized.

If we take a look at the reported advantages/disadvantages that may explain this
decision, it seems that, for MDD, a lower development effort compensated some
perceived disadvantages such as greater learning curve, lower compatibility or even
lower reliability, due to code generation errors. This in turn may suggest that, in our
theoretical model about intention to use, perceived usefulness should be weighted as

having more importance than perceived ease of use or compatibility. However, much
more data is necessary to corroborate or dismiss this preliminary evidence.

Last but not least, the correlation analysis performed on the dimensions of the
theoretical model open up several interesting further lines of research. Notably, the
fact that PC is negatively correlated with PU and PEU poses some doubts about the
relevance of compatibility in a software development method adoption model as an
independent dimension, at least in the context of junior software developers. Are
software developers technology geeks, and therefore attracted rather than repelled by
new, unknown development environments and practices? Are modeling practices, at
least within a MDD paradigm, experienced as so advantageous that they shadow the
possible effect of this variable? All these are doubts that require from further
experimental research. Also, these correlations suggest that perhaps the theoretical
model needs to be re-structured to include more independent dimensions that can
increase the reliability of further analyses methods such as linear regression models or
Bayesian networks, to name a few.

5 Related Work

In the last year we have witnessed how the number of empirical studies regarding

the subjective perceptions while applying different methods has increased. Navarrete
& Ignacio [48] empirically assessed the satisfaction of an MDD method (called
MIMAT) that includes Functional Usability Features (FUFs) in an MDD software
development process. The study concluded that the user’s satisfaction improves after
including FUFs in the software development process. Our experiment does not center
on the enrichment of a given method with a new artifact/technique, but compares
different methods with respect to not only the developer's perceived ease of use but
also the perceived usefulness and compatibility.

Closer to our experiment, Arisholm et al. in [49] reports on controlled experiments,
spanning across two locations: Oslo (Norway) and Ottawa (Canada), which
investigate the impact of UML documentation on software maintenance. Results show
that, for complex tasks and past a certain learning curve, the availability of UML
documentation may result in significant improvements of the functional correctness of
changes as well as their design quality. Another recent experiment [50] compares
three treatments or levels in the use of UML models (no modeling conventions, with
modeling conventions and tool-supported modeling conventions). The experiment
was performer with 106 MSc students organized in 35 teams. The findings shows that
development effort with tool-supported modeling conventions is approximately half
of the effort invested when using traditional development (code-centric). It also
showed that there is no significant correlation between class-count and the effort
spent in modeling. Our experiment does not center on effort but on intention to adopt
the method.

There are also studies that center on the set of tools that accompany each paradigm:
Pelechano et al. [51] performed an empirical comparison of Eclipse Modeling Plug-
ins and Microsoft DSL Tools on the basis of its utility and satisfaction from the point

of view of developers. The result showed that both tools are very useful and can be
used in future projects. Eclipse users are 100% faithful to this environment; however
60% of the DSL Tools users would migrate to Eclipse. Also [52] performs a similar
comparison between Microsoft DSL Tools and Eclipse EMF/GEF/GMF Frameworks.
Results show that the MS/DSL Tools metamodel designer is more usable than the
EMF metamodel designer. Our study is less focused on tools and more focused on
development paradigms.

6 Conclusions and further lines of research

This study makes three main contributions. On the one hand, it presents a tailored
theoretical method adoption model that, being based on well known evidence from
different fields, can be used as a starting point to study the adoption possibilities of
existing or new development methods. On the other hand, it presents an empirical
comparison of the perceived usefulness, ease of use and compatibility of three
methods that in turn are clear exponents of the three mainstream development
paradigms nowadays: code-centric, MBD and MDD. In this sense, the study
concludes that MDD approaches are the more difficult to use but, at the same time,
are regarded as the more useful in the long run. Also, it shows that junior developers
feel that modeling techniques are compatible with their background and experiences.
Last but not least, to our knowledge extent, this study provides the first set of
evidence on the perceived strengths and weaknesses of the different paradigms with
respect to their adoption intent.

All contributions open new lines of research. Regarding the theoretical model, only
three out of the five initial components have been studied. Also, the correlations
found among the three components suggest that it may be advisable to refine the
model and the measurement instruments to diminish the co-linearity of the variables
and be able to fine-tune the prediction power of the model. Such prediction power has
not been formally tested, and remains another line of work. Regarding specific
methods, further experimentation is needed to be able to generalize the results to a
different population, different methodologies (e.g. agile) and languages, different
application types or different application sizes. The perceived advantages and
disadvantages of the methods and its impact in the final decision to adopt them give
some clues to make decisions about the prioritization of improvements that need to be
made to the development environments.

References

[1] M. Fowler, UML distilled: a brief guide to the standard object modeling
language, Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2004.

[2] K. Schwaber and M. Beedle, Agile software development with Scrum,
Prentice Hall Upper Saddle River, NJ, 2002.

[3] I. Jacobson and S. Bylund, The road to the unified software development
process, Cambridge Univ Pr, 2000.

[4] M. Eichberg, M. Monperrus, S. Kloppenburg, and M. Mezini, "Model-
Driven Engineering of Machine Executable Code," Modelling Foundations
and Applications, 2010, pp. 104-115.

[5] R. Picek, D. Grabar, N. Vrcek, D. Plantak Vukovac, B. Kos, M. Bratko, A.
Lovrenčić, and others, "Suitability of Modern Software Development
Methodologies for Model Driven Development," Journal of Information and
Organizational Sciences, vol. 33, 2009.

[6] S.W. Ambler, "Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process," John Wiley&Sons, 2002.

[7] S. Lahtinen and J. Peltonen, "Enhancing usability of UML CASE-tools with
speech recognition," Human Centric Computing Languages and
Environments, 2003. Proceedings. 2003 IEEE Symposium on, 2004, pp. 227-
235.

[8] No Magic Inc., "MagicDraw UML," (Last update april 26, 2010), 2006.
[9] Gentleware, "Poseidon for UML Community Edition 8.0," 2009.
[10] VisualParadigm, "Visual Paradigm for UML,"

http://www.visualparadigm.com/, 2011.
[11] IBM Corporation, "Rational Software Modeler," (Last upadate September 2,

2008), 2008.
[12] evolving-software, "TrueView Domain Modeller," http://www.evolving-

software.co.uk/, 2011.
[13] Borland Together, "Together - Visual Modeling for Software Architecture

Design," http://www.borland.com/, 2011.
[14] S. Meliá, J.J. Martínez, S. Mira, J. Osuna, and J. Gómez, "An Eclipse Plug-

in for Model-Driven Development of Rich Internet Applications," Web
Engineering, 2010, pp. 514-517.

[15] M. Brambilla, S. Comai, P. Fraternali, and M. Matera, "Designing web
applications with WebML and WebRatio," Web Engineering: Modelling and
Implementing Web Applications, 2008, pp. 221-261.

[16] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema,
"Developing applications using model-driven design environments,"
Computer, vol. 39, 2006, pp. 33-40.

[17] R. Picek and V. Strahonja, "Model Driven Development-future or failure of
software development," IIS, 2007, pp. 407-413.

[18] P. Mohagheghi and V. Dehlen, "Where is the proof? - A review of
experiences from applying MDE in industry," European Conference on
Model Driven Architecture--Foundations and Applications (ECMDA 2008),
2008, pp. 432-443.

[19] M. Guttman and J. Parodi, Real-life MDA: solving business problems with
model driven architecture, morgan kaufmann, 2006.

[20] T. Stahl, M. Völter, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki,
"Model-Driven Software Development: Technology, Engineering,
Management," John Wiley and Sons, ISBN:978-0-470-02570-3, 2006, pp.
970-978.

[21] E. López, M. González, M. López, and E. Iduñate, "Proceso de Desarrollo de
Software Mediante Herramientas MDA," Revista Iberoamericana de
Sistemas, Cibernética e Informática, vol. 3, 2006, pp. 6-10.

[22] H. Gustavsson, B. Lings, B. Lundell, A. Mattsson, and M. Beekveld,
"Integrating proprietary and open-source tool chains through horizontal
interchange of XMI models," Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on, 2007, pp. 521-522.

[23] W. Heijstek and M.R. Chaudron, "Empirical investigations of model size,
complexity and effort in a large scale, distributed model driven development
process," Software Engineering and Advanced Applications, 2009. SEAA'09.
35th Euromicro Conference on, 2009, pp. 113-120.

[24] S.J. Mellor, T. Clark, and T. Futagami, "Model-driven development: guest
editors' introduction.," IEEE software, vol. 20, 2003, pp. 14-18.

[25] J. Muñoz and V. Pelechano, "MDA vs Factorías de Software," Actas del II
Taller sobre Desarrollo de Software Dirigido por Modelos, MDA y
Aplicaciones (DSDM 2005), 2005, p. 1.

[26] A.G. Kleppe, J. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise, Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

[27] S. Walderhaug, M. Mikalsen, I. Benc, and S. Erlend, "Factors affecting
developers' use of MDSD in the Healthcare Domain: Evaluation from the
MPOWER Project," From Code Centric to Model Centric Software
Engineering: Practices, Implications and ROI. Workshop at European
Conference on Model-Driven Architecture, 2008.

[28] D.L. Moody, "The method evaluation model: a theoretical model for
validating information systems design methods," 11th European Conference
on Information Systems (ECIS 2003), Naples, Italy, 2003, p. 79.

[29] S.L. Pfleeger, "Understanding and improving technology transfer in software
engineering," Journal of Systems and Software, vol. 47, 1999, pp. 111-124.

[30] A. Jedlitschka and D. Pfahl, "Reporting guidelines for controlled
experiments in software engineering," 2005 International Symposium on
Empirical Software Engineering, 2005., 2005, p. 10.

[31] F.D. Davis, "Perceived usefulness, perceived ease of use, and user
acceptance of information technology," MIS quarterly, vol. 13, 1989, pp.
319-340.

[32] V. Venkatesh and F.D. Davis, "A theoretical extension of the technology
acceptance model: Four longitudinal field studies," Management science, vol.
46, 2000, pp. 186-204.

[33] G.C. Moore and I. Benbasat, "Development of an instrument to measure the
perceptions of adopting an information technology innovation," Information
systems research, vol. 2, 1991, pp. 192-222.

[34] I. Ajzen, "The theory of planned behavior," Organizational behavior and
human decision processes, vol. 50, 1991, pp. 179-211.

[35] R.L. Thompson, C.A. Higgins, and J.M. Howell, "Personal computing:
toward a conceptual model of utilization," MIS quarterly, vol. 15, 1991, pp.
125-143.

[36] C.K. Riemenschneider, B.C. Hardgrave, and F.D. Davis, "Explaining
Software Developer Acceptance of Methodologies: A Comparison of Five
Theoretical Models," IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol. 28, 2002, pp. 1135-1145.

[37] H. Fujita and I. Zualkernan, "Evaluating Software Development
Methodologies based on their Practices and Promises," New Trends in
Software Methodologies, Tools and Techniques: Proceedings of the Seventh
Somet_08, vol. 182, 2008, p. 14.

[38] P. Mohagheghi, "An Approach for Empirical Evaluation of Model-Driven
Engineering in Multiple Dimensions," C2M:EEMDD 2010 workshop- from
Code Centric to Model Centric: Evaluating the Effectiveness of MDD, CEA
LIST Publication, 2010, pp. 6-17.

[39] S. Meliá, J. Gómez, S. Pérez and O. Díaz,. A model-driven development for
GWT-based rich Internet applications with OOH4RIA. In proceedings of the
ICWE 2008, Washington, DC, USA, IEEE Computer Society, 2008, pp. 13–
23.

[40] C. Wohlin, P. Runeson, and M. Höst, Experimentation in software
engineering: an introduction, Springer Netherlands, 2000.

[41] R.C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, Addison-Wesley Professional, 2009.

[42] F. Budinsky, Eclipse modeling framework: a developer's guide, Prentice
Hall Ptr, 2004.

[43] A. Fernandez, S. Abrahão, and E. Insfran, "Towards to the validation of a
usability evaluation method for model-driven web development,"
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 2010, pp. 1-4.

[44] O.M. OMG, Model Driven Arquitecture, 2003.
[45] SPSS Inc. an IBM CompanyHeadquarters, "PASW Statistics 18 - Content

Guide," 2009.
[46] J. Pallant, SPSS survival manual, Open Univ. Press, 2005.
[47] T.D. Cook, D.T. Campbell, and A. Day, Quasi-experimentation: Design &

analysis issues for field settings, Houghton Mifflin Boston, 1979.
[48] P. Navarrete and J. Ignacio, "Incorporación de mecanismos de usabilidad en

un entorno de producción de software dirigido por modelos," 2010.

[49] E. Arisholm, L.C. Briand, S.E. Hove, and Y. Labiche, "The impact of UML
documentation on software maintenance: An experimental evaluation," IEEE
Transactions on Software Engineering, vol. 32, 2006, pp. 365-381.

[50] M. Chaudron, Effective UML Modelling Does Software ModelingPay ? -
empirical studies in UML., 2011.

[51] V. Pelechano, M. Albert, J. Muñoz, and C. Cetina, "Building tools for model
driven development comparing microsoft DSL tools and eclipse modeling
plug-ins," Proceedings of the 11th Conference on Software Engineering and
Database (JISBD’06), 2006.

[52] T. Özgür, "Comparison of Microsoft DSL Tools and Eclipse Modeling
Frameworks for Domain-Specific Modeling In the context of the Model-
Driven Development," School of Engineering. Ronneby, Sweden, Blekinge
Institute of Technology, 2007, p. 56.

