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Wstep

Majac grupy G, H oraz pewng ortogonalno$¢ L C G2 bedziemy méwié, ze
funkcja f : G —>H jest ortogonalnie addytywna, jezeli

f(x +y) = f(x) + f(y) dla takich x,y £ G, ze x = y.

W czterech pracach stanowigcych rozprawe, dwéch napisanych tylko prze-
ze mnie oraz dwdch napisanych wspdélnie z Tomaszem Kochankiem, zajmuje
sie funkcjami prawie ortogonalnie addytywnymi z rozumieniem stowa pra-
wie na dwa rdzne sposoby. W pracach [16] oraz [11] badamy posta¢ funkcji
niekoniecznie ortogonalnie addytywnych, czyli takich, dla ktérych réznica
Cauchy’ego jest réwna zero dla punktéw prostopadtych, ale takich, ze ta réz-
nica dla punktow prostopadtych nalezy do pewnej podgrupy dyskretnej gru-
py warto$ci. Przy tym ortogonalnoscig, ktorg rozwazamy, jest ortogonalnosé
zdefiniowana w pracy [4], natomiast o funkcji zaktadamy dodatkowo ciggtos¢
w punkcie - w pracy [16] - lub mierzalnos$¢ - w pracy [11]. Z kolei w pracy [12]
rozwazamy funkcje spetniajgce warunek addytywnosci dla punktéw prosto-
padtych spoza pewnego zbioru matego rozumianego jako podzbioru zbioru
1 c R2n

Praca [17] to przeniesienie pewnych wynikéw z prac [16] i [11] na przy-
padek pexiderowski, a wiec zamiast réznicy Cauchy’ego rozwazamy rdznice
Pexidera.

W pracy [7] J. Brzdek jako ortogonalno$¢ rozwaza za J. Ratzem [14] taka
relacje X C X 2 na rzeczywistej przestrzeni liniowej X wymiaru co najmniej
2, ze spetnione sg nastepujace warunki:

(01) x 1 0oraz 0 Lx dla kazdego x € X.
(02) Jezeli x,y GX \ {0} oraz x Ly, to x oraz y sg liniowo niezalezne.

(03) Jezelix,y € X orazx _Ly, to ax _Lby dla dowolnych liczb rzeczywistych
a,b

(04”) Jezeli P jest dwuwymiarowg podprzestrzenig liniowg przestrzeni X,
x E P oraz a jest rzeczywistg liczbg dodatnia, to istnieje takie y G P,
zex Lyorazx +y Lax —y.



Dla tej ortogonalnos$ci J. Brzdek pokazuje, ze funkcja f : X —>H, okreslona
na rzeczywistej przestrzeni liniowo-topologicznej o wartoSciach w przemien-
nej grupie topologicznej bez elementéw rzedu 2, ciggta w zerze spetnia

f(x +y) —f(x) —f(y) 6 K dla takich x,y € X, ze x ! vy,

gdzie K jest dyskretng podgrupa grupy H, wtedy i tylko wtedy, gdy istniejg:
ciggta funkcja addytywna a: X —» H oraz taka ciggta w punkcie (0,0) funkcja
dwuaddytywna i symetryczna b: X x X —//, ze

f(x) —a(x) —b(x,x) GK dlax £ X

oraz
b(x,y) = 0 dla takich x,y € X, ze x £ y;

ponadto funkcje a oraz b sg wyznaczone jednoznacznie.

Celem pracy [16] byto przeniesienie powyzszego wyniku na przypadek or-
togonalnosci zdefiniowanej przez K. Barona i P. Volkmanna w [4] nastepujaco:
Niech G bedzie taka grupa, ze odwzorowanie

X >2x,X € G,

jest bijekcja. Relacje L C G2 nazywamy ortogonalnoscia, jesli spetnia ona
ponizsze dwa warunki:

(O) 0 LO,ajezelix £ y,to —x L —yoraz | = |.

(P) Jezeli funkcja ortogonalnie addytywna okre$lona na G o warto$ciach w
grupie przemiennej jest nieparzysta, to jest ona addytywna, zas$ jezeli
jest parzysta, to jest ona kwadratowa.

Powyzsza definicja ortogonalnosci obejmuje pojecie przytoczonej wczesniej
ortogonalnosci Ratza, a udowodnione w [16] twierdzenie jest uog6lnieniem
zacytowanego powyzej twierdzenia J. Brzdeka. W szczegdlnoSci ciggtos¢ w
zerze rozwazanej funkcji jest tam zastgpiona ciagtoscig w jakim$ punkcie, a w
tezie otrzymujemy ciggtos¢ funkcji b w kazdym punkcie. Implikuje ono takze
nastepujacy rezultat K. Barona oraz P. Volkmanna z pracy [4]: Zatézmy,
ze G jest grupag przemienng z jednoznacznym dzieleniem przez 2, H grupg
przemienng, a L C G2relacjg spetniajgcg warunki (O) i (P). Funkcjaf: G —
H jest ortogonalnie addytywna wtedy i tylko wtedy, gdy

f(x) = a(x) + b(x,x) dlax E G,

gdzie a: G — H jest funkcjg addytywng, natomiast b: G x G — H jest
funkcjag dwuaddytywng i symetryczng oraz

b(x,y) = 0 dla takich x,y £ G, ze x LW\



ponadto, funkcje a oraz b sg wyznaczone jednoznacznie.

W pracy [11] ciggto$¢ w punkcie zastepujemy mierzalnoscig. Otrzymu-
jemy podobne wyniki, ale pod pewnymi dodatkowymi zatozeniami, ktore
mozna nieco ostabic jesli nie zadamy ciggtosci funkcji dwuaddytywnej z tezy,
a tylko jej ciggtos¢ wzgledem kazdej ze zmiennych. O rozwazanym a-ciele
podzbioréw przemiennej grupy topologicznej G zaktadamy, ze

x+t2Ae Tl dlaxe G, AeTI

oraz istnienie wiasciwego cr-ideatu 3 podzbioréow grupy G, dla ktérego zacho-
dzitoby twierdzenie Steinhausa:

OGInt>I-A) dlaAeTI\3.

Gtoéwne rezultaty [11] to twierdzenia 1 i 2, z ktérych wyciggamy wnioski
dla szczeg6lnych przypadkéw: mierzalnosci w sensie Baire’a i Christensena.
Rozwiazania mierzalne w sensie Baire’a oraz Christensena byly rozwazane
wczesniej przez J. Brzdeka w pracy [6] dla ortogonalnos$ci wyznaczonej przez
iloczyn skalarny oraz w pracy [8] dla ortogonalno$ci Ratza w przestrzeni
liniowo-topologicznej.

Celem pracy [17] byto przeniesienie rezultatow z prac [16] (twierdzenie
1) oraz [11] (twierdzenie 1) na sytuacje, gdy zamiast réznicy Cauchy’ego
rozwazamy réznice Pexidera oraz zaktadamy ciggtos¢ w punkcie lub mie-
rzalno$¢ cho¢ jednej z wystepujacych w niej trzech funkcji (ortogonalnos¢
pozostaje ta sama co w [16] i [11]). W celu wykazania gtdwnego twierdzenia
dowodzimy najpierw lemat pozwalajgcy na przedstawienie dowolnej sposrod
trzech funkcji z zalozenia twierdzenia jako przesuniecia funkcji, dla ktérej juz
réznica Cauchy’ego (a nie Pexidera) spetnia odpowiednie zatozenia i mozna
zastosowac¢ udowodnione wczesniej twierdzenia: 1 z [16] oraz 1 z [11]. Jedna
z czeSci tego lematu zostata juz wczesniej udowodniona przez K. Barona i
PL. Kannappana w pracy [2], a dla podgrupy trywialnej, ale pod stabszymi
pozostatymi zatozeniami, takze w pracy [15] J. Sikorskiej.

Twierdzenie z pracy [17] jako bardzo szczeg6lne przypadki zawiera tez
niektére wyniki pracy [2] K. Barona i PL. Kannappana.

Niech E bedzie rzeczywistg przestrzenig unitarng wymiaru co najmniej
2, H grupa przemienng, a J_zbiorem tych par wektoréw przestrzeni E, dla
ktorych iloczyn skalarny sie zeruje. R. Ger, Gy. Szabd, J. Ratz (por. wnio-
sek 10 z pracy [14]) oraz K. Baron i J. Ratz [3] wykazali, ze kazda funkcja
ortogonalnie addytywna / : E —H ma postac

f(x) = a(lja:l|l2) + b(x) dlax e E,



gdzie a: R —H oraz b: E —H sg funkcjami addytywnymi. N.G. de Bru-
ijn w [5], W.B. Jurkat w [10] oraz R. Ger w [9] rozwazali z kolei rownanie
Cauchy’ego spetnione prawie wszedzie, tj. poza pewnym zbiorem matym (dla
funkcji okreslonej na grupie). W pracy [12] zajeliSmy sie funkcjami ortogo-
nalnie addytywnymi prawie wszedzie w L

Zbiory mate sg zwykle rozumiane jako elementy pewnego wilasciwego
(liniowo-niezmienniczego) ideatu, a kazdy taki ideat podzbioréw pewnej prze-
strzeni X generuje odpowiedni ideat podzbioréw przestrzeni X 2 poprzez
twierdzenie Fubiniego (patrz [13], cze$¢ 17.5). Chcemy jednak, aby zbiory
te byty mate w L, a nie tylko w E 2, zatem JL powinien by¢ takim zbiorem,
by te wiasnosci uwzglednia¢. Z tego powodu ograniczamy sie do przestrzeni
euklidesowej Rn; wéwczas bowiem L jest (2n —I)-wymiarowg rozmaitoscia
w R2n.

Dla kazdego m £ N niech 3m oznacza taki wiasciwy <r-ideat podzbioréw
przestrzeni Rm, ze spetnione sg nastepujgce cztery warunki:

(Ho) {0} G 3i;

(Hi) jezeli (pjest C°°-dyfeomorfizmem okreSlonym na zbiorze otwartym U C
Rmoraz A £ 3m, to <p(Afi U) £ 3m;

(%) jezelim,n £ N oraz A £ 3m+n, to {x £ Rm : A\x\ » 3n} £ 3m;

(H3) jezelim,n £ Noraz A £ 3n,to Rmx A £ 3m+n-

Rodzina zbioréw miary Lebesgue’a zero oraz rodzina zbioréw pierwszej kate-
gorii Baire’a spetniajg powyzsze zatozenia. Niepuste podzbiory otwarte prze-
strzeni Rm nie nalezg do 3m.

Dla m-rozmaitosci M C Rn (m < n) wyposazonej w atlas A, A =
{(Ui,(pi) :i£ [/}, definiujemy wiasciwy rr-ideat 3m C 2m przyjmujac

3m = {A CM :<Pi(AD Ui) £ 3m dla kazdego i £ I}.

Definicja ta nie zalezy od wyboru atlasu A. Zbiory mate definiujemy naste-
pujgco: jezeli n > 2, a (-}) jest (dowolnym) iloczynem skalarnym w Rn, to
mowimy, ze zbiér Z ¢ | jest maty w = wtedy i tylko wtedy, gdy Z £ 3j_-,
gdzie 1*:= L\ {0} (L**jest (2n —I)-rozmaitoScia).

Gtéwnym wynikiem pracy [12] jest twierdzenie mowiace, ze jezeli funkcja
/ odwzorowuje Rn w grupe przemienng H oraz

f{x +y) = f(x) +f(y) 3j-p.w.,

to istnieje doktadnie jedna taka funkcja ortogonalnie addytywna g: R71—H,
ze
f(x) =g(x) 3n-p.w.



Jednym z lematéw dowodzonych w celu wykazania prawdziwosci powyz-
szego twierdzenia jest lemat mdwiacy, ze jezeli A £ 3sn-i, gdzie Sn~x jest
sferg jednostkowg w przestrzeni Rn, to istnieje baza ortogonalna przestrzeni
K" ztozona z elementow sfery Sn~1 nie nalezacych do zbioru A.



Bibliografia

[

[2]

3]

[4

B

[6]

B]

[

flOl

[11]

[12]

K. Baron, Orthogonality and, additivity modulo a discrete subgroup,
Aequationes Math. 70 (2005), 189-190.

K. Baron, PL. Kannappan, On the Pexider difference, Fund. Math. 134
(1990), 247-254.

K. Baron, J. Ratz, On orthogonally additive mappings on inner product
spaces, Bull. Polish Acad. Sci. Math. 43 (1995), 187-189.

K. Baron, P. Volkmann, On orthogonally additive functions, Publ. Math.
Debrecen 52 (1998), 291-297.

N.G. de Bruijn, On almost additive functions, Collog. Math. 15 (1966),
59-63.

J. Brzdek, On orthogonally exponential and orthogonally additive map-
pings, Proc. Amer. Math. Soc. 125 (1997), 2127-2132.

J. Brzdek, On orthogonally exponential functionals, Pacific J. Math. 181
(1997), 247-267.

J. Brzdek, On measurable orthogonally exponential functions, Arch.
Math. (Basel) 72 (1999), 185-191.

R. Ger, Almost additive functions on semigroups and a functional equ-
ation, Publ. Math. Debrecen 26 (1979), 219-228.

W.B. Jurkat, On Cauchy%s functional equation, Proc. Amer. Soc. 16
(1965), 683-686.

T. Kochanek, W. Wyrobek-Kochanek, Measurable orthogonally additive
functions modulo a discrete subgroup, Acta Math. Hungar. 123 (2009),
239-248.

T. Kochanek, W. Wyrobek-Kochanek, Almost orthogonally additive
functions (wystana do J. Math. Anal. Appl.).



[13] M. Kuczma, An introduction to the theory of functional equations
and inequalities. Cauchy’s equation and Jensen’ inequality, Panstwo-
we Wydawnictwo Naukowe & Uniwersytet Slaski 1985; wydanie drugie:
Birkhauser 2009.

[14] J. Ratz, On orthogonally additive mappings, Aequationes Math. 28
(1985), 35-49.

[15] J. Sikorska, On a Pexiderized conditional exponential functional equ-
ation, Acta Math. Hungar. 125 (2009), 287-299.

[16] W. Wyrobek, Orthogonally additive functions modulo a discrete subgro-
up, Aequationes Math. 78 (2009), 63-69.

[17] W. Wyrobek-Kochanek, Orthogonally Pexider functions modulo a di-
screte subgroup (wystana do Ann. Math. Sil.).



Aequationes Math. /8 (2009) 63 69 Birkhauser Verlag, Basel, 2009
0001-9054/09/010063-7 . I e
doi 10.1007/s00010-008-2951-9 | Aequationes Mathematicae

Orthogonally additive functions modulo a discrete subgroup

W irginia W yrobek

Summary. Under appropriate conditions on the abelian groups G and H and the orthogonality
X C G2 we prove that a function f : G — H continuous at a point is orthogonally additive
modulo a discrete subgroup K if and only if there exist a unique continuous additive function
a:G —»H and a unique continuous biadditive and symmetric function 6 : G x G —*H such that
f(x) —b(x,x) —a(x) 6 K forx € G and b(x,y) = 0 for x,y E G such that x X y.
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In this paper we work with the following orthogonality proposed by K. Baron and
P. Volkmann in [4]:
Let G be a group such that the mapping

X 2%, X € G, 1)
is a bisection onto the group G. A relation L C G2 is called orthogonality if it
satisfies the following two conditions:

(O) 0 LO; and from x _Ly the relations —x L—y, | + | follow.

(P) If an orthogonally additive function from G to an abelian group is odd,
then it is additive; if it is even, then it is quadratic.

According to Theorems 5 and 6 from [7] the orthogonality considered by J.
Ratz in [7] satisfies both (O) and (P).

Throughout this paper for a subset U of a given group and for n € N the
symbol nU denotes the set {nx :x EU}.

Our main result reads as follows:



Theorem 1. Assume that G is an abelian topological group such that the mapping
(1) ?s a homeomorphism and the following condition holds:

(H) every neighbourhood of zero in G contains a neighbourhood U of zero such
that

Ucau (2)

and

G =(J{2n[/: n 6 N}. €))

Assume _LC G2 is an orthogonality, H is an abelian topological group and K is a
discrete subgroup of H. Then afunction f : G —*H continuous at a point satisfies

f(x +y) —f(x) - f(y) 6 K for x,y 6 G such thatx 1 y 4)

if and only if there exi-st a continuous additive function a : G —H and a contin-
uous biadditive and symmetric function b : G x G —H such that

f(x) —b(x,x) —a(x) GK forx 6 G (5)

and
b(x,¥) = 0 for x,y S G such that x J.y. (6)

Moreover, the functions a and b are uniquely determined.

Note that this theorem generalizes Theorem 2.9 from [6] and, in view of The-
orem 9 from [7] and Theorem 4.2 from [3], also implies the result obtained in [1].

The proof of Theorem 1 will be presented after some lemmas. The first three
lemmas and Lemma 4(i) are very similar to some results from [2], [6] and [5],
but for the reader’s convenience we formulate them explicitly; however, we omit
their proofs. Note that Lemma 1(ii) [6, Lemma 2.3] is applied in the proof of
Lemma 2 [6, Proposition 2.4], Lemma I(i) [2, Lemma 1] and Lemma 2 in the
proof of Lemma 3 [2, Theorem 3; 6, Theorem 2.6] and Lemma 3 in the proof of
Lemma 4. Our Lemma 4(ii) can be proved in the same way as Lemma 4(i) [5,
Lemma 4], so we also omit the proof.

Lemma 1. Assume that G is an abelian group such that (1) is a bijection onto
G, H is an abelian group and U C G is a set with properties (2) and (3).
(i) Iff:U ~ H satisfies

[(x +y)=f{x) + f(y) forx,y € Uwithx+y6U,

then it has a unique extension to an additive mapping of G into H.
(i) Iff : U —=*H satisfies

f{x +vy)+ f{x - y) = 2f(x) + 2f(y) forx,y 6 U withx+y,x-y &U

and /(0) = 0, then it has a unique extension to a quadratic mapping of G into H.



Lemma 2. Assume that G is an abelian group such that (1) is a bijection onto
G, Il is an abelian group, K is a subgroup of H, U C G is a set with, properties
(2) and (3) and W is a subset of H such that

0eWw, W=-W and (W+W+ W+ W+ W+ W)TflK = {0}.

Iff WG —H satisfies
f(U) - /(0) CK + W

and
f{x +3)+ f(x - y) - 2f(x) - 2f(y) ¢ K for x,y eG, @)
then 2/(0) £ K and there exists a quadratic function q : G —H such that
f(x) - q(x)- /(0) € K forx £ G, (8)

q(0) = 0 and q(U) C W..

Lemma 3. Assume that G is an abelian topological group such that (1) is a
homeomorphism and (H) holds, H is an abelian topological group and K is a
discrete subgroup of H.

(i) Iff : G —H is continuous at zero and

f{x + 3)- f(x) - f(y) £ K forx,y € G,
then there exists a continuous additive function a : G —H such that
f(x) —a(x) € K forx € G.

(i) If afunction f : G — H continuous at zero satisfies (7), then there exists
a unique quadratic function q : G —H continuous at zero such that q(0) = 0 and
(8) holds.

In the rest of this paper we consider for an abelian topological group H and a
subgroup K of H, the quotient group H /K with the quotient topology:

{W CH/K : p~I(W) is an open subset of H},

where p : H —» H/K is the canonical mapping: p(x) = x + K.

Lemma 4. Assume that G is an abelian topological group such that (1) is a
homeomorphism and (H) holds, H is an abelian topological group and K is a
discrete subgroup of H .

(i) IfA : G —» H/K is a continuous additive function, then there exists a
continuous additive function a : G —H such that

a(x) 6 A(x) forx € G.

(i) IfQ : G —H/K is afunction which is continuous at zero and Q(0) = K,
then there exists a continuous at zero quadratic function q : G — H such that
¢(0) = 0 and

q(x) € Q(x) forx € G.



The proof of the next lemma was kindly communicated to me by K. Baron.

Lemma 5. Assume that G is an abelian topological group such that (1) is a
homeomorph.ism and (H) holds and H is an abelian topological group. If afunction
b:G x G —H is biadditive and continuous at (0,0), then it is continuous.

Proof. First we prove that b(x, ¢) is continuous at zero for every x G G. Take
xo € G and a neighbourhood W ¢ H of zero. It follows from the continuity at
zero of b and from (H) that there exists a neighbourhood U C G of zero such that
(3) and

b(UxU)cW

hold. Consequently x0 = 2nu0 with an n 6 N and a u0 G U, and for u G U we
have
b{x0,2~nu) = b{2nu0,2 -nu) = 2nb(u0,2 -nu) = b{ud,u) G W.

Hence
b{x0,2-nU) C W,

which shows that b(xo, ® is continuous at zero. Clearly, the same concerns 6(-, yo)
for every yo € G. To finish the proof it is enough to observe now that

b(x,y) - b(x0,y0) = b(x - x0,y0) + b(x - x0,y - y0) + b(x0,y - y0)
holds for X, y, xq,y0 £ G. O

Our last lemma generalizes Theorem 4.3 from [3].

Lemma 6. Assume that G is an abelian topological group such that (1) is a
homeomorphism and (H) holds, L C G2 is an orthogonality and H is an abelian
topological group. If an orthogonally additive function f : G —» H is continuous at
some point, then it is continuous; more precisely, it is of the form

f(x) = a(x) + b(x,x) forx € G, 9)
where a : G == H is a continuous additive function, b: G xG H is a continuous

biadditive and symmetric function and (6) holds.

Proof. According to Theorem 1 from [4] the function / has form (9), where a :
G —» H is additive, 6 : G x G — H is biadditive, symmetric and satisfies (6);
moreover,

* ) - > (] (4%)+ - (=*2%))
(10)
Let xg GG be a continuity point of /. It follows from (9) that

/(x +1i0)- f(x) - f(x0) = 2b(x, x0) for x GG,



whence continuity at zero of / + 26(-, xq) follows. Consequently also the function
X =>f(—x) + 2b(—,xq), X 6 G,

is continuous at zero. Summing up those two functions we get continuity at zero
of

x —=f(x) + f(-x), x6G.
Since (1) is a homeomorphism, this jointly with (10) gives continuity at (0,0) of
b and applying Lemma 5 we see that b is continuous (at each point of G x G).
Hence and from (9) continuity of a (at x0 and, consequently, everywhere) follows.
This ends the proof. O

Proof of Theorem 1. The proof of the “if” part is easy, so we omit it. The “only
if” part is divided into Parts | and II.

Part I. Assume that / satisfies (4) and define the function / : G —H /K by
the formula

[ = V° /e
Clearly / is continuous at a point, and (4) implies that / is orthogonally additive.
According to Lemma 6 there exist a continuous additive function a : G —H /K
and a continuous quadratic function q : G —» H /K such that <j(0) = K and
f(x) = a(x). + q(x) for x € G.

By Lemma 4 we get a continuous additive function a : G —H and a quadratic
function g : G —H continuous at zero such that ¢(0) = 0,

poa=a and pog= g
Consequently, f(x) —q(x) —a(x) + K = f(x) —q(x) —a(x) = K, i.e,
f(x) —q(x) —a(x) £ K for x € G. (11)
It follows from Lemma 2 from [4] that g has the form
g(x)=b(x,x) forx £ G, (12)

where b : G x G —H is biadditive, symmetric and continuous at (0,0). Applying
Lemma 5 we see that b is continuous.
Part Il. Now we prove that g is orthogonally additive and that (6) holds.
Since K is discrete, there exists a neighbourhood W G H of zero such that

Knw = {o}.
Let WO C H be a symmetric neighbourhood of zero with
W0+ WO+ WOc W

and U C G be a neighbourhood of zero such that q(U) C Wo, (2) and (3) hold.
Take x,y 6 G with x _Ly and, making use of (3) and (2), choose an n 6 N
such that
2-"Xx, 2-ny, 2~n(x +y)eu.



Then
q(2-n(x +vy)) - q(2~nx) - gq(2~ny) £ WO - WO ~ C w.

On the other hand, by (11) and (4),
a2-"(z +y)) - a(2~nx) - q(2~ny) 6 /(2~n(x +Y))
-1 (2~nx) - f{2~ny) + K = K.
Consequently,
q(2-"(x +vy)) - a(2~nx) - q(2~ny) = 0.
Moreover, by (12),
g{2kz) = 22kq{z) for 26 G and k € N.
This yields
aix +y) - afx) - afy) = 22"((2 n(x +y)) - a2 nx) - af2 ny)) =0
and, as | and ” are also orthogonal,

Part Ill: Uniqueness. Suppose ai : G —»H is additive and continuous, hi :
G x G —H is biadditive, symmetric and continuous, and
f(x)—bi(x,x)—ai(x)€K forx £ G. (13)
Putting

a0 —a —ai, b$= b—bhi,
we get in view of (5) and (13)
ao(x) + bO(x,x) € K for x € G, (14)
which jointly with additivity of ao and biadditivity of b0 gives
a0(2x) = (a0(x) + bO(x, x)) - (a0(-x) + bO(-x, -x)) € K

for x € G. Consequently, since (1) is a bijection, ao(G) C K. Hence, taking into
account that K is discrete and ao Ls continuous and vanishes at zero, we infer that
ao vanishes on a neighbourhood of zero and making use of (H) we see that og
vanishes everywhere. Thus ai —a and (14) takes the form

b0(x,x) GK for x € G.
Reasoning as above we show that
bO(x,x) = 0 fori € G,

whence
2b0(x,y) = bO(x + y,x +y) - bO(x,x) - bO(y,y) =0

for x,y € G and, consequently,

for x,y € G, which means that b{ = b. [l
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Abstract. Under appropriate conditions on Abelian topological groups G
and H, an orthogonality X C G2 and a cr-algebra ©I of subsets of G we decompose
an OT-measurable function / : G —»H which is orthogonally additive modulo a
discrete subgroup K of H into its continuous additive and continuous quadratic
part (modulo K).

1. Introduction

Throughout all the paper G and H are Abelian topological groups, K is
a discrete subgroup of H.

Following K. Baron and P. Volkmann [2], in the case when G is uniquely
2-divisible, a relation J_C G2is called orthogonality if it satisfies the following
two conditions:

(0) 0 -L 0; and from x 1 y the relations —x L—y, | = | follow.
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/1f an orthogonally additive function from G to an Abelian group is
A ' \odd, then it is additive; if it is even, then it is quadratic.

For instance, the orthogonality considered by J. Ratz in [13] fulfils both
(0) and (P), according to Theorems 5 and 6 therein. For further examples
the reader is referred to [2].

All along we assume that 971 is a cr-algebra and 3 is a proper a-ideal of
subsets of G which fulfil the condition:

(S) 0€Int(A- A),if e OT\3.

We deal with the problem: under what assumptions an 9H-measurable
mapping / : G —H which is orthogonally additive modulo K, i.e.

(1) f(x +y) —f(x) —f(y) € K for x,y € G such that x % vy,
admits a factorization of the type
(2) f(x) —b(x,x) —a(x) 6 K for x € G

with a continuous additive 0 : G —H and a separately/jointly continuous
biadditive b: G x G —HI

The main aim of this paper is to establish representation (2) with ajointly
continuous biadditive function b. This is done in the next section under some
reasonable assumptions (on G or 92). In the third section we obtain this
decomposition with a separately continuous b under somewhat weaker con-
ditions.

2. Factorization with a jointly continuous biadditive term

The first lemma is a kind of folklore and has been established in special
cases when 9JI is the u-algebra of subsets having the Baire property or being
Christensen measurable. In both cases the key property is condition (S),
where 3 is the family of meager or Christensen zero subsets of G, respectively
(see [12, Theorem 9.9] and [8, Theorem 2] with [10]). For the proof of this
lemma see e.g. [12, Theorem 9.10].

Lemma 1. Every VJI-measurable homomorphism from G into a separable
topological group is continuous.

Lemma 2. Let X be a topological space with a countable base. If the
functions f,g: G —X are VJl-measurable, then so is the function (/,g) :
G —X x X . Consequently, if Y is a topological space and ip: X x X - * K
is a Borel function, then tp(f,g) is WI-measurable.



Proof. It is enough to observe that if B is a countable base of X, then
{VxW :V,W EB) is a countable base of X x X. O

LEMMA 3. Assume H is separable metric and at least one of the condi-
tions holds:

(i) G is afirst countable Baire group;

(if) G is separable metric;

(iii) G is metric and VJI contains all Borel subsets of G.

If a biadditive function b : G x G —H has 9JI-measurable sections b(x, ),
6(-, 7) for all x,y GG, then b is continuous.

Proof. If G is a first countable Baire group, then [9, Proposition 2.3]
implies that (G, G, H) forms a Namioka-Troallic triple. Our assertion then
follows from the fact that the sections of b being DJt-measurable are, accord-
ing to Lemma 1, continuous, and from the H. R. Ebrahimi-Vishki result [9,
Theorem 3.2].

Let dg, dn stand for invariant metrics for G, H, respectively (cf. [i1,

Theorem 8.3]), B(r) = {z EG : dc(z,0) ~ r} for positive r GK and
Fnk —{x E G : dH(b(x,u),b(x,v)) » 2~n for all u,v GB (2-fc) }

for n,k EN. By Lemma 1, the sections b(-,u) are continuous for u E G,
whence Fn” are closed for n,k E N. Consequently, in case (iii) we have

3) Fn E for n, k E N.

To show that (3) holds also in case (ii) for every k E N consider a countable

and dense subset Dk of B(2~k). Then, due to continuity of b(x, ¢) for x E G,
we have

Fnk— P| {x GG :dH(b(x,u),b(x,v)) ~ 2-71} forn,k GN.
(u,v)eDk

Moreover, as follows from Lemma 2, the mapping G 3 x >dn(b(x, u),b(x, v))
is OT-measurable for u,v E G. Hence we have (3) also in case (ii).
Because of the continuity of b(x, ¢), we have

G = (J Fntk forn EN.
feeN

Consequently, if n GN, then Fnk® G271\ 3 for at least one k(n) E N. This
fact, jointly with condition (S), yield

4 0 GInt (iMmfc(ra) —  fc(n))-



On the other hand, if k,n £ N, n ~ 2, then for all x, x' 6 FUk and all
u,v e B(2~k) we have

dn(b(x —x",u),b(x —x",v)) = dn{b(x,u) - b(x",u),b(x,v) —b(x",v))
= dfj(b(x, u),b(x, v) + b(x',u —v))
= dH{b{x,u),b(x,v)) + dH(b(x,v),b(x,v) + b(x",u —Vv))
= dH(b(x,u), b(x,v)) + dH(b(x",v),b(x",u)) < 2_(n_1),

which shows that Fn® —Fn® C Fn-\". Combining this with (4) we infer that
for all n € N there is k(n) € N and r(n) > 0 such that

(5) dH[b(x,u),b(x,v)) ~ 2. n forx € B(r(n)) and ii,u € B(2"f).
Fix any (x,u) and (x',v) from B~r(n)”"j x  2_/c(n)). Then
a—x €5(0,r(n))

and (5) yields

dH(b(x,u),b(x ,v)) " dH(b(x,u),b(x,v)) + dH(b(x,v),b(x ,v))

"2 _n+dn(b(x - x',v),Q)
= 2-n + df{(b(x —x1v),b(x —x10)) "

This proves the continuity of b at (0,0). Since

b(x, y) - b(x0,y0) = b{x - x0,y0) + b(x - x0,y - y0) + b(x0,y - y0)

for x,y 6 G and 6(-, yo), b(xo, ¢) are continuous, b is therefore continuous at
every point (xo,yo) E G x G. O

Note that in the special case when VIl consists of all sets with the Baire
property, the assumption that G is Baire, or equivalently G is non-meager
(see e.g. [12, Proposition 9.8]), corresponds to our hypothesis G 0 3.

A key role in the above proof is played by condition (S). Even in the case
when G is a real separable normed space and QZis the cr-algebra of its Borel
subsets, a suitable cr-ideal 3 which satisfies (S) does not have to exist. Con-
sider, for instance, the space of all real polynomials of one variable with the
norm ||/]| = |/(£)| dt and the bilinear functional B(f,g) = f(t)g(t)dt
which is separately but not jointly continuous. In view of our last lemma,
such a space does not admit a cr-ideal 3 which would fulfil condition (S). For
the essentiality of the above assumptions cf. also Example 3.3 in [9].



Lemma 4. If H is separable metric, then the quotient group H/K is an
Abelian separable metric group.

Proof. Since K is closed in H, the group H/K is Hausdorff (see [11,
Theorem 5.21]). Because H has a countable base, so has also H/K. In
the light of the Birkhoff-Kakutani theorem [11, Theorem 8.3], H/K is thus
metrizable. Separability follows again from the existence of a countable base.

Now we are prepared to proceed to our main result. The technical as-
sumptions appearing below have been already considered (see [7], [3], [6] and
[14]). In the last section we present a counterexample showing that condition
(G2) is essential.

THEOREM 1. Assume H is separable metric,

(GI) the mapping G 3 x —=2x is a homeomorphism,
(G2) every neighbourhood of zero in G contains a zero neighbourhood U
such that

(6)

(G3) either G is afirst countable Baire group, or G is metric separable,
or G is metric and DJ contains all Borel subsets of G,

(G4) x £ 2A GWI for all x e G and A G 9Jt.

Then an Tl-measurable function f : G —H satisfies (1) if and only if
there exist a continuous additive function a : G —H and a continuous biad-
ditive symmetric function b: G x G —H such that the factorization (2) is
valid, and

@) b(x,y) = 0 for x,y € G such that x J v;

moreover, the functions a and b are uniquely determined.

Proof. Define/ : G—H/K as/ = pof where p stands for the canon-
ical projection. Condition (1) yields the orthogonal additivity of /. By [2
Theorem 1], there exist an additive function a : G —H /K and a quadratic

function q : G —H /K such that f = a + g. Moreover the function a is de-
fined by the formula

and gq(x) = b(x, x),x 6 G, with a biadditive and symmetric functionb: G x G
—»H /K given by



The above equalities, jointly with QJt-measurability of /, condition (G4) and
Lemma 2, imply the 9H-measurability of a and the sections 6(2,¢) for every
x € G. By Lemmas 4, 1 and 3, the functions a and 6 are continuous.

According to [14, Lemma 4] there exist a continuous additive function
a: G —H and a continuous at zero quadratic function g : G —»H such that
g(0) = 0 and poa=a, po g=g Hence f(x) - g(x) —a(x) EK for x EG.
As in the proof of [14, Theorem 1] we recall [2, Lemma 2] and [14, Lemma 5]
to obtain g(x) = b(x,x) with a continuous biadditive symmetric function
b: G x G—H. To finish the proof of the “only if” part it remains to apply
Lemma 5 given below.

The proof of the “if’ part is a simple verification. O

Lemma 5. Assume (GI) and (G2). Let the functions ai,a2 mG —H be
continuous additive and let 61,62 : G x G —H be biadditive symmetric and
continuous in each variable.

(i) If (ai(x) +61(2,2)) —(¢12(2) + 62(2,2)) 6 K forx E G, then a\ = 02
and 61 = 62.

(i) If bi(x,y) EK for x,y EG such that x = y, then 61(2,2) = 0 for
X,y E G such that x J.y.

PROOF, (i) Leta:= a\ —o02,b  61—62. For 2 E G we have a(x) + 6(2,2)
E K. Hence

a(22) = (0(2) + 6(2,2)) —(a(—2) + 6(-2,—2)) EK,

which implies a(G) C K. Now, condition (G2) guarantees that the function
a, being continuous and additive, is constantly equal to zero.
We have just obtained that 6(2,2) c K for 2 € G, thus

6(2,2y) = 26(2,y) = 6(2+y,x +y) - 6(2,2)- b(y,y) EK for x,y EG.

Arguing as above we infer that the section 6(-, 2y) is constantly equal to zero
for every y E G, so 6= 0.

(if) Fix 2,y E G such that 2 + y. Choose zero neighbourhoods W C G
such that K C\W = {0} and U C G such that

b{Uyy) CW and G =\J{2nU : n E N}.

For some n EN we have 2 E 2nU, whence 6(~-,7) 6 W. Plainly, 2 _ nx L
2~ny, which implies

Consequently, 6(2 nx,y) = 0 and
6(2,y) = 2"6(",4) =0,

as desired. O



As a consequence of Theorem 1 we obtain the following result.

Corottary 1. Assume H is separable metric and, (GI), (G2) hold. If
either G is afirst countable Baire group and /: G —H is Baire measurable,
or G is a Polish group and /: G —»H is Christensen measurable, then f sat-
isfies (1) if and only if there exist a continuous additive function a : G —H
and a continuous biadditive symmetric function b: G x G —H such that (2)
and (7) hold; moreover, the functions a and b are uniquely determined.

Baire and Christensen measurable solutions of (1) have been already ex-
amined by J. Brzdek in [4] for the orthogonality given by an inner product
and in [5] for a more abstract orthogonality in linear topological spaces.

3. Factorization with a separately continuous biadditive term

Under weaker assumptions we obtain the factorization (2) with a sepa-
rately continuous biadditive term only (as it is in [5, Theorem 1]).

Theorem 2. Assume (Gl), (G2), (G4) and let H be separable metric.
Then an DJI-measurable function f : G —H satisfies (1) if and only if there
exist a continuous additive function a : G —H and afunctionb: G x G —H
biadditive symmetric and continuous in each variable such that the factoriza-
tion (2) is valid and (7) holds; moreover, the functions a and b are uniquely
determined.

To get this result we argue as in the proof of Theorem 1 but without
referring to Lemma 3 and applying the following Lemma 6 instead of [14,
Lemma 4(ii)].

LEMMA 6. Assume (GI) and (G2). If b: G —»H /K is biadditive, sym-
metric and continuous in each variable, then there exists afunctionb: G x G
—%H biadditive, symmetric and continuous in each variable such that

(8) b(x,y) G b(x,y) for (x,y) 6 G x G.

PROOF. It follows from [14, Lemma 4(i)] that there exists a function
b:G x G —H such that for every y G G the function b(-,y) is additive,
continuous and (8) holds. To show that b is symmetric fix X,y G G and a
neighbourhood W of zero in H with

(W+W-W)HK = {0}

Since b(-,y)~1 (W) nb(-,2y)~1(W) fl 6(-, x)_1(W) is a neighbourhood of zero,
it follows from (G2) that there exists a zero neighbourhood U such that

UCb(y)-LW)nb(;2y)-\W)nb(;x)-1(W)



and (6) holds. In particular, x = 2nu\ and y = 2nu2 for some n E N and
Ui,U2 E U. Moreover,

2b{ui,y) - b{ui,2y) E 2W - W) n (2b{ui,y) - b(ui, 2y))
= (@2W -I1f)n~"r= {0},
whence 2b(ui,y) = b{u\,2y) and, consequently,
2b(x,y) = 2b(2nui,y) = 2n mb(ui,y) = 2nb{ui,2y) = b{x,2y).
Now, having the equality b(x,2y) —2b(x,y) for any x,y E G we see that
b(x,U2) = 6(2"ui,u2) = 6(*i,2"u2) = 6(ni,y) EW,
whence
b{x,u2) - b(u2,x) E (W - W) n (6(ar,u2) —6(12,ac)) = (W - W) n K = {0}
and
b(x,y) = b(x, 2nu2) = 2n6(x, u2) = 2nb(u2,x) = b(2nu2,x) = b(y,x). O

As a consequence we obtain a corollary asserting that if G is Baire and
we consider the Baire measurability, then we do not need to assume the first
countability of G in order to get the desired factorization with a separately
continuous biadditive term only (cf. Corollary 1).

Corollary 2. Assume H is separable metric and, (GI), (G2) hold. If
G is Baire and /: G —H is Baire measurable, then f satisfies (1) if and
only if there exist a continuous additive function a : G —H and a function
b: G x G—H biadditive symmetric and continuous in each variable such
that (2) and (7) hold; moreover, the functions a and b are uniquely deter-
mined.

If we take L= G2, then Theorem 2 gives us Corollary 3 below. Of course,
again it leads to another conclusions in the case when the measurability that
we consider is Baire or Christensen.

Corotltary 3. Assume (GI), (G2), (G4) and let H be separable metric.
Then an VJl-measurable function f : G —H satisfies

f(x +y)- f(x) - f(y) EK for x,y EG

if and only if there exists a (unique) continuous additive function a : G —H
such that

f{x) —a(x) EK for x EG.



4. A counterexample

Hypothesis (G2) is supposed to be a substitute for the condition that ev-
ery zero neighbourhood is absorbing - the condition which we dispose of in
linear topological spaces. The following example shows that we cannot run
too far away from this linear topological structure. Although for the sim-
plest counterexample we may consider (R, +) with the discrete topology, we
present a more interesting one. Our aim is to demonstrate that the validity
of all of the assumptions, just with the exception of (G2), does not guar-
antee the factorization (2) even if the domain is a “nice” structure with a
non-discrete topology.

Let RN stand for the group of all real sequences (with the ordinary addi-
tion). In this group we introduce the so called Krull topology, the Tychonov
(product) topology with the discrete topology in R. Observe that we obtain
in this manner an Abelian topological group metrizable by a complete met-
ric. In particular, it is a Baire group. Note also that the family {Vj : | E J7},
where

f :={/c N:cardl < NO}

and
Vi:= {(Zn)n6N€ RN: Xi=0foric/} for I GT

is a zero neighbourhood basis.

Clearly, RNis uniquely 2-divisible (it is even a real linear space) and the
orthogonality L defined as RN x RN fulfils both (0) and (P). Obviously, the
mapping RN 3 x i-»2x is a homeomorphism. However, since V/ is a subgroup
of Rn, we have

({nV7 :nGN} = V/ICRN for I GF, | £0.

Let ® be the cr-algebra of all Borel subsets of RNand let J be the (proper)

cr-ideal of all meager subsets of RN. The classical theorem of Pettis [12, The-
orem 9.9] asserts that 0 G Int (A —A), whenever A G ® \ 3.
Let 9: R —#R be any function fulfilling the congruence

tpx+y)- <pf¥) - ip(y)cZ for x,y ER

which is not a sum of an additive and a Z-valued function (see [1, Remark 2]
for a suitable example). Define / : RN—R by the formula

f(x) = <p(xi) for x = (Zn)n6N.
Plainly, / is a continuous (hence Borel) solution of the congruence

f(x +y) - f{x) - f(y) gz for x,y £RN.



Now, suppose that f(x) —b(x,x) —a(x) G Z for x G RN with an additive

function a : RN—R and a function b : RN x RN—R which fulfils (7). Since
our orthogonality is the trivial one, we have 6 = 0 and hence

9) f(x) —a(x) cZ for x G RN.

Defining a : R —R by a(x) = a(x, 0,0,...) we see that it is additive and (9)
implies that

<Pp(x) —a(x) = f(x,0,0,...)- a(x,0,0,...) cZ for x GR,

contrary to the choice of 2
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dulo podgrupa dyskretna, ktéra po doprecyzowaniu zatozen stata sie docelowym wynikiem pracy.
Podata tez plan dowodu twierdzenia 1, ktérego realizacja, po udowodnieniu stosownych lematow,
stata sie natychmiastowa.

(-) Tomasz Kochanek



ORTHOGONALLY PEXIDER FUNCTIONS
MODULO A DISCRETE SUBGROUP

Wirginia Wyrobek-Kochanek

Abstract

Under appropriate conditions on abelian topological groups G and
H, an orthogonality L ¢ G2 and a /t-algebra 9Jt of subsets of G wc
prove that if at least one of the functions f,g,h: G —aH satisfying

f(x +y) —g(x) - h(y) £ K for X,y £ Gsuch that X LYy

is continuous at a point or DJt-measurable, then there exist: a con-
tinuous additive function A: G —¥ H, a continuous biadditivc and
symmetric function B\ G x G —H and constants a,b £ H such that

f(x) —B(x,x) —A(x) —a £ K,
g(x) —B(x, x) - A(x) - b£ K,
h(x) —B(x, X) —A(X) —a+b£ K

for X £ G and

B(x,y) = O for X,y £ G such that X 1 .

We would like to obtain some results similar to the main results from
papers [5] and [3] but for the Pexider difference instead of the Cauchy dif-
ference. We start with the following result.
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Key words and phrases: additive functions, biadditive functions, Pexider difference, quadratic
functions



Lemma. Let G be a groupoid with a neutral element, H an abelian group,
K a subgroup of H. Let A C G x G be a set viith

(0 ,(x,0GA forallx£G. @
If functions f,g,h: G -+ H satisfy
IGx+y) - gfx) - h(y) K for (x,y) G A, )

then the following are true:
(@) There are functions k[,ly: G —K, ip\\ G -+ H and constants a,b G
H such that

F(x+2/)-~1(x)- Piiv)e K f°T(x,1)GA

and
f{x) = "(z) +a
(1) = BL(x) + fci(x) + b, 3
h(x) = tpi(x) - ki(x) + h(x) +a- b

for all x ¢ G.

(b) There are functions k2,12 @G —K, (p2: G -+ H and constants a,b G
H such that

@x+1U)- A2(1)- 922) 6K for (x,y) GA

and
( f(x)=<p2(x) + k2{x) + &,
< 5(2) = v2(s) + 6,
[ h(X) = e{) +12{x) +a- b
for all x ¢ G.
(c) There are functions /03,/3: G -+ K, :G H and constants a,b G

/! such that

Ax+1)- BE)- vB2) cK for (x,9) 6 A

and
( f{x) = P3{x)+k3{x) + a,
I 9(x) = <P3(X) + B(X) + b,
[ /i(2) = w{x) +a—b

for all x ¢ G.

Moreover, each of assertions (a), (b), (c) gives a complete description
of solutions of (2), that is, every triple (f,g,h); being of one of the forms
described above, is a solution of (2).



Proof. Setting y = 0in (2), by (1) we get

fi(x) := /(.x) —g(x) - h(0) g K forx GG 4
and setting x = 0 we have

v{y) 'm=fiy) ~5(0) - h(y) K fory £ G. (5)

In particular,
/(0) - 5(0) - MO) £ K. (6)
Denote a = /(0), b= g(0) and define ipi, ki,li: G—»H fori = 1,2,3 by
(pi=f - a ky = g —tp\ —b, h=h+kx- qi-a+h

tp2=9 - b k2=1f - <o ~ a, 2=h-ip- a+h
ips=h- a+h fe=1/ - ips- a, 13=g- - b

Using (4), (5), (2) and (6) for every (x,y) € A we get

Pix+y) - <Pi¥) - ipfy) =f[x+ ) - a- f(x) +a- f(y) +a
= fix +y) - tAx) - o(x)~ Mo) - v(y) - 5(°) - h(y) + ae K,
Va{x +y) - ¥2(x) - If2(y) = g{x+2) -b - g(x) +b- g(y) +b
=fix+y)- Kx+y)- h(°)- 9ix)+ M2) - fiy) + H®) + h
= f(x+y)- n(x+y) - g{x) + n(y) - v(y) - 40) - h{y) +beK\
|BNX+ 2/)- <Palx) - <Pify) =h(x+y)- a+b-h(x)+a-b- h(y) +a-b
= fix+y) ~5(0)- v{x+y) +u(x) - {{x) +9g(0) - h{y) +a-b
=f{x+y)~"(x+2)+ v(x) ~Kx)~9(x)~/i(0) - Hy) +a-b
G K.

We also have
ky(x) = g(x) —/(:X) + a —b= ~n(x) —h(0) + a —b G K,
k2(x) = f(x) - g(x) +b- a=fi.(x + h(0) + b- a G K,
AMx) = f(x)~h(x)+a- b- a=i/(x)+ #(0) - bGK,
N(x) = h(x) +Kki(x) - f(x) +a- a+b= -i'(z) - 5(00) + &i(z) + bGK,
h{x) = h(x) +k2{x) - f(x) +a- a+b=-i"(x) - g(0) + k2{x) + bG K,
hix) =9(x)+ "3(") - f(x)+a- b= ~n(x) - h(0) +k3(x) +a-be K
forieG. O



The part (b) of this lemma in the case when L= G2 was also obtained by
K. Baron and PL. Kannappan in [1], even under some weaker assumptions.
Some variations of (2) for functions with values in groupoids were studied
by J. Sikorska in [4].

We work with the following orthogonality proposed by K. Baron and P.
Volkmann in [2]:

Let G be a group such that the mapping

X Fm2X, X G G, (7

is a bijection onto the group G. A relation L C G2is called orthogonality if
it satisfies the following two conditions:

(0) 0 LO; and from x Ly the relations —x £ —y, | L| follow.

(P) If an orthogonally additive function from G to an abelian group is
odd, then it is additive; if it is even, then it is quadratic.

For a subset U of a given group and for n 6 N the symbol nU denotes
the set {nx :x ¢ U}.

Theorem. Assume G is an abelian topological group such that the mapping
(7) is a homeomorphism and every neighbourhood of zero in G contains a
neighbourhood U of zero such that

Uc2U and G=(J{2nU: n G N} (8)

Let -L ¢ G2 be an orthogonality, H an abelian topological group, K a discrete
subgroup of H and

X LoOand0 Lx forx GG. 9)
Assume that functions f,g,h: G —» H satisfy
f(x +2)- &(3;) —1(2) c K for x,y G G such that x % . (10)

(D If at least one of the functions /, g, h is continuous at a point, then
there exist: a continuous additive function A : G — H, a continuous biad-
ditive and symmetric function B : G x G —» H and constants a,b c H such
that ( f(x) - B(x,x) - A(x) - aGK,

I g(x) - B(x,x) - A(x) - be K, (11)
[ h(xX) —B(x, x) —A(Xx) —a+ bGK

for x e G and
B(x,24) = 0 forx,y GG such thatx _Ly. (12)
(ii) Let 9JI be a cr-algebra of subsets of G such that

x+t2A c9t forallx G and A G 9l (13)



and there is a proper cr-ideal 3 of subsets of G with
0GInt(A -A) for AeWI\3. (14)

Assume moreover that H is separable metric and the following condition (G)
is fulfilled:

(G) either G is afirst, countable Baire group, or G is metric separable, or
G is metric and 9Jt contains all Borel subsets of G.

If at least one of the functions /, g, h is "Si-measurable, then there exist:
a continuous additive function A: G —» H, a continuous biadditive and
symmetric function B: G x G —» H and constants a,b G H such that (11)
and (12) hold.

Moreover, each of assertions (i), (ii) gives a complete description of so-
lutions of (10).

Proof, (i): Case 1. Assume that / is continuous at a point. Let k\,]\\ G —=
K, <pi: G —H be as in Lemma (a). Then the function <i is continuous
at a point. According to Theorem 1 from [5] we get a continuous additive
function A: G — H and a continuous biadditive and symmetric function
B:G x G —H such that

<fi{x) ~ B(x,x) - A(X) GK forif G
and (12) hold. Then, according to (3),
f(x) —B{x,x) —A(x) —a = tfi(x) + a—B(x, x) —A{x) —a G K,
g(x) —B(x,x) —A{x) —b —ip\(x) + fci(x) + 6 —B(x,x) —A(x) —bG A,

h(xX) —B(x,x) —A(x) —a+ b= <pi(x) —k\(x) + I\{x) + a—b
—B(x, x) —A(Xx) —a+bGK

for all x G G.

Case 2. If the function g is continuous at a point then instead of Lemma
(a) we use Lemma (b).

Case 3. If the function h is continuous at a point then we use Lemma
(c).

(ii): If one of the functions /, g, h is 9Jt-measurable then we use Theorem
1 from [3] instead of Theorem 1 from [5]. O

For L—G2some special cases were obtained in [1] (cf. Corollaries 6 and
7 there).

If in the Theorem G is Baire and we consider the Baire measurability,
then we do not need to assume the first countability of G in order to get the
factorization with a separately continuous biadditive term only (cf. Corol-
lary 2 in [3]).



COROLLARY 1. Assume G is an abelian topological group such that the map-
ping (7) is 3 homeomorphism and every neighbourhood of zero in G contains
a neighbourhood U of zero such that (8) holds. Let L ¢ G2 be an ortho-
gonality satisfying (9), H an abelian separable metric group, K a discrete
subgroup of H and functions f,g,h: G —H satisfy (10). If G is Baire and
at least one of the functions /, g, h is Baire measurable, then there exist: a
continuous additive function A: G —H, afunction B: G x G — H biad-
ditive, symmetric and continuous in each variable, and constants a,b £ H
such that (11) and (12) hold.

If we take L = G2, then our Theorem gives us Corollary 2 below. It

also leads to another conclusions in the case when we consider Baire or
Christensen measurability.
COROLLARY 2. Assume G is an abelian topological group such that the map-
ping (7) is a homeomorphism and every neighbourhood of zero in G contains
a neighbourhood U of zero such that (8) holds. Let H be an abelian separable
metric group, K a discrete subgroup of H, OT a a-algebra of subsets of G
satisfying (13) and such that there is a proper cr-ideal 3 of subsets of G with
property (14). Iffunctions f,g,h: G —mH satisfy

f(x +y)-g[x) - h(y) EK forx,y EG

and at least one of them is flJl-measurable, then there exist a continuous
additive function A: G —H and constants a,b £ H such that

{ f(x) ~A(X) - ae K,
< 0ix) - Mx)~b£ K,
[ h(xX) —A(x) —a+ bE K

forx E G.
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TOMASZ KOCHANEK AND WIRGINIA WYROBEK-KOCHANEK

Abstract. If a function /, acting on a Euclidean space Rn, is “almost” orthogonally additive in the
sense that f(x +y) = f(x) + f(y) for all (x,y) £ 1 \ Z, where Z is a “negligible” subset of the
(2n - 1)-dimensional manifold _L C M2n, then / coincides almost everywhere with some orthogonally
additive mapping.

1 Introduction

Let (E, (]-) be areal inner product space, dimE > 2, and let (G, +) be an Abelian group. A function
/. E G iscalled orthogonally additive iff it satisfies the equation

@) f(x +y) = f{{x) + f(y)
for all (x,y) E _L:= {(i,y) € E2:(x\y) = 0}. It was proved independently by R. Ger, Gy. Szab6 and
J. Ratz [13, Corollary 10] that such a function has the form

) £{x) = a(\x\\2)+b{x)

with some additive mappings a: M —G, b: E — G provided that G is uniquely 2-divisible. This
divisibility assumption was dropped by K. Baron and J. Ratz [2, Theorem 1],

We are going to deal with the situation where equality (1) holds true for all orthogonal pairs (x,y)
outside from a “negligible” subset of -L. Considerations of this type go back to a problem [7], posed by
P. Erdos, concerning the unconditional version of Cauchy’s functional equation (1). It was solved by N.
G. de Bruijn [3] and, independently, by W. B. Jurkat [11], and also generalized by R. Ger [10]. Similar
research concerning mappings which preserve inner product was made by J. Chmielifski and J. Ratz
[B and by J. Chmielifski and R. Ger [4].

While studying unconditional functional equations, “negligible” sets are usually understood as the
members of some proper linearly invariant ideal. Moreover, any such ideal of subsets of an underlying
space X automatically generates another such ideal of subsets of X 2 via the Fubini theorem (see R. Ger
[9 and M. Kuczma [12, §17.5]). However, we shall assume that equation (1) is valid for (x,y) E1 \ Z,
where Z is “negligible” in L (not only in E2), and therefore the structure of L should be appropriate
to work with “linear invariance” and Fubini-type theorems. This is the reason why we restrict our
attention to Euclidean spaces R" and regard 1 as a smooth (2n - I)-dimensional manifold lying in M2".

2. Preliminary results

For completeness let us recall some definitions concerning the manifold theory (for further information
see, e.g., R. Abraham, J. E. Marsden and T. Ratiu [1], and L. W. Tu [14]). Let S be a topological
space; by an m-dimensional C°°-atlas we mean a family A = {((/* such that / is an open
covering of S, for each i s / the mapping < is a homeomorphism which maps Ui onto an open subset of
Rm, and for each i,j € | the mapping piotpjlis a C°°-diffeomorphism defined on tpj{UiC\Uj). Brouwer’s
theorem of dimension invariance implies that each two atlases on S are of the same dimension.

We say that atlases A\ and Ai are equivalent iff A\ UA2 is an atlas. A C°°-differentiable structure
V on S is an equivalence class of atlases on S\ the union (JP forms a maximal atlas on S and any of
its element is called an admissible chart. By a C°°-differentiable manifold (briefly: manifold) M we
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mean a pair (S5,T> of a topological space S and a C°°-differentiable structure P on S; we shall then
identify M with the space S for convenience. A manifold is called an m-manifold iff its every atlas is
m-dimensional.

Having an mi-manifold M\ = (S\,T>i) and an m2-manifold M2 = (£2,1%) we maY define the product
manifold M\ x M2 = (Si x 62,21 x X2), where the differentiable structure T3 x 2% is generated by the
atlas

{kA x G221 xm) m(U,<Pi) G|JPi fori=1,2].

Then Mi x M2 forms an (mi + m2)-manifold. For an arbitrary set A ¢ M\ x M2 and any point x £ Mj
we will be using the notation A[x]= {y € M2: (x,y) € .4}.

In what follows, we will be considering only manifolds M C M", for some n £ N, equipped with
the natural topology and a differentiable structure which is determined by the following condition: for
every X G M there is a C°°-diffeomorphism if defined on an open set U C Mn with x G U such that
<f(MfiU) = ip(U) n (Rm x {0}), where m is the dimension of M. In particular, every open subset of
yields an n-manifold with the atlas consisting of a single identity map. Any set M CR™" satisfying the
above condition forms a submanifold of Kn in the sense of [1, Definition 3.2.1], or a regular submanifold
of K" in the sense of [14, Definition 9.1]. Generally, if M\ is an mi-manifold and M2 is an m2-manifold,
then Mi is called a (regular) submanifold of M2 iff M\ ¢ M2 and for every x £ M\ there is an admissible
chart (U, ip) of M2 with x G U such that if(Mi fl U) = ip(U) fl (Mmi x {0}).

If Mi and M2 are manifolds with atlases A\ and A2, respectively, then a mapping $: Mi — M2
is said to be of the class C°° iff it is continuous and for all (U,<f) £ A\, (K, ) £ A2 the composition
90 $ 0< 1 is of the class C°° (in the usual sense) in its domain. This condition is independent on the
choice of particular atlases generating differentiable structures of M\ and M2; see [1, Proposition 3.2.6].
We say that $ is a C°°-diffeomorphism iff $ is a bijection between M1 and M2, and both $ and $-1
are of the class C°°. According to the above explanation, such a definition is compatible with the usual
notion of a C°°-diffeomorphism. If any C°°-diffeomorphism between M1 and M2 exists, then we write
Mi ~ M2. Of course, in such a case the manifolds M1 and M2 are of the same dimension.

Finally, a mapping ¢: Mi — M2 between an mi-manifold Mi and an m2-manifold M2 is called a
Ce°°-immersion [C°°-submersion] iff it is of the class C°° and for every x £ M\ there exist admissible
charts (U,ip) and (V,ip) of Mi and M2, respectively, such that x £ U, $(x) GV, and the derivative of
the function tp0$ 0 at any point of tp(U) is an injective [a surjective] linear mapping from Rmi
to Rm2 (see [14, Proposition 8.12] for another, equivalent definition). We will find useful the following
lemma,; for the proof see R. W. R. Darling [6, 85.5.1].

Lemma 1. Let M1 be a submanifold of an open set U C Kn* and M2 be a submanifold of an open set
V CK’2. /1$: U—=V is aC°°-immersion [C°°-submersion] with $(M 1) C M2, then the restriction
*\MI: Mi —M2 is a C°°-immersion [C*-submersion].

Recall that given a non-empty set X a family 3 C 2X is said to be a proper a-ideal iff the following
conditions hold:

(0 X £3;
(i) ifA£3and B c A, then B £ 3;

(iii) if Ak £ 3 for k £ N, then (Jfeli G

From now on we suppose that for each rn £ N a family 3m forms a proper er-ideal of subsets of Rm
satisfying the following conditions:

(Ho) {0} G3u

(Hi) if ipis a C°°-diffeomorphism defined on an open set U ¢ Rm and A £ 3m, then (p(Afl U) £ 3m\
(H2) ifm,n GN and A £ 3m+,,, then {x G : A[X] 3n} £ 3m;

(H3) ifm,n £ Nand A £ 3n, then Rm x A £ 3m+n.

Note that by condition (Hi), non-empty open subsets of do not belong to 3m. Note also that if
3m consists of all Lebesgue measure zero subsets of Rm for m G N, or 3m consists of all first category
subsets of Rm for m £ N, then conditions (Hq)-(H3) are satisfied.



For an arbitrary m-manifold M C Rn (m < n) with an atlas A = {(Ui, }ie/ we define a proper
cr-ideal 3m C 2m by putting

3m ={ACM :pi(ADUi) € 3m for each i £ I}.

By condition (Hi), this definition does not depend on the particular choice of A. Indeed, let {(Vj,ipj)}jed
be another atlas of M, equivalent to A. Fix any A e 3m and j € J. With the aid of Lindelof’s
theorem we choose a countable set lo C | such that \j ¢ Uig/0U- For each i € Iq the mapping
Xi 'm=ip] ° ¥-1 is a C°°-diffeomorphism on fl Ui) and since S, := "-Fi(An Vj fl Ui) £ 3m, we have
4>j{A fl Vj n Ui) = Xi(Bi) s 3m- Consequently, rpj(A fl Vj) = Uie/o *AA HVj fl Ui) £ 3m. This shows
that if A £ 3m, then i/>j(A fl VN £ 3m for each j £ J. Analogously we obtain the reverse implication.
Note that, by this definition, 3r™ = 3m for each m £ N.

Lemma 2. Let M\ be an rri\-dimensional submanifold of an m2-manifold M2 C Ma. Then

(@ Mi 6 3m2, provided that mi < mz;
(b) 3Mi ¢ 3m2m

Proof, (a) By the submanifold property, we may choose an atlas A of M2 such that tp(M\ fl 17) =
<)) fl (Rmi x {0}) for each (Ujip) € A. Since (Ho) and (H3) imply Rmi x {0} £ 3m2, we get
ip(M1fl U) € 3m2, as desired.

(b)  The case mi < m2 reduces to assertion (a). If m\ = m2, then for every admissible chart of M2
we have ip(An U) £ 3mi = 3m2. O

We can prove the following strengthening of condition (Hi).

Lemma 3. If ¢: Mi —» M2 is a C°°-diffeomorphism between manifolds Mi C M"1, M2 C R"2, then for
every A € 3mi we have ¢(/1) £ 3m2-

Proof. Let A\ = {(Ui,ipi)}iel and Ai = {(Vj,tpj)}j& be atlases generating the differentiable structures
of Mi and M2, respectively. Let also m be the dimension of Mi and M2. Fix j £ J; we are to prove
that ifij($(A) fl vj) £ 3m. Choose a countable set Ig C | with A ¢ Uie/0Ui an(i f°r each *€ lo define
a C°°-diffeomorphism Xi = Vj° ° 1 Then

3) A{${A) n Vj) C U Xi{<Pi(An Ui) n Dom(xi)),

iGo
where Dom(xi) stands for the domain of Xi- Moreover, since A € 3mj, we have ipi(A fl Ui) £ 3m thus
(Hi) implies that the both sets in (3) belong to 3m. O

Conditions (Hi), (H2) imply a general version of Fubini’s theorem.
Lemma 4. Let M\ C Kni, M2 C K"2 be manifolds. If A £ 3Mixm2, then
{x £ Mi : A[X] £ 3m2} € 3MI-

Proof. Let Ai = {{Ui,~))"~/ and A2 = {{V},ip])}jE] be arbitrary countable atlases generating the
differentiable structures of M1 and M2, respectively. Since A € 3m, xm2>f°reach i £ 1, j £ J we have

Bij .= (bi X i[>)(An (U x Vj)) £ 3mi+m2.
Moreover,
Bij = {("1("™M1Vj(j2)) € Rmi+m2 : x e Ui and y € AX] fl Vj}
fori £1, j £J. Suppose (in search of a contradiction)
Z :={x GMi : Al ¢ 3m2} 0 3/~-

Then we may find io &I with Z flUIO¢ 3 . If for every j £ J the set

Cj :={xe Zn f/io: A[X\ fl Vj ¢ 3m2}
belonged to 3mi . then we would have

znui0= {xe Znui0:A[x] £3m2}= U Cj £ 3MI,
i£d



which is not the case. Therefore, we may find jo € J with Cj0 &3m1. Define
B = {(Pio(x)"jo(y)) € Rmi+m2 : x £ Z n Uio and y £ A[X] n Vjo)
and note that B ¢ BIO0tJ0, whence B £ 3mi+m2. However, <i0{Cj0) & 3mi and for each x £ CjO and
t = gio(x) we have
B[t] = igo(A[X\ n Vjo) £ 3T
This yields a contradiction with (3). |

Lemma 5. If ¢: Mi — M2 is a C°°-submersion between manifolds Mi ¢ R”1, M2 c R"2, then for
every A C Mi, A ¢ 3a*i we have $(>1) £ 3m2-

Proof. By Lindelof’s theorem, there is a point xq £ Mi such that for every its neighbourhood U C Mi
we have >4fl U ¢ 3 ~. By the assumption, we may find admissible charts (U,tp) and (V,ip) of Mi and
M2, respectively, such that xo £ £/, ¢(20) £ V, and the derivative of ip0 $ 0~-1 at any point of <p(U)
is a surjection from Rmi onto Rm2 (mi, m2 being the dimensions of Mi, M2, respectively). Hence,
obviously, mi > m2and there is a sequence 1 < ii <... <in2 <mi such that

0hH0s ow-1) . -
8»,...9».-, WIl0o)M °-

By decreasing the neighbourhood U, we may guarantee that the above condition holds true for every
X £ U in the place of xq, and that the mapping tp0o $ 0 <~1 is defined on the whole <p{U). Let

ipo$ otpl = (Gi,..., Gmj) and define a function F = (Fi,..., Fmi): <N£/) =R by the formula
n, ,1 Gj(y), ifk=ij forsomej £ {1,... ,m2},
t ki otherwise.
Then for each y £ <p(U) we have
dF 3iNosoip
dyi == " dyu medyin ’

thus, decreasing U as required, we may assume that F is a C°°-diffcomorphism. Enumerating the
coordinates we may also modify F in such a way that it is still a C°°-diffeomorphism and

(4) F<p{AN[/) ¢ (i/io$o ip-"iipiA N U)) XRmi"m2.
In view of AflU ¢ condition (Hi) yields F(ip(A fl U)) ¢ 3mi, whence (4) and (H3) imply
ip($(A fl U)) £ 3m2. Therefore, $(>1 n U) ¢ 3m2, since ¥) is an admissible chart of M2 defined on
¢(17). O

In a similar manner we obtain the next lemma.

Lemma 6. If¢: mi —M2 is a C°°-immersion between manifolds Mi ¢ R71, M2 ¢ R712 then for
every A € 3m, we have ¢(.4) € 3m2-

From now on, let n > 2 bo a fixed natural number and ({ ) be an arbitrary inner product in Rn
inducing a norm which we denote by | «j. For any set A we define A* = A\ {0}, where the meaning
of 0 is clear from the context. Let J be the set of all pairs of orthogonal vectors from Rn. Then
1* = F-1(0), where F: (Rn x Rn)* —R is given by F(x,y) = (x\y). Since 0 is a regular value of F, it
follows from [14, Theorem 9.11] that _L* forms a (2n —I)-manifold (being also a regular submanifold of
(Rn x Rn)*).

We may therefore precise what being “negligible” in _L means. Namely, we say that aset Z ¢ 1 has
this property iff Z £ 3| * and we will then write simply Z £ 3j_. We are now ready to formulate our
main result which we shall prove in the last section. For notational convenience, if M is a manifold and
some property, depending on a variable x, holds true for all £ £ M\A with A £ 3m, then we write that
it holds 3jvf-(a.e.).

Theorem. Let (G, +) be an Abelian group. If afunction /: R71—G satisfies f(x +y) = f(x) + f(y)
3j_-(a.e.), then there is a unique orthogonally additive function g: Rn — G such that f(x) = g(x)
3,.-(a.e.).



Let us note some preparatory observations. For any ie E" define Px = {y £ R" : (x,y) £ _L}, which
obviously forms an (n —)-manifold diffeomorphic to Rn_1, provided x / 0. We will need to “smoothly”
identify the hyperplanes Px: for different x’s, with one “universal”’space K"*“1. By virtue of the Hairy
Sphere Theorem, it is impossible to do for all x € (Rn)* in the case where n is odd. Nevertheless, it
is an easy task when considering only the set of vectors for which one fixed coordinate is non-zero, e.g.
the set X :=Rn_1 x R*.

Namely, for an arbitrary x £ X the vectors x, e\,...,en-\ are linearly independent, where &* stands
for the ith vector from the canonical basis of R7L Let B(x) = (yi(x))™-Q be an orthonormal basis of R"
with yo{x) = x/||x||, produced by the Gram-Schmidt process applied to the sequence (x, ei,..., en_i).
Define ipx : Rn —» Rn to be the mapping which to every z £ Rn assigns its coordinates with respect to
B(x), i.e. tx(z) = Y(x)~1z, where

Y(x) = Tu,yi(x),...,yn-i(x)

is the matrix formed from the column vectors. Define also $ : X x Rn —=X xRn by ¢(1,2) = (X, i (2)).
Plainly, 3>is a C°°-mapping and its inverse (X y) = (X, Y (X)y) is C°° as well. Therefore, $ is a C°°-
diffeomorphism. Moreover, by the definition of tpx, the restriction ipx\px maps Px onto {0} x Rn_1,
hence we have

(5) ¢-1(Xx {0} xR"-1) ={(x,z)E1":i€ X} = %",

Making use of [14, Theorem 11.20] and an easy fact that the restriction ofa C°° mapping to a submanifold
of its domain is C°° againl, we infer by (5) that $|x< yields a C°°-diffeomorphism between _L' and
X x ({0} x Rn_1).

Consequently, if a function h: Rn — G satisfies h(x +y) = h(x) + h(y) 3x-(a<-)i then with the

notation
z{h) :={(1.y) £ L*: h(x +y) £ h(x) +/1@3)}
it follows from Lemma 4 that
{X £ X :{ipx(2) : (x,2) £2(h)} ¢ 3{0Opqrn_1 } S
Since Px ~ {0} x R"-1, by the mapping tpx\pl for x £ X, we infer that the set
D(h) :={x £ X : h(x +Yy) = h(x) + h(y) 3pl-(a.e.)}
fulfils X \ D(h) £ 3x- For any x £ R" put
Ex(h) = {y £ Px: h(x +y) = h(x) + h{y)})
then Px\ Ex(h) £ 3px, provided x £ D(h).
We end this section with a lemma, which will be useful in the “odd” part of the proof of our Theorem.
Despite it will be applied only in the case n = 2, we present it in a full generality, since the lemma
seems to be interesting independently on the problem considered. Let 5n_1 be the unit sphere of the

normed space (Rra | *||). Since the function F: Rn —¥R given by F(x) = ||x||2 is C°° with the regular
value 1and 5n_1 = F - 1(I), we infer that S'"-1 is an (n —I)-manifold.

Lemma 7. If A £ 3sn~i> then there exists an orthogonal basis (xi,... ,xn) of Rn such thatXi £
for eachi £ {1,..., n}.

Proof. It is enough to prove the assertion in the case where (-1) is the standard inner product in
R", since between any two inner product structures in M" there is a linear isometry, which yields a
Cee-diffeomorphism between their unit spheres.

Consider the group GL(n) of n x n real matrices with non-zero determinant. It may be identified
with an open subset of Rn and hence - it is an n2-manifold. It is well-known that the orthogonal group

o(n) = {A £GL(n) : AAT =1In}
forms a submanifold of GL(n) and its dimension equals n(n -1)/2 (see [1, §3.5.5C]). For any i £
{1,...,n} let 71: O(n) —>5n_1 be given by i%i(A) = Aei (which is nothing else but the ith column

1In the sequel, we will be using these two assertions without explicit mentioning.



vector of A). Then 7T is the restriction of the mapping 7,: GL(n) —>R7 defined by the formula
analogous to the previous one. Since

D#i(A)B = Ba for A GGL(n),BGRn\

the derivative Difi(A) is onto for any A E GL(n), thus 7 is a C°°-submersion. By Lemma 1, 77 is a
Ce°-submersion as well.

Now, suppose on the contrary that each orthonormal basis of Mn has at least one entry belonging to
A. In other words, for each A G O(n) there is i G {1,... ,n} with 7Ti(A) G A, i.e.

i=1
Therefore, for a certain i G {1,...,n} we would have w~1(A) £ 3o(n)- However, A = (A) e
Dgn-i, which contradicts the assertion of Lemma 5, as 7, is a C°°-submersion. O

3. Proof of the T heorem

For the uniqueness part of our Theorem suppose that there are two orthogonally additive functions
gi and <2 equal to / 3n-(a.e.). By the general form (2) of orthogonally additive mappings, we see that
both gi and <2 satisfy the Frechet functional equation A”g(x) = 0, thus arguing as in the proof of the
uniqueness part of [8, Theorem 1], or making use of [12, Lemma 17.7.1], we get g\ = g2.

The proof of existence relies on some ideas from [2] and [13]. Assume G and / are as in the Theorem.
We start with the following trivial observation.

Lemma 8. The functions /1,/2: M* — G given by
fi(x) =f(x) - f{-x) and f2(x) =f(x) +f(-x)
satisfy
fi{x +y) =fi(x) +fi(y) and /21 +¥)=/2(1)+ /2(2) 3x-(a.e.).

In the sequel we will be using hypothesis (Ho)-(H3) and Lemmas 2-4 without explicit mentioning.
For k,m G N with 2 < k < m we define O(k,m) as the set of all fc-tuples of mutually orthogonal
(with respect to the usual scalar product) vectors from Rm with at most one of them being zero. Put

= {(zNi eeel G (Mm)k : = 0 for at most one 2= 1,..., k}.
Then O(k.m) = F~1(0), where F: TZKm ->M (2'J is given by
FxIi\ ..., X = ((LDX(Q), (XAIXA)),.en, (XAIXA)),

(x (fc_1)|x (fc))).

Since 0 is a regular value of F, [14, Theorem 9.11] implies that O(k,m) is a submanifold of Mfem with
dimension km. —"k(k —1). In particular, 0(2,n) = J.*.

Lemma 9. Let k GN, k>2 and let A C 0(2, k) be a set such that
{G*1, .. . *<*>) 6 O(k,K) : (x']),”2) G A} G 30 (fefe).
Then A G 30(2,fe-
Proof. Denote the above subset of 0(k,k) by B. We may clearly assume that for each (x*1) » 2)) G A
we have x*1) X"\ Fori,j G {1,..../:} define

Dij = {(*(W)x<2) G 0(2,k) : detf A 3%} 403,

Bij = {(a;(1)--m,x(k)) € B : (x(1),x(2)) G Dij},



and observe that
(6) A= (AnDij) and B= Bi
Iil"j;l ijijl
For the former equality suppose that for some (x~"x”) G A and each pair of indices 1 < i,j <Kk,
i j, we have

X[§ xf
@) det 0.
212 1
Then for each 1 < i <k we have x-1*= 0 if and only if = 0. Indeed, choosing any 1 < j < k such

that xj1*~ 0 we see from (7) that x » = 0 implies X\2" = 0; the reverse implication holds by symmetry.

Now, let 1 < i\ < ... < i( <k be the indices of all non-zero coordinates of x*1) (and x”). For each
pair of 1 < i,j < k one of the rows of the determinant in (7) is a multiple of the other. Applying

this observation consecutively for the pairs (11,12), (h, h), = [it-i,ie) we infer that and are
parallel. Since they are also orthogonal, one of them should be zero which is the case we have excluded.
The former equality in (6) is thus proved, and its easy consequence is the latter one.

We are now to show that A fl Dij G ~0(2,f) f°r each pair of indices i,] E {1,..., k} with i 77j. So,
fix any such pair and assume that i <j. Then for every (x*"x"2)) G the vectors

XA LA ei+ 1j...,G6j—1,Cj-y.1,..., 6%

form a basis of . Let
B(x (1), x(2) = (Yi(x{1),xi2))k=l

be an orthonormal basis produced by the Gram-Schmidt process applied to that sequence of vectors. If
x"1) and are orthogonal, then we may take

. x(2)

WX = Gy x@ I
For (a*1),!"2)) G Dij define tfx(i) x(2): Me —  as the mapping which to every z G assigns its
coordinates with respect to B(x*I\x"), i.e.

and  y2{x{1),x(2)) =

mkm <m(z) = Y (x{l),xi2)]~1z,

where

OO k@ x@).. 760, x@)

x(DIJ" () YR SR

is formed from the column vectors. Obviously, every 2 belonging to the orthogonal complement
V (xMx(2)x of the subspace spanned by x”~ and x” is mapped onto a certain vector of the form
(0,0,<3,..., tk) which may be naturally identified with an element of Rk~2. Hence, we get a linear
isomorphism 7XDIN{Z>: V Ax " x")1- —¥Rfc 2 and we may define a mapping

T: {(x(@,...,x{) € O(k,k) : (x(1),x(2) c Aj} -> (0(2,/0n Aj) x0(k-2,k-2)
by the formula

Y(xM\ x 29 =

T(x(D),... ,x(@) = ((x(2),x@),(7x0) x@(x@3)), ... ,7x(Dixn(x(k)))).
The definition is well-posed, since i?x(0 (2), and hence also 7t (d,x(2), is an isometry for each orthogonal
(i*"D,'72) G Dij. Moreover, it is easily seen that T is a C°°-diffeomorphism (the formulas of the
Gram-Schmidt procedure are C°°).
It easily follows from B G 3o(fc,fc) that Bij belongs to the corresponding ideal of subsets of

{(x™M ..., x™) G Ok k) : (x*, x") G Dij),
thus T{Bij) belongs to the ideal corresponding to (0(2, k) fl Dij) x O(A; —2,k —2). Finally, observe that
r (Bij) = (An Dij) xO(k-2,k- 2),



which yields A fl G 30(2,fc)nD,j and hence also A fl <€ 30(2,fc)- O

Lemma 10. If an oddfunction h: Rn —» G satisfies h(x +y) = h(x) + h(y) 3x-(a.e.), then there is an
additive function b: Rn —¥ G such that h(x) = b(x) 3,,-(a.e.).

Proof. Due to some isometry formalities, we may suppose (-]-) to be the standard inner product in R".
Define
W = {x = (xi,..., xn) GRn : Xi = 0 for some i}
and
Ar-1= {X = (Xi,... ,xn) GSn_1 : Xn >0}.

Since S"_1 is an open subset of Sn_1, it is an (n —I)-manifold. For any x G S" _1 define
Tx = {(\,y)eR* xP:-. A2 = [;i|2}
and $x: (R* x P*)\ Tx  L*as

(8) $x(Ay) = (Ax+y, " -x-y),

and put Q(X) = $x((Rt x P*) \ Tx). We are going to show that for every x GP := S"-1 \ W the set
Q(x) forms a submanifold of +*.

At the moment, let x G S™-1. For brevity, denote f, = n(X,y) = |ly|[2/A. It is easily seen that for
each (t,u) = (Ax +y,fix —y) G Q(x) all four vectors: t, u, X, y belong to the subspace V(t,x) of Rn
spanned by t and x. Choose an arbitrary non-zero vector z(t,x) GV (t,x), orthogonal to x. Then z(t, x)
is collinear with y, hence the equality t = Xx + y represents t in terms of the basis (x, z(t,x)) of V(t,x).
Therefore, Aand y are uniquely determined by t, which proves that is injective.

In order to show that $~1 is continuous fix an arbitrary (t,u) € Q(x). Now, put z(t,x) = (tjx)x —;
then (x, z(t,x)) is an orthogonal basis of V(f,.x). Since t = Ax + y for certain AGR* and y GP we
have t = Ax + az(t, x) for some a G R, whence we find that A= (tjx) and y =t - (tjx)x. We have thus
shown that $x is a homeomorphism.

Now, fix x G P. We shall prove that is a C°°-immersion. To this end put

V= {(Ay) € R* x (Rn)* : A= (xly) £ “(x]y)2+ [lyll2}

and define a mapping $x: (R* x (Rn)*) \VX -> R” x R" by the formula analogous to (8). Then
(R* x P*)\ TXis a submanifold of (R* x (Rn)*)\ VX. Let (A)y) € R* x (Rn)*. If we show that the
derivative D$x(A,y) is injective, then, in view of Lemma 1, we will be done. Since

Xi 1 0 0 1
Xn 0 0... 1
d(fix - y) d(fix —)

d\ dy
we immediately get that rankD$x(A,y) > n, where the equality occurs only if the first column vector
is a linear combination of the remaining n column vectors with coefficients x\,... ,xn. However, this
would imply that for each i G {1,... ,n} we have 1

d(nn - y») A d(fixi - yi)
d\ ~ N X dy3

J=

A2 —2(xly)A —llyli2 = 0,
which is not the case, since (A)y) » W. As a result, we obtain rankD$x(A,y) = n + 1, thus D<Ex(Ay)
is injective.
We have shown that 3% is an embedding (i.e. homeomorphic C°°-immersion) of (R* x P*)\T Xinto
+*, By virtue of [14, Theorem 11.17], its image Q{X) is a submanifold of _L*



Observe that the manifolds Q(x), for x G P, are C°°-diffeomorphic each to others. Indeed, by
the remarks following the statement of our Theorem, for each x G X there is a C°°-difFeomorphism
¢, E’xPj4 1" x (M71-1)* defined by the formula

©) **(ALY) =M x(y),
where ipx(y) = Y(x)~xy is defined as earlier and the tilde operator deletes the first coordinate (which
equals 0 for y G Px). Moreover, \PXmaps (R* x P*)\T Xonto the set

fl:={(A)2)EM* x(R"-Dt : A2/ |ly||2},

which follows from the fact that tpx is an isometry. Therefore, for each x,y G P, the mapping <yoty" 10
i'x 0 yields a C°°-diffeomorphism between Q(x) and Q(y). So, we pick any xq G P and we regard
the set Q := Q(x0) as a “model” manifold for all Q(x)'s.

Define

+(@) = {{t,u) G* :tn+un” 0and W\ = |u|]}
(which is an open subset, and hence - a submanifold, of 1* and observe that

(10) 0= ( QK.

xes™-1

In fact, for any (t.u) G put

ub S TR

where the sign is the same as the sign of tn + un. Then x G and (t,u) G Q(x). Indeed, if we
choose any yo G P* fl V(t,u) with |yo|| = 1 (which is unique up to a sign), then t and u are represented
in terms of the basis (X,yo0) of V(t,u) as follows:

t = (t\x)x + (t\yO)yo and u = (u\x)x + (u\y0)yo0,

and we have
(%0) = (t +u\y0) - (ujjlo) = £ 1+ u||(z|20) - (u\y0) = ~{u\yO0).
Hence, after substitution A= (4|x) and y = {t\yo)yo, we obtain t = \x +y and u = (U\X)X —y. The
coefficient (u|.x) equals |ly||2/ A, since (tW.) = (x|j/) = 0. Moreover, A/ 0, jlo/ 0, and it follows from
It ~ ll« that A2 (u\x)2 = |ly||4/A2, which gives A2 / ||j/||2- Consequently, (t,u) G Q(X) and thus we
have proved the inclusion “C”. The reverse inclusion is a straightforward calculation.
We shall now prove that the mapping A: 5+-1 x U —»jJ 1) defined by

A(x,A9) = $x0tf-~A j/)
is a C°°-diffeomorphism.

First, in view of (10), it is easily seen that the image of Ais jJ1). According to the definition, A is
C°°. Moreover, for each (t,u) = $x(\,iJj~I(y)) G Q(x) we have

(12) (A+K 1M )x = (+,,

which, jointly with the fact that x G S+_1, uniquely determines x. By the injectivity of <x, we infer
that Aand y are then uniquely determined by f and u as well. Therefore, A is injective.

In order to get a formula for A-1, observe that for each (t,u) = $X(A,ix 1{y)) G equality (12)
yields (11). This means that x is expressed as a function of t and u, which is C°® on both components
of the set J*1). By the formula for we get

(t\t + u) -/ (t\t + u) A
a=xTTmT 9= (‘-pT rp(+~0O

and since the value of ipx at a given point is a C°° function of x, we infer that A-1 is C°°. Consequently,
A is a C°°-diffeomorphism.



Let X : B"-1 x Q be given by
X= (idsn-! x $Xo)o(idsn-i x ¢*1)0A-1;
then X is a C°°-diffeomorphism. Since Z(h) G 3j_and jJ 1) is an open subset of _L* we have Z(/i)nx"" €
3+d). Therefore,
(13) {xGSM1:X(Z(h) n+()[x] 03Q}G3s»-i.

By the definition of x> for each X G we have

x{Z{h) n X(W)[n] - {ge Q: A(x, (¢~ o¢")(9)) GZ(/i)}.
If additionally x GP, then

0 {(Ay) GR* x (Kn-")* : A(x,A)y) GZ(h)} ¢ 3n
{(Ad) Gr x (Rn_1)t: 4 (A ,~18)) GZ()} £3,

O {(A,y) GR* x P* : $t (At/) GZ(h)} £ 3r-xpx

M z(/i)) n Q(X) ¢ 3q(i).

Thus (13) gives
{iG P : Z(h)nQ{x) ¢ 3q(t)} G3sn-i.

Since \ P g 3s™-i, we have also
(14) Z(/) fl Q(x) GOg(x) 3sn-.i-(a.e.).

For any x GS"-1 define r x: R* x P* — [* and 0 X: R* x P* — L* as

r*(A, 2) = ~y) and @x(A2/) = (Ax,2),
and put i?(x) = rx(R* x P*), S(x) = ©OXR* x P*). An argument similar to the one above shows that
R(x), for x G57-1, are submanifolds of _L* C°°-diffeomorphic each to others, and the same is true for
S(x)’s. Moreover, the set
+@ = {(t,uyy Gxtm:tn/ 0Oandux0}= [J R(X)= (J SKX)
xes+ 1 Xesh-1

is C°°-diffeomorphic to S"-1 x R and 5"_1 x S, where R and S are “model” manifolds for all R(x)’
and for all S(x)'s, respectively. Arguing further, analogously as above, we also infer that

(15) Z(h) fIR(x) G3r(x) and Z(h) DS(x) € 3s(x) 3sn-i-(a.e.).
According to (14) and (15) there is a set SO G 3s«-i with
( Z(h) DQ(x) G3q(x),

(16) { Z(h) n R(x) G3fl(x),
[ Z(h) n S(x) G3S(X)

forx G \ SO.
At the moment, assume that n = 2. Applying Lemma 7 to the set

A := SOU (-SO0)U {(-1,0),(1,0)} G3Si,

and changing signs of vectors of the obtained basis as required, we get an orthogonal basis (x*"\xS2"
of R2 whose each element x satisfies conditions (16).
Now, we shall prove that for each i G{1,2} the function hi: R — G given by /it(A) = h(Xx") satisfies

an hi(A+ fi) = hi{\) + hi(fi) ft(3(0idD)-(a.e.),



where fi(3(0,00)) = {A ¢ (0,00)2 : A[X] £ 3(0,00) 3(0,00)-(a.e.)} is the so called conjugate ideal. Plainly,
condition (17) would imply that the same is true with (0,00) replaced by (—00,0), due to the oddness
of the function h.

Fix i £ {1,2}. In view of (16), with x replaced by iW, there is a set Cj € 3r- such that

Py
(ASW +y, MAx<*>-y) £1*\ Z(h),

(18)
(Ax«y) ex*\z(h)

for (A)y) £ (K* x P’C;ﬁi))\Cj (note that Tx(o € 3m-xpXs , SO we may include the set Tx@> into C, and we

see that the difference between the domain of ¢ 3(4 and the domains of r x(>), ©x(o causes no trouble at
all). Therefore, for all A£ R except a set A* £ 3i the conjunction (18) holds true for all y £ Px(@\ Yi(X)
with Vi(A) £ 3P (i). Let

Pi(A) = |W  :yEPX(i)\y.(A)l

Then, obviously, R\ Bi(A) £ 3(0,00) for each positive A ¢ A* whereas R\ £*%(A) 6 3(_00,0) for each

negative A0 AN For every pair (A/x) with A¢ Aj and n £ Bi(A), x= we have
(A+ /) = hAXXN +y + = h(Xx" +y) + -y
= [i(AXW) + h(y) + + h(-y) = ht(A) + M/z),

which proves (17). Applying the theorem of de Bruijn [3] separately to the functions /ii|(0,00) and
A 1(-00,0) we get two additive mappings b\: (0,00) G and b": (-00,0) -> G which coincide with these
two restrictions of hi almost everywhere in (0,00) and (-00,0), respectively. However, since h is odd,
the extensions of both 6 and b’ to the whole real line have to be the same. As a result, there is an
additive function 6*: R —>G such that hi(A) = A%A) for A£ R\ Zi with a certain Zi £ 3i.

Define a function b: R2 — G by b(x) = 61 (Ai) + b2(X2), where A is the zth coordinate of X with
respect to the basis (x*1),X”"). Plainly, 6 is an additive function. It remains to show that h(x) = b(x)
32-(&e.).

Recall that for every x £ X = R x R* the mapping defined by (9) yields a C°°-diffeomorphism
between R* x P* and R* x R*. In particular, we have C := ¢ 3(1)(Ci) € 32 and

(19) (AxMN (0 (y))el*\Z (/i) for (Ay) £ R2\ C.
Define A: R2 R2by
A(Ai,A2) = (A1,-0x(i)(A2x (2))).
Plainly, A is a C°°-diffeomorphism, so A_1(C) £ 32- Therefore,
A MC)U{Z\ xR)U(R x Z2) £ 32
and for each pair (Ai,A2) £ R2 outside this set condition (19) implies (Aix", A2x(2)) € -L*\Z(h), thus
h(XiX?  + X2x™) = h{XIXW) + h(A jx~) = /11(AO + h2{A2)
= Ni(AT) + b2{X2) = b(X\x" + AX ™).

By the isomorphism, which to every x £ R2 assigns its coordinates in the basis (1™ ,1"), we have
h(x) = b(x) 32-(a.e.) and our assertion for n = 2 follows.

In the sequel, assume that n > 3 and the assertion holds true for n —1 in the place of n.

Define 0(n —I,n)' to be the set of all (n —I)-tuples from O(n —I,n) generating a subspace of Rn
whose orthogonal complement is spanned by a vector (xi,... ,X,,) with Xn 0. In other words,

") A... Ax(n_1)



This set, being an open subset of O(n —L1,n), is its submanifold having the same dimension. Consider
the mapping d: 5™1 x O(n —,n —1) —0(n —1,n)" defined by

fi,X(D, ., X(LD)) = (A(XA), .. ™ (X A -1))).

The values of f2 indeed belong to 0(n —1,71)', since for each x G X the function ipx is an isometry,
being a linear map determined by the orthogonal matrix Y (x)~I. Furthermore, fi is bijective with the
inverse fi-1 given by

Ly (0~1) = (G AXGD), - ix{y =),

where
IHA.A
1= IjICDA... A I
and the sign depends on which of the two components of O(n —1,n)' contains (y ... ,i/"-1)). By
the above formulas, Q is a C°°-diffeomorphism.
Put
Z = {(2/(1), = €0(n - 1,n) : (YW,y™) G Z(h)}.

Then Lemma 5 implies Z G 3o(n-i,n)". since Z(h) G 3+ (i.e. Z(h) G30(2,n)) is the image of Z through
the C°°-submersion {y”\ ..., y*n~1" i> (y~\y”)- Therefore, we have CI~1(Z) G 3S7-ix0(n-i n_iy
hence fi_1(Z2)[x] G 30(n-i,n-i) is valid 3sn-i-(a.e.), which translates into the fact that the set

A(X) == {(x",.. GO(n-Iin-1:(~(x™),~(x")) €2(h)}

belongs to 3o(n-i,n-i) f°r every x € £"_1 except a set from 3sn-i. By virtue of Lemma 9, for each
such x we must have

(20) {(x(0),x(2) G0(2,n- 1) : (i>~1(x(1)),i>~1(x(2)) G Z(h)} G30(2,n-i)-
Hence, putting = {(i,u) GPxx Px : (t,u) G -L} we infer that the condition
(22) h(t +u) = h(t) + h(u) 3j_j-(a.e.)

is valid 3sn-i-(a.e.). Consequently, we may pick a particular x G S" -1 satisfying both (16) and (21). By

virtue of our inductive hypothesis and some isometry formalities (identifying Px with Rn_1), condition
(21) yields the existence of an additive function bx : Px —G such that h(t) = bx(t) for t G Px\ Y with
a certain Y G 3px. Moreover, by an earlier argument, there is also an additive function bi:R —=G
such that h(Xx) = &(A) for AGR\ Z\ with a certain Z\ G 3i. Finally, there is a set C\ G 3rxpx with
(AX,y) G-L*\ Z(h) whenever (A)y) G (Ix Px)\ Cj.

Define a function b: Rn —G by the formula 6(Ax +y) = b\(X) + bx(y) for AGR and y G Px. Then
b is additive and for each pair (A,y) GR x Px outside the set

C\U(2\ x PX)U (R x Y) G 3rxpx

we have
h(Ax +y) = h(Xx) +h(y) =b\(X) +bx(y) = b(Ax +y),
which completes the proof. O

Lemma 11. If afunction h: Rn — G satisfies h(x) = h(—x) 3n-(a.e.) and h(x + Z) = h(x) + h(y)
3x-(a.e.), then there is an additive function a: R —¥ G such that h(x) = a (||:r]|2) 3.,-(a.e.).

Proof. Forany r > 0 let Sn-1(r) = {Xx GR" : ||X|| = r}. By the natural identification, we have (R")* ~
(0,00) x5n_1. Therefore, for every A G 3,, there is a set R(A) G 3(0,00) such that j4nSn-1(r) G 3**-1(r)
for r G (0,00) \ ii(;4). In the first part of the proof we will show the following claim: there exists a set
A G 3n such that for each r G (0, 00) \ R(A) the function h is constant 35~-1 (r)-(a.e.) on Sn-1(r), more
precisely - that /i|sn-i(r) is constant outside the set A fl En-1(r).



We start with the following observation: there is T G 3j_ such that h(t + u) = h(u —t) whenever

(t,u) € X\ T. Let E = {X £ Rn : h(xX) = h(—x)} and H = (—D¢(h)) fl D(h) fl E; then Rn\ H £ 3n.
Define
(22) T={(tu £+ :t£H}U{@C u) £ L*:t£H and u ¢ Et(h) fl E-t(h)}.
Then for every (t,u) £ L*\ T we have h(t + u) = h(t) + h(u) and h(u —t) = h{u) + h(—t). Moreover,
we have also h(t) = h(—t), hence h(t + u) = h(u —t), as desired. In order to show that T £ 3+ note
that it is equivalent to T fl L' £ 3jwhere L may be identified with X x Rn_1. The first summand
in (22), after intersecting with _L, is then identified with (X \ H) x Rn_1 £ 32n-ii whereas for each
pair (t,u) from the second summand we have either (t,u) £ Z(h), or (—t,u) £ Z{h), which shows that
it belongs to 3x- Consequently, T £3+.

Define $ : L* —Mn x Rn by putting $(t, u) = (t +u,u - t). It is evident that $ is a C°°>-immersion
and yields a homeomorphism between _L* and

M:=¢(1)= (I (S"-1(r)xSn-1(r)).
r6(0,00)
Therefore, [14, Theorem 11.17] implies that M is a manifold. Moreover, ¢: +* — M is a C°°-
diffeomorphism, thus ¢(7) £ 3m. Since the mapping (x,y) > (X, j//||x|]) yields M ~ (R7)* x Sn \
there exists a set A £ 3n such that for every x £ Rn\ A we have
(X, Y)ES{T) 3s,-J(lliD_(ae.).
By the property of the set T, (x,y) ~ ¢(7) implies h{x) —h{y). Now, for any r £ (0,00) \ R(A) and
for arbitrary X,y £ Kn\ A with ||x]| = [li/|l = r, we have
(x,2), (y,z) ¢ ¢(7) Ds,-i(r)-(ae.),

hence h(x) = h(z) = h(y), which completes the proof of our claim.

There is a function g: R" — G which is constant on every sphere S"- 1(r) and such that h(x) = g(x)
for x £ R" \ A. Therefore, there is also a function tp: [0,00) — G satisfying g(x) = (||x||2) for every
x £ Rn. We are going to show that

(23) <P\ +n) =tp{\) +tp(n) np(0,00))-(ae.).
Put
B ={(x,y) £ _L*: either X £A, oty £ A otx +y £ A]
and observe that B £3+, whence also Z :=Z(h) UB £ 3+. Let
D={xe (RT : (x,y)#Z 3Px-(a.e.)}.

By an argument similar to the one applied to D(h), we infer that X \ D £ 3x, hence R"\ D G 3n.
For each X GRn put Ex = {y £ Px : (x,y) ¢ Z}\ then PX\E X £ 3pi provided x £ D. Let also
D'= {INI2: X e -0} then (0,00) \D"' £ 3(0,00)-

Fix arbitrarily A£ D' and choose any x £ D satisfying \f\ = ||x|. Put E(A = {|lvll2: y £ Ex}
(then (0, 00) \ E(A) G 3(0,00)) and pick any fi G E(A). Then /7= |ly|| for some y G Ex, which implies
(x,y) ¢ Z. Applying the facts that x +y ¢ A, (x,y) ¢ Z(h), x £ A and y &A, consecutively, we obtain

ip{A+fi)=g{x+y) =h(x+Y)
= h{x) +h(y) = g(x) + g(y) = A + ip(fi),
which proves (23).
By the theorem of de Bruijn, there is an additive function a: R — G such that y>(A&) = a(A) for

AG[0,00)\Y with Y £ 3[0,00)- Then the equality h(x) = a (||x||2) holds true for x GRn\ (A UC),
where C = {x GR" : ||x||2 G K} G3n. Thus, the proof has been completed. O

To finish the proof of our Theorem we shall combinc Lemmas 8, 10 and 11 to get additive functions
a:R —G and b: Rn —G such that

2 (1(x) - a(llxl|2) - b(x)) =0 3,-(a.e.).
The only thing left to be proved is the following fact in the spirit of [2, Lemma 2].



Lemma 12. If afunction h: R" —G satisfies 2h(x) = 0 3,,-(a.e.) and h(x+y) = h(x) +h(y) 3x-(a.e.),
then h(x) = 0 3n-(a.e.).

Proof. For every x € R" put g(x) = h(x) —h(—x). Applying Lemmas 8 and 10 we get an additive
function b: R" —G such that g(x) = b(x) 3n-(a.e.). Therefore

g(x) =2b(1) =2h (1) - 2i(-]) =0 3n-(ae),

i.e. h(x) = h(—x) 3n-(a.e.). Now, by virtue of Lemma 11, there is an additive function a: R - G
satisfying h(x) = a(||x]|2) 3n-(a.e.). Consequently,

1

AW

© o~ o U,

10.
11
12.

13.
14.

a2 fo 2\ ( vi2=x = 2h =0 3n-(ae.).

O
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OSWIADCZENIE

o indywidualnym wk#tadzie wspdtautora
w powstanie artykutu

Almost orthogonally additive functions,
wystanego do recenzji.

Po sformutowaniu og6lnego pytania badawczego o to, czy funkcja ,prawie wszedzie” (wtedy
jeszcze w niesprecyzowanym sensie) ortogonalnie addytywna musi by¢ rowna ,prawie wszedzie”
funkcji ortogonalnie addytywnej, pani mgr W. Wyrobek-Kochanek przeprowadzita szereg rozwa-
zan, niektore natury heurystycznej, ktdre staty sie dla mnie cenng wskazowka do wprowadzenia
definicji ideatu na rozmaitosci rézniczkowej i formalnego sprecyzowania stosownej hipotezy.

Lematy 2-6, bedace przygotowaniem do gtdwnego twierdzenia artykutu, sg wynikiem naszej
wspalnej pracy z panig mgr W. Wyrobek-Kochanek.

Mojego autorstwa sg dowody lematow 7i 9. Lematy 10i 11 sg wynikiem wspdlnych prac. Istotng
role w ich dowodach odegrato kilka pomystow mgr W. Wyrobek-Kochanek, np. zaproponowata ona
prébe przeniesienia pewnego fragmentu rozumowania Jurga Ratza z pracy On orthogonally additive
mappings, Aequationes Math. 28 (1985), 35-49. Widoczne jest to (po gtebszej analizie) w warunku

Z(h) DQ(x) e 3q(x) (patrz: dowdd lematu 10). Jest to jeden z wielu technicznych szczegdtow, ale
istotny.

(-) Tomasz Kochanek



