

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Badania solwatacji pirydyny i jej metylowych pochodnych w wodzie i metanolu

Author: Bożena Czech

Citation style: Czech Bożena. (2011). Badania solwatacji pirydyny i jej metylowych pochodnych w wodzie i metanolu. Praca doktorska. Katowice : Uniwersytet Śląski

© Korzystanie z tego materiału jest możliwe zgodnie z właściwymi przepisami o dozwolonym użytku lub o innych wyjątkach przewidzianych w przepisach prawa, a korzystanie w szerszym zakresie wymaga uzyskania zgody uprawnionego.

UNIWERSYTET ŚLĄSKI w katowicach Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii

Bożena Czech

Badania solwatacji pirydyny i jej metylowych pochodnych w wodzie i metanolu

Promotor:

Prof. UŚ. dr hab. Wojciech Marczak

Serdecznie dziękuję Panu dr hab. Wojciechowi Marczakowi prof. UŚ za wskazanie interesującego tematu badań oraz za pomoc i radę.

Dziękuję również Panu dr. Didierowi Lairezowi oraz Pani dr Adél Len za wykonanie pomiarów rozpraszania neutronów oraz wszystkim, którzy przyczynili się do powstania niniejszej rozprawy.

SPIS TREŚCI

WS	TĘP	5
CZE	ĘŚĆ TEORETYCZNA	7
_		
1.	WŁAŚCIWOŚCI FIZYKOCHEMICZNE PIRYDYNY I JEJ METYLOWYCH	•
PO	DCHODNYCH ORAZ ICH MIESZANIN BINARNYCH Z WODĄ I METANOLEM	8
1.1	I. Struktura faz skondensowanych pirydyny i pochodnych	8
	1.1.1 Faza krystaliczna	8
	1.1.2. Stan ciekły	
1.2	2. Właściwości układów wodnych	11
	1.2.1 Hydraty w fazie stałej	11
	1.2.2 Hydratacja hydrofilowa i hydrofobowa w fazie ciekłej	15
	1.2.3 Ograniczona mieszalność wzajemna w fazie ciekłej	19
1.3	3. Właściwości mieszanin z metanolem	23
2.	METODY POMIAROWE	25
2.1	 Wyznaczanie parametrów propagacji fali ultradźwiękowej 	25
	2.1.1. Prędkość propagacji	25
	2.1.2. Współczynnik tłumienia	
2.2	2. Wolumetria	
2.3	3. Niskokątowe rozpraszanie neutronów	
CZI	ĘŚĆ DOŚWIADCZALNA	
3 .		
3.1	1. Miernik prędkości propagacji fali ultradzwiękowej	
3.2	2. Przyrząd do pomiaru wspołczynnika tłumienia fali ultradzwiękowej	
3.3	3. Densytometr oscylacyjny	
3.4	4. Dyfraktometr SANS	
4.	ODCZYNNIKI	44
5.	OPRACOWANIE WYNIKÓW	
5.1	 Prędkość propagacji fali ultradźwiękowej 	
5.2	2. Gęstość	
5.3	3. Objętość molowa	
5.4	4. Molowa rozszerzalność izobaryczna	61
5.5	5. Molowa ściśliwość adiabatyczna	65
5.6	5. Termodynamiczne funkcje nadmiarowe	70
5.7	7. Wielkości cząstkowe molowe	90
5.8	 Współczynnik tłumienia fali ultradźwiękowej 	95
5.9	9. Niskokątowe rozpraszanie neutronów (SANS)	105
DYS	SKUSJA I WNIOSKI	
6.	DYSKUSJA WYNIKÓW	110
7.	PODSUMOWANIE I WNIOSKI	
BIB	BLIOGRAFIA	

SYMBOLE WIELKOŚCI FIZYKOCHEMICZNYCH	
-------------------------------------	--

DODATKI	
DODATEK A – prędkość propagacji fali ultradźwiękowej	
DODATEK B – gęstość roztworów	
DODATEK C – współczynnik absorpcji fali ultradźwiękowej	
DODATEK D – spis publikacji i komunikatów konferencyjnych	

WSTĘP

Układy z wiązaniami wodorowymi są od wielu lat przedmiotem badań doświadczalnych i rozważań teoretycznych. Bez wątpienia zainteresowanie tymi układami wynika ze znaczenia wiązań wodorowych dla życia na Ziemi. Wiązania wodorowe mają bezpośredni wpływ na budowę związków chemicznych odpowiedzialnych za rozwój organizmów (DNA, peptydy), a co za tym idzie przebieg procesów biochemicznych. Znane nam organizmy żywe to układy składające się w dużej mierze z wody, której cząsteczki połączone są wiązaniami wodorowymi.

Woda na pozór prosta w swej budowie wykazuje szereg cech wyróżniających ją pomiędzy substancjami chemicznymi. Fakt ten sprawia, że od wieków stanowi ona obiekt zainteresowania. Jest więc najlepiej poznaną cieczą w przyrodzie a mimo to jej właściwości fizykochemiczne nadal stanowią atrakcyjny temat wielu rozpraw. Każdy nowy fakt dotyczący właściwości tej specyficznej substancji przybliża nas bowiem do zrozumienia zasad funkcjonowania świata ożywionego.

Woda jest popularnym rozpuszczalnikiem, nie pozostaje ona jednak obojętna względem innych substancji. Zarówno w stanie czystym, jak i w roztworach pozostaje ona uporządkowana. W ciekłej wodzie występują obszary o lodopodobnej strukturze. Charakteryzują się one luźnym upakowaniem molekuł w ażurowe kompleksy. Twory te charakteryzują się raczej krótkim czasem życia w związku z czym cząsteczki ulegają ciągłej wymianie, zachodzi stan równowagi dynamicznej. Podobnie dzieje się w roztworach substancji organicznych. Fragmenty hydrofobowe molekuł są otoczone przez cząsteczki wody tworzące sieć. Powstają struktury klatratopodobne. Roztwory takie odznaczają się dużym uporządkowaniem molekularnym co uwidacznia się w postaci specyficznych właściwości fizykochemicznych. Ten konkretny rodzaj oddziaływań zwany jest hydratacją hydrofobową.

Cząsteczki polarne ulegają w wodzie hydratacji hydrofilowej. Molekuła wody łączy się z daną cząsteczką wiązaniem wodorowym (O – H ... X) oraz poprzez pary elektronowe i drugi proton z innymi cząsteczkami H_2O . Tu również ustala się stan równowagi dynamicznej.

Oddziaływania coulombowskie powodują, że jony również ulegają w wodzie hydratacji. Mogą powstać kompleksy, w których woda występuje w postaci liganda.

Pirydyna oraz jej metylowe pochodne sa bardzo ciekawym przykładem zwiazków o cząsteczkach amfifilowych tj. hydrofobowo - hydrofilowych. Ich budowa sprawia, że w obecności wody prawdopodobne są dwa typy oddziaływań. Z jednej strony w pierścieniu występuje atom azotu dysponujący wolną parą elektronową oraz elektrony π , zdolne do tworzenia wiązań wodorowych. Z drugiej strony cząsteczki te dysponują rozległym fragmentem hydrofobowym. Zgodnie z powyższym spodziewać się należy tu oddziaływań zarówno hydrofilowych jak i hydrofobowych. Dotychczasowe badania doświadczalne jak i rozważania teoretyczne potwierdzają istnienie struktur przestrzennych w wodnych roztworach amin aromatycznych i istotnie wiąże się je z dwoma typami hydratacji. Agregaty te sa na tyle rozbudowane, że możliwe stało się oszacowanie ich wielkości oraz czasu życia. Pod dyskusję można jednak poddać udział wody w tworzących się asocjatach. Pirydyna oraz jej pochodne sa zdolne również do autoasocjacji i być może to ten proces prowadzi do powstania agregatów w roztworach. Proces ten powinien zachodzić niezależnie od dobranego rozpuszczalnika. Odpowiedź na powyższe pytanie można więc uzyskać zastępując wodę, jako rozpuszczalnik, inną substancją o zbliżonej budowie a jednak innych właściwościach.

Niniejsza rozprawa została poświęcona układom binarnym pirydyna i jej metylowe pochodne – woda lub metanol. Przeprowadzono badania akustyczne, wolumetryczne oraz rozpraszania neutronów. Przeanalizowano wybrane układy pod kątem odchyleń od termodynamicznej idealności. Porównano mieszaniny wodne oraz metanolowe w całym zakresie stężeń. Oszacowano czas życia oraz wielkość mikroheterogeniczności powstających w roztworach. Otrzymane wyniki przedyskutowano w oparciu o teorie hydratacji hydrofobowej oraz hydrofilowej.

CZĘŚĆ TEORETYCZNA

1. WŁAŚCIWOŚCI FIZYKOCHEMICZNE PIRYDYNY I JEJ METYLOWYCH POCHODNYCH ORAZ ICH MIESZANIN BINARNYCH Z WODĄ I METANOLEM

1.1.Struktura faz skondensowanych pirydyny i pochodnych

Pirydyna oraz jej metylowe pochodne należą do najprostszych związków heterocyklicznych. Ich cząsteczki posiadają trwałe momenty dipolowe co zwiększa energię oddziaływań przyciągających w czystych aminach jak i w roztworach.

1.1.1 Faza krystaliczna

Struktura krystaliczna pirydyny oraz jej metylowych pochodnych została określona głównie na podstawie badań rentgenowskich. Mootz i Wussow (1981) określili budowę kryształu pirydyny. Ich badania wykazały istnienie tetrametrów tworzonych przez cząsteczki tej aminy. Strukturom metylopirydyn również zostały poświęcone liczne prace (Bond, Davies, 2001(a), 2001(b); Bond, Davies, 2002(a), 2002(b), 2002(c); Bond i wsp., 2001; Born i wsp., 1995; Ohms i wsp., 1985).

Budowę przestrzenną kryształu 2-metylopirydyny zaproponowaną przez Bonda i wsp. (2001(b)) przedstawia rysunek 1.1.1. Bond i wsp. zasugerowali , że uporządkowanie molekuł 2-metylopirydyny wynika z oddziaływań C – H ... N.

Inne podejście zaproponowali Vorontsov i wsp. (2002). Atom wodoru połączony z atomem węgla pierścienia jednej molekuły skierowany jest w kierunku środka pierścienia sąsiedniej cząsteczki, rys. 1.1.2. Odległość pomiędzy dwoma pierścieniami jest mała i szacowana na 2,64 Å, co pozwala traktować rozważane oddziaływania jako wiązania wodorowe C – H … π .

Rysunek 1.1.1. Struktura przestrzenna 2-metylopirydyny w fazie krystalicznej (Bond, Davies, 2001(b))

Rysunek 1.1.2. Struktura przestrzenna 2-metylopirydyny w fazie krystalicznej (Vorontsov i wsp., 2002)

2,6-dimetylopirydyna charakteryzuje się inną orientacją przestrzenną molekuł w fazie krystalicznej. Zaobserwowano tu obecność liniowych połączeń typu C – H … N pomiędzy cząsteczkami, gdzie wodór położony jest w pozycji γ w stosunku do atomu azotu (Bond i wsp., 2001). Grupy metylowe położone w pozycjach α stanowią poważną zawadę steryczną, co narzuca tu takie a nie inne uporządkowanie. Tworzą się więc płaskie łańcuchy typu "głowa do ogona" a sąsiadujące ze sobą struktury ułożone są równolegle (rys 1.1.3).

a)

b)

Rysunek 1.1.3. Struktura przestrzenna 2,6-dimetylopirydyny w fazie krystalicznej (Bond i wsp., 2001); a) rzut prostopadły do płaszczyzny pierścienia; b) rzut równoległy do płaszczyzny pierścienia

1.1.2. Stan ciekły

Przeprowadzone badania rozpraszania neutronów oraz promieniowania rentgenowskiego potwierdziły występowanie lokalnego uporządkowania molekuł w czystej ciekłej pirydynie. Wiąże się je z oddziaływaniami dipol – dipol, przy czym efekty steryczne odgrywają tu zasadniczą rolę. Podobnych wniosków dostarczyły obliczenia teoretyczne (Jorgensen, McDonald, 1998; Gamba, Klein, 1989; Bakó i wsp., 1996; Bertaggnolli, Engelhardt, 1986; Danten i wsp., 1992)

Powszechnie przyjmuje się, że pirydyna występuje w postaci dimerów. Pomiędzy pierścieniami tworzą się połączenia typu "głowa do ogona" oparte na oddziaływaniu atomu azotu jednej z cząsteczek aminy oraz atomu wodoru umiejscowionego w pozycji γ w stosunku do atomu azotu drugiej z nich. Asocjujące molekuły układają się wówczas w jednej płaszczyźnie. Długość powstającego w ten sposób wiązania N … H szacowana jest na 2,4 Å.

Alternatywnie zakładano powstawanie wiązań wodorowych pomiędzy atomem azotu jednej molekuły a atomem wodoru, umiejscowionym w pozycji α w stosunku do atomu azotu, innej cząsteczki (Sacconi i wsp., 1960; Marcom, Travers, 1966; Abe, Flory, 1965; Smets, Huyskens, 1978). Rozważano także oddziaływanie wolnej pary elektronowej zlokalizowanej na atomie azotu z elektronami π (Cumper i wsp., 1956; Nigam i wsp., 1984).

1.2. Właściwości układów wodnych

1.2.1 Hydraty w fazie stałej

W stanie stałym, w układach amina aromatyczna – woda stwierdzono obecność hydratów. Badania wykazały, że pirydyna (Mootz, Wussow, 1981) oraz

4-metylopirydyna (Born i wsp., 1995) tworzą trihydraty (rys. 1.2.1). Ustalono, że cząsteczka pirydyny łączy się, poprzez atom azotu, wiązaniem wodorowym z trimerem wody, w którym molekuły również powiązane są poprzez ten sam typ oddziaływań. Powstanie wiązań wodorowych z udziałem elektronów π pierścienia jest mniej prawdopodobne ze względu na małą energię tego typu połączeń. Kompleksy pirydyny

ulegają rozpadowi na skutek ogrzewania w temperaturze 244,6 K. Procesowi temu towarzyszy powstanie lodu oraz fazy ciekłej wzbogaconej w pirydynę (Glessner, Myers, 1971). Stosunek molowy wody do pirydyny wynosi wówczas 2:1.

a)

b)

Rysunek 1.2.1. Struktury krystalograficzne trihydratów pirydyny (*a*) i 4-metylopirydyny (*b*). Linie symbolizują wiązania wodorowe. Rysunek wykonano za pomocą programu Merkury 2.3 wykorzystując dane zamieszczone w Cambridge Structural Database (Cambridge Crystallographic Data Centre data base 2010)

2,6-dimetylpirydyna w mieszaninach z wodą tworzy nieco inne połączenia a mianowicie trwale wiąże się z jedną jej cząsteczką tworząc kompleksy molekularne o stechiometrii 1:1 ($C_7H_9N\cdot H_2O$). Monohydrat topi się kongruentnie w temperaturze 273,0 K (Marczak i wsp., 2009) (272,2 K (Perron i wsp.,1993)) Przejściu temu towarzyszy jedynie częściowa dysocjacja kompleksów. Kompleksy te łączą się ze sobą zarówno w stanie krystalicznym, jak i ciekłym. Poszczególne kompleksy asocjują poprzez wiązania wodorowe typu O – H…O (rys. 1.2.2).

Rysunek 1.2.2. Sieciowanie kompleksów 2,6-dimetylopirydyny

Te podstawowe różnice w budowie hydratów pirydyny i 2,6-dimetylopirydyny wnikają najprawdopodobniej z siły oddziaływań amina – woda. Podstawienie grupy CH₃ w pozycji orto w stosunku do atomu azotu wpływa znacznie na energię asocjacji kompleksu amina – woda. Ich wartości dla kompleksów o stechiometrii 1:1, wyznaczone za pomocą teorii zaburzeń Møllera-Plesseta, zmieniają się w szeregu pirydyna – 2-metylopirydyna – 2,6-dimetylopirydyna od wartości 18,5 kJ mol⁻¹ poprzez 20,0 kJ mol⁻¹ do 21,2 kJ mol⁻¹ (Pápai, Jancsó, 2000). Wartości te pozostają w dobrej zgodności z entalpiami tworzenia kompleksów pirydyna – woda w środowisku benzenu wyznaczonych metodą NMR i obliczonych teoretycznie metodą DFT. Wynoszą one odpowiednio -18,5 kJ mol⁻¹ oraz -17,2 ± 0,5 kJ mol⁻¹ (Lomas, Maurel, 2008). Kompleksy o stosunku molowym amina – woda równym 1:1 są zdecydowanie dominującą formą połączeń pomiędzy molekułami. Budowa cząsteczki wody umożliwia jej łączenie się z dwiema cząsteczkami aminy

z utworzeniem mostka pomiędzy nimi, jednak powstawanie tego typu ugrupowań wydaje się mniej prawdopodobne. Potwierdzają to wartości stałych asocjacji równe 2,33 \pm 0,03 dla kompleksu C₅H₅N · H₂O oraz 0,201 \pm 0,005 dla kompleksu (C₅H₅N)₂ · H₂O (Lomas, Maurel, 2008) jak i wartości granicznych entalpii rozpuszczania wody i metanolu nieznacznie tylko różniące się od siebie. Gdyby molekuła wody tworzyła dwa wiązania wodorowe jako donor protonu należałoby się raczej spodziewać zdecydowanie większego ciepła rozpuszczania H₂O niż CH₃OH, którego cząsteczka może być donorem tylko jednego protonu (Marczak i wsp., 2004).

Znane są diagramy równowag fazowych ciecz – ciało stałe układów woda – pirydyna i woda – 2,6-dimetylopirydyna. Diagram fazowy układu pirydyna – woda przedstawia rysunek 1.2.3. Trihydrat pirydyny topi się inkongruentnie w temperaturze 244K z wydzieleniem stałego lodu. Trihydrat ten nie tworzy wspólnej sieci krystalicznej ani z wodą ani z pirydyną. Układ 2,6-dimetylopirydyna – woda jest eutektykiem złożonym. C₇H₉N, H₂O i C₇H₉N·H₂O nie mieszają się ze sobą w stanie stałym. Diagram fazowy przedstawia rysunek 1.2.4.

Rysunek 1.2.3. Diagram fazowy układu pirydyna – woda, wg Glessnera i Myersa (1971) z zaznaczoną linią równowagi wynikającą z występowania w fazie stałej trihydratu $C_5H_5N \cdot 3H_2O$ (Mootz, Wussow, 1981) topiącego się inkongruentnie

Rysunek 1.2.4. Diagram fazowy układu 2,6-dimetylopirydyna – woda (Marczak i wsp., 2009). Linia przerywana opisuje układ termodynamicznie doskonały

1.2.2 Hydratacja hydrofilowa i hydrofobowa w fazie ciekłej

Izotermy prędkości propagacji fali ultradźwiękowej w funkcji stężenia aminy mają podobny przebieg w przypadku wszystkich układów wodnych. Charakteryzują się dwiema cechami, mianowicie maksimum oraz wąskim przedziałem stężeń, w którym się przecinają. W przypadku metylopirydyn izotermy te przecinają się w punkcie odpowiadającym ułamkowi molowemu aminy $x_1 \approx 0,05$, maksima z kolei pojawiają się przy stężeniu aminy $x_1 \approx 0,2$ (Ernst, Marczak,1995; Marczak, Ernst, 1998). W układzie 2,6-dimetylopirydyna – woda punkty te pojawiają się przy stężeniach aminy $x_1 \approx 0,03$ oraz $x_1 \approx 0,15$ a podwyższenie temperatury powoduje przesuwanie się ich w stronę niższych stężeń aminy, rys. 1.2.5 (Ernst i wsp.,1998). Zmiana składu izotopowego wody na D₂O nie wpływa w znaczący sposób na otrzymane wyniki (Marczak, 1996, 1999).

Taki przebieg izoterm prędkości wynika wprost z zależności współczynnika ściśliwości adiabatycznej od ciśnienia i temperatury, co przedstawiono na rysunku 1.2.6. Związek prędkości propagacji fali akustycznej (c) z gęstością ośrodka (ρ) i jego współczynnikiem ściśliwości adiabatycznej (κ_s) dany jest wzorem Laplace'a:

$$\kappa_s = \frac{1}{\rho c^2}.$$

Współczynnik ten, w przypadku fali akustycznej o małej częstotliwości, można przedstawić jako sumę ściśliwości natychmiastowej (κ_{∞}) oraz strukturalnej (κ_{str}):

$$\kappa = \kappa_{\infty} + \kappa_{str}$$
 1.2.2

Pierwsza z nich związana jest z odległościami międzycząsteczkowymi, druga z kolei z periodycznymi zmianami struktury następującymi na skutek oscylacyjnych zmian ciśnienia i temperatury w fali akustycznej. Izotermiczna ściśliwość natychmiastowa wody praktycznie nie zależy od temperatury w zakresie kilku stopni (Ernst, Gliński, 1977; Hall, 1948). Można przyjąć, że współczynnik ściśliwości adiabatycznej wodnych roztworów nieelektrolitów spełnia to samo założenie, $\frac{\partial \kappa_{\infty}}{\partial T} \approx 0$. Wówczas różniczkując wyrażenie (1.2.2) względem temperatury otrzymuje się zależność:

Rysunek 1.2.5. Izotermy prędkości w mieszaninach 2-metylopirydyny z wodą; (●) 293,15K; (□) 294,15K; (♦) 295,15K; (Δ) 296,15K; (■) 297,15K; (○) 298,15K (Ernst, Marczak,1995)

Woda w mieszaninach binarnych tworzy klatratopodobne struktury, w które wbudowują się cząsteczki aminy oraz jej własne. Skutkuje to znacznym usztywnieniem struktury przez co ściśliwość strukturalna staje się w przybliżeniu niezależna od temperatury a więc $\frac{\partial \kappa_{s,str}}{\partial T} \approx 0$. Prowadzi to do niezależności współczynnika ściśliwości adiabatycznej od temperatury.

Rysunek 1.2.6. Izotermy współczynnika ściśliwości adiabatycznej w mieszaninach 2-metylopirydyny z wodą; (\bullet) 293,15K; (\Box) 294,15K; (\bullet) 295,15K; (Δ) 296,15K; (\bullet) 297,15K; (\circ) 298,15K (Ernst, Marczak,1995)

Można zatem domniemywać, że w roztworze wodnym powstaje quasi-krystaliczna struktura o ściśle określonym stosunku molowym odpowiadającym punktowi przecięcia się izoterm κ_s . Według Endo (1973) usieciowana woda tworzy wielościany podobne do występujących w stałych hydratach klatratowych I lub II. Wielościany te mają zdolność przemieszczania się i łączenia w większe ugrupowania. Ernst i Gliński (1977) sugerowali, że w roztworach powstają dynamiczne struktury klatratopodobne. W roztworach o ściśliwości w przybliżeniu niezależnej od temperatury, większość cząsteczek wody tworzy sieć klatratopodobną. Większe luki sieci zajęte są przez pojedyncze cząsteczki substancji rozpuszczonej, a mniejsze – przez monomeryczne molekuły wody. Model taki przyjęto wyjaśniając temperaturową i stężeniową zależność współczynnika ściśliwości adiabatycznej układów binarnych woda – 2-, 3- i 4-metylopirydyna (Ernst, Marczak, 1995; Marczak, Ernst, 1998).

Taki stan rzeczy znajduje również odzwierciedlenie w przebiegach termodynamicznych funkcji cząstkowych molowych aminy i wody. Cząstkowa molowa ściśliwość aminy oraz jej nadmiar gwałtownie maleją w roztworach rozcieńczonych o stężeniu aminy $x_1 < 0,05$. Dowodzi to, że udział aminy w ściśliwości roztworu staje się nieproporcjonalnie mały do jej stężenia i praktycznie zanika w rozcieńczeniu nieskończenie wielkim. O ściśliwości roztworów rozcieńczonych decyduje zatem jedynie ściśliwość sieci wody (Ernst, Marczak, 1995; Marczak, Banaś, 2001). Przebieg izoterm

molowych cząstkowych objętości aminy w roztworach wodnych nie jest typowy dla substancji hydrofobowych. Izotermy te nie posiadają wyraźnego minimum w zakresie małych stężeń charakterystycznego dla hydratacji hydrofobowej (Franks, 1988; Franks, Reid, 1973). W zakresie małych stężeń aminy izotermy cząstkowej molowej objętości są jedynie wklęsłe. Różni je to od analogicznych izoterm substancji hydrofilowych, które są wypukłe.

Oprócz hydratacji hydrofobowej w roztworach wodnych pirydyny i jej metylowych pochodnych może zachodzić asocjacja kompleksów wodno – aminowych. Widma w podczerwieni sugerują, że kompleksy $C_7H_9N\cdot H_2O$ asocjują w fazie stałej tworząc agregaty $(C_7H_9N\cdot H_2O)_n$. Podobne agregaty występują także w cieczy (Marczak i wsp., 2009). Wyniki doświadczalne są zgodne z obliczeniami teoretycznymi metodą MP2 (Křiž i wsp., 2009).W wodnych roztworach pirydyny oraz 3-metylopirydyny potwierdzono obecność rozbudowanych struktur również za pomocą pomiarów niskokątowego rozpraszania neutronów (Almásy, Jancsó, 2004; Almásy i wsp., 2002).

Przyjęty powyżej model wodnych roztworów amin znajduje także odzwierciedlenie w przebiegu izoterm zależności współczynnika tłumienia fali ultradźwiękowej (α/f^2) od składu w roztworach 3-metylopirydyny (Marczak, Ernst, 1997). Mają one kształt typowy dla wodnych roztworów związków organicznych (Blandamer, 1973). W roztworach o stężeniu aminy $x_1 < 0,1$ zaobserwowano czasy relaksacji rzędu $10^{-8} \div 10^{-7}$ s, czyli dłuższe od czasu relaksacji strukturalnej czystej wody ocenianego na $2,13 \times 10^{-12}$ s (Blandamer, 1973). Procesy relaksacyjne pojawiają się tu przy małych stężeniach aminy więc prawdopodobnie są one konsekwencją tworzenia się otoczki hydratacyjnej wokół niepolarnej części cząsteczki aminy.

Można zatem sądzić, że w rozcieńczonych wodnych roztworach pirydyny oraz jej metylowych pochodnych dominującą rolę odgrywa hydratacja hydrofobowa. Woda pełniąca tu rolę gospodarza tworzy trójwymiarową sieć w którą wbudowują się molekuły aminy (gościa) za pomocą wiązań $O - H \dots N$.

Budowa mikroheterogeniczności występujących w mieszaninach pirydynowo – wodnych jest jednak przedmiotem dyskusji. Autoasocjacją pirydyny wyjaśniano wyniki badań kalorymetrycznych (Sacconi i wsp., 1960), spektroskopowych w zakresie UV (Peral, Galego, 1994) oraz rozpraszania neutronów (Almásy, Jancsó, 2004; Almásy i wsp., 2002). Wydaje się jednak, że aminy aromatyczne w wodzie nie asocjują lub asocjują słabo (Perron i wsp., 1993). W oparciu o wyniki badań relaksacji dielektrycznej, sugerowano

rozwiązanie pośrednie a mianowicie współobecność agregatów substancji rozpuszczonej i struktury quasi-klatratowej związanej z hydratacją hydrofobową (Kaatze i wsp., 1987).

Wzrost stężenia aminy w roztworze powyżej ułamka molowego 0,05 sprawia, że liczba cząsteczek wody tworzących otoczki hydratacyjne staje się niewystarczająca do wytworzenia sieci quasi-klatratowej. Wzrasta prędkość propagacji fali ultradźwiękowej (rys. 1.2.5) natomiast wartość współczynnika ściśliwości adiabatycznej maleje (rys. 1.2.6) aż do osiągnięcia minimum. Dominującą formą oddziaływań pomiędzy molekułami aminy i wody staje się hydratacja hydrofilowa. Z nią wiąże się występowanie ekstremów, minimów ściśliwości i maksimów prędkości. Mogą być one skutkiem tworzenia się hydratów, w których molekuła aminy łączy się z wodą w postaci pojedynczych cząsteczek lub oligomerów, za pomocą wiązań wodorowych. Energia wiązań wodorowych jest większa w hydratach i ich otoczeniu niż w czystej wodzie. Tworzenie tego typu połączeń może zwiększać sztywność układu poprzez skrócenie odległości międzycząsteczkowych i w konsekwencji gęstsze upakowanie. Skutkuje to wzrostem prędkości ultradźwięków i mniejszą wartością współczynnika ściśliwości.

W rozcieńczonych roztworach wody w aminie w dalszym ciągu występują oddziaływania specyficzne tj. wiązania wodorowe. Powstające tu jednak asocjaty nie są tak złożone w swej budowie jak to ma miejsce przy małych stężeniach aminy. Niedobór cząsteczek wody powoduje, że ta łączy się z jedną cząsteczką aminy poprzez wiązanie O – H ...N. Porównanie wartości entalpii rozpuszczania wody i metanolu w pirydynie i jej metylowych pochodnych podważyło wcześniejszą hipotezę tworzenia się "mostów wodnych" pomiędzy cząsteczkami aminy: N ... H - O - H ... N (Ernst i wsp., 1994; Marczak i wsp., 2003). Okazało się, że graniczne entalpie rozpuszczania wody i metanolu w danym rozpuszczalniku są w przybliżeniu takie same (Marczak i wsp., 2004).

1.2.3 Ograniczona mieszalność wzajemna w fazie ciekłej

Właściwości binarnych mieszanin pirydyny lub jej metylowych pochodnych z wodą wykazują znaczne odstępstwa od właściwości układów termodynamicznie doskonałych. Odchylenia są na tyle duże, że w pewnych warunkach układy te wykazują lukę mieszalności.

W warunkach izotermiczno – izobarycznych potencjałem decydującym o składzie fazowym układu jest entalpia swobodna G. Dla układów binarnych zagadnienie sprowadza

się do rozważenia zależności G od stężenia. Dodatnia wartość drugiej pochodnej molowej entalpii swobodnej względem ułamka molowego jest warunkiem stabilności fazy względem dyfuzji (Buchowski, 1980):

$$\frac{\partial^2 G_m}{\partial x_2^2} > 0 \tag{1.2.4}$$

Korzystając z definicji molowej entalpii swobodnej mieszania $\left(G_m^M = G_m - \sum_{i=1}^2 x_i \mu_i^0\right)$,

równanie 1.2.4 można zapisać w następujący sposób:

$$\frac{\partial^2 G_m^M}{\partial x_2^2} > 0$$
 1.2.5

gdzie: G_m^M - molowa entalpia swobodna mieszania.

Na tej podstawie można wnioskować, że składniki danego układu mieszają się wzajemnie w każdym stosunku, gdy molowa entalpia swobodna mieszania w funkcji ułamka molowego jest krzywą wklęsłą¹ w całym zakresie stężeń. Warunek ten pozostaje spełniony zawsze dla roztworów doskonałych. Pozostają one więc całkowicie mieszalne.

Wobec definicji nadmiarowej entalpii swobodnej roztworu:

$$G^E = G_m^M - G_m^{Mid}$$
 1.2.6

można zapisać zależność:

$$\frac{\partial^2 G_m^M}{\partial x_2^2} = \frac{RT}{x_1 x_2} + \frac{\partial^2 G^E}{\partial x_2^2}$$
 1.2.7

gdyż:

$$G_m^{Mid} = RT \sum_{i=1}^{2} x_i \ln x_i .$$
 1.2.8

Jeżeli, dla pewnych stężeń, spełniona jest zależność:

$$\frac{\partial^2 G_m^M}{\partial x_2^2} < 0$$
 1.2.9

wówczas składniki przestają być całkowicie mieszalne. Entalpie swobodna mieszania w funkcji stężenia staje się, dla pewnego przedziału stężeń, krzywą wypukłą. Wynika z tego, że G^E również musi być krzywą wypukłą. W związku z powyższym, warunkiem rozpadu układu na dwie fazy ciekłe jest dodatnia wartość G^E . Te dodatnie odchylenia od

¹ Przyjęto tu konwencję powszechnie stosowaną w termodynamice. Funkcję, której druga pochodna względem zmiennej niezależnej jest większa od zera matematycy nazywają wypukłą.

doskonałości powinny być dodatkowo na tyle duże aby, biorąc pod uwagę zawsze wklęsłą G_m^{Mud} , wobec równania 1.2.6, spowodować pojawienie się wypukłości na krzywej $G_m^M(x)$.

W górnej krytycznej temperaturze mieszalności T_g , spełniony jest warunek :

$$\frac{\partial^2 \left(G^{E}/RT_g\right)}{\partial x_2^2} = -\frac{1}{x_1 x_2}.$$
 1.2.10

Pochodna ta musi być większa od $-1/x_1x_2 \le T_g$. Zatem pochodna wyrażenia 1.2.10 względem temperatury musi być dodatnia:

$$\frac{\partial}{\partial T} \frac{\partial^2 \left(G^E / RT \right)}{\partial x_2^2} > 0$$
 1.2.11

gdzie: $T > T_g$.

Po dokonaniu odpowiednich przekształceń matematycznych można powyższe rozważania przełożyć na efekty energetyczne procesu mieszania. Zgodnie z prawami różniczkowania równanie 1.2.11 można zapisać następująco:

$$\frac{\partial^2}{\partial x_2^2} \frac{\partial (G^E/RT)}{\partial T} = -\frac{1}{RT^2} \frac{\partial^2 H^E}{\partial x_2^2} > 0$$
 1.2.12

A zatem:

$$\frac{\partial^2 H^E}{\partial x_2^2} < 0.$$
 1.2.13

Znak wyrażenia 1.2.13 oznacza, że H^{E} musi być krzywą wypukłą w okolicach punktu krytycznego, stąd $H^{E} > 0$. Aby więc istniała górna krytyczna temperatura mieszalności ciepło mieszania musi być dodatnie.

Dolna krytyczna temperatura mieszalności wystąpi natomiast gdy pochodna $\frac{\partial^2 (G^E/RT_g)}{\partial x_2^2}$ zmienia się odwrotnie z temperaturą. Przechodząc do ciepła mieszania

można zatem stwierdzić, że musi być ono krzywą wklęsłą, czyli $H^{E} < 0$ i warunek:

$$\frac{\partial^2 H^E}{\partial x_2^2} > 0 \tag{1.2.14}$$

musi być spełniony. Wystąpienie dolnej krytycznej temperatury mieszalności wiąże się więc z egzotermicznym efektem mieszania.

Z zależności:

$$G^{E} = H^{E} - TS^{E}$$
1.2.15

wynika, że w przypadku istnienia GKTM wyrażenie TS^{E} może być zarówno większe, jak i mniejsze bądź równe zero. Natomiast gdy pojawia się DKTM człon TS^{E} przyjmuje wartości ujemne.

Jeżeli pojawia się zamknięta luka mieszalności, wówczas w niskich temperaturach H^{E} oraz S^{E} są ujemne. Funkcje te muszą jednak zależeć od temperatury w taki sposób, że H^{E} , przy jej wzroście, zmieni znak na dodatni.

Na rysunku 1.2.7 przedstawiono G^{E} , H^{E} i TS^{E} dla układów pirydyna, 2-metylopirydyna, 2,6-dimetylopirydyna – woda.

Rysunek 1.2.7. Funkcje nadmiarowe mieszanin woda + pirydyna i jej metylowe pochodne w 298.15K. Wykresy otrzymano na podstawie danych literaturowych (Abe i wsp., 1978; Wóycicka, Kurtyka, 1965; Wóycicki, 1967(a), 1967(b); Marczak, Giera, 1998)

Pirydyna oraz jej monometylowe pochodne mieszają się z wodą bez ograniczeń. Zastąpienie H₂O przez D₂O powoduje pojawienie się luki mieszalności. Dimetylowe pochodne pirydyny wykazują ograniczoną mieszalność zarówno z wodą lekką jak i ciężką (Andon i wsp., 1954, 1957; Cox 1952, 1954; Andon, Cox, 1952)

Luka mieszalności w przypadku układu 2-metylopirydyna – D₂O jest stosunkowo niewielka, rozciąga się na około 40°C (rys. 1.2.8) (Szydłowski, 1998) Zmiana położenia podstawnika metylowego w pierścieniu skutkuje pojawieniem się znacznie szerszej luki. W przypadku układu 3-metylopirydyna – D₂O rozciąga się ona na około 80°C. Układy z 2,6-dimetylopirydyną wykazują zdecydowanie większe luki mieszalności. W układach z H₂O i D₂O luka mieszalności pojawia się tu już odpowiednio przy 34°C i 28,7°C, zamyka się natomiast przy 228,7°C i 228°C pod ciśnieniem par nasyconych.

Rysunek 1.2.8. Luka mieszalności w układach 2-metylopirydyna + D_2O oraz 2,6-dimetylopirydyna + H_2O (Szydłowski, 1998; Andon, Cox, 1952)

Powyższe zjawiska można wiązać z energią wiązań wodorowych tworzących się pomiędzy cząsteczkami aminy i wody. Energia wiązania O - H...N wzrasta ze wzrostem liczby grup metylowych w pozycji orto w stosunku do atomu azotu w pierścieniu. Podobny efekt powoduje również podstawienie izotopowe H przez D w cząsteczce wody. Ostatecznie w mieszaninach z D₂O występują silniejsze oddziaływania. Wzrost energii wiązań wodorowych O – H(D)...N skutkuje pojawieniem się luki mieszalności w układach woda – substancja organiczna (Brovchenko, Oleinikova, 1997, 1998).

1.3. Właściwości mieszanin z metanolem

Cząsteczka metanolu może łączyć się z molekułą aminy wiązaniem wodorowym O – H...N. Tylko jeden atom wodoru zdolny do tego typu połączeń uniemożliwia jej jednak tworzenie bardziej rozbudowanych układów, jak to ma miejsce w przypadku wody. Entalpie tworzenia kompleksów z cząsteczkami pirydyny i jej metylowymi pochodnymi zależą, analogicznie jak dla układów wodnych, od liczby podstawników "orto" w pierścieniu aminy. Ich wartości otrzymane metodą DFT i MP2 wynoszą odpowiednio – 20,9 kJ mol⁻¹ oraz - 21,5 kJ mol⁻¹ (pirydyna + metanol) i – 21,1 kJ mol⁻¹ oraz – 24,3 kJ mol⁻¹ (2,6-dimetylopirydyna + metanol). Entalpie te są większe od entalpii dimeryzacji metanolu: –14,7 kJ mol⁻¹ (DFT) i –15,7 kJ mol⁻¹ (MP2). Odpowiednie wartości obliczone z modelu ERAS na podstawie danych empirycznych są wyższe jednak

zachowany zostaje trend: dla kompleksu pirydyna – woda wynosi ona – 24,9 kJ mol⁻¹ oraz - 28,5 kJ mol⁻¹ dla kompleksu 2,6-dimetylopirydyna – woda (Heintz i wsp.,2006).

W literaturze brakuje informacji o właściwościach fizykochemicznych układów pochodne pirydyny – metanol. Opublikowane niedawno porównanie kompleksów woda – pirydyna i metanol – pirydyna zawiera stałe i entalpie kompleksowania wyznaczone metodą NMR dla reagentów w benzenie jako rozpuszczalniku inertnym oraz wyniki obliczeń metodą DFT dla izolowanych zespołów dwóch – trzech molekuł (Tablica 1.3.1.) (Lomas, Maurel, 2008).

	Woda 1:1		Woda 2:1	Metanol		
	Gaz	Benzen	Gaz	Benzen	Gaz	Benzen
$\Delta E(0K)$	-7,47	-6,16	-5,00	-4,05	-7,48	-6,17
ΔE (0K)+ZPE	-5,69	-4,19	-3,88	-2,72	-6.32	-4.82
Δ <i>H</i> ° (298K)	-5,85	-4.42	-4,61	-2,92	-5,97	-4,52
ΔH [®] +BSSE	-5,29		-4,00		-5,35	
K (27 8- 338K)		2,33±0,03 (K1)		0,201±0,005(<i>K</i> 2)		1,53±0,02
Δ <i>H</i> °(278-338K)		-4,11±0,11		-3,47±0,11		-4,37±0,05
ΔS° (278-338K)		-12,2±0,4		-14,9±0,3		-13, 8 ±0,1

Tablica 1.3.1. Parametry reakcji kompleksowania pirydyny (ΔE , ΔH° / (kcal mol⁻¹); ΔS° / (cal mol⁻¹ K⁻¹)) (Lomas, Maurel, 2008)

2. METODY POMIAROWE

2.1. Wyznaczanie parametrów propagacji fali ultradźwiękowej

Pole akustyczne ściśle zależy od geometrii ośrodka oraz od jego właściwości. Wynika ono zatem zarówno z kształtu samego ośrodka, charakterystyki układów pobudzających drgania i natężenia tych drgań jak i własności sprężystych ośrodka oraz tarcia wewnętrznego. Te czynniki bezpośrednio wpływają na parametry propagacji fali ultradźwiękowej. Należą do nich prędkość fazowa i grupowa propagacji fali oraz współczynnik tłumienia.

2.1.1. Prędkość propagacji

Jeżeli drgania charakteryzują się dostatecznie małą amplitudą wówczas parametry propagacji fali nie zależą od jej wielkości. Ośrodek zachowuje wtedy liniowość czyli zmienne odkształcenia i naprężenia zależą od siebie liniowo (Wehr, 1972). Dana faza drgania rozchodzi się od miejsca jej wzbudzenia w kierunku propagacji z określoną prędkością fazową:

$$c_f = \sqrt{\frac{M}{\rho}}$$
 2.1.1

gdzie: M – moduł sprężystości

 ρ - gęstość.

Falę o dowolnym kształcie można przedstawić jako superpozycję fal sinusoidalnych. W szczególności dotyczy to impulsów. W przypadku modulacji impulsowej dodatkowo należy zatem rozpatrywać propagację paczek (grup) drgań. Pomiędzy prędkością fazową i grupową zachodzi wówczas zależność:

$$c_g = c_f - \lambda \frac{dc_f}{d\lambda}$$
 2.1.2

gdzie: λ - długość fali.

Zależność 2.1.2 jest słuszna jedynie dla wąskiego przedziału częstotliwości zbliżonej do częstotliwości fali poruszającej się z prędkością propagacji c_f . Jeżeli widmo częstotliwości w grupie fal jest zbyt szerokie, składowe przesuwają się a paczka zmienia kształt. Równanie 2.1.2 nie jest wówczas spełnione. Z zależności 2.1.2 również jednoznacznie

wynika, że gdy prędkość fazowa nie wykazuje dyspersji to prędkość grupowa jest jej równa. Własność ta umożliwia wyznaczanie prędkości fazowej w ośrodkach niedyspersyjnych, poprzez pomiar prędkości grupowej, co jest z reguły łatwiejsze. W ośrodkach dyspersyjnych prędkości te nie są sobie równe. Znajomość prędkości fazowej umożliwia wyznaczenie prędkości grupowej (równanie 2.1.2). Procedura odwrotna nie jest jednak możliwa, gdyż po scałkowaniu zależności 2.1.2 otrzymujemy nieznaną stałą całkowania. Zapisanie równania 2.1.2 w nieco innej postaci:

$$c_g = \frac{c_f}{1 - \frac{f}{c_f} \frac{dc_f}{df}}$$
 2.1.3

pozwala zauważyć, że gdy prędkość fazowa wzrasta z częstotliwością, to prędkość grupowa jest od niej większa, gdy ta pierwsza maleje ze wzrostem częstotliwości, to druga jest od niej mniejsza.

Metody pomiarowe stosowane w miernictwie ultradźwiękowym wykorzystują falę ciągłą oraz impulsową. Sygnał wyjściowy może być odbierany na końcu próbki w przypadku metod przepuszczania bądź po odbiciu, jedno- lub wielokrotnym, od końca próbki w metodzie odbiciowej. Można również wykorzystać interferencje kolejnych przebiegów harmonicznych fali ciągłej bądź odpowiednio długich impulsów.

2.1.2. Współczynnik tłumienia

Podłużna fala akustyczna, przechodząc przez pierwotnie nie zaburzony ośrodek, wymusza drgania oscylacyjne molekuł. Efektem tego są lokalne zmiany gęstości i ciśnienia, przemieszczające się zgodnie z kierunkiem fali. Zwiększenie gęstości (kompresja) wiąże się ze wzrostem temperatury, rozrzedzeniu molekuł (dekompresja) towarzyszy jej obniżenie w stosunku do wartości równowagowej. W przypadku częstości ultradźwiękowych odstępy czasowe następujące pomiędzy fazami kompresji i dekompresji są tak niewielkie (ok. 0.5×10^{-6} s), że przepływ ciepła z miejsc zagęszczonych do rozrzedzonych jest praktycznie niemożliwy a proces ten można uznać za adiabatyczny (Ernst, 1991). Natężenie fali ultradźwiękowej :

$$I = c\varepsilon$$
 2.1.4

gdzie: c - prędkość rozchodzenia się fali,

 ε - gęstość energii,

26

w ośrodku idealnie sprężystym, w miarę oddalania się od źródła zaburzenia pozostaje niezmienione. Przejście fali przez ośrodek rzeczywisty wiąże się ze stopniowym spadkiem jej natężenia. Następuje tłumienie fali związane z przemianą energii rozchodzących się fal na energię drgań o innych częstotliwościach. U podstaw tego zjawiska leży lepkość oraz przepływ energii cieplnej. Ponadto, absorpcja fali ultradźwiękowej wywołana jest przejściem energii mechanicznej na nietranslacyjne stopnie swobody molekuł. Spełniona pozostaje zasada zachowania masy opisana równaniami ciągłości Eulera. Dla ruchu jednowymiarowego w kierunku *x*:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0$$
 2.1.5

gdzie: ρ - gęstość płynu,

v – prędkość cząstki.

Równanie ruchu Eulera w przybliżeniu akustycznym przyjmuje postać równania Naviera-Stokesa:

$$\rho_0 \frac{\partial v}{\partial t} = -\frac{\partial p}{\partial x} + \frac{4}{3} \eta' \frac{\partial^2 v}{\partial x^2} + \eta'' \frac{\partial^2 v}{\partial x^2}$$
 2.1.6

gdzie: $\eta = \frac{4}{3}\eta' + \eta''$ - lepkość efektywna,

 η' – lepkość ścinania, charakteryzująca tarcie wewnętrzne,

 η'' – lepkość objętościowa, miara tarcia wewnętrznego przy zmianie objętości. Równanie falowe dla ośrodka tłumionego można zapisać w postaci następującej:

$$\rho_0 \frac{\partial^2 u}{\partial t^2} = \left(K_s + i\omega\eta\right) \frac{\partial^2 u}{\partial x^2} = K_s^* \frac{\partial^2 u}{\partial x^2}$$
 2.1.7

gdzie $K_s^* = K_s + i\omega\eta = K_s(1 + i\omega\tau_{p,s})$ jest zespolonym modułem ściśliwości, $\tau_{p,s}$ natomiast jest stałą o wymiarze czasu. Rozwiązanie tego równania wygląda następująco:

$$u(x,t) = u_0 e^{i\omega(t-\frac{x}{c^*})} = u_0 e^{-\alpha x} e^{i\omega(t-\frac{x}{c})}$$
2.1.8

gdzie: u(x,t) – przemieszczanie w kierunku x,

$$c^*$$
 - zespolona prędkość zdefiniowana równaniem: $\frac{1}{c^*} = \frac{1}{c} - \frac{i\alpha}{\omega}$,

 α - amplitudowy współczynnik tłumienia,

 $u_0 e^{-\alpha x}$ - amplituda malejąca wykładniczo.

W analogiczny sposób opisać można wszystkie wielkości ulegające periodycznym zmianom w polu akustycznym (ciśnienie, temperatura, gęstość, potencjał chemiczny

składników lub ich stężenie). Mała częstotliwość pola niesie za sobą niewielkie zmiany jej natężenia przy wzrastającej odległości od źródła. Fala zachowuje w przybliżeniu charakter sinusoidalny. Współczynnik absorpcji jest natomiast proporcjonalny do kwadratu częstotliwości zgodnie z równaniem:

$$\alpha = \frac{1}{2} \frac{\omega^2 \eta}{\rho_0 c^3} = \frac{2}{3} \frac{\omega^2 \eta'}{\rho_0 c^3} + \frac{1}{2} \frac{\omega^2 \eta''}{\rho_0 c^3}$$
 2.1.9

Zakładając, że tłumienie jest efektem lepkości ścinania oraz przepływu energii cieplnej z obszarów zagęszczonych do rozrzedzonych otrzymuje się równanie Stokesa-Kirchhoffa na absorpcję klasyczną:

$$\alpha_{klas} = \frac{2\pi^2}{\rho c^3} \left(\frac{4}{3} \eta' + \frac{\gamma - 1}{\gamma} \frac{\Omega}{C_V} \right) f^2 \qquad 2.1.10$$

gdzie: $\gamma = \frac{C_p}{C_p}$,

 $\Omega / (W m^{-1} K^{-1})$ - współczynnik przewodnictwa cieplnego.

W związku z bardzo małą konduktywnością cieplną większości cieczy gęstość strumienia energii jest niewielka co umożliwia sprowadzenie absorpcji klasycznej do absorpcji stokesowskiej:

$$\alpha_{klas} \approx \alpha_{st} = \frac{8\pi^2 \eta'}{3\rho_0 c^3} f^2. \qquad 2.1.11$$

Współczynnik absorpcji zdefiniowany za pomocą równań teorii klasycznej jednak nie pokrywa się z wielkościami wyznaczanymi doświadczalnie. Absorpcja otrzymywana na drodze eksperymentu jest większa od wyliczanej z modelu, ponadto przy wyższych częstotliwościach iloraz $\frac{\alpha}{f^2}$ maleje ze wzrostem częstotliwości, pojawia się również dyspersja prędkości. Różnice te są związane z lepkością objętościową (η "), pominiętą w teorii Stokesa. Adiabatyczny wzrost ciśnienia powoduje wzrost temperatury, a

więc energii kinetycznej molekuł. Nadwyżka ta jednak nie zostaje z powrotem zamieniona na energię sprężystą fali w fazie dekompresji. Zderzenia wzajemne molekuł powodują, że ta część energii przechodzi w inne jej formy tj. energię oscylacyjną, rotacyjną, konformacyjną, chemiczną czy strukturalną. Możliwe jest zatem przejście energii na nie translacyjne stopnie swobody. Powrót zaburzonego układu do stanu równowagi charakteryzuje się określonym czasem relaksacji. Trwa to na ogół wystarczająco długo, by powodować straty energii w pełnym cyklu kompresji i dekompresji. Parametry opisujące zmianę wewnętrznego stanu ośrodka są więc opóźnione w stosunku do fazy ciśnienia o kąt fazowy φ . Kąt ten jest również miarą absorpcji relaksacyjnej:

$$\alpha^{\rm E}\lambda \propto \varphi \qquad \qquad 2.1.12$$

gdzie: α^{E} – absorpcja nadmiarowa (niestokesowska).

Częstotliwość fali ma bardzo duży wpływ na przesunięcie fazowe. Gdy jest zbyt duża bądź zbyt mała procesy relaksacyjne są nie dostrzegalne. Relaksacja rotacyjna, na skutek sprzężenia ruchów translacyjnych i rotacyjnych, nie występuje przy częstotliwościach mniejszych od 10 GHz. Relaksacja oscylacyjna pojawia się przy bardzo dużych częstotliwościach ultradźwiękowych, np. dla CS_2 czasy relaksacji wynoszą 1-100 ns (Heasall, Lamb, 1956) a dla cieczy polarnych są one rzędu 10^{-12} s. W zakresie ultradźwiękowym istotny udział w dyssypacji energii ma relaksacja konformacyjna. W niższych temperaturach (~173 K) ta jednak przechodzi w zakres kilohercowy (Ernst, 1999).

Wartość absorpcji osiąga maksimum przy częstotliwościach charakterystycznych dla danych procesów relaksacyjnych:

$$f_{\rm c} = \frac{\omega_{\rm c}}{2\pi} = \frac{1}{2\pi\tau_{\rm c}}$$
 2.1.13

gdzie: τ_c – czas relaksacji

Energia przeniesiona na nietranslacyjne stopnie swobody jest wówczas największa. Absorpcja zależy ściśle od kinetycznego i termodynamicznego charakteru układu. Wyznaczenie współczynnika absorpcji w funkcji częstotliwości umożliwia zatem dokonanie charakterystyki kinetycznej układu poprzez znalezienie czasu relaksacji

$$\tau_{\rm p,s} = \frac{1}{2\pi f_{\rm c}} \,.$$

2.2.Wolumetria

W ogólnym przypadku, izotermiczno - izobarycznemu tworzeniu się roztworów nieidealnych towarzyszą efekty objętościowe, energetyczne oraz entropowe. Są one konsekwencją wzajemnych oddziaływań wszystkich cząsteczek w mieszaninie. Porównanie tych efektów z odpowiednimi dla pewnego, termodynamicznie idealnego, stanu odniesienia pozwala na ilościowe analizowanie efektów mieszania.

Potencjał chemiczny *i*-tego składnika roztworu idealnego doskonałego opisuje równanie:

$$\sum_{x} \mu_{i} = \mu_{i}^{0} + RT \ln x_{i}$$
 2.2.1

gdzie μ_i^0 to potencjał chemiczny czystego składnika "i". Jest on równy molowej entalpii swobodnej *i*-tego składnika (G^0_i). Korzystając z relacji termodynamicznych można zatem wyznaczyć objętość molową:

$$V = \left(\frac{\partial G}{\partial p}\right)_{T}$$
 2.2.2

a dla roztworu idealnego:

$$V^{id} = \left(\frac{\partial G^{id}}{\partial p}\right)_T = \frac{\partial}{\partial p} \sum_{i=1}^k x_i \left(\mu_i^0 + RT \ln x_i\right) = \sum_{i=1}^k x_i V_i^0 \qquad 2.2.3$$

gdzie: V_i^0 - objętość molowa czystej substancji

$$V = \sum_{i=1}^{k} x_i M_i / \rho$$
 - objętość molowa mieszaniny

x_i - ułamek molowy

 $M_{\rm i}$ - masa molowa.

Z definicji funkcji nadmiarowej:

$$E^E = E - E^{td}$$
 2.2.4

gdzie: E - rzeczywista (empiryczna) wartość funkcji molowej,

 E^{id} – wartość funkcji molowej w hipotetycznym roztworze idealnym doskonałym

o takim samym składzie jak rozważany układ rzeczywisty,

można dalej obliczyć objętość nadmiarową:

$$V^{E} = V - \sum_{i=1}^{k} x_{i} V_{i}^{0} .$$
 2.2.5

W szczególnych przypadkach zatem, jak na przykład objętości molowej, otrzymujemy bezpośrednio informacje na temat różnic w oddziaływaniach międzycząsteczkowych w roztworze i w czystych jego składnikach.

Wielkością dostarczającą więcej informacji o badanych układach jest jednak molowa rozszerzalność termiczna, a w szczególności jej nadmiar. Rozszerzalność termiczną definiuje się następująco:

$$A = \left(\frac{\partial V}{\partial T}\right)_p$$
 2.2.6

i oblicza wprost ze wzoru:

$$A = -\frac{1}{\rho^2} \sum_{i=1}^{k} x_i M_i \left(\frac{\partial \rho}{\partial T}\right)_{\rho}.$$
 2.2.7

Objętość i rozszerzalność termiczna należą do grupy termodynamicznych wielkości gibbsowskich. Wielkości te da się wyrazić jako pochodne entalpii swobodnej względem temperatury i ciśnienia bądź liniowe kombinacje takich pochodnych. Można pokazać, że jeśli dana funkcja termodynamiczna jest wielkością gibbsowską, to spełniony jest postulat Lewisa o stosowalności relacji Maxwella wprost do wielkości cząstkowych molowych (Douhéret i wsp., 2001). Dzięki tej właściwości, termodynamicznie poprawna analiza funkcji gibbsowskich jest zdecydowanie prostsza niż funkcji nie-gibbsowskich.

Korzystając z relacji Maxwella otrzymuje się wprost zależność pomiędzy nadmiarem entropii i rozszerzalności termicznej:

$$A^{\rm E} = -\left(\frac{\partial S^{\rm E}}{\partial p}\right)_T$$
 2.2.8

Zatem nadmiarowa rozszerzalność termiczna wiąże się z wpływem ciśnienia na nadmiarową entropię układu.

2.3. Niskokątowe rozpraszanie neutronów

Możliwość wykorzystania wiązki neutronów do poznania struktury oraz dynamiki fazy skondensowanej wynika wprost z równania De Broglie'a:

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$
 2.3.1

gdzie: h - stała Plancka,

m - masa neutronu,

v - prędkość neutronu.

Dla neutronów termicznych (o energiach rzędu kilkudziesięciu meV) długość fali obliczona zgodnie z równaniem 2.3.1 wynosi około 0,1 nm, co odpowiada odległościom pomiędzy atomami w fazach skondensowanych. Na tej podstawie można sądzić, że oddziaływanie neutronów o niskiej energii, poprzez ich własności optyczne, z materią skondensowaną staje się źródłem informacji na jej temat.

Wyjaśnienie mechanizmu rozpraszania neutronów opiera się na równaniu Schrödingera:

$$H_{\rm i}\,\psi_{\rm i}\,=\,E_{\rm i}\,\psi_{\rm i}$$

$$H \psi = E_{\rm s} \psi \qquad 2.3.3$$

$$H = H_{\rm i} + V \qquad 2.3.4$$

gdzie H_i jest operatorem energii kinetycznej wiązki padającej, V jest potencjałem oddziaływania neutronu z jądrem, E_i oraz E_s są odpowiednio wartościami własnymi energii neutronów padających na próbkę oraz rozproszonych, ψ_i i ψ natomiast są funkcjami własnymi dla neutronów padających oraz oddziałujących par neutron – jądro (Hammonda, 2008).

Dla wiązki padającej można napisać :

$$H_{i} = -\frac{\hbar^2}{2m} \nabla^2$$
 2.3.5

oraz

$$E_i = \frac{\hbar^2 k_i^2}{2m}$$
 2.3.6

gdzie: k_i jest wektorem falowym fali padającej.

Wówczas ψ_i jest rozwiązaniem poniższego równania:

$$(H_{i} - E_{i})\Psi_{i}(\vec{r}) = -\frac{\hbar^{2}}{2m} (\nabla^{2} + k_{i}^{2})\Psi_{i}(\vec{r}) = 0 \qquad 2.3.7$$

Falę padającą, w pewnej odległości od jądra, opisujemy zatem falą płaską: $\Psi_i(r) = i\vec{k}_i \cdot \vec{r}$. Dla wiązki oddziałującej otrzymujemy zaś poniższe równanie:

$$-\frac{\hbar^2}{2m}\left(\nabla^2 + k_x^2\right)\Psi(\vec{r}) = -V(\vec{r})\Psi(\vec{r}), \qquad 2.3.8$$

gdzie k_s jest wektorem falowym neutronów rozproszonych. Rozwiązanie równania przyjmuje następującą postać:

$$\Psi(\vec{r}) = \Psi_i(\vec{r}) + \left(\frac{m}{2\pi\hbar^2}\right) \int d\vec{r} G(\vec{r} - \vec{r}') V(\vec{r}') \Psi(\vec{r}'), \qquad 2.3.9$$

gdzie $G(\mathbf{r} - \mathbf{r}')$ jest funkcją Greena. Dalej można zapisać:

$$(H - E_s)G(\vec{r}) = -\frac{\hbar^2}{2m} (\nabla^2 + k_s^2)G(\vec{r}) = \delta(\vec{r}). \qquad 2.3.10$$

Wiązkę rozproszoną opisujemy więc falą kulistą zanikającą proporcjonalnie do 1/r: $G(r) = \frac{\exp(ik_s r)}{r}.$

Ostatecznie można zapisać, że w pewnej odległości od jądra funkcja falowa neutronu ma postać:

$$\Psi(\vec{r}) = \exp(i\vec{k}_{r}\cdot\vec{r}) + \frac{\exp(ik_{s}r)}{r}f(\theta). \qquad 2.3.11$$

Fala neutronowa składa się więc z płaskiej fali padającej oraz kulistej fali rozproszonej.

 $f(\theta)$ jest amplitudą (długością) rozpraszania neutronów dla kąta rozpraszania θ , określającą ułamek fali padającej ulegający rozproszeniu, definiowaną, zgodnie z przybliżeniem Borna, równaniem:

$$f(\theta) = \left(\frac{m}{2\pi\hbar^2}\right) \int d\vec{r}' \exp\left(-i\vec{Q}\cdot\vec{r}'\right) V(\vec{r}') \qquad 2.3.12$$

gdzie \vec{Q} jest wektorem rozpraszania, równym: $\vec{Q} = \vec{k}_s - \vec{k}_i$.

Amplituda rozpraszania jest na ogół wartością zespoloną. Dysproporcja pomiędzy wielkością jąder a długością fali neutronów termicznych skutkuje jej izotropowym charakterem. Ze względu na fakt, że moment pędu neutronów jest wielkością skwantowaną: $L = \sqrt{l(l+1)}\hbar$, neutrony mogą zbliżać się do jąder tylko wtedy gdy l = 0. Skutkiem tego rozproszeniu może ulegać jedynie fala *s*. Jej rozpraszanie nie zależy od

kąta. Jeżeli l = 1, neutron przechodzi w odległości od jądra równej $\lambda / 2\pi$, która jest znacznie większa od rozmiarów jąder.

Amplituda rozpraszania może przyjmować zarówno dodatnie jak i ujemne wartości. Dla wartości ujemnych rozpraszaniu towarzyszy zmiana fazy o π . Wartość oraz znak tej wielkości mogą być różne nawet w przypadku różnych izotopów tego samego pierwiastka, np. protu i deuteru.

Jako wyniki pomiarów otrzymuje się zależność natężenia wiązki rozproszonej od wektora *Q*:

$$Q = \frac{4\pi}{\lambda} \sin \frac{\theta}{2}$$
 2.3.13

którą dla małych kątów można uprościć do postaci:

$$Q = \frac{4\pi\theta}{\lambda}$$
 2.3.14

Parametr ten determinuje wielkość obiektów objętych zakresem pomiarowym. Generalnie technika ta pozwala badać obiekty, których wielkość wyrażana jest w nanometrach czyli pokrywa zakres od 10⁻¹⁰ do 10⁻⁶ m. Ostateczny zakres zależy jednak od użytego sprzętu. Typowa wartość kątów rozpraszania rozciąga się od 0,2° do 20° i obejmuje dwa zakresy pomiarowe. Pierwszy z nich odpowiada niskim wartościom wektora \vec{Q} i mieści się w przedziale 0,2 ÷ 2°, drugi natomiast pokrywa wysokie wartości wektora \vec{Q} i kąty z zakresu 2 ÷ 20°. Sama wartość wektora rozpraszania mieści się w przedziale od 0,001 do 0,45Å⁻¹ (Hammonda, 2008).

CZĘŚĆ DOŚWIADCZALNA
3. APARATURA POMIAROWA

3.1. Miernik prędkości propagacji fali ultradźwiękowej

Prędkość grupową propagacji fali ultradźwiękowej mierzono metodą zamkniętej pętli elektroakustycznej miernikiem typu sing-around, zaprojektowanym i skonstruowanym w Zakładzie Chemii Fizycznej UŚl (Ernst i wsp., 1992). Przyrząd ten jest przeznaczony do pomiarów prędkości w ośrodkach ciekłych nie wykazujących dyspersji.

Rysunek 3.1.1. Naczynie do pomiaru prędkości propagacji fali ultradźwiękowej metodą sing-around

Zastosowana metoda pomiarowa charakteryzuje się dużą prostotą. Na rysunku 3.1.1 przedstawiono naczynie pomiarowe. Zostało ono wykonane w Instytucie Lotnictwa w Warszawie. Korpus naczynia i osłony przetwornika wykonano ze stali nierdzewnej 1H18N9T. Przetworniki akustyczne o średnicy 12 mm pracują z częstotliwością 4 MHz. Impuls akustyczny wysyłany przez przetwornik nadawczy przechodzi przez badany ośrodek ciekły stanowiący linię opóźniającą. Następnie, po dojściu do odbiornika, jest

przetwarzany na sygnał elektryczny generujący kolejny impuls. Mierzona jest częstotliwość repetycji impulsu, powiązana w prosty sposób z prędkością grupową fali (Garnsey i wsp., 1969). W celu zwiększenia precyzji pomiaru, wzbudzenie kolejnego impulsu następuje po trzykrotnym przebyciu przez impuls wzbudzający drogi akustycznej.

Przed rozpoczęciem każdej serii pomiarowej oraz w trakcie jej trwania, przeprowadzano kalibrację przyrządu i pomiary sprawdzające. W tym celu wykorzystywano wodę redestylowaną oraz dodatkowo odgazowywaną przez zagotowanie, o przewodnictwie właściwym około 1,5 μ S cm⁻¹. Procedura kalibracyjna obejmowała 12 – 15 pomiarów w zakresie temperatury pokrywającym się z przyjętym zakresem pomiarowym. Do obliczenia prędkości przyjętych jako wartości prawdziwe wykorzystano wielomian empiryczny (Marczak, 1996). Stałe aparaturowe l_0 i τ_{el} obliczano z równania:

$$\tau = \frac{l_0 [1 + \alpha (T - T_0)]}{c} + \tau_{el}$$
3.1.1

gdzie: $l_0 - dlugość drogi akustycznej w temperaturze T_0 = 298,15 \text{ K},$

- α współczynnik rozszerzalności termicznej naczynia pomiarowego ($\alpha = 1.6 \times 10^{-5} \text{ K}^{-1}$ dla stali 1H18N9T (Reymer, 1988))
- T temperatura,
- c prędkość propagacji obliczona z wielomianu empirycznego (Marczak, 1997)
- τ_{el} opóźnienie czasowe w torze elektrycznym.

Każdy pomiar przeprowadzano w ciągu 10 minut (odczyt co 1 min.). Fluktuacje temperatury próbki w czasie pomiaru nie przekraczały 0,01K, zazwyczaj jednak mieściły się w granicach 0,005K.

Stabilizację temperatury umożliwiał układ dwóch kaskadowo połączonych termostatów. Temperatura wody w termostacie wewnętrznym regulowana była za pomocą proporcjonalno całkującego regulatora Unipan 660.

3.2. Przyrząd do pomiaru współczynnika tłumienia fali ultradźwiękowej

Współczynnik tłumienia ultradźwięków mierzono metodą pierwszego przechodzącego impulsu (Wehr, 1972). Przyrząd wykorzystany do pomiarów zaprojektowano i skonstruowano w Zakładzie Chemii Fizycznej UŚl oraz częściowo w Instytucie Podstawowych Problemów Techniki PAN (Rysunek 3.2.1).

Istotą pomiaru jest wyznaczenie zależności ubytku amplitudy fali ultradźwiękowej od odległości pomiędzy przetwornikami, nadawczym i odbiorczym, zanurzonymi w badanej cieczy. Układ pomiarowy stanowią dwie podstawowe części: elektroniczna oraz ultradźwiękowa. Część elektroniczna odpowiedzialna jest za wytworzenie sygnału dźwiękowego o pożądanych parametrach oraz jego odbiór po przejściu przez badaną substancję. Część ultradźwiękowa odpowiada za przetwarzanie sygnału elektrycznego na ultradźwiękowy a następnie, po przejściu przez próbkę, za ponowne przetworzenie go na sygnał elektryczny. W części nadawczej zastosowano zespół generatorów. Amplituda generowanych impulsów jest ustawiona tak, by była odpowiednio duża aby sygnał po

przejściu przez próbkę w postaci fali ultradźwiękowej i ponownym przetworzeniu na impuls elektryczny posiadał ciągle określony poziom, wyższy od poziomu szumów. Nie może być jednak zbyt wysoka ze względu na możliwość wystąpienia zjawisk nieliniowych.

W skład części odbiorczej układu elektronicznego wchodzi wzmacniacz oraz regulowany tłumik. Impulsy wyjściowe obrazowane są na oscyloskopie LeCroy LA314 o zakresie 400 MHz . Naczynie pomiarowe wykonano ze szkła. Cela otoczona jest płaszczem wodnym podłączonym do termostatu. Całość umieszczono na stoliku regulowanym w dwóch kierunkach w poziomie oraz nachylanym, celem zapewnienia liniowości i osiowości głowić akustycznych.

Piezoelektryczne przetworniki szerokopasmowe wykonane są z LiNbO₃. W celu uniknięcia zakłóceń pomiędzy przetwornikami oraz osiągnięcia lepszego dopasowania akustycznego, zastosowano linie opóźniające z topionego kwarcu. Pomiary prowadzone w szerokim zakresie częstotliwości wymagają dobrania odpowiednich par głowic. Wykorzystano głowice pracujące w zakresie od 12,5 do 26 MHz i od 30 do 80 MHz. Pomiar odległości pomiędzy głowicami, z dokładnością do 0,1µm, umożliwiał katetometr Carl Zeiss ABBE PO1.

Przyrząd cechowano kilkakrotnie w czasie prowadzenia pomiarów. Jako wzorca użyto wody destylowanej, dodatkowo odgazowanej przez zagotowanie. Pomiary testowe wykonywano z użyciem CCl₄.

Współczynnik tłumienia ultradźwięków α obliczono z przekształconego wzoru:

$$\alpha = \frac{1}{(l_2 - l_1)} 2 \ln \frac{A_1}{A_2}$$
 3.2.1

gdzie: A_1, A_2 – amplitudy w odległościach l_1 i l_2 od źródła zaburzenia

 $l_2 - l_1$ – droga na której zachodzi zmniejszenie amplitudy.

Mierzone tłumienie w funkcji odległości pomiędzy głowicami jest zależnością prostoliniową, której współczynnik kierunkowy wyznacza współczynnik absorpcji:

$$\ln A = -\frac{1}{2}\alpha \cdot l + const$$
 3.2.2

gdzie A oznacza amplitudę zmierzoną dla odległości między głowicami równej l.

Wahania temperatury w czasie pomiaru nie przekraczały 0,05 K. Dokładność przyrządu wynosi około 5%. Dokładny opis aparatury zawarty jest w pracach (Zorębski i wsp., 1990, 2006).

3.3. Densytometr oscylacyjny

Gęstość mierzono densytometrem oscylacyjnym Anton Paar DMA 5000 (rysunek 3.3.1). Precyzja pomiarów wynosiła 5×10^{-3} kg m⁻³, powtarzalność 1×10^{-3} kg m⁻³.

Rysunek 3.3.1. Densytometr oscylacyjny Anton Paar DMA 5000

Elementem pomiarowym przyrządu jest U–rurka ze szkła borokrzemowego o objętości około 1×10^{-6} m³ zespolona z elektronicznym systemem wzbudzania drgań. Częstość drgań U–rurki zależy od parametrów kapilary oraz substancji ją wypełniającej czyli badanej cieczy. Gęstość cieczy wprowadzonej do kapilary obliczana jest z zależności:

$$\rho = (\tau^2 - B)/A \tag{3.3.1}$$

gdzie: ρ – gęstość

 τ – okres drgań

A, B – stałe aparaturowe.

Stałe A i B wyznacza się poprzez pomiar okresu drgań U–rurki wypełnionej substancjami o znanej gęstości. Densytometr został wykalibrowany zgodnie z procedurą podaną przez producenta (*Instruction Manual*) za pomocą powietrza i wody destylowanej o przewodnictwie właściwym $1,3 \times 10^{-4}$ S m⁻¹, odgazowanej przez zagotowanie pod chłodnicą zwrotną.

Integralną część densytometru stanowi termostat peltierowski i układ pomiaru temperatury, zapewniający rozdzielczość pomiaru 0,001 K. Wahania temperatury podczas pomiaru wynosiły \pm 0,003 K, co nie wpływało w sposób znaczący na wyniki pomiarów.

Zmiany ciśnienia atmosferycznego również nie wywierają większego wpływu na gęstość. Znaczny wpływ na poprawność pomiarów densytometrem oscylacyjnym ma lepkość badanych substancji. Wzrost lepkości może prowadzić do zmniejszenia częstości rezonansowej U – rurki a w związku z tym zawyżenia wartości gęstości obliczanej z równania 3.3.1. Wpływ ten jest już widoczny przy substancjach o lepkości równej 1mPa s. Przy pomiarze gęstości substancji o lepkości równej 10 mPa s, wyniki otrzymane za pomocą densytometru oscylacyjnego są wyższe od uzyskanych na drodze pomiaru piknometrycznego o około 0,1 kg m⁻³ (Ashcroft i wsp., 1990). Aby więc otrzymywane wartości gęstości były prawdziwe, dla substancji o lepkościach powyżej 1 mPa s, do równania 3.3.1 należy wprowadzić poprawkę wyrażającą wzrost gęstości. Poprawka wyznaczana jest doświadczalnie i zależy od lepkości cieczy. Zmodyfikowane równanie 3.3.1 przedstawione jest poniżej:

$$\rho = \left(\frac{\tau^2 - B}{A}\right) \times \left(\frac{1 - D}{10^6}\right)$$
 3.3.2

gdzie: D – poprawka uwzględniająca lepkość cieczy

Równanie 3.3.2 pozwala otrzymać wyniki z dokładnością 5 × 10^{-3} kg m⁻³ (Ashcroft i wsp., 1990).

Densytometr Anton Paar 5000 automatycznie wprowadza poprawkę związaną z lepkością badanej próbki. Do jej wyznaczenia wykorzystuje się wyższe harmoniczne częstotliwości rezonansowej drgań kapilary pomiarowej.

3.4.Dyfraktometr SANS

Pomiary niskokątowego rozpraszania neutronów (SANS, Small Angle Neutron Scattering) przeprowadzono na dyfraktometrze PACE znajdującym się w Laboratoire Léon Brillouin w Comissariat à l'Energie Atomique et aux Energies Alternatives Saclay pod Paryżem oraz na dyfraktometrze Yellow Submarine znajdującym się w Budapest Neutron Center w Központi Fizikai Kutató Intézet (KFKI). Analiza ilościowa uzyskanych wyników przedstawiona w niniejszym tekście w całości opiera się na pomiarach wykonanych na PACE. Dane otrzymane przy użyciu Yellow Submarine dostarczyły jedynie informacji jakościowych.

Rysunek 3.4.1. Schemat budowy dyfraktometru PACE (Experimental Facilities)

Schemat budowy dyfraktometru PACE przedstawiony jest na rysunku 3.4.1. Przyrząd ten składa się z czterech, charakterystycznych dla wszystkich dyfraktometrów SANS, elementów (Experimental Facilities).

Monochromatyzacja wiązki odbywa się za pomocą mechanicznego selektora (DORNIER). Otrzymana długość fali neutronów zawiera się w zakresie 2 Å $< \lambda < 40$ Å, przy czym $\Delta\lambda / \lambda$ wynosi 5 – 10%, zależnie od kąta nachylenia wahającego się od 0° do 10°. Otrzymanie fali o tak małej długości daje możliwość osiągnięci dużych wartości wektora rozpraszania, nieczułych na otoczenie próbki. Typowa wartość wektora Q wynosi 2 × 10⁻³ $< Q / Å^{-1} < 0.5$. Maksymalny przekrój wiązki padającej na próbkę wynosi 2.5 cm × 3 cm, jednakże na ogół wielkość ta nie jest tak duża lecz równa 0.7 cm × 0.7 cm.

Kolimacja zachodzi przy przejściu przez dwie membrany o średnicach od 0,7 do 2,5 cm. Odległość pomiędzy nimi jest zmienna i wynosi od 2,5 do 5 m zależnie od odległości pomiędzy próbką i detektorem.

Badane próbki zmieniane są automatycznie. Istnieje możliwość badania 16 próbek w jednej serii pomiarowej. W czasie pomiaru próbki są termostatowane w granicach temperatury od 10 do 80°C. Detektor zbudowany jest z trzydziestu ułożonych koncentrycznie pierścieni o grubości 1 cm. Ich promienie zmieniają się od 3 do 32 cm. Został on wykonany z fluorku boru (BF₃).

Długa droga kolimacji oraz znaczna odległość próbka – detektor sprawiają, że układy do badania rozpraszania neutronów są bardzo duże. Ich średnia długość wynosi około 30m (Hammonda, 2008).

4. ODCZYNNIKI

Pirydyna oraz jej metylowe pochodne należą do grupy heterocyklicznych związków aromatycznych o następujących wzorach strukturalnych:

pirydyna 2-metylopirydyna 2,6-dimetylopirydyna Związki te są bezbarwnymi cieczami o ostrym nieprzyjemnym zapachu. Rozkład amin przebiega z wytworzeniem tlenków azotu, które nadają im, z biegiem czasu, żółte zabarwienie. Substancje te są wysoce łatwopalne oraz higroskopijne (Karta charakterystyki).

Pirydyna i 2-metylopirydyna mieszają się z wodą bez ograniczeń, 2,6-dimetylopirydyna wykazuje ograniczoną mieszalność w temperaturach powyżej 34°C (Andon, Cox, 1952). Wszystkie aminy mieszają się z metanolem w sposób nieograniczony.

Aminy wykorzystywane do sporządzenia roztworów oczyszczano poprzez destylację z kolumną rektyfikacyjną wypełnioną pierścieniami Raschiga. Temperatury wrzenia frakcji właściwych wynosiły odpowiednio:

pirydyna	114 °C
2-metylopirydyna	127 – 128 °C
2,6-dimetylopirydyna	141 – 142 °C

Pary destylatu pozostawały w kontakcie ze środkiem suszącym (Na₂O). Otrzymane destylaty przechowywano nad sitami molekularnymi typu 4Å, z dala od źródeł światła. Przed pierwszym użyciem sprawdzono czystość odczynników poprzez pomiar gęstości oraz prędkości. Wyznaczano także ułamek masowy " w_2 " wody metodą Karla Fischera. Czystość 2-metylopirydyny (partia nr 2) dodatkowo sprawdzano metodami spektroskopowymi.

Metanol, o czystości gwarantowanej przez producenta, przechowywano nad sitami molekularnymi. Wysoką czystość metanolu potwierdza jego gęstość równa wartościom literaturowym w granicach błędu pomiaru, oraz mała zawartość wody mierzona metodą Karla Fischera. Dane dotyczące odczynników zebrano w tablicy 4.1.

Tablica 4.1. Charakterystyka odczynników (w_2 – ułamek masowy wody oznaczony metodą Karla Fischera)

	pirydyna									
Nr	Durcharact	St.	ρ/k	$kg m^{-3}$	c /	m s ⁻¹		10^2		
partii	Producent	czystości	dośw.	lit.	dośw.	1	it.	$w_2 \times 10$		
1	Aldrich	≥99%	978,033 ^{25°C} 972,987 ^{30°C}	070 24 ²⁵ C ab	1417,13 ^{25°C} 1396,36 ^{30°C}			0,01		
2	Aldrich	≥99%	97 8,0 37 ^{25℃} 972,992 ^{30℃}	978,04 ^{25°C c,d} 978,04 ^{25°C c,d}	1416,69 ^{25°C} 1395,86 ^{30°C}	1419,2 1399 ³⁰	20 ^{25°C b}	0,01		
3	POCh	cz.d.a	978,004 ^{25℃}	972,81 ^{30°C f} 972,86 ^{30°C g}	-	1398,0	6 ^{30°C g}	0,008		
4	POCh	cz.d.a	97 8,000^{25℃}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-			0,008		
2-metylopirydyna										
Nr	Draducant	St.	$\rho^{25^{\circ}\text{C}}$ /	′ kg m ⁻³	$c^{25^{\circ}C}$	/ m s ⁻¹		$\sim 10^2$		
partii	Producent	czystości	dośw.	lit.	dośw.	l	it.	$w_2 \times 10$		
1	Aldrich	98%	939,11 8	939,81 ^a 940,4 ^h	1380,31	1 38	0,80 [/]	0,009		
2	Merck	≥98%	938,591	940,1' 939,623'	-			0,01		
			2,6-dim	etylopirydyna	1					
Nr	Deaducant	St.	$\rho^{25^{\circ}\text{C}}$ /	′ kg m ⁻³	$c^{25^{\circ}\text{C}} / \text{m s}^{-1}$			10^2		
partii	Producent	czystości	dośw.	lit.	dośw.	1	it.	w ₂ ^10		
1	Aldrich	98%	918,0 11	918.3 ^k	1361,08	136	1,01 "	0,01		
2	Aldrich	98%	917,995	918,06 ¹ 918 45 ^m	-			0,01		
3	Aldrich	98%	917 ,948	910,45				0,007		
	Metanol									
Nr partii	Producent	St. czystoś	ci do	$\frac{\rho^{25^{\circ}\mathbb{C}} / k}{b s w}.$	g m ⁻³ lit.		w ₂	×10 ²		
1	POCh	≥99,9%	786	5,551	0,78718°		0,	,008		
2	POCh	≥99,9%	786	5,514	0,78720 ^p 0,786600' 0,78630*		0,	,007		
3	POCh	≥99,9%	786	5,578			0,	,008		

^a Helm i wsp.; 1958

- ^b Gill i wsp., 2002
- ⁶ Findlay, 1969
- ^d Findlay, 1961
- e Nath, 1995
- ^f Timmermans, 1950
- ^g Nath, 1996
- ^h Heap i wsp., 1921
- Wilkie, Shaw, 1928

- ^j Ernst, Marczak, 1995
- ^k Brown i wsp., 1954
- ¹ Biddiscombe i wsp., 1954
- ^m Abe i wsp., 1978
- ⁿ Ernst i wsp., 1996
- ^o Villa i wsp., 2002
- ^{*p*} Gonzalez i wsp., 2007
- ['] Piekarski, Pietrzak, 2005
- Kadam i wsp., 2006

Ciężkiej wody oraz ciężkiego metanolu, o czystości izotopowej odpowiednio 99,9% i 99,8%, nie oczyszczano. Oba odczynniki dostarczyła firma Sigma..

Do kalibracji przyrządów oraz do sporządzenia roztworów, wykorzystano wodę redestylowaną o przewodnictwie właściwym około 1,5 μ S cm⁻¹.

Mieszaniny, wykorzystywane do pomiarów ultradźwiękowych i wolumetrycznych, przygotowano metodą wagową w kolbach stożkowych o pojemności 50 cm³ ze szlifem. Wykorzystano wagę analityczną Ohaus AS–200 o rozdzielczości 1×10^{-7} kg i dokładności 5×10^{-7} kg. Każda seria mieszanin sporządzona była z jednej partii odczynników. Roztwory przechowywano w eksykatorach, mieszaniny niewodne nad CaCl₂. Bezpośrednio przed pomiarem ciecze odgazowywano w myjce ultradźwiękowej Unitra-Unima UM-2 przez 5 minut.

Sposób przygotowania mieszanin wykorzystanych w pomiarach SANS przedstawiono w rozdziale 5.9.

5. OPRACOWANIE WYNIKÓW

5.1. Prędkość propagacji fali ultradźwiękowej

Zmierzono prędkość propagacji fali ultradźwiękowej w układach 2-metylopirydyna – metanol, 2,6-dimetylopirydyna – metanol, pirydyna – metanol oraz pirydyna – woda w całym zakresie stężeń, w przedziale temperatury 293 K ÷ 313 K, co około 5 K. Wyniki pomiarów przedstawiono w dodatku A. Otrzymane zależności temperaturowe prędkości opisano wielomianami drugiego stopnia o postaci:

$$c / (\text{m s}^{-1}) = \sum_{i=0}^{2} a_i (T / K - 298,15)^i$$
 5.1.1

gdzie: c - prędkość,

ai-współczynniki wielomianu,

T-temperatura.

Współczynniki równania (5.1.1) wyznaczone metodą najmniejszych kwadratów, przedstawiono w tablicach 5.2.1 – 5.2.4. Odchylenia od linii regresji nie przekraczały 0,09 m s⁻¹. Są zatem rzędu precyzji pomiaru. W oparciu o otrzymane funkcje dokonano dalszych obliczeń.

Rysunki 5.1.1 – 5.1.4 ilustrują zależności prędkości propagacji fali ultradźwiękowej od temperatury dla wybranych stężeń aminy.

Prędkość propagacji fali ultradźwiękowej w układach metanolowych wzrasta monotonicznie ze wzrostem stężenia aminy. Przebieg izoterm jest bardziej stromy w zakresie małych stężeń aminy. W przypadku układów 2-metylopirydyna – metanol i 2,6-dimetylopirydyna – metanol, powyżej ułamka molowego aminy $x_1 \approx 0,6$ prędkość zbliżona jest do prędkości w czystej aminie. W mieszaninach pirydyny z metanolem wzrost stężenia aminy pociąga za sobą wyraźne wzrost prędkości w całym zakresie stężeń.

W przypadku układu pirydyna – woda, izotermy prędkości propagacji fali ultradźwiękowej w funkcji stężenia aminy posiadają maksima przy stężeniu aminy $x_1 \approx 0,2$. Izotermy te przecinają się w obszarze odpowiadającym ułamkom molowym pirydyny $0,04 < x_1 < 0,06$. Analogiczne zjawisko zaobserwowano w przypadku mieszanin metylopirydyn z wodą (Ernst, Marczak, 1995; Ernst i wsp., 1996; Marczak, Ernst, 1998). Izotermy prędkości propagacji w funkcji ułamka molowego aminy przedstawiają rysunki 5.1.5 – 5.1.6.

Rysunek 5.1.1. Zależność prędkości propagacji fali ultradźwiękowej od temperatury, układ pirydyna – metanol; $x_1 = \circ - 0,0200$; $\blacksquare - 0,4999$. Punkty wyznaczone doświadczalnie, linie - obliczone metodą najmniejszych kwadratów wielomiany drugiego stopnia

Rysunek 5.1.2. Zależność prędkości propagacji fali ultradźwiękowej od temperatury, układ 2-metylopirydyna – metanol; $x_1 = \circ -0,0200$; $\blacksquare -0,4817$. Punkty wyznaczone doświadczalnie, linie - obliczone metodą najmniejszych kwadratów wielomiany drugiego stopnia

Rysunek 5.1.3. Zależność prędkości propagacji fali ultradźwiękowej od temperatury, układ 2,6-dimetylopirydyna – metanol; $x_1 = \circ -0,0200$; $\blacksquare -0,4991$. Punkty wyznaczone doświadczalnie, linie - obliczone metodą najmniejszych kwadratów wielomiany drugiego stopnia

Rysunek 5.1.4. Zależność prędkości propagacji fali ultradźwiękowej od temperatury, układ pirydyna – woda; $x_1 = \circ -0,0200$; $\bullet -0,0600$; $\blacksquare -0,5000$. Punkty wyznaczone doświadczalnie, linie - obliczone metodą najmniejszych kwadratów wielomiany drugiego stopnia

Rysunek 5.1.5. Izotermy prędkości w mieszaninach metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (■) 313,15K

a)

b)

Rysunek 5.1.6. Izotermy prędkości w mieszaninach pirydyny z wodą; a) cały zakres stężeń b) zakres stężeń zawierający przecięcie izoterm; (•) 293,15K; (o) 298,15K; (•) 303,15K; (o) 308,15K; (•) 313,15K

5.2.Gęstość

Gęstość badanych układów zmierzono w całym zakresie stężeń, w przedziale temperatury 278,15 K \div 323,15 K, co około 5 K. Wyniki pomiarów przedstawiono w dodatku B.

Temperaturową zależność gęstości opisano wielomianami drugiego lub trzeciego stopnia (wodne roztwory pirydyny o stężeniach $0,02 \le x_1 \le 0,08$), o postaci:

$$\rho / (\text{kg m}^{-3}) = \sum_{i=0}^{n} a_i (T / K - 298, 15)^i$$
 5.2.1

gdzie: ρ – gęstość,

a_i – współczynniki wielomianu,

T – temperatura.

Współczynniki równania (5.2.1) wyznaczone metodą najmniejszych kwadratów, przedstawiono w tablicach 5.2.1 – 5.2.4. Odchylenia od linii regresji nie przekraczały 0,015 kg m⁻³. Korzystając z otrzymanych funkcji dokonano dalszych obliczeń. Temperaturowe zależności gęstości wybranych mieszanin przedstawiają rysunki 5.2.1 – 5.2.4.

Na rysunkach 5.2.5, 5.2.6 przedstawiono izotermy gęstości analizowanych mieszanin w funkcji ułamka molowego aminy. Gęstość roztworów wzrasta monotonicznie ze wzrostem stężenia aminy w przypadku układów amina – metanol. Izotermy gęstości mieszanin pirydyny z wodą posiadają maksima przy stężeniu aminy $x \approx 0.2$. Te jednak zanikają ze wzrostem temperatury (rysunek 5.2.6.). Analogiczne zjawisko zaobserwowano dla układów metylopirydyna – woda (Ernst, Marczak, 1995; Ernst i wsp., 1996; Marczak, Ernst, 1998).

Tablica 5.2.1. Współczynniki regresji a_i wielomianów (5.1.1) oraz (5.2.1) opisujących zależność gęstości $\rho(\text{kg m}^{-3})$ oraz prędkości $c(\text{m s}^{-1})$ od temperatury wraz z odchyleniami od linii regresji (δ) dla mieszanin pirydyny z metanolem

	gęstość					pręd	kość	
<i>x</i> ₁	a_0	a_1	$a_2 \times 10^4$	$\delta_{ ho}$	a_0	a_1	$a_2 \times 10^3$	$\delta_{ m c}$
0	786,519	-0,9454	-4,15	0,017	1101,28	-3,3478	3,44	0,04
0,0200	795,038	-0,9487	-4,27	0,016	1115,51	-3,3761	3,72	0,01
0,0600	810,982	-0,9551	-4,47	0,015	1142,90	-3,4145	3,06	0,02
0,1000	825,565	-0,9609	-4,54	0,013	1168,05	-3,4891	3,04	0,01
0,2000	857,164	-0,9720	-4,74	0,013	1223,05	-3,6388	2,75	0,03
0,3000	882,846	-0,9789	-4,70	0,010	1267,36	-3,7749	3,53	0,01
0,4001	903,980	-0,98 27	-4,62	0,010	1303,22	-3,8731	3,15	0,02
0,4999	921,485	-0,9856	-4,31	0,008	1331,94	-3,9145	2,06	0,04
0,5997	936,223	-0,9882	-4,03	0,007	1355,81	-3,9618	3,25	0,04
0,6999	948,936	- 0,99 14	-3,61	0,007	1375,12	-4,0361	3,46	0,00
0,7999	959,863	-0,9957	-3,22	0,009	1391,39	-4,0910	3,55	0,04
0,8989	969,395	-1,0011	-2,56	0,007	1405,18	-4,1347	3,70	0,05
1	978,034	-1,0083	-1,86	0,004	1417,13	-4,1683	3,04	0,02

Tablica 5.2.2. Współczynniki regresji a_i wielomianów (5.1.1) oraz (5.2.1) opisującego zależność gęstości $\rho(\text{kg m}^{-3})$ oraz prędkości $c(\text{m s}^{-1})$ od temperatury wraz z odchyleniami od linii regresji (δ) dla mieszanin 2-metylopirydyny z metanolem

	gęstość				prędkość			
<i>x</i> ₁	a_0	a_1	$a_2 \times 10^4$	$\delta_{ ho}$	a_0	a_1	$a_2 \times 10^3$	$\delta_{ m c}$
0	786,556	-0,9453	-4,15	0,015	1101,32	-3,3381	3,62	0,01
0,0200	795,290	-0,9476	-4,29	0,015	1117,09	-3,3901	3,55	0,01
0,0599	811,398	-0,951 8	-4,47	0,014	1147,01	-3,4677	2,88	0,02
0,0998	825,780	-0,9556	-4,64	0,013	1174,42	-3,5568	3,38	0,03
0,1992	855,337	-0,9625	-4,70	0,012	1232,81	-3,7379	3,71	0,02
0,3000	877,694	-0,9640	-4,55	0,010	1277,24	-3,8909	3,70	0,05
0,3993	894,479	-0,9612	-4,49	0,009	1309,49	-3,9679	3,32	0,04
0,4817	904,912	-0,9571	-4,33	0,009	1329,18	-4,0039	2,61	0,01
0,6003	916,912	-0,9502	-4,05	0,009	1350,02	-4,0439	2,45	0,02
0,6994	924,487	-0,9451	-3,80	0,007	1361,69	-4,0712	3,31	0,00
0,7965	930,499	-0,9410	-3,45	0,006	1370,20	-4,0808	2,75	0,03
0,8993	935,268	-0,9381	-3,01	0,005	1376,43	-4,0933	2,10	0,02
1	939,115	-0,9361	-2,45	0,006	1380,31	-4,1070	3,52	0,02

Tablica 5.2.3. Współczynniki regresji a_i wielomianów (5.1.1) oraz (5.2.1) opisującego zależność gęstości $\rho(\text{kg m}^{-3})$ oraz prędkości $c(\text{m s}^{-1})$ od temperatury wraz z odchyleniami od linii regresji (δ) dla mieszanin 2,6-dimetylopirydyny z metanolem

	gęstość prędkość							
<i>x</i> ₁	a_0	<i>a</i> 1	$a_2 \times 10^4$	$\delta_{ ho}$	a_0	a_1	$a_2 \times 10^3$	$\delta_{ m c}$
0	786,560	-0,9453	-4,15	0,016	1101,34	-3,3454	3,67	0,02
0,0200	796,041	-0,9466	-4,31	0,016	1119,08	-3,3822	3,43	0,01
0,0600	813,082	-0,9497	-4,46	0,014	1152,36	-3,4939	3,29	0,01
0,0995	827,841	-0,9528	-4,65	0,013	1182,36	-3,6013	3,57	0,02
0,2001	857,136	-0,9585	-4,79	0,012	1245,27	-3,8355	3,46	0,08
0,2999	877,587	-0,9583	-4,69	0,011	1290,32	-3,9935	3,48	0,03
0,3997	891,611	-0,9511	-4,74	0,010	1320,80	-4,0770	2,98	0,04
0,4991	901,167	-0,9398	-4,86	0,010	1340,13	-4,1152	2,48	0,06
0,5990	907,613	-0,9278	-4,81	0,008	1352,13	-4,1515	2,46	0,04
0,7007	912,055	-0,9172	-4,64	0,007	1358,68	-4,1501	1,81	0,03
0,8006	914,976	-0,9094	-4,30	0,006	1361,73	-4,1794	2,94	0,02
0,8989	916,865	-0,9037	-3,96	0,006	1362,13	-4,1830	3,34	0,04
1	91 8,0 15	-0,9004	-3,43	0,005	1361,08	-4,2023	3,17	0,02

Tablica 5.2.4. Współczynniki regresji a_i wielomianów (5.1.1) oraz (5.2.1) opisującego zależność gęstości $\rho(\text{kg m}^{-3})$ oraz prędkości $c(\text{m s}^{-1})$ od temperatury wraz z odchyleniami od linii regresji (δ) dla mieszanin pirydyny z wodą

			gęstość			prędkość			
x_1	a_0	a_1	$a_2 \times 10^3$	$a_3 \times 10^5$	$\delta_ ho$	a_0	<i>a</i> 1	$a_2 \times 10^3$	$\delta_{ m c}$
0,0100	998,184	-0,303	-4,59	2,47	0,008	1520,25	1,9936	-30,95	0,05
0,0200	999,176	-0,353	-4,17	2,03	0,006	1535,92	1,4360	-27,03	0,04
0,0400	1000,573	-0,439	-3,45	1,31	0,004	1553,16	0,5956	-21,76	0,03
0,0600	1001,501	-0,509	-2,94	0,47	0,012	1561,96	-0,0421	-18,27	0,01
0,0800	1002,151	-0,567	-2,53	0,49	0,002	1567,12	-0,566 1	-15,34	0,02
0,1000	1002,652	-0,617	-2,18		0,007	1570,21	-1,0101	-13,20	0,02
0,2000	1003,584	-0,788	-1,38		0,004	1571,55	-2,4639	-5,73	0,01
0,3000	1002,757	-0,879	-1,09		0,005	1560,48	-3,1978	-2,55	0,01
0,4000	1000,343	-0,929	-0,98		0,005	1540,62	-3,5859	-1,00	0,03
0,5000	996,583	-0,952	-0,92		0,003	1514,00	-3,7462	-0,26	0,03
0,6000	992,141	-0,964	-0,84		0,004	14 8 6,22	-3,7951	-0,33	0,03
0,7000	98 7,755	-0,975	-0,69		0,005	1461,68	-3,8563	0,22	0,06
0,8000	983,810	-0,987	-0,50		0,007	1441,88	-3,9604	2,05	0,04
0,9000	9 8 0,477	-0,998	-0,33		0,006	1426,94	-4,0666	2,79	0,03
1,0000	97 8, 03 8	-1,008	-0,17		0,006	1416,69	-4,1808	2,95	0,03

Rysunek 5.2.1. Zależność gęstości od temperatury, układ pirydyna – metanol; $\circ - x_1 = 0,0200$; $\bullet - x_1 = 0,4999$. Punkty wyznaczone doświadczalnie, linie - wielomiany drugiego stopnia obliczone metodą najmniejszych kwadratów

Rysunek 5.2.2. Zależność gęstości od temperatury, układ 2-metylopirydyna – metanol; $\circ - x_1 = 0,0200$; $\blacksquare - x_1 = 0,4817$. Punkty wyznaczone doświadczalnie, linie - wielomiany drugiego stopnia obliczone metodą najmniejszych kwadratów

Rysunek 5.2.3. Zależność gęstości od temperatury, układ 2,6-dimetylopirydyna – metanol; $\circ - x_1 = 0,0200; \quad -x_1 = 0,4991$. Punkty wyznaczone doświadczalnie, linie wielomiany drugiego stopnia obliczone metodą najmniejszych kwadratów

Rysunek 5.2.4. Zależność gęstości od temperatury, układ pirydyna – woda; $\circ - x_1 = 0,0200$; $\bullet - x_1 = 0,0600$; $\bullet - x_1 = 0,5000$. Punkty wyznaczone doświadczalnie, linie - wielomiany drugiego lub trzeciego stopnia obliczone metodą najmniejszych kwadratów

Rysunek 5.2.5. Izotermy gęstości mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (■) 313,15K

Rysunek 5.2.6. Izotermy gęstości mieszanin pirydyny z wodą; (●) 293,15K; (○) 298,15K; (●) 303,15K; (□) 308,15K; (■) 313,15K

5.3.Objętość molowa

Objętość molowa obliczona została ze wzoru:

$$V = \frac{x_1 M_1 + (1 - x_1) M_2}{\rho}$$
 5.3.1

gdzie: ρ – gęstość roztworu, dana wielomianem 5.2.1.

M – masa molowa aminy (1) i metanolu lub wody (2),

 x_1 – ułamek molowy aminy.

Wyniki obliczeń przedstawiono w tablicach 5.3.1 - 5.3.4 oraz na rysunku 5.3.1.

	$V \times 10^6 / (m^3 mol^{-1})$								
T/K	293,15	298,15	303,15	308,15	313,15				
0	40,494	40,736	40,983	41,234	41,489				
0,0200	41,238	41,484	41,733	41 ,98 7	42,245				
0,0600	42,738	42,989	43,245	43,504	43,768				
0,1000	44,253	44,510	44,771	45,037	45,307				
0,2000	48,088	48,360	48,636	48,917	49,203				
0,3000	51,996	52,283	52,575	52,872	53,174				
0,4001	55,968	56,272	56,580	56,893	57,211				
0,4999	59,980	60,300	60,625	60,955	61,290				
0,5997	64,030	64,367	64,709	65,057	65,409				
0,6999	68,119	68,474	68,834	69,199	69,570				
0,7999	72,223	72,597	72,976	73,361	73,750				
0,8989	76,296	76,689	77,088	77,492	7 7,90 1				
1	80,462	80,877	81,296	81,721	82,151				

Tablica 5.3.1. Objętość molowa mieszanin pirydyny(1) z metanolem(2)

Tablica 5.3.2. Objętość molowa mieszanin 2-metylopirydyny(1) z metanolem(2)

	$V \times 10^6 / (m^3 \text{ mol}^{-1})$								
T/K	293,15	298,15	303,15	308,15	313,15				
0	40,492	40,735	40,981	41,232	41,487				
0,0200	41,576	41,823	42,075	42,330	42,590				
0,0599	43,741	43,997	44,257	44,522	44,791				
0,0998	45,917	46,183	46,452	46,726	47,004				
0,1992	51,397	51, 686	51 ,979	52,277	52,580				
0,3000	57,072	57,385	57,703	58,025	5 8 ,353				
0,3993	62,753	63,090	63,431	63 ,77 8	64,131				
0,4817	67,568	67,925	68,287	68,654	69,027				
0,6003	74,552	74,938	75,329	75,726	76,128				
0,6994	80,461	80,872	81,288	81,710	82,139				
0,7965	86,288	86,724	87,166	87,613	88,067				
0,8993	92,533	92,996	93,466	93,941	94,424				
1	98,675	99,166	99,663	100,167	100,677				

	$V \times 10^6 / (\text{m}^3 \text{ mol}^{-1})$							
T/K	293,15	298,15	303,15	308,15	313,15			
0	40,492	40,734	40,981	41,232	41,487			
0,0200	41,888	42,136	42,389	42,646	42,907			
0,0600	44,688	44,948	45,213	45,482	45,756			
0,0995	47,458	47,731	48,008	48,289	48,575			
0,2001	54,610	54,915	55,224	55,539	55,859			
0,2999	61,840	62,177	62,519	62,867	63,220			
0,3997	69,238	69,606	69,9 8 0	70,360	70,746			
0,4991	76,753	77,153	77,558	77,970	78,388			
0,5990	84,441	84,872	85,309	85,753	86,204			
0,7007	92,371	92,834	93,304	93,78 2	94,267			
0,8006	100,241	100,738	101,243	101,754	102,274			
0,8989	108,052	108,584	109,122	109,669	110,224			
1	116,151	116,719	117,296	117,880	118,472			

Tablica 5.3.3. Objętość molowa mieszanin 2,6-dimetylopirydyny(1) z metanolem(2)

Tablica 5.3.4. Objętość molowa mieszanin pirydyny(1) z wodą(2)

	$V \times 10^6 / (m^3 \text{ mol}^{-1})$								
T/K	293,15	298,15	303,15	308,15	313,15				
0	18,052	18,073	18,099	18,128	18,162				
0,0100	18,639	18,665	1 8,695	18,730	1 8,768				
0,0200	19,226	19,258	19,293	19,332	19,376				
0,0400	20,409	20,452	20,498	20,548	20,601				
0,0600	21,599	21,652	21,709	21,769	21,832				
0,0800	22,794	22,857	22,924	22,993	23,066				
0,1000	23,992	24,064	24,140	24,218	24,300				
0,2000	30,011	30,128	30,248	30,371	30,497				
0,3000	36,087	36,244	36,405	36,569	36,736				
0,4000	42,242	42,437	42,636	42,839	43,046				
0,5000	4 8 ,496	48,727	4 8 ,962	49,201	49,446				
0,6000	54,836	55,101	55,371	55,647	55,927				
0,7000	61,228	61,529	61,836	62,147	62,464				
0,8000	67,646	67,985	68,328	68,6 77	69,031				
0,9000	74,069	74,445	74,827	75,214	75,606				
1	80,462	80,876	81,296	81,720	82,150				

Rysunek 5.3.1. Izotermy objętości molowej mieszanin metanolu z pirydyną (\circ), 2-metylopirydyną (\diamond), 2,6-dimetylopirydyną (\Box) oraz wody z pirydyną (Δ), w funkcji ułamka molowego aminy; symbole wypełnione - T = 293,15K; symbole puste - T = 313,15K

5.4. Molowa rozszerzalność izobaryczna

Molowa rozszerzalność izobaryczna obliczona została ze wzoru:

$$A = V\alpha \tag{5.4.1}$$

gdzie: V - objętość molowa, dana wzorem 5.3.1.

$$\alpha$$
 - współczynnik rozszerzalności termicznej: $\alpha = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{\rho}$ 5.4.2

 ρ – gęstość dana wielomianem 5.2.1.

Tablice 5.4.1 – 5.4.4 zawierają wyniki obliczeń. Izotermy molowych rozszerzalności izobarycznych w funkcji ułamka molowego aminy przedstawiają rysunki 5.4.1, 5.4.2. Są one funkcjami monotonicznie rosnącymi w przypadku wszystkich badanych układów.

	$A \times 10^9 / (\text{m}^3 \text{ mol}^{-1} \text{ K}^{-1})$								
T/K	293,15	298 ,15	303,15	308,15	313,15				
0	48,173	48,968	49,780	50,612	51,463				
0,0200	48,697	49,501	50,324	51,166	52,028				
0,0600	49,803	50,627	51,470	52,333	53,215				
0,1000	50,969	51,807	52,665	53,542	54,440				
0,2000	53,959	54,838	55,737	56,656	57,597				
0,3000	57,059	57,970	58,901	59,8 52	60,825				
0,4001	60,232	61,174	62,137	63,121	64,126				
0,4999	63,536	64,498	65,480	66,482	67,506				
0,5997	66,958	67,942	68,946	69,971	71,017				
0,6999	70,539	71,537	72,555	73,593	74,653				
0,7999	74,295	75,310	76,345	77,400	7 8 ,476				
0,8989	78,189	79,201	80,231	81,28 1	82,350				
1	82,377	83,381	84,404	85,445	86,505				

Tablica 5.4.1. Molowa rozszerzalność izobaryczna układu pirydyna (1) – metanol(2)

Tablica 5.4.2. Molowa rozszerzalność izobaryczna układu 2-metylopirydyna(1) – metanol(2)

$A \times 10^9 / (\text{m}^3 \text{ mol}^{-1} \text{ K}^{-1})$								
T/K	293,15	29 8 ,15	303,15	308,15	313,15			
0	48,161	48,955	49,768	50,599	51,450			
0,0200	49,022	49,832	50,66 1	51,510	52,378			
0,0599	50,771	51,610	52,467	53,344	54,242			
0,0998	52,577	53,445	54,333	55,242	56,171			
0,1992	57,233	58,162	59,110	60,080	61,072			
0,3000	62,051	63,03 1	64,032	65,054	66,099			
0,3993	66,760	67,794	68,850	69,929	71,031			
0,4817	70,765	71,839	72,935	74,055	75,1 98			
0,6003	76,534	77,659	7 8,8 06	7 9,9 77	8 1,172			
0,6994	81,506	82,672	83,862	85,075	86,313			
0,7965	86,510	8 7,707	88,927	90,171	91,439			
0,8993	92,052	93,275	94,521	95,791	97,086			
1	97,616	9 8 ,849	100,104	101,382	102,684			

<u>(2)</u>						
$A \times 10^{9} / (\text{m}^3 \text{ mol}^{-1} \text{ K}^{-1})$						
T/K	293,15	298,15	303,15	308,15	313,15	
0	48,163	48,957	49,769	50,601	51,452	
0,0200	49,290	50,105	50,938	51,791	52,664	
0,0600	51,652	52,502	53,371	54,260	55,170	
0,0995	54,045	54,935	55,846	56,777	57,730	
0,2001	60,424	61,407	62,412	63,439	64,490	
0,2999	66,814	67,881	68,9 71	7 0,08 4	71,222	
0,3997	73,098	74,248	75,422	76,622	77,848	
0,4991	79,218	80,459	81,727	83,022	84,345	
0,5990	85,438	86,76 1	88,112	89,491	90,899	
0,7007	91,964	93,362	94,78 7	96,242	97,727	
0,8006	98,672	100,126	101,609	103,121	1 04,66 4	
0,8989	105,515	107,024	108,562	110,131	111,731	
1	112,935	114,480	116,054	117,659	119,294	

Tablica 5.4.3. Molowa rozszerzalność izobaryczna układu 2,6-dimetylopirydyna (1) – metanol(2)

Tablica 5.4.4. Molowa rozszerzalność izobaryczna układu pirydyna (1) – woda(2)

$A \times 10^{9} / (\text{m}^3 \text{ mol}^{-1} \text{ K}^{-1})$							
T/K	293,15	298 ,15	303,15	308,15	313,15		
0	3,698	4,637	5,504	6,300	7,026		
0,0100	4,765	5,670	6,514	7,297	8,019		
0,0200	5,946	6,799	7,601	8,354	9,057		
0,0400	8,209	8,968	9,697	10,396	11,064		
0,0600	10,306	10,999	11,687	12,371	13,050		
0,0800	12,284	12,938	13,585	14,226	14 ,861		
0,1000	14,198	14,808	15,428	16,059	16,702		
0,2000	23,059	23,653	24,258	24,877	25,508		
0,3000	31,111	31,777	32,457	33,151	33 ,86 1		
0,4000	38,618	39,392	40,183	40,991	41, 8 17		
0,5000	45,680	46,565	47,470	48,395	49,340		
0,6000	52,575	53,551	54,54 8	55,566	56,607		
0,7000	59,726	60,743	61,781	62,842	63,926		
0,8000	67,165	68,187	69,230	70,294	71,380		
0,9000	74,775	75,791	76,827	77,883	7 8,9 59		
1	8 2,394	83,389	84,403	8 5,434	86,484		

Rysunek 5.4.1. Izotermy molowej rozszerzalności izobarycznej mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 313,15K

Rysunek 5.5.2. Izotermy molowej rozszerzalności izobarycznej układu pirydyna – woda; (•) 293,15K; (•) 313,15K

5.5. Molowa ściśliwość adiabatyczna

Współczynnik ściśliwości adiabatycznej obliczono z wzoru Laplace'a, na podstawie otrzymanych eksperymentalnie wartości gęstości i prędkości:

$$\kappa_{\rm s} = (\rho c^2)^{-1} \tag{5.5.1}$$

gdzie: ρ – gęstość, dana równaniem 5.2.1

c – prędkość propagacji fali ultradźwiękowej, dana równaniem 5.1.1.

Obliczenia wykonano dla temperatur z zakresu 293,15 ÷ 313,15 K z interwałem wynoszącym 5K. Uzyskane wyniki posłużyły do obliczenia molowej ściśliwości adiabatycznej:

$$K_s = V \kappa_s \tag{5.5.2}$$

gdzie V jest objętością molową, dana równaniem 5.3.1.

Wyniki obliczeń zestawiono w tablicach 5.5.1 – 5.5.4 oraz przedstawiono na rysunkach 5.5.1, 5.5.2.

Izotermy molowej ściśliwości adiabatycznej są krzywymi wklęsłymi. Otrzymane linie nie przecinają się w przypadku układów amina – metanol. Krzywe dla układu pirydyna – woda przecinają się w przedziale stężeń aminy $x_1 \approx 0.03 \div 0.04$ (rys. 5.5.2b).

$K_{\rm s} \times 10^{14} /({\rm m}^3{\rm mol}^{-1}{\rm Pa}^{-1})$						
T/K	293,15	298,15	303,15	308,15	313,15	
0	4,093	4,270	4,455	4,650	4,854	
0,0200	4,020	4,193	4,374	4,565	4,764	
0,0600	3,893	4,058	4,231	4,413	4,605	
0,1000	3,792	3,952	4,120	4,296	4,482	
0,2000	3,620	3,772	3,931	4,097	4,273	
0,3000	3,540	3,687	3,841	4,003	4,173	
0,4001	3,520	3,665	3,818	3,978	4,146	
0,4999	3,544	3,689	3,840	4,000	4,167	
0,5997	3,595	3,740	3,892	4,052	4,220	
0,6999	3,668	3,816	3,971	4,134	4,305	
0,7999	3,755	3,907	4,066	4,232	4,407	
0,8989	3,851	4,007	4,170	4,340	4,519	
1	3,958	4,118	4,285	4,461	4,645	

 Tablica 5.5.1. Molowa ściśliwość adiabatyczna mieszanin pirydyny(1) z metanolem(2)

Tablica 5.5.2. Molowa ściśliwość adiabatyczna mieszanin 2-metylopirydyny(1) z metanolem(2)

$K_{\rm s} \times 10^{14} /({\rm m}^3{\rm mol}^{-1}{\rm Pa}^{-1})$						
T/K	293,15	298,15	303,15	308,15	313,15	
0	4,093	4,270	4,455	4,649	4,853	
0,0200	4,040	4,214	4,397	4,588	4,790	
0,0599	3,953	4,121	4,299	4,485	4,681	
0,0998	3,889	4,055	4,229	4,411	4,603	
0,1992	3,815	3,976	4,145	4,323	4,510	
0,3000	3,846	4,008	4,178	4,357	4,544	
0,3993	3,948	4,113	4,286	4,468	4,659	
0,4817	4,080	4,249	4,426	4,612	4,808	
0,6003	4,308	4,484	4,670	4,864	5,069	
0,6994	4,533	4,718	4,912	5,115	5,328	
0,7965	4,771	4,964	5,167	5,380	5,604	
0,8993	5,045	5,248	5,462	5,687	5,923	
1	5,327	5,542	5,768	6,004	6,251	

$K_{\rm s} \times 10^{14} /({\rm m}^3{\rm mol}^{-1}{\rm Pa}^{-1})$						
0	4,093	4,270	4,455	4,650	4,854	
0,0200	4,053	4,227	4,409	4,601	4,802	
0,0600	3,992	4,163	4,342	4,530	4,728	
0,0995	3,955	4,124	4,302	4,488	4,684	
0,2001	3,962	4,132	4,309	4,496	4,693	
0,2999	4,082	4,255	4,438	4,630	4,832	
0,3997	4,294	4,475	4,666	4,866	5,077	
0,4991	4,576	4,767	4,968	5,180	5,403	
0,5990	4,9 11	5,115	5,330	5,555	5,793	
0,7007	5,296	5,514	5,744	5,986	6,241	
0,8006	5,702	5,938	6,185	6,445	6 ,71 8	
0,8989	6,130	6,383	6,648	6,927	7,219	
1	6,59 1	6,863	7,149	7,450	7,766	

Tablica 5.5.3. Molowa ściśliwość adiabatyczna mieszanin 2,6-dimetylopirydyny(1) z metanolem(2)

Tablica 5.5.4. Molowa ściśliwość adiabatyczna mieszanin pirydyny(1) z wodą(2)

$K_{\rm s} \times 10^{14} /({\rm m}^3{\rm mol}^{-1}{\rm Pa}^{-1})$						
T/K	293,15	298,15	303,15	308,15	313,15	
0	0,823	0,809	0,798	0,789	0,783	
0,0100	0,818	0,809	0,802	0,797	0,794	
0,0200	0,823	0,817	0,813	0,811	0,8 11	
0,0400	0,848	0,847	0,849	0,851	0,855	
0,0600	0,882	0,886	0,892	0,898	0,906	
0,0800	0,921	0,929	0,938	0,948	0,960	
0,1000	0,962	0,973	0,986	1,000	1,016	
0,2000	1,188	1,216	1,245	1,276	1,308	
0,3000	1,442	1,484	1,529	1,575	1,624	
0,4000	1,731	1, 78 7	1,847	1,909	1,975	
0,5000	2,062	2,133	2,208	2,287	2,369	
0,6000	2,428	2,514	2,605	2,701	2,801	
0,7000	2,812	2,916	3,024	3,138	3,257	
0,8000	3,202	3,324	3,451	3,585	3,725	
0,9000	3,588	3,729	3,877	4,031	4,193	
1	3,960	4,120	4,288	4,464	4,649	

Rysunek 5.5.1. Izotermy molowej ściśliwości adiabatycznej mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (■) 313,15K

a)

b)

Rysunek 5.5.2. Izotermy molowej ściśliwości adiabatycznej układu pirydyna – woda w funkcji ułamka molowego pirydyny; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (•) 313,15K

5.6. Termodynamiczne funkcje nadmiarowe

Nadmiarowe molowe objętości (V^E), rozszerzalności termiczne (A^E) i ściśliwości adiabatyczne (K_s^E) obliczono z definicji (równanie 2.2.4).

Objętość molowa oraz molowa rozszerzalność termiczna układu idealnego doskonałego dana jest wzorem:

$$E^{id} = x_1 E_1^0 + (1 - x_1) E_2^0, \qquad 5.6.1$$

gdzie E oznacza objętość (V) lub rozszerzalność (A), a indeksy 1 i 2 odpowiednio aminę i metanol lub wodę, a indeks górny ⁰ - substancję czystą.

Molowa ściśliwość adiabatyczna układu idealnego doskonałego wyraża się równaniem:

$$K_{s}^{\rm id} = K_{s} - \left[K_{T}^{\rm id} - \frac{T(A^{\rm id})^{2}}{C_{p}^{\rm id}} \right],$$
 5.6.2

gdzie C_p^{id} , A^{id} i K_T^{id} oznaczają odpowiednio molową izobaryczną pojemność cieplną, molową rozszerzalność termiczną i molową ściśliwość izotermiczną układu idealnego doskonałego. Wielkości te obliczono według wzoru 5.6.1. Pojemności cieplne czystych substancji obliczono na podstawie danych literaturowych (Das i wsp., 1993; Zábranský i wsp., 1990). W przypadku 2,6,-dimetylopirydyny ze względu na brak danych literaturowych odnośnie temperaturowej zależności C_p , przyjęto wartość stałą wyznaczoną dla 298,15K, wynoszącą 185,17 J mol⁻¹ K⁻¹ (Domalski, Hearing, 1990).

Wielkości nadmiarowe w funkcji składu i temperatury zebrano w tablicach 5.6.1 - 5.6.6. oraz wykreślono na rysunkach 5.6.1 - 5.6.6.

Izotermy nadmiarowych wielkości molowych w funkcji ułamka molowego aminy aproksymowano wielomianami Redlicha-Kistera o postaci:

$$E^{\rm E} = x_1 (1 - x_1) \sum_{i=0}^{n} a_i (1 - 2x_1)^i$$
 5.6.3

gdzie E^{E} – funkcje nadmiarowe: $V^{\text{E}} \times 10^6$ / (m³ mol⁻¹), $A^{\text{E}} \times 10^9$ / (m³ mol⁻¹ K⁻¹) lub $K_s^{\text{E}} \times 10^{14}$ / (m³ mol⁻¹ Pa⁻¹)

a_i – współczynniki wielomianu

 x_1 – ułamek molowy aminy

Współczynniki a_i wielomianu (5.6.3) obliczono metodą najmniejszych kwadratów. Eliminację współczynników nieistotnych przeprowadzono w oparciu o test *t* (Czermiński i wsp., 1990). Współczynniki a_i otrzymane dla poszczególnych funkcji nadmiarowych zestawiono w tablicach 5.6.7 – 5.6.12. Izotermy funkcji nadmiarowych wykreślono na rysunkach 5.6.1. – 5.6.6.

W przypadku nadmiarowej molowej ściśliwości adiabatycznej oraz nadmiarowej objętości molowej, wszystkie otrzymane wartości funkcji są ujemne w całym zakresie stężeń i temperatury. Minima tych nadmiarów pogłębiają się ze wzrostem temperatury dla układów amina – metanol. Odwrotny efekt zaobserwowano dla układu pirydyna – woda.

Izotermy nadmiarowej molowej rozszerzalności izobarycznej odznaczają się większą asymetrią w porównanie z izotermami nadmiarowych objętości i ściśliwości. Jest to powodem nieco gorszego dopasowania wielomianów Redlicha – Kistera. Wartości rozszerzalności nadmiarowych w układzie pirydyna woda są dodatnie, co stanowi zasadniczą różnicę w porównaniu z układami metanolowymi. Odstępstwa od idealności maleją ze wzrostem temperatury niezależnie od rozpatrywanego układu.
		$V^{\rm E} \times 10^6$ /	$(m^3 mol^{-1})$		
T/K	293,15	298,15	303,15	308,15	313,15
		pirydyna	– metanol		
0,0200	-0,055	-0,055	-0,056	-0,057	-0,058
0,0600	-0,153	-0,156	-0,158	-0,159	-0,161
0,1000	-0,237	-0,240	-0,243	-0,246	-0,249
0,2000	-0,400	-0,405	-0,410	-0,415	-0,419
0,3000	-0,489	-0,495	-0,502	-0,508	-0,514
0,4001	-0,517	-0,525	-0,532	-0,540	-0,546
0,4991	-0,494	-0,503	-0,511	-0,519	-0,526
0,5997	-0,433	-0,441	-0,450	-0,457	-0,465
0,6999	-0,349	-0,357	-0,364	-0,371	-0,378
0,7999	-0,241	-0,247	-0,253	-0,259	-0,264
0,8989	-0,125	-0,129	-0,132	-0,136	-0,139
	2-	metylopiryd	yna – metan	ol	
0,0200	-0,079	-0,080	-0,080	-0,081	-0,081
0,0599	-0,236	-0,237	-0,239	-0,241	-0,242
0,0998	-0,381	-0,383	-0,386	-0,388	-0,390
0,1992	-0,684	-0,688	-0,692	-0,695	-0,698
0,3000	-0,874	-0,879	-0,883	-0,887	-0,891
0,3993	-0,971	-0,976	-0,982	-0,987	-0,991
0,4817	-0,950	-0,956	-0,961	-0,967	-0,972
0,6003	-0,867	-0,873	-0,879	-0,885	-0,890
0,6994	-0,723	-0,729	-0,735	-0,741	-0,746
0,7965	-0,546	-0,551	-0,556	-0,560	-0,565
0,8993	-0,283	-0,285	-0,288	-0,291	-0,293
	2,6-	dimetylopir	ydyna – met	anol	
0,0200	-0,117	-0,118	-0,119	-0,119	-0,120
0,0600	-0,343	-0,345	-0,347	-0,349	-0,351
0,0995	-0,561	-0,564	-0,567	-0,569	-0,572
0,2001	-1,021	-1,024	-1,027	-1,030	-1,033
0,2999	-1,342	-1,346	-1,349	-1,352	-1,355
0,3997	-1,495	-1,499	-1,504	-1,508	-1,512
0,4991	-1,500	-1,506	-1,512	-1,517	-1,522
0,5990	-1,370	-1,377	-1,384	-1,391	-1,397
0,7007	-1,135	-1,143	-1,150	-1,157	-1,164
0,8006	-0,823	-0,830	-0,836	-0,842	-0,848
0,8989	-0,449	-0,454	-0,458	-0,462	-0,465

 Tablica 5.6.1. Nadmiarowa objętość molowa mieszanin aminy(1) z metanolem(2)

	<u> </u>	$V^{\rm E} \times 10^6$ /	$(m^3 mol^{-1})$		<u> </u>
T/K	293,15	298,15	303,15	308,15	313,15
0,0100	-0,038	-0,037	-0,035	-0,034	-0,033
0,0200	-0,075	-0,072	-0,069	-0,067	-0,064
0,0400	-0,140	-0,134	-0,128	-0,123	-0,119
0,0600	-0,198	-0,189	-0,181	-0,175	-0,168
0,0800	-0,251	-0,240	-0,231	-0,222	-0,215
0,1000	-0,302	-0,289	-0,279	-0,269	-0,260
0,2000	-0,523	-0,506	-0,490	-0,476	-0,463
0,3000	-0,688	-0,670	-0,653	-0,637	-0,622
0,4000	-0,774	-0,757	-0,741	-0,726	-0,711
0,5000	-0,761	-0,748	-0,736	-0,723	-0,710
0,6000	-0,662	-0,654	-0,646	-0,637	-0,628
0,7000	-0,511	-0,506	-0,501	-0,495	-0,489
0,8000	-0,334	-0,331	-0,328	-0,325	-0,321
0,9000	-0,152	-0,150	-0,149	-0,147	-0,145

Tablica 5.6.2. Nadmiarowa objętość molowa mieszanin pirydyny(1) z wodą(2)

em(2)					
		$A^{\rm E} \times 10^9 / ({\rm r}$	$m^3 mol^{-1} K^{-1}$)		
T/K	293,15	298,15	303,15	308,15	313,15
	<u> </u>	pirydyna	– metanol		
0,0200	-0,161	-0,155	-0,149	-0,142	-0,136
0,0600	-0,423	-0,405	-0,388	-0,369	-0,350
0,1000	-0,625	-0,602	-0,578	-0,553	-0,527
0,2000	-1,055	-1,012	-0,968	-0,922	-0,875
0,3000	-1,375	-1,322	-1,266	-1,209	-1,150
0,4001	-1,626	-1,562	-1,496	-1,428	-1,357
0,4999	-1,736	-1,673	-1,609	-1,543	-1,474
0,5997	-1,727	-1,664	-1,598	-1,531	-1,461
0,6999	-1,574	-1,517	-1,458	-1,398	-1,336
0,7999	-1,238	-1,185	-1,130	-1,074	-1,017
0,8989	-0,729	-0,701	-0,672	-0,642	-0,612
	2-	metylopiryd	yna – metar	ol	
0,0200	-0,128	-0,121	-0,113	-0,105	-0,097
0,0599	-0,352	-0,334	-0,316	-0,297	-0,277
0,0998	-0,519	-0,489	-0,458	-0,426	-0,392
0,1992	-0,779	-0,732	-0,684	-0,635	-0,584
0,3000	-0,946	-0,892	-0,837	-0,780	-0,721
0,3993	-1,148	-1,083	-1,016	-0,948	-0,877
0,4817	-1,218	-1,150	-1,079	-1,007	-0,932
0,6003	-1,315	-1,248	-1,178	-1,107	-1,034
0,6994	-1,244	-1,178	-1,111	-1,042	-0,971
0,7965	-1,041	-0,988	-0,934	-0,877	-0,819
0,8993	-0,584	-0,549	-0,514	-0,477	-0,439
	2,6-	dimetylopir	ydyna – met	anol	
0,0200	-0,168	-0,163	-0,157	-0,151	-0,144
0,0600	-0,397	-0,387	-0,375	-0,364	-0,352
0,0995	-0,563	-0,541	-0,519	-0,496	-0,472
0,2001	-0,699	-0,661	-0,621	-0,580	-0,537
0,2999	-0,774	-0,726	-0,678	-0,627	-0,575
0,3997	-0,954	-0,898	-0,841	-0,782	-0,721
0,4991	-1,273	-1,200	-1,125	-1,047	-0,967
0,5990	-1,523	-1,444	-1,362	-1,278	-1,191
0,7007	-1,584	-1,507	-1,428	-1,346	-1,261
0,8006	-1,347	-1,289	-1,228	-1,166	-1,102
0,8989	-0,872	-0,832	-0,791	-0,748	-0,704

		$A^{\rm E} \times 10^9 / ({\rm m}$	$n^3 \text{ mol}^{-1} \text{ K}^{-1}$		
T/K	293,15	298,15	303,15	308,15	313,15
0,0100	0,280	0,246	0,221	0,206	0,198
0,0200	0,674	0,587	0,519	0,471	0,442
0,0400	1,363	1,182	1,037	0,930	0,860
0,0600	1,887	1,638	1,449	1,322	1,257
0,0800	2,291	2,001	1,769	1,595	1,479
0,1000	2,631	2,296	2,034	1,845	1,730
0,2000	3,622	3,265	2,975	2,749	2,590
0,3000	3,804	3,514	3,283	3,111	2,998
0,4000	3,442	3,255	3,120	3,037	3,008
0,5000	2,634	2,552	2,517	2,528	2,585
0,6000	1,660	1,663	1,704	1,786	1,906
0,7000	0,941	0,979	1,048	1,148	1,279
0,8000	0,510	0,548	0,607	0,687	0,788
0,9000	0,251	0,277	0,314	0,362	0,421

 Tablica 5.6.4. Nadmiarowa molowa rozszerzalność izobaryczna mieszanin pirydyny(1) z

 wodą(2)

em(2)	<u>.</u>				
		$K_{S}^{E} \times 10^{14} / (1)$	$m^3 mol^{-1} Pa^{-1}$)	
T/K	293,15	298,15	303,15	308,15	313,15
		pirydyna	– metanol		
0,0200	-0,071	-0,074	-0,078	-0,083	-0,088
0,0600	-0,192	-0,203	-0,215	-0,227	-0,239
0,1000	-0,289	-0,304	-0,319	-0,336	-0,353
0,2000	-0,447	-0,469	-0,492	-0,516	-0,541
0,3000	-0,514	-0,538	-0,564	-0,591	-0,620
0,4001	-0,520	-0,545	-0,571	-0,598	-0,627
0,4999	-0,482	-0,506	-0,531	-0,557	-0,584
0,5997	-0,418	-0,439	-0,462	-0,485	-0,510
0,6999	-0,331	-0,348	-0,365	-0,384	-0,404
0,7999	-0,230	-0,242	-0,254	-0,267	-0,280
0,8989	-0,121	-0,127	-0,133	-0,140	-0,147
	2-	metylopiryd	yna – metar	nol	
0,0200	-0,078	-0,081	-0,085	-0,088	-0,092
0,0599	-0,215	-0,225	-0,235	-0,245	-0,256
0,0998	-0,327	-0,342	-0,357	-0,373	-0,390
0,1992	-0,525	-0,548	-0,571	-0,596	-0,623
0,3000	-0,618	-0,644	-0,671	-0,699	-0,729
0,3993	-0,638	-0,665	-0,693	-0,723	-0,753
0,4817	-0,608	-0,634	-0,662	-0,690	-0,719
0,6003	-0,526	-0,550	-0,574	-0,598	-0,624
0,6994	-0,424	-0,442	-0,462	-0,482	-0,503
0,7965	-0,305	-0,319	-0,333	-0,348	-0,363
0,8993	-0,158	-0,166	-0,173	-0,180	-0,187
	2,6-	dimetylopiry	ydyna – met	anol	
0,0200	-0,090	-0,095	-0,100	-0,105	-0,111
0,0600	-0,252	-0,264	-0,276	-0,288	-0,301
0,0995	-0,388	-0,405	-0,423	-0,442	-0,462
0,2001	-0,634	-0,660	-0,688	-0,716	-0,746
0,2999	-0,765	-0,796	-0,829	-0,863	-0,898
0,3997	-0,802	-0,835	-0,870	-0,906	-0,944
0,4991	-0,768	-0,801	-0,835	-0,871	-0,907
0,5990	-0,682	-0,712	-0,743	-0,774	-0,807
0,7007	-0,551	-0,576	-0,602	-0,629	-0,656
0,8006	-0,393	-0,411	-0,429	-0,449	-0,469
0,8989	-0,209	-0,219	-0,230	-0,241	-0,253

Tablica 5.6.5. Nadmiarowa molowa ściśliwość adiabatyczna mieszanin aminy(1) z metanolem(2)

<u></u>					
		$K_{S}^{E} \times 10^{14}$ / (1	m ³ mol ⁻¹ Pa ⁻¹)	
T/K	293,15	298,15	303,15	308,15	313,15
0,0100	-0,031	-0,028	-0,026	-0,024	-0,023
0,0200	-0,088	-0,083	-0,079	-0,076	-0,074
0,0400	-0,149	-0,142	-0,136	-0,132	-0,129
0,0600	-0,198	-0,190	-0,184	-0,179	-0,176
0,0800	-0,242	-0,234	-0,227	-0,222	-0,219
0,1000	-0,282	-0,273	-0,266	-0,261	-0,258
0,2000	-0,441	-0,432	-0,426	-0,422	-0,421
0,3000	-0,542	-0,536	-0,532	-0,530	-0,531
0,4000	-0,585	-0,580	-0,579	-0,579	-0,583
0,5000	-0,564	-0,562	-0,563	-0,566	-0,571
0,6000	-0,490	-0,491	-0,494	-0,499	-0,505
0,7000	-0,384	-0,386	-0,389	-0,394	-0,401
0,8000	-0,259	-0,261	-0,263	-0,268	-0,273
0,9000	-0,127	-0,128	-0,130	-0,132	-0,135

 Tablica 5.6.6. Nadmiarowa molowa ściśliwość adiabatyczna mieszanin pirydyny(1) z

 wodą(2)

odchyleniami standardowy	mi				Γ
T/K	a0	٩I	<i>a</i> 2	a3	
		pirydyna - metanol			
293,15	-1,978 ± 0,003	-0,859 ± 0,011	-0,067 ± 0,012	$0,106 \pm 0,025$	
298,15	$-2,012 \pm 0,003$	$-0,852 \pm 0,011$	$-0,071 \pm 0,012$	$0,100 \pm 0,026$	
303,15	$-2,044 \pm 0,003$	$-0,846 \pm 0,011$	$-0,074 \pm 0,012$	$0,094 \pm 0,026$	
308,15	$-2,076 \pm 0,003$	$-0,840 \pm 0,011$	$-0,077 \pm 0,012$	$0,088 \pm 0,026$	
313,15	$-2,106 \pm 0,003$	-0,833 ± 0,011	$-0,080 \pm 0,012$	$0,081 \pm 0,026$	
		2-metylopirydyna - metanol			
293,15	-3,802 ± 0,015	$-1,017 \pm 0,073$		$0,607 \pm 0,176$	
298,15	-3,828 ± 0,015	$-1,005 \pm 0,072$		$0,591 \pm 0,174$	
303,15	$-3,852 \pm 0,015$	$-0,995 \pm 0,072$		$0,575 \pm 0,173$	
308,15	$-3,874 \pm 0,015$	$-0,984 \pm 0,072$		$0,560 \pm 0,172$	
313,15	$-3,895 \pm 0,015$	$-0,973 \pm 0,072$		$0,545 \pm 0,172$	
	6	,6-dimetylopirydyna - metan	0		
293,15	-5,995 ± 0,005	-1,345 ± 0,018	$0,620 \pm 0,021$	$0,853 \pm 0,045$	
298,15	$-6,019 \pm 0,005$	$-1,316 \pm 0,018$	$0,600 \pm 0,021$	$0,823 \pm 0,044$	
303,15	$-6,042 \pm 0,005$	$-1,289 \pm 0,018$	$0,579 \pm 0,020$	$0,793 \pm 0,043$	
308,15	-6,063 ± 0,005	$-1,262 \pm 0,018$	$0,559 \pm 0,020$	$0,765 \pm 0,042$	
313,15	$-6,083 \pm 0,005$	$-1,236 \pm 0,017$	$0,540 \pm 0,020$	$0,737 \pm 0,042$	

Tablica 5.6.8. Współczynniki wielomianu Redlicha-Kistera (5.6.3) aproksymującego izotermy nadmiarowej objętości molowej, wraz z

T/K	a_0	a_1	<i>a</i> ₂	<i>a</i> 3	<i>a</i> 4	<i>a</i> 5
			pirydyna - woda			
293,15	$-3,043 \pm 0,002$	$-1,204 \pm 0,012$	1,299± 0,025	$1,106 \pm 0,070$	-0,760 ± 0,041	$-1,347 \pm 0,085$
298,15	-2,992± 0,003	$-1,116 \pm 0,013$	$1,317 \pm 0,026$	$1,058 \pm 0,074$	$-0,728 \pm 0,043$	$-1,299 \pm 0,090$
303,15	$-2,942 \pm 0,003$	$-1,038 \pm 0,014$	$1,326 \pm 0,028$	$1,008 \pm 0,079$	-0,699 ± 0,046	$-1,255 \pm 0,096$
308,15	$-2,891 \pm 0,003$	$-0,968 \pm 0,015$	$1,328 \pm 0,030$	$0,960 \pm 0,085$	- 0,669 ± 0,050	$-1,214 \pm 0,103$
313,15	$-2,840 \pm 0,003$	-0.906 ± 0.016	$1,322 \pm 0,032$	$0,914 \pm 0,091$	$-0,636 \pm 0,054$	$-1,174 \pm 0,111$

a_0	aı	<i>a</i> ₂	<i>a</i> ₃	a_4	as	a_6	44
	7		irydyna - metano				
6,958 ± 0,015	$1,148 \pm 0,037$	$-0,403 \pm 0,108$			$-1,249 \pm 0,162$	$-1,127 \pm 0,271$	
6,713 ± 0,011	$1,124 \pm 0,037$			$-1,232 \pm 0,099$	$-1,300 \pm 0,155$		
6,442 ± 0,013	$1,097 \pm 0,043$			$-1,117 \pm 0,116$	$-1,328 \pm 0,181$		
6,176 ± 0,015	1,053 ± 0,051				$-1,207 \pm 0,220$	$-1,537 \pm 0,207$	
$5,884 \pm 0,015$	1,191 ± 0,070		$-1,065 \pm 0,174$			$-1,470 \pm 0,196$	
		2-me	tylopirydyna - me	tanol			
-5,004 ± 0,036	$1,754 \pm 0,097$	-1,683 ± 0,159			-3,054 ± 0,395		
$-4,734 \pm 0,035$	$1,707 \pm 0,094$	$-1,567 \pm 0,154$			$-3,017 \pm 0,383$		
$-4,456 \pm 0,034$	$1,658 \pm 0,092$	$-1,448 \pm 0,152$			-2.978 ± 0.377		
$-4,169 \pm 0,034$	$1,609 \pm 0,092$	$-1,324 \pm 0,152$			-2,937 ± 0,376		
$-3,874 \pm 0,034$	$1,558 \pm 0,093$	$-1,196 \pm 0,154$			$-2,894 \pm 0,381$		
		2,6-dim	letylopirydyna - п	netanol			
$-5,077 \pm 0,022$	6,324 ± 0,115	-2,823 ± 0,234	$-10,207 \pm 0,681$	-2,5196 ± 0,394	$5,664 \pm 0,845$		
-4,790± 0,018	$6,050 \pm 0,091$	-2,809 ± 0,185	$-9,469 \pm 0,540$	$-2,406 \pm 0,312$	$4,881 \pm 0,670$		
$-4,494 \pm 0,013$	$5,768 \pm 0,069$	$-2,796 \pm 0,141$	$-8,706 \pm 0,409$	$-2,288 \pm 0,237$	$4,072 \pm 0,508$		
$4,189 \pm 0,010$	5,477 ± 0,052	$-2,784 \pm 0,107$	$-7,918 \pm 0,311$	$-2,165 \pm 0,180$	$3,256 \pm 0,386$		
$3,876 \pm 0,008$	$5,119 \pm 0,036$	- 2,736 ± 0,086	-6,333 ± 0,151	$-2,116 \pm 0,146$			1,983 ± 0,25

Tablica 5.6.9. Współczynniki wielomianu Redlicha-Kistera (6.6.3) aproksymujacego izotermy nadmiarowej molowej rozszerzalności

Tablica 5.6.10. Współczynniki wielomianu Redlicha-Kistera (5.6.3) aproksymującego izotermy nadmiarowej molowej rozszerzalności izobartoznej wraz z odobyłaniami standardowymi

T/K	a_0	aı	a_2	<i>a</i> ₃	a_4	<i>a</i> 5
			pirydyna - woda			
293,15	$10,466 \pm 0,132$	$18,463 \pm 0,664$	$4,356 \pm 1,367$	-9,541 ± 3,849	$6,755 \pm 2,262$	$9,943 \pm 4,680$
298,15	$10,148 \pm 0,107$	$16,577 \pm 0,541$	$2,677 \pm 1,114$	$-9,875 \pm 3,136$	$6,079 \pm 1,843$	9,161 ± 3,814
303,15	$10,090 \pm 0,064$	$14,719 \pm 0,455$		$-9,150 \pm 2,592$	$7,573 \pm 0,552$	$7,402 \pm 3,085$
308,15	$10,041 \pm 0,053$	$13,148 \pm 0,376$		-9,756 ± 2,144	$5,535 \pm 0,456$	8,495 ± 2,552
313,15	$10,186 \pm 0,068$	$11,672 \pm 0,481$		-9,929 ± 2,740	$4,113 \pm 0,583$	$9,623 \pm 3,262$

T/K	a_0	aı	<i>a</i> 2	<i>a</i> ₃	<i>a</i> 4	as
			pirydyna - metanol			
293,15	-1 ,929 ± 0,002	$-1,054 \pm 0,006$	$-0,526 \pm 0,007$	-0,197 ± 0,015		
298,15	$-2,023 \pm 0,002$	$-1,093 \pm 0,008$	$-0,557 \pm 0,009$	$-0,242 \pm 0,019$		
303,15	$-2,126 \pm 0,002$	$-1,137 \pm 0,008$	-0.528 ± 0.026	$-0,274 \pm 0,020$	$-0,110 \pm 0,042$	
308,15	$-2,231 \pm 0,003$	$-1,180 \pm 0,010$	$-0,549 \pm 0,033$	$-0,316 \pm 0,026$	$-0,140 \pm 0,055$	
313,15	$-1,219 \pm 0,005$	$-1,219 \pm 0,017$	$-0,670 \pm 0,023$	$-0,381 \pm 0,042$		
. (2-m	etylopirydyna - meti	anol		
293,15	-2,402 ± 0,004	$-1,171 \pm 0,007$	-0,483 ± 0,016			
298,15	$-2,505 \pm 0,004$	$-1,217 \pm 0,008$	$-0,515 \pm 0,017$			
303,15	-2,612 ± 0,005	$-1,267 \pm 0,009$	$-0,545 \pm 0,020$			
308,15	$-2,724 \pm 0,004$	$-1,286 \pm 0,015$	-0,565 ± 0,018	$-0,100 \pm 0,038$		
313,15	$-2,840 \pm 0,005$	$-1,336 \pm 0,018$	- 0,590 ± 0,022	$-0,125 \pm 0,045$		
		2,6-din	metylopirydyna - m	etanol		
293,15	$-3,074 \pm 0,002$	$-1,260 \pm 0,004$	$-0,380 \pm 0,008$			
298,15	$-3,204 \pm 0,002$	$-1,304 \pm 0,004$	$-0,410 \pm 0,008$			
303,15	$-3,339 \pm 0,001$	$-1,336 \pm 0,004$	-0,437 ± 0,006			$-0,082 \pm 0,015$
308,15	$-3,479 \pm 0,002$	$-1,379 \pm 0,005$	$-0,471 \pm 0,008$			$-0,115 \pm 0,021$
313,15	$-3,628 \pm 0,002$	$-1,429 \pm 0,005$	$-0,442 \pm 0,023$		$-0,122 \pm 0,037$	$-0,116 \pm 0,022$

T/K	<i>a</i> ₀	aı	<i>a</i> 2	a ₆	<i>a</i> 7
		pirydyna -	woda		
293,15	- 2,254 ± 0,013	$-0,933 \pm 0,029$	$0,329 \pm 0,094$	$-0,963 \pm 0,237$	$-0,619 \pm 0,183$
298,15	$-2,253 \pm 0,017$	-0.932 ± 0.030	$0,455 \pm 0,117$	$-1,305 \pm 0,247$	
303,15	$-2,256 \pm 0,016$	$-0,882 \pm 0,029$	$0,469 \pm 0,111$	$-1,183 \pm 0,232$	
308,15	$-2,267 \pm 0,015$	$-0,839 \pm 0,027$	$0,480 \pm 0,106$	-1,083±0,222	
313,15	$-2,288 \pm 0,015$	-0,802 ± 0,026	$0,486 \pm 0,102$	$-1,001 \pm 0,215$	

molowei ściśliwości • • -(5 2 3) V into diiche þ 11.1 3 W.c 5617 Tablica B

Rysunek 5.6.1. Izotermy nadmiarowej objętości molowej mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 313,15K

Rysunek 5.6.2. Izotermy nadmiarowej objętości molowej układu pirydyna – woda; (●) 293,15K; (○) 298,15K; (●) 303,15K; (□) 308,15K; (■) 313,15K

Rysunek 5.6.3. Izotermy nadmiarowej molowej rozszerzalności izobarycznej mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy;(•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (•) 313,15K

Rysunek 5.6.4. Izotermy nadmiarowej molowej rozszerzalności izobarycznej układu pirydyna – woda; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (■) 313,15K

Rysunek 5.6.5. Izotermy nadmiarowej molowej ściśliwości adiabatycznej mieszanin metanolu z pirydyną (góra), 2-metylopirydyną (środek), 2,6-dimetylopirydyną (dół), w funkcji ułamka molowego aminy; (•) 293,15K; (•) 298,15K; (•) 303,15K; (□) 308,15K; (•) 313,15K

Rysunek 5.6.6. Izotermy nadmiarowej molowej ściśliwości adiabatycznej układu pirydyna – woda; (•) 293,15K; (•) 313,15K

5.7. Wielkości cząstkowe molowe

Molowe wielkości cząstkowe obliczono analitycznie wykorzystując zależność:

$$E_{1} = E^{id} + E^{E} + (1 - x_{1})\frac{\partial E^{id}}{\partial x_{1}} + (1 - x_{1})\frac{\partial E^{E}}{\partial x_{1}}$$
 5.7.1

gdzie E^{E} jest funkcją nadmiarową przybliżoną wielomianem Redlicha – Kistera (5.6.3). Wielkości cząstkowe aproksymowane pochodnymi funkcji interpolacyjnych, takich jak wielomiany Redlicha – Kistera, mogą nie odtwarzać szczegółów przebiegu rzeczywistych funkcji cząstkowych. Żeby sprawdzić, na ile wiarygodne są funkcje dane równaniem 5.7.1, wielkości cząstkowe obliczono z zależności przybliżonej:

$$E_1 \approx \overline{E} + \left(1 - \overline{x}_1\right) \frac{\Delta E}{\Delta x_1}, \qquad 5.7.2$$

gdzie \bar{x}_1 i E są wartościami średnimi dwóch kolejnych empirycznych wartości ułamka molowego i odpowiadających im funkcji E, a Δx_1 i ΔE oznaczają odpowiednie różnice. Izotermy funkcji cząstkowych przedstawiono na rysunkach 5.7.1 – 5.7.3.

W mieszaninach o ułamku molowym aminy $x_1 > 0,7$, cząstkowe wielkości molowe tych związków zmieniają się w niewielkim stopniu i są w przybliżeniu równe wielkościom molowym czystych amin.

W obszarze małych stężeń 2,6-dimetylopirydyny występuje przegięcie na izotermach cząstkowej objętości molowej tej aminy. Podobny efekt, aczkolwiek mniej widoczny, występuje w przypadku 2-metylopirydyny. W układzie pirydyna – woda zaobserwowano nieco inne zjawisko, mianowicie objętość cząstkowa aminy maleje gwałtownie w rozcieńczonych roztworach ze wzrostem stężenia wody.

W mieszaninach metanolowych o ułamku molowym aminy $x_1 < 0,5$ cząstkowa molowa ściśliwość adiabatyczna tych związków zmienia się w taki sam sposób we wszystkich przypadkach. Maleje ze wzrostem stężenia metanolu, gwałtowniej w obszarze niższych stężeń. Ściśliwość cząstkowa amin rośnie ze wzrostem temperatury. W zakresie małych stężeń amin wzrost ten jest niewielki. W przypadku układu pirydyna – woda temperatura wpływa zdecydowanie na położenie izoterm, niezależnie od stężenia aminy. Ściśliwość cząstkowa maleje tu na tyle gwałtownie ($x_1 < 0,1$), że przyjmuje wartości ujemne w bardzo rozcieńczonych roztworach. Izotermy cząstkowej molowej ściśliwości adiabatycznej aminy przedstawia rysunek 5.7.3.

Zamiana rozpuszczalnika z metanolu na wodę pociąga za sobą bardzo duże zmiany w przebiegu izoterm cząstkowej molowej rozszerzalności izobarycznej (rys. 5.7.2.). Podczas gdy cząstkowa rozszerzalność molowa aminy wzrasta ze wzrostem jej stężenia w mieszaninach z metanolem, w układzie pirydyna – woda obserwuje się zjawisko odwrotne. Przy dużych rozcieńczeniach aminy funkcje te gwałtownie maleją natomiast przy stężeniu $x_1 \approx 0,1$ stają niezależne od temperatury.

Rysunek 5.7.1. Cząstkowa objętość molowa aminy w funkcji jej ułamka molowego, punkty – wartości obliczone metodą skończonych różnic, linie – izotermy przybliżone funkcjami obliczonymi z wielomianu Redlicha - Kistera; (\bullet) 293,15K; (\circ) 298,15K; (\bullet) 303,15K; (\Box) 308,15K; (\blacksquare) 313,15K; *a*) układ pirydyna – metanol, *b*) układ pirydyna – woda, *c*) układ 2-metylopirydyna – metanol, *d*) układ 2,6-dimetylopirydyna – metanol

Rysunek 5.7.2. Cząstkowa molowa rozszerzalność termiczna aminy w funkcji jej ułamka molowego; punkty – wartości obliczone metodą skończonych różnic; linie – izotermy przybliżone funkcjami obliczonymi z wielomianu Redlicha - Kistera; (\bullet) 293,15K; (\circ) 298,15K; (\bullet) 303,15K; (\Box) 308,15K; (\blacksquare) 313,15K; *a*) układ pirydyna – metanol, *b*) układ pirydyna – woda, *c*) układ 2-metylopirydyna – metanol, *d*) układ 2,6-dimetylopirydyna – metanol

Rysunek 5.7.3. Cząstkowa molowa ściśliwość adiabatyczna aminy w funkcji jej ułamka molowego; punkty – wartości obliczone metodą skończonych różnic, linie – izotermy przybliżone funkcjami obliczonymi z wielomianu Redlicha - Kistera; (\bullet) 293,15K; (\circ) 298,15K; (\bullet) 303,15K; (\Box) 308,15K; (\blacksquare) 313,15K; *a*) układ pirydyna – metanol, *b*) układ pirydyna – woda, *c*) układ 2-metylopirydyna – metanol, *d*) układ 2,6-dimetylopirydyna – metanol

5.8. Współczynnik tłumienia fali ultradźwiękowej

Zmierzono współczynnik tłumienia fali ultradźwiękowej w układach binarnych (pirydyna, 2-metylopirydyna lub 2,6-dimetylopirydyna) + (woda lub metanol) w całym zakresie stężeń. Pomiary wykonano w temperaturze 293 K i w zakresie częstotliwości $f = 12,5 \div 80$ MHz dla mieszanin z wodą oraz $f = 30 \div 80$ MHz dla mieszanin z metanolem. Wyniki pomiarów przedstawiono w dodatku C.

W przypadku wszystkich układów amina - metanol, absorpcja nie zależy od częstotliwości w całym zakresie stężeń aminy, w rozpatrywanym zakresie częstotliwości. W układach amina – woda absorpcja również nie zależy od częstotliwości w mieszaninach o stężeniu aminy $x_1 > 0.5$. Dla roztworów aminy poniżej tego stężenia stosunek α / f^2 maleje częstotliwości. Efekt zmniejsza sie w ze wzrostem ten szeregu 2,6-dimetylopirydyna > 2-metylopirydyna > pirydyna. W układzie 2,6-dimetylopirydyna woda zachodzą procesy o czasach relaksacji dostępnych pomiarowi. Zależności α / f od częstotliwości dla mieszanin 2,6-dimetylopirydyna - woda o ułamku molowym aminy $x_1 \leq 0.5$ opisano równaniem:

$$\frac{\alpha}{f^2} = \frac{A_0}{1 + (2\pi\tau_{rel}f)^2} + B_0$$
 5.8.1

gdzie: A_0 – współczynnik stały; A_0+B_0 określa graniczny zredukowany współczynnik absorpcji: $\lim_{f\to 0} \frac{\alpha}{f^2} = A_0 + B_0$

 B_0 - suma wkładów pochodzących od absorpcji klasycznej Stokesa-Kirchhoffa i związanych z procesami o czasach relaksacji znacznie krótszych niż τ_{rel} τ_{rel} - czas relaksacji

Wartości A_0 , B_0 oraz τ_{rel} dla poszczególnych mieszanin, wyznaczone metodą najmniejszych kwadratów, zebrano w tablicy 5.8.1.

Zależność α / f^2 od częstotliwości fali ultradźwiękowej dla układów amina – woda oraz amina - metanol przedstawiają odpowiednio rysunki 5.8.1 ÷ 5.8.3 oraz 5.8.4 ÷ 5.8.6.

W przypadkach, gdy α / f^2 nie zależy od częstotliwości, przyjęto wartość ilorazu jako średnią otrzymanych wartości doświadczalnych. Dla pozostałych mieszanin amina – woda oraz amina – metanol zależność $\alpha / f^2(f)$ interpolowano graficznie.

Rysunki 5.8.7, 5.8.8 przedstawiają zależność α / f^2 od stężenia roztworu, kolejno, dla układów wodnych i metanolowych, dla częstotliwości fali ultradźwiękowej f = 18 MHz i f = 70 MHz (układy amina – woda) oraz wartości średnie w zakresie częstotliwości 30 – 70 MHz (układy amina – metanol).

Absorpcję klasyczną obliczono z równania 2.1.11. Niezbędne wartości współczynnika lepkości dynamicznej zaczerpnięto z literatury (Adamczyk, 2009; Hartley i wsp., 1908; Gill, Bakshi, 1989; Grattoni i wsp., 1993).

W przypadku układów wodnych, w obszarze niskich stężeń aminy, występuje maksimum absorpcji. Jest ono coraz mniejsze w sekwencji 2,6-dimetylopirydyna > 2-metylopirydyna > pirydyna. W przypadku mieszanin amina – metanol nie zaobserwowano maksimów – funkcja α / f^2 jest rosnąca w całym zakresie stężeń.

<i>x</i> 1	$A_0 \times 10^{15} / \mathrm{s}^2 \mathrm{m}^{-1}$	$\tau_{\rm rel}$ / ns	$B_0 \times 10^{15} / \mathrm{s}^2 \mathrm{m}^{-1}$
0,0300	107 ± 10	9,1 ±1,1	53 ± 2
0,0500	185 ± 12	8,0 ± 0,8	83 ± 4
0,0600	194 ± 10	$6,9 \pm 0,6$	94 ± 5
0,1001	230 ± 9	$6,5 \pm 0,5$	139 ± 5
0,2001	170 ± 7	$5,0 \pm 0,5$	168 ± 7
0,3001	90 ± 5	$4,3 \pm 0,6$	153 ± 7
0,4002	68 ± 8	$7,1 \pm 1,5$	121 ± 4
0,4987	31 ± 7	$3,2 \pm 1,3$	77 ± 8

Tablica 5.8.1. Współczynniki równania 5.8.1 dla układu 2,6-dimetylopirydyna (1) – woda

Rysunek 5.8.1. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie pirydyna – woda. Punkty - wartości doświadczalne, linie – interpolacja graficzna oraz wartości średnie dla $0.5 \le x_1 \le 1$

Rysunek 5.8.2. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie 2-metylopirydyna – woda. Punkty - wartości doświadczalne, linie – interpolacja graficzna dla $0,02 \le x_1 \le 0,4$ oraz wartości średnie dla 2-metylopirydyny i mieszanin o ułamkach $x_1 = 0,5; 0,7$

Rysunek 5.8.3. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie 2,6-dimetylopirydyna – woda. Punkty - wartości doświadczalne, linie – wyznaczone z równania o współczynnikach zamieszczonych w tablicy 5.8.1 ($0 < x_1 \le 0,5$); wartości średnie dla pozostałych stężeń

Rysunek 5.8.4. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie pirydyna – metanol. Punkty - wartości doświadczalne, linie – wartości średnie

Rysunek 5.8.5. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie 2-metylopirydyna – metanol. Punkty - wartości doświadczalne, linie – wartości średnie

Rysunek 5.8.6. Zależność współczynnika α / f^2 od częstotliwości fali ultradźwiękowej w układzie 2,6-dimetylopirydyna – metanol. Punkty - wartości doświadczalne, linie – wartości średnie

Rysunek 5.8.7. Zależność współczynnika α / f^2 od stężenia roztworu w układach woda - pirydyna (góra), 2-metylopirydyna (środek), 2,6-dimetylopirydyna (dół). Punkty - wartości doświadczalne, linie – interpolacja graficzna

Rysunek 5.8.8. Zależność współczynnika α / f^2 od stężenia roztworu w układach metanol - pirydyna (góra), 2-metylopirydyna (środek), 2,6-dimetylopirydyna (dół). Punkty – wartości średnie w zakresie częstotliwości 30 – 70 MHz, linie – interpolacja graficzna

5.9. Niskokątowe rozpraszanie neutronów (SANS)

W eksperymencie SANS wiązka neutronów jest rozpraszana przez próbkę dzięki fluktuacjom współczynnika załamania. O wartości współczynnika decyduje długość rozpraszania jąder atomów (*a*), z których zbudowane są substancje stanowiące próbkę. Wartość *a* dla wodoru ¹H wynosi -0,37406×10⁻¹² cm, a dla pozostałych pierwiastków tworzących badane substancje, tj. C, N i O odpowiednio 0,6646, 0,936 i 0,5803×10⁻¹² cm. Technika SANS umożliwia rejestrowanie skupisk protonów. Wymaga więc, aby rozpuszczalnik pozbawiony był protonów. Z tego względu wykorzystuje się rozpuszczalniki deuterowane: $a_D = 0,6671 \times 10^{-12}$ cm (Sears,1992).

Roztwory amin w D₂O i CD₃OD przygotowano bezpośrednio przed pomiarem. Ułamek molowy aminy zawierał się w zakresie od 0,02 do 0,5. Na czas pomiaru próbki umieszczano w kuwetach kwarcowych o grubości 2mm. Pomiary przeprowadzono w dwóch temperaturach dla każdego układu. Ich dobór uzależniony był od mieszalności wzajemnej składników. W 20 oraz 50°C przeprowadzono pomiary dla układów pirydyna, 2-metylopirydyna – woda, natomiast w 20 oraz 27°C dla układu 2,6-dimetylopirydyna – woda, który wykazuje dolną krytyczną temperaturę mieszalności równą 28.5°C (Schneider, 1973).

Wektor rozpraszania, q, zawierał się w przedziale 0,0034 – 0,5 Å⁻¹. Odległość próbka – detektor oraz długość fali padającej na próbkę wynosiły odpowiednio 0,9 m I 4,5 Å dla wysokich wartości $q \ge 0,05$ Å⁻¹), 4,5 m i 12 Å dla niskich wartości $q \le 0,05$ Å⁻¹), Czas pomiaru wynosił od około 20 minut (wysokie wartości q) do kilku godzin (niskie wartości q).

Przy każdym pomiarze zastosowano standardową procedurę kalibracyjną (Jacrot, 1976).

Stwierdzono, że natężenie promieniowania rozproszonego przez układy metanolowe nie zależy od wektora rozpraszania q. Ciecze te są zatem homogeniczne. Roztwory wodne o ułamku molowym amin zawartym w przedziale od 0,02 do 0,25 wykazują zależność natężenia promieniowania rozproszonego I od wektora q, którą można aproksymować równaniem Orsteina-Zernikego:

$$I = \frac{A}{1 + q^2 \xi^2} + B$$
 5.9.1

gdzie: A – intensywność rozpraszania spójnego zależnego od wektora q,

B – stały poziom tła,

ξ - długość korelacji.

105

Współczynniki A, B i ξ zebrano w tablicy 5.9.1. Otrzymane wyniki przedstawiono na rysunku 5.9.1.

Na rysunku 5.9.2 przedstawiono zależność parametru ξ od stężenia aminy. Wielkość ta określa "rozmiar" mikroheterogeniczności obecnych w mieszaninach. W temperaturze 20°C rozmiar mikroheterogeniczności w roztworach wodnych wzrasta w sekwencji: pirydyna ($\xi_{max} \approx 5$ Å przy $x_1 \approx 0,1$) – 2-metylopirydyna ($\xi_{max} \approx 9$ Å przy 0,05 < $x_1 < 0,1$) – 2,6-dimetylopirydyna ($\xi_{max} \approx 16$ Å przy $x_1 \approx 0,05$). Zwiększenie stężenia aminy prowadzi do zaniku niejednorodności.

<i>x</i> ₁	<i>t</i> / °C	A / cm^{-1}	ξ/Å ⁻¹	B/cm^{-1}	
pirydyna + D ₂ O					
0,0203	20 50	$\begin{array}{c} 0,060 \pm 0,009 \\ 0,052 \pm 0,001 \end{array}$	$2,14 \pm 0,29 \\ 2,83 \pm 0,10$	$\begin{array}{c} 0,074 \pm 0,009 \\ 0,075 \pm 0,001 \end{array}$	
0,0504	20 50	$0,211 \pm 0,003$ $0,217 \pm 0,001$	$3,96 \pm 0,10$ $4,53 \pm 0,03$	$0,122 \pm 0,003$ $0,111 \pm 0,001$	
0,1003	20 50	$0,342 \pm 0,006$ $0,391 \pm 0,002$	$5,32 \pm 0,19$ $5,31 \pm 0,05$	$0,210 \pm 0,007$ $0,172 \pm 0,001$	
0,2505	20 50	$0,222 \pm 0,108$ $0,131 \pm 0,012$	$1,04 \pm 0,32$ $2,28 \pm 0,23$	$0,215 \pm 0,109$ $0,297 \pm 0,013$	
2-metylopirydyna + D ₂ O					
0,0202	20 50	$0,126 \pm 0,002$ $0,161 \pm 0,001$	$\begin{array}{r} 4,25 \ \pm \ 0,15 \\ 4,89 \ \pm \ 0,04 \end{array}$	$0,092 \pm 0,002$ $0,091 \pm 0,001$	
0,0505	20 50	$0,817 \pm 0,006$ $2,323 \pm 0,012$	$8,94 \pm 0,18$ 15,99 $\pm 0,24$	$0,165 \pm 0,005$ $0,159 \pm 0,008$	
0,0999	20 50	$0,962 \pm 0,006$ $4,053 \pm 0,021$	8,39 ± 0,22 18,45 ± 0,27	$0,278 \pm 0,009$ $0,244 \pm 0,015$	
0,2494	20 50	$0,569 \pm 0,001$ $0,225 \pm 0,002$	$0,77 \pm 0,01$ $3,05 \pm 0,05$	0 0,378 ± 0,003	
2,6-dimetylopirydyna + D ₂ O					
0,0203	20 27	$0,625 \pm 0,002 \\ 0,933 \pm 0,003$	$8,41 \pm 0,08$ 10,80 $\pm 0,10$	$0,102 \pm 0,002 \\ 0,090 \pm 0,002$	
0,0502	20 27	$3,544 \pm 0,061$ $1,993 \pm 0,022$	$\begin{array}{c} 15,85 \ \pm \ 0,28 \\ 15,03 \ \pm \ 0,18 \end{array}$	$0,156 \pm 0,005$ $0,112 \pm 0,002$	
0,0997	20 27	2,823 ± 0,018 2,764 ± 0,032	$\begin{array}{r} 13,64 \ \pm \ 0,27 \\ 13,14 \ \pm \ 0,18 \end{array}$	$0,326 \pm 0,014$ $0,344 \pm 0,004$	
0,2002	20 27	$0,456 \pm 0,009$ $0,492 \pm 0,003$	$2,29 \pm 0,05$ $4,00 \pm 0,05$	$0,299 \pm 0,010$ $0,384 \pm 0,004$	

Tablica 5.9.1. Współczynniki równania 5.9.1

Rysunek 5.9.1. Krzywe SANS dla układów D_2O – pirydyna (góra), 2-metylopirydyna (środek), 2,6-dimetylopirydyna (dół). Punkty - wartości doświadczalne, puste pola - $t = 20^{\circ}C$, wypełnione pola - $t = 50^{\circ}C$ lub 27°C (2,6-DMP); linie – równanie Orsteina-Zernikego 5.9.1

Rysunek 5.9.2. Zależność długości korelacji ξ od stężenia aminy w układach D₂O - pirydyna (lewy), 2-metylopirydyna (środek), 2,6-dimetylopirydyna (prawy). Punkty - wartości doświadczalne, $\circ - t = 20$ °C, $\bullet - t = 27$ °C (układ 2,6-dimetylopirydyna - D₂O) lub 50 °C (pozostałe układy)

DYSKUSJA I WNIOSKI

6. DYSKUSJA WYNIKÓW

Pomiary niskokątowego rozpraszania neutronów (SANS) wykazały obecność mikroheterogeniczności w roztworach wodnych o ułamku molowym amin $x_1 < 0,3$. Zastąpienie wody metanolem zmieniło uzyskiwane wyniki. Niezależnie od stężenia, w mieszaninach z metanolem nie zaobserwowano mikroheterogeniczności.

Metoda SANS umożliwia jedynie przybliżoną analizę badanych układów ze względu na niedostateczną dokładność. Nie jesteśmy więc w stanie określić konfiguracji cząsteczkowych w powstających tworach a jedynie ich przybliżony rozmiar.

Długość korelacji ξ określa wielkość struktur supramolekularnych powstających w roztworach. W temperaturze 20°C pojawia się wyraźna korelacja pomiędzy liczbą podstawników metylowych w pozycji α w pierścieniu aminy a wielkością struktur. Długość korelacji ξ zmienia się w sekwencji pirydyna (5 Å) – 2-metylopirydyna (9 Å) – 2,6-dimetylopirydyna (16 Å) dla ułamka molowego aminy zawartego w granicach $0,05 \le x_1 \le 0,1$ (rysunek 5.9.2). W miarę wzrostu stężenia aminy mikroheterogeniczności zanikają a przy ułamku molowym przekraczającym 0,25 nie zaobserwowano ich istnienia.

Rozmiar mikroheterogeniczności powstających w roztworach amin niewątpliwie zależy od energii wiązań wodorowych O-H...N (O-D...N). Wyraźnie uwidacznia się efekt *orto*, polegający na wzmocnieniu wiązań wodorowych powstających z udziałem pary elektronowej umiejscowionej na atomie azotu, poprzez wpływ podstawników metylowych położonych w pozycji α w pierścieniu. Przejawia się on w kooperatywności wiązań. Im silniejsze wiązanie O-H...N, tym bardziej rozbudowuje się sieć cząsteczek wody oplatających molekułę aminy.

Podwyższenie temperatury powoduje wzrost agregatów w układzie 2-metylopirydyna – woda, co wiąże się prawdopodobnie ze zbliżaniem się do dolnej krytycznej temperatury mieszalności. Efektu tego nie zaobserwowano w pozostałych układach pomimo tego, że w przypadku 2,6-dimetylopirydyny temperatura pomiaru o była wiele bliższa DKTM. Wpływ temperatury na wielkość mikroheterogeniczności był raczej niewielki.

Wyniki doświadczalne dla układu pirydyna – woda są zgodne z otrzymanymi przez Almásy i Jancsó (2004). Jednocześnie zaproponowana przez nich interpretacja wydaje się niepoprawna. Almásy i Jancsó zakładali autoasocjację pirydyny w wodzie, którą traktowali jako inertny rozpuszczalnik. Gdyby teza ta była słuszna, to zastąpienie wody metanolem nie powinno zmieniać uzyskiwanych wyników. Homogeniczność układów metanolowych dowodzi pośrednio udziału wody w powstających asocjatach co z kolei jest zbieżne z interpretacją Bakó i wsp. (2004). Wiążą oni bowiem intensywność rozpraszania neutronów w wodnych roztworach pirydyny z dynamicznymi, sferycznymi klasterami wodnymi, tworzącymi się lokalnie wokół molekuł aminy o składzie zależnym od stężenia roztworu.

Krzywe zależności współczynnika tłumienia fali ultradźwiękowej (α/f^2) od składu mieszaniny dla układów amina - woda oraz amina - metanol różnią się zasadniczo. Zależności α/f^2 od ułamka molowego aminy w mieszaninach z metanolem są rosnące (rys. 5.8.8). W przypadku mieszanin amina – woda zaobserwowano efekty charakterystyczne dla wodnych roztworów związków organicznych (rysunek 5.8.7) (Blandamer, 1973). Krzywe zależności stężeniowej zredukowanej absorpcji (α/f^2) wykazują charakterystyczne maksima. Ich położenie i wysokość zależy od liczby podstawników metylowych w pozycji α w pierścieniu aminy. Najbardziej spektakularny efekt zaobserwowano dla 2,6-dimetylopirydyny. W maksimum wartość α/f^2 jest około 6-krotnie większa od średniej dla substancji czystych przy częstotliwości fali 18 MHz oraz około 4-krotnie większa przy częstotliwości fali 70 MHz. Dla 2-metylopirydyny zaobserwowano niespełna dwukrotny wzrost, natomiast w układzie pirydyna - woda efekt ten jest słabo zauważalny. Maksimum wiąże się z dodatnią nadmiarową entalpią swobodną, która warunkuje ograniczoną mieszalność wzajemną cieczy (Buchowski, 1980). Pod ciśnieniem atmosferycznym luka mieszalności występuje jedynie w układzie 2,6-dimetylopirydyna - woda przy temperaturze powyżej 34°C (Andon, Cox, 1952). W warunkach wysokiego ciśnienia ograniczoną mieszalność wzajemną wykazują też 2-metylopirydyna i woda (Schneider, 1973). Zamiana protu na deuter w wodzie również zmienia w mieszalność wzajemną wody z aminami. W układzie z 2-metylopirydyną ograniczona mieszalność pojawia się już pod normalnym ciśnieniem w granicach temperatury 92 - 112,5°C, w układzie z 2,6-dimetylopirydyną dolna krytyczna temperatura mieszalności obniża się do 28,7°C (Cox, 1952).

Wzrostowi częstotliwości fali towarzyszy obniżenie się maksimum współczynnika absorpcji oraz jego przesunięcie w stronę wyższych stężeń aminy. Podobne zjawisko zaobserwowano również w przypadku układu 4-metylopirydyna - woda (Gliński, Ernst, 1982).

Wszystkie empiryczne absorpcje są większe od absorpcji klasycznych (Stokesowskich) (rys. 5.8.7 i 5.8.8). Dowodzi to, że w badanych układach zachodzą procesy o czasach relaksacji zbyt krótkich, by można je było wyznaczać metodą, obejmującą częstotliwości do 100MHz.

Układ 2,6-dimetylopirydyna – woda wyróżnia się także ze względu na wyraźną zależność (α/f^2) od częstotliwości fali. Efekt ten zaobserwowano dla roztworów o ułamku molowym aminy z zakresu 0,03 $\leq x_1 < 0,5$. Dla zbadanego zakresu częstotliwości wyliczono czasy relaksacji rzędu $10^{-9} \div 10^{-8}$ s. Są one znacznie dłuższe w porównaniu z czasem relaksacji czystej wody wynoszącym 2,13 × 10^{-12} s (Blandamer, 1973) w tej samej temperaturze. Efekty te wiążą się niewątpliwie z tworzeniem się otoczki hydratacyjnej wokół molekuł aminy w roztworach o dużej zawartości wody. Obecność cząsteczek aminy powoduje wzmocnienie wiązań sieci wodnej na skutek oddziaływań kooperatywnych. Powstające w ten sposób mikroheterogeniczności są stosunkowo trwałe w porównaniu ze strukturami tworzącymi się w czystej wodzie. Obserwacje te są zgodne z wynikami uzyskanymi przez Kříža i wsp. (2009) na podstawie pomiarów NMR, FTIR oraz obliczeń kwantowo-mechanicznych. Podawany przez tych autorów czas życia organizujących się struktur jest jednak dłuższy, rzędu 10^{-5} s.

Procesy relaksacyjne zachodzą najprawdopodobniej również w wodnych roztworach 2-metylopirydyny. Na rysunku 5.8.2 widać, że absorpcja zależy od częstotliwości jednak wyznaczenie czasów relaksacji jest niemożliwe, gdyż nie można wiarygodnie opisać krzywych relaksacyjnych odpowiednimi równaniami.

Nanosekundowe czasy relaksacji wyznaczono także dla układu 3-metylopirydyna – woda (Marczak, Ernst, 1997). Wiązano je również z tworzeniem / rozpadem struktur pseudoklatratowych. Alternatywna teoria przypisuje te efekty równowadze reakcji protolizy (Mirzaev i wsp., 2006). Wydaje się jednak mało prawdopodobne, żeby tak wyraźny efekt wiązał się z reakcją dotyczącą relatywnie małej liczby molekuł gdyż równowaga reakcji protolizy przesunięta jest silnie w stronę niezdysocjowanego kompleksu amina – H₂O.

Nadmiarowe objętości molowe, molowe ściśliwości adiabatyczne oraz molowe rozszerzalności termiczne jednoznacznie świadczą o termodynamicznej nieidealności analizowanych układów (rysunki 5.6.1 – 5.6.6). Jest to bezpośrednia konsekwencja występującego pomiędzy molekułami wiązania O-H...N. Bezwzględne nadmiary są większe gdy w cząsteczce aminy występują podstawniki metylowe w położeniu orto w stosunku do atomu azotu (rys. 6.2.1).

Izotermy nadmiarowej objętości molowej są w przybliżeniu symetryczne zarówno w przypadku układów wodnych jak i metanolowych. Wpływ temperatury na wartości nadmiarów jest jednak odmienny. W przypadku układów wodnych minimum funkcji staje się coraz płytsze, odwrotnie niż dla układów metanolowych.

Nadmiarowa molowa rozszerzalność termiczna jest bezpośrednio powiązana z entropią nadmiarową zgodnie z relacją Maxwella: $A^{E} = -(\partial S^{E}/\partial p)_{T}$. Iloczyn TS^{E} jest ujemny w całym zakresie stężeń i jego wartość maksymalna wynosi 2,3, 2,9 i 3,3 kJ mol⁻¹ dla mieszanin z pirydyną, 2-metylopirydyną i 2,6-dimetylopirydyną w temperaturze 298,15 K pod ciśnieniem atmosferycznym (Abe i wsp., 1978). Dodatnia wartość nadmiarowej rozszerzalności termicznej dla mieszanin z wodą (rys. 6.2.1) oznacza więc, że ujemny nadmiar entropii rośnie pod wpływem wzrastającego ciśnienia: $-(\partial S^E/\partial p)_r < 0$ i odwrotnie dla mieszanin z metanolem, ujemna wartość $A^{\rm E}$ oznacza, że wzrost ciśnienia powoduje zmniejszanie się wartości $-S^{E}$: $-(\partial S^{E}/\partial p)_{T} > 0$. Skutkiem tego jest rozpad roztworów wodnych na dwie fazy w warunkach podwyższonego ciśnienia, podczas gdy mieszaniny metanolowe pozostają jednofazowe. W przypadku mieszanin wodnych przebieg izoterm A^{E} jest również czuły na stężenie oraz temperaturę. Dla roztworów o steżeniu niższym od $x_1 \approx 0.5$ wpływ ciśnienia na wartość S^E słabnie przy wzrastającej temperaturze podczas gdy dla mieszanin bogatszych w aminę zachowany jest przeciwny trend. Powodem tego jest najprawdopodobniej zdolność wody do tworzenia sieci przestrzennej. Warunkiem powstawania sieci jest stosunkowo duże stężenie wody w układzie binarnym.

Nadmiarowe ściśliwości adiabatyczne badanych układów są ujemne i ich wartości bezwzględne rosną w szeregu pirydyna – 2-metylopidydyna – 2,6-dimetylopirydyna (rys. 6.2.1.) Bez względu na to, czy drugim, obok aminy, składnikiem układu jest woda, czy metanol, maksymalne wartości ujemnych nadmiarów są praktycznie takie same. Wiąże się to prawdopodobnie z energią wiązań O-H...N rosnącą wraz ze zwiększeniem się liczby podstawników CH₃ w pierścieniu aminy w przybliżeniu niezależnie od tego, czy donorem protonu jest H₂O, czy CH₃OH. Minimum K_s^E układu woda – 2,6-dimetylopirydyna odpowiada stechiometrii kompleksu 1:1 ($x_1 \approx 0,5$). Stały kompleks o tym składzie topi się kongruentnie (rys. 1.2.3), a zatem obecność C₇H₉N·H₂O w fazie ciekłej jest bardzo prawdopodobna. Z kolei inkongruentne topnienie trihydratu C₅H₅N·3H₂O wiąże się z uwalnianiem do fazy ciekłej dihydratu C₅H₅N·2H₂O (rys. 1.2.2). Stosunek molowy 1:2 odpowiada ułamkowi molowemu pirydyny $x_1 \approx 0,33$.

Rysunek 6.2.1. Nadmiarowa molowa objętość, rozszerzalność termiczna oraz ściśliwość adiabatyczna mieszanin amin z wodą (lewa kolumna) lub metanolem (prawa kolumna); T = 293,15K; (\triangle) – pirydyna, (\bullet) – 2-metylopirydyna,(\blacksquare) – 2,6-dimetylopirydyna. Izotermy dla układów woda 2-metylopirydyna oraz woda – 2,6-dimetylopirydyna wykreślono w oparciu o dane literaturowe (Ernst, Marczak 1994, 1995, 1996; Marczak i wsp. 2009)

Przy tym stężeniu ujemny nadmiar ściśliwości osiąga ekstremum. Ściśliwość nadmiarowa układu 2-metylopirydyna - H₂O również wskazuje na obecność w fazie ciekłej kompleksów 1:1. Brakuje niestety informacji na temat takich kompleksów w fazie stałej, w odróżnieniu od trihydratów, które badano metodą dyfrakcji rentgenowskiej (Mootz, Wussow, 1981).

W układach metanolowych prawdopodobnie występują solwaty o stechiometrii niezależnej od liczby podstawników CH₃ w pierścieniu co powoduje, że wszystkie ekstrema K_s^E zawierają się w przedziale ułamków molowych aminy $x_1 \approx 0.35 \div 0.4$.

Oddziaływania hydrofobowe wpływają na właściwości rozcieńczonych roztworów amin w wodzie.

Izotermy cząstkowej molowej objętości aminy (V_1) w roztworach wodnych są wklęsłe przy $x_1 \approx 0,05$ podczas gdy dla roztworów metanolowych funkcje V_1 są wypukłe w tym samym zakresie stężeń.

Molowa cząstkowa ściśliwość adiabatyczna amin maleje monotonicznie ze wzrostem stężenia rozpuszczalnika w obydwu typach roztworów jednak w rozcieńczonych roztworach wodnych zmiany te stają się bardziej gwałtowne. Efekt jest wyraźnie widoczny dla stężeń $x_1 < 0,1$, czyli wtedy, gdy liczba molekuł wody jest wystarczająco duża, by molekuły aminy mogły ulegać hydratacji hydrofobowej. Energia wiązań wodorowych pomiędzy cząsteczkami wody jest na tyle duża by stworzyć sztywną sieć a cząsteczki aminy dodatkowo wzmacniają te wiązania. W efekcie struktura ta chroni cząsteczki amin przed działaniem ciśnienia. Analogiczne zjawisko solwofobowe nie występuje w przypadku układów metanolowych. Ze wzrostem stężenia aminy sieć quasi - klatratowa rozpada się ze względu na niedobór cząsteczek wody, w związku z czym zanikają różnice pomiędzy dwoma typami mieszanin. W mieszaninach o dużym stężeniu aminy dominują oddziaływania solwofilowe. Cząsteczki łączą się poprzez wiązania O-H...N. Proces ten nie zależy od składu mieszanin co prowadzi do ujednolicenia przebiegów wielkości czastkowych. Zarówno w mieszaninach wodnych jak i metanolowych objętości i ściśliwości cząstkowe amin stają się bliskie objętościom i ściśliwościom czystych substancji.

Cząstkowa molowa rozszerzalność termiczna amin, podobnie jak rozszerzalność nadmiarowa, powiązana jest z entropią cząstkową. Dodatnie wartości tej funkcji świadczą o tym, że entropia cząstkowa maleje pod wpływem wzrastającego ciśnienia. W przypadku roztworów wodnych zmiany te stają się niezależne od stężenia powyżej $x_1 > 0.5$. Można

więc przypuszczać, że w tym zakresie stężeń stopień agregacji cząsteczek nie zależy od składu jakościowego i ilościowego roztworu.

Rysunek 6.2.2. Cząstkowa molowa objętość, ściśliwość adiabatyczna oraz rozszerzalność termiczna aminy w mieszaninach z wodą (lewa kolumna) lub metanolem (prawa kolumna); T = 293,15K; punkty – wartości obliczone metodą skończonych różnic; linie – izotermy przybliżone funkcjami obliczonymi z wielomianu Redlicha – Kistera; (\blacktriangle) – pirydyna, (\bullet) – 2-metylopirydyna, (\blacksquare) – 2,6-dimetylopirydyna. Izotermy dla układów woda – 2-metylopirydyna oraz woda – 2,6-dimetylopirydyna wykreślono w oparciu o dane literaturowe (Ernst, Marczak 1994, 1995, 1996; Marczak i wsp., 2009)

Standardowe termodynamiczne funkcje przeniesienia amin między nieskończenie rozcieńczonymi roztworami w wodzie i metanolu umożliwiają porównanie zachowania się tych cząsteczek w różnym otoczeniu. Im mniejsza wartość funkcji przeniesienia, tym bliższe sobie oddziaływania amina – rozpuszczalnik. Zgodnie z definicją termodynamiczne funkcje przeniesienia, dla rozcieńczeń granicznych, opisuje równanie:

$$E_1^{\mathbf{m}\to\mathbf{w}} = -E_1^{\mathbf{w}\to\mathbf{m}} = E_1^{\infty}(\mathbf{w}) - E_1^{\infty}(\mathbf{m})$$

gdzie: $E_1^{m \to w}$ - molowa funkcja przeniesienia aminy z nieskończenie rozcieńczonego roztworu w metanolu do nieskończenie rozcieńczonego roztworu w wodzie,

 $E_1^{\infty}(w), E_1^{\infty}(m)$ - odpowiednie wielkości cząstkowe aminy w nieskończenie

rozcieńczonym roztworze aminy w wodzie i metanolu.

Przeniesieniu cząsteczki aminy z roztworu w metanolu do roztworu w wodzie towarzyszy duży efekt objętościowy, wynoszący około -2×10^{-6} m³ mol⁻¹. Wartość ujemna wskazuje na gęstsze upakowanie molekuł w mieszaninach wodnych. Molowe ściśliwości przeniesienia aminy z roztworu metanolowego do wodnego prowadzą do tych samych wniosków. Wartości poszczególnych funkcji przeniesienia przedstawiono na rysunku 6.2.3.

Rysunek 6.2.3. Graniczne molowe funkcje przeniesienia amin z roztworów metanolowych do wodnych w temperaturze T = 293,15K. (*a*) objętość, (*b*) ściśliwość adiabatyczna

Wzrost temperatury prowadzi do częściowego rozpadu sieci klatratowej w roztworach wodnych przez co właściwości mieszanin z wodą i metanolem stają się sobie bliższe. Skutkuje to mniejszymi wartościami termodynamicznych funkcji przeniesienia.

7. PODSUMOWANIE I WNIOSKI

W wodnych roztworach pirydyny oraz jej metylowych pochodnych tworzą się struktury supramolekularne. Woda jako rozpuszczalnik jest czynnikiem warunkującym ten proces. Struktury te charakteryzują się stabilnością oraz określonym składem jednakże jednocześnie są to obiekty dynamiczne i mogą być rozpatrywane w kategoriach fluktuacji stężenia. Cząsteczki amin wiążą się z wodą wiązaniami O-H...N tworząc hydraty. Kompleksy te ulegają dalszej agregacji dzięki zdolności cząsteczek wody do tworzenia czterech wiązań wodorowych, w których H₂O odgrywa rolę zarówno donora jak i akceptora protonu. Im bliżej atomu azotu cząsteczki aminy tym wiązania te są trwalsze. Skutkiem tego są trwałe trihydraty pirydyny i metylopirydyn oraz monohydrat 2,6-dimetylopirydyny, obecne w fazie krystalicznej.

Obecność podstawnika metylowego w pierścieniu w bezpośrednim sąsiedztwie atomu azotu zwiększa energię wiązania wodorowego O-H...N przez co asocjaty są stabilniejsze. Ujawnia się tu kooperatywny charakter wiązań wodorowych. W efekcie asocjaty powstające w wodnych roztworach 2,6-dimetylopirydyny są najtrwalsze, czego dowodem są wyznaczone czasy relaksacji, rozmiar agregatów oraz energie asocjacji (Papai, Jancsó, 2000). Hydrat C₇H₉N·H₂O jest na tyle stabilny, że występuje również w fazie ciekłej (Marczak i wsp., 2009). W odróżnieniu od monohydratu 2,6-dimetylopirydyny, stały trihydrat pirydyny ulega dysocjacji podczas topnienia i nie występuje w fazie ciekłej.

W odróżnieniu od cząsteczek wody, cząsteczki metanolu nie są w stanie utworzyć trójwymiarowej sieci a jedynie proste łańcuchy z przypadkowymi odgałęzieniami (Kabeya i wsp., 1998). W konsekwencji wokół molekuł amin nie tworzą się metanolowe otoczki solwatacyjne podobne do wielościanów hydratacyjnych charakterystycznych dla rozcieńczonych roztworów wodnych. W układach metanolowych, powstają kompleksy amina – metanol o stachiometrii 1:1, gdzie metanol występuje jako donor protonu w wiązaniu O–H...N. Kompleksy aminowo – metanolowe nie asocjują. Mogą jedynie przyłączać cząsteczki metanolu poprzez wiązania O-H...O, dzięki obecności dwóch par elektronów na atomie tlenu molekuły CH₃OH.

Wiązania wodorowe w mieszaninach amin z wodą i metanolem powodują, że układy te są termodynamicznie nieidealne. Wartości bezwzględne minimów nadmiarowych molowych ściśliwości i objętości wzrastają w szeregu pirydyna < 2-metylopirydyna < 2,6-dimetylopirydyna co koreluje ze wzrastającą energią wiązań O – H ... N i stałą dysocjacji tworzących się kompleksów. Dla mieszanin wodnych wartości pK wynoszą odpowiednio 8,85, 8,03 oraz 6,25 (Brown i wsp., 1955). Różnice pomiędzy układami wodnymi i metanolowymi najwyraźniej przejawiają się w nadmiarowej rozszerzalności termicznej, dodatniej dla mieszanin z wodą i ujemnej dla mieszanin z metanolem (rys. 6.2.1). Przeciwne znaki *A*^E wynikają z odmiennego wpływu ciśnienia na entropię nadmiarową badanych układów. Wzrost ciśnienia powoduje zwiększenie entropii układów wodnych skutkiem kruszenia się trójwymiarowej sieci wody i jej zmniejszenie w przypadku układów metanolowych. Hydratacja hydrofobowa powoduje drastyczny spadek ściśliwości cząstkowej amin, gdy ich stężenie spada do zera. Świadczy to o tym, że amina, zamknięta w "sieci wodnej", staje się odporna na działanie ciśnienia. Efekt ten nakłada się na zmniejszenie ściśliwości aminy skutkiem powstawania wiązań wodorowych O-H...N z cząsteczkami rozpuszczalnika, co ilustruje rys. 6.2.2. Można zauważyć, że graniczne ściśliwości amin w roztworach wodnych są mniejsze niż w metanolowych.

Przeprowadzona w niniejszej rozprawie analiza jednoznacznie wskazuje, że asocjacja kompleksów zachodząca w wodnych roztworach amin jest konsekwencją specyficznych właściwości wody. Gdyby mikroheterogeniczności powstające w mieszaninach były skutkiem autoasocjacji pirydyny i jej pochodnych, jak to niekiedy sugerowano (Sacconi i wsp., 1960; Peral, Galego, 1994; Almásy, Jancso, 2004; Almásy i wsp., 2002) wówczas występowałyby zarówno w roztworach wodnych jak i metanolowych.

W rozważnych układach ani woda, ani metanol nie można uważać za rozpuszczalnik inertny, głównie ze względu na wiązania wodorowe O-H...N pomiędzy molekułami rozpuszczalnika i substancji rozpuszczonej. Odmienne właściwości układów wodnych i metanolowych wynikają z kooperatywności wiązań wodorowych, silniej zaznaczającej się w przypadku tych pierwszych. Wydaje się, że cennych informacji mogłoby dostarczyć zbadanie w podobny do przedstawionego sposób układów pirydyna i jej pochodne – 1,2-etanodiol. Molekuły etanodiolu, podobnie jak cząsteczki wody, mogą być donorami protonów w dwóch wiązaniach wodorowych. Odseparowanie grup hydroksylowych łańcuchem C_2H_4 powoduje z kolei, że efekty kooperatywne są słabsze. Można się zatem spodziewać, że układy pod pewnymi względami przypominać będą bardziej układy metanolowe, a pod innymi – wodne.

BIBLIOGRAFIA

- Abe A., Flory J.P., J. Am. Chem. Soc., 1965, 87, 1838
- Abe J., Nakanishi K., Touhara H., J. Chem. Thermodynamics, 1978, 10, 483
- Adamczyk N., Praca magisterska, Uniwersytet Śląski, 2009
- Almásy L., Cser L., Jancsó G., J. Mol. Liq., 2002, 101, 89
- Almásy L., Jancsó G., J. Mol. Liq., 2004, 113, 61
- Andon R. J. L., Cox J. D., J. Chem. Soc. (London), 1952, 4601
- Andon R. J. L., Cox J. D., Herington E. F. G., Chem.Soc., 1954, 3188
- Andon R. J. L., Cox J. D., Herington E. F. G., Trans. Faraday Soc., 1957, 53, 410
- Ashcroft S. J., Booker D. R., Turner J. C. R., J. Chem. Soc. Farady Trans., 1990, 86, 145
- Bakó I., Pálinkás G., Dore J.C., Fisher H., Jóvári P., Chem. Phys. Lett., 2004, 388, 486
- Bakó I., Radnai T., Pálinkás G., Z. Naturforsch. A, 1996, 51, 859
- Bertaggnolli H., Engelhardt T., Ber. Bunsenges. Phys. Chem., 1986, 90, 512
- Biddiscombe D. P., Coulson E. A., Handley R., Herington E. F. G., J. Chem. Soc. 1954, 1957, cyt. za Abe i wsp.,(1978)
- Blandamer M.J., w: Franks F., Water. A Comprehensive Treatise, Vol.II, Plenum Press, New York, 1973, rozdz.9
- Bond A. D., Davies J. E., Acta Cryst., 2001(a), E57, 01087
- Bond A. D., Davies J. E., Acta Cryst., 2001(b), E57, o1089
- Bond A. D., Davies J. E., Acta Cryst., 2002(a), E58, o5
- Bond A. D., Davies J. E., Acta Cryst. 2002(b), E58, 0326
- Bond A. D., Davies J. E., Acta Cryst., 2002(c), E58, 0328
- Bond A. D., Davies J. E., Kirby A. J., Acta Cryst., 2001, E57, 01242
- Born M., Mootz D., Schaefgen S., Z. Naturforsch. B, 1995, 50, 101
- Brovchenko I.V., Oleinikova A.V., J.Chem. Phys., 1997, 106, 7756
- Brovchenko I.V., Oleinikova A.V., High Temp. High Press., 1998, 30, 229
- Brown H.C., Johnson S., Podall H., J. Am. Chem. Soc., 1954, 76, 5556

Brown H. C., McDaniel D. H., Häfliger O., w Braude E. A., Nachod F. C., *Determination of Organic Structures by Physical Methods*, Academic Press, New York, 1955, cyt. za: Sacconi i wsp., 1960

Buchowski H., w: Chemia fizyczna, (red. Bielański A.), wyd. IV zmienione, PWN Warszawa 1980, rozdz. 16

Cambridge Crystallographic Data Centre data base, CSD version 5.32, 2010

Cox J. D., J. Chem. Soc. (London), 1952, 4606

Cox J. D., J. Chem. Soc., 1954, 3183

Cumper C.W.N., Vogel A.I., Walker S., J. Chem. Soc., 1956, 3621

Czermiński J., Iwasiewicz A., Paszek Z., Sikorski A., Statistical Methods In Applied Chemistry, PWN Warszawa, Elsevier, Amsterdam, 1990

Danten Y., Guillot B., Guissani Y., J. Chem. Phys., 1992, 96, 3795

Das A., Frenkel M., Gadalla N.A.M., Kudchadker S., Marsh K.N., Rodgers A.S., Wilhoit R.C., *J. Phys. Ref. Data*, 1993, **22**, 659

Domalski E.S., Hearing E.D., J. Phys. Chem. Ref. Data, 1990, 19, 881

Douhéret G., Davis M.I., Reis J.C.R., Blandamer M.J., Chem. Phys. Chem., 2001, 2, 148

Experimental Facilities, Laboratoire Léon Brillouin, http://www-llb.cea.fr/fr-en/spectrosllb.pdf (dostęp 13.05.2009)

Endo H., Bull. Chem. Soc. Japan, 1973, 46, 1106, 1586

Ernst S., Zastosowanie spektroskopii ultradźwiękowej w badaniu reakcji chemicznych. Elementy akustyki molekularnej, Skrypty Uniwersytetu Śląskiego nr 459, Katowice 1991

Ernst S., Zjawiska relaksacji molekularnej, AUW No 2123, Wrocław 1999, 335

Ernst S., Gliński J., Mat. Sci., 1977, III/3, 69

Ernst S., Marczak W., Bull. Pol. Acad. Sci. Chem., 1995, 43, 259

Ernst S., Marczak W., Kądziołka A., Bull. Pol. Acad. Sci. Chem., 1994, 42, 83

Ernst S., Marczak W., Kmiotek D., J. Chem. Eng. Data, 1996, 41, 128

Ernst S., Marczak W., Manikowski R., Zorębski E., Zorębski M., Acoust. Lett., 1992, 15, 123

Findlay T.J.V., Aust. J. Chem., 1961, 14, 646

Findlay T.J.V., Copp J.L.; Trans. Faraday Soc., 1969, 65, 1463

Franks F., Woda, WNT Warszawa 1988

Franks F., Reid D.S., *Thermodynamic properties*, w: Franks F., *Water. A Comprehensive Treatise*, Vol.II, Plenum Press, New York, 1973, rozdz.5

Gamba Z., Klein M., Chem. Phys., 1989, 130, 15

Garnsey R., Boe R.J., Mahoney R., Litovitz T.A., J. Chem. Phys., 1969, 50, 5222

Gill D.S., Bakshi M.S., J. Chem. Soc., Faraday Trans. 1, 1989, 85(8), 2297

Gill D.S., Singh R., Anand H., Puri J.K., J. Mol. Liquids, 2002, 98-99,15

Glessner A.J., Myers A.L., J. Chem. Eng. Data, 1971, 16, 181

Gliński J., Ernst S., Pol. J. Chem., 1982, 56, 339

Goldschmidt H., Constam E.J., Deut. Chem. Gesells., 1883, 16, 2976 cyt. za Glessner, Myers (1971)

Gonzalez B., Calvar N., Gomez E., Dominguez A., J Chem. Thermodynamics, 2007, 39, 1578

Grattoni C.A., Dawe R.A., Seah C.Y., Gray J.D., J. Chem. Eng. Data, 1993, 38, 516

Hahtley H., Thomas N.G., Applebey M.P., J. Chem. Soc. 1908, 93, 538

Hall L., Phys. Rev., 1948, 73, 775 cyt. za Endo (1973)

Hammonda B., *Probing Nanoscale Structures – The SANS Toolbox*, National Institute of Standards and Technology Center for Neutron Research, Gaithersburg 2008, rozdz.10, http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf (dostęp 13.05.2009)

Heap J.G., Jones W.J., Speakman J.B., J. Am. Chem. Soc., 1921, 43, 1939

Heasall E., Lamb J., Proc. Roy. Soc. (London), 1956, B69, 869, cyt. za Ernst (1999)

Heintz A., Wandschneider D., Lüning U., Marczak W., Fluid Phase Equil., 2006, 248, 123

Helm R.V., Lanum W.J., G.L. Cook, J.S. Ball, J. Phys. Chem., 1958, 62, 858

Instruction Manual, DMA 4500/5000 Density/Specific-Gravity Meter, Anton Paar GmbH, Graz, Austria

Jacrot B., Rep. Prog. Phys., 1976, 39, 911

Jorgensen W.L., McDonald N.A., J. Mol. Struct. (Theochem.), 1998, 424, 145

Kaatze U., Neumann C., Pottel R., J. Solution Chem., 1987, 16, 191

- Kabeya T., Tamai Y., Tanaka H., J. Phys. Chem. B, 1998, 102, 899
- Kadam U.B., Hiray A.P., Sawant A.B., Hasan M., J. Chem. Thermodynamics 2006, 38, 1675
- Křiž J., Dybal J., Tuzar Z., Kadlec P., J. Phys. Chem. B, 2009, 113, 11950
- Lomas J. S., Maurel F., J. Phys. Org. Chem., 2008, 21, 464
- Marcom K.W., Travers D.N., Trans. Faraday Soc., 1966, 62, 2063
- Marczak W., J. Chem. Eng. Data, 1996, 41, 1462
- Marczak W., J. Acoust. Soc. Am., 1997, 102, 2776
- Marczak W., J. Chem. Eng. Data, 1999, 44, 936
- Marczak W., Banaś A., Fluid Phase Equil., 2001, 186, 151
- Marczak W., Ernst S., Akustyka Molek. Kwant., 1997, 18, 187
- Marczak W., Ernst S., Bull. Pol. Acad. Sci. Chem., 1998, 46, 375
- Marczak W., Giera E., J. Chem. Thermodynamics, 1998, 30, 241-251
- Marczak W., Heintz A., Bucek M., J. Chem. Thermodynamics, 2004, 36, 575
- Marczak W., Kiełek K., Czech B., Flakus H., Rogalski M., Phys. Chem. Chem. Phys. 2009, 11, 2668
- Marczak W., Lehman J.K., Heintz A., J. Chem. Thermodynamics, 2003, 35, 296
- Mirzaev S.Z., Iwanowski I., Zaitdinov M., Kaatze U., Chem. Phys. Lett., 2006, 431, 308
- Mootz D., Wussow H.G., J. Chem. Phys., 1981, 75, 1517
- Nath J., Fluid Phase Equilib., 1995, 109, 39
- Nath J., J.Chem. Thermodynamics, 1996, 28, 1083
- Nigam R.K., Singh P.P., Aggarwal S., Sharua S.P., Fluid Phase Equilib., 1984, 16, 25
- Ohms U., Guth H., Treutmann W., Dannohl H., Schweig A., Heger G., J. Chem. Phys., 1985, 83, 273
- Pápai I., Jancsó G., J. Phys. Chem. A, 2000, 104, 2132
- Peral F., Galego E., J. Mol. Struct., 1994, 326, 59
- Perron G., Quirion F., Lambert D., Ledoux J., Ghaicha L., Bennes R., Privat M., Desnoyers J. E., J. Solution Chem., 1993, 22, 107

Piekarski H., Pietrzak A., J. Mol. Liq., 2005, 121, 46

POCh, Karty charakterystyk, http://www.poch.com.pl/ (dostęp 18.06.2009)

Reymer B., Mały Przewodnik Mechaniczny, Tom 1, WNT, Warszawa 1988, s.172

Sacconi L., Paoletti P., Ciampolini M., J. Am. Chem. Soc., 1960, 82, 3828

Schneider G.M., Phase Behavior of Aqueous Solutions at High Pressures, in: Franks F. (ed.) Water. A Comprehensive Treatise, Vol. 2, Plenum Press, New York-London 1973, rozdz. 6.

Sears V.F., Neutron News, 1992, 3, 26

Smets R., Huyskens P., Bull .Soc. Chim. France, 1978, 5-6,173

Szydłowski J., Nukleonika, 1998, 43, 423

Timmermans J., Physico-Chemical Costants of Pure Organic Compounds, Elsevier, Amsterdam, 1950

Villa S., Riesco N., Garcia de la Fuente I., Gonzales J.A., Cobos J.C., *Fluid Phase Equilib.* 2002, **198**,313

Vorontsov I.I., Almásy L., Antipin Yu.M., J. Mol. Struct., 2002, 610, 271

Wehr J., Pomiary prędkości i tłumienia fal ultradźwiękowych, PWN Warszawa 1972

Wilkie A.L., Shaw B.D., J. Soc. Chem. Ind., London, 1928, 47, 470T

Wóycicka M., Kurtyka Z.M., Bull. Acad. Polon. Sci., Ser. Sci. chim., 1965, 13, 469

Wóycicki W., Bull. Acad. Polon. Sci., Ser. Sci. chim., 1967(a), 15, 447

Wóycicki W., Bull. Acad. Polon. Sci., Ser. Sci. chim., 1967(b), 15, 613

Zábranský M., Růžička V., Majer V., J. Phys. Chem. Ref. Data, 1990, 19, 719

Zorębski E., Zorębski M., Bebek K., Ernst S., Akustyka Mol. Kwant., 1990, 11, 81

Zorebski E., Zorebski M., Gepert M., J. Phys. IV France, 2006, 137, 231

SYMBOLE WIELKOŚCI FIZYKOCHEMICZNYCH

SPIS ALFABETYCZNY SYMBOLI

Litery alfabetu łacińskiego

- A -amplituda
- C_p izobaryczna pojemność cieplna
- c prędkość propagacji fali ultradźwiękowej
 - $c_{\rm f}$ prędkość fazowa

 - c_{g} prędkość grupowa c^{*} zespolona prędkość
- E ekstensywna funkcja termodynamiczna
- E energia
- E_i wartość własna energii neutronów padających na próbkę
- E_s wartość własna energii neutronów rozproszonych
- E_i cząstkowa wielkość molowa składnika "*i*" mieszaniny
- f częstotliwość
- $f(\theta)$ amplituda (długość) rozpraszania neutronów
- G entalpia swobodna
- G funkcja Greena
- H entalpia
- H_i operator energii kinetycznej neutronów
- h stała Plancka
- \hbar stała Plancka kreślona (stała Diraca)
- I natężenie
- k_i wektor falowy fali padającej
- $k_{\rm s}$ wektor falowy fali rozproszonej
- L moment pędu
- l droga

- M -masa molowa
- M moduł sprężystości
- m masa neutronu
- p ciśnienie
- Q wektor rozpraszania, $\vec{Q} = \vec{k}_{s} \vec{k}_{i}$
- R stała gazowa
- r promień
- S entropia
- T temperatura (K)
- T_g górna krytyczna temperatura mieszalności
- t czas
- *u* przemieszczenie
- u₀ amplituda wychylenia z położenia równowagi
- V objętość molowa
- V potencjał oddziaływania neutronu z jądrem
- v prędkość cząstki
- x ułamek molowy
- x_1 ułamek molowy aminy
- x kierunek rozchodzenia się fali

Litery alfabetu greckiego

- A molowa rozszerzalność termiczna
- α współczynnik absorpcji fali ultradźwiękowej
 - aklas współczynnik absorpcji klasycznej
 - $\alpha^{\rm E}$ współczynnik absorpcji nadmiarowej, $\alpha^{\rm E} = \alpha \alpha_{\rm klas}$
 - α_{st} współczynnik absorpcji stokesowskiej
- α współczynnik rozszerzalności termicznej, $\alpha = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{\rho}$

 $\gamma = \frac{C_p}{C_V} - \text{wykładnik adiabaty}$

- ε gęstość energii
- θ kąt rozpraszania
- φ kąt fazowy

$$\eta$$
 – lepkość efektywna, $\eta = \frac{4}{3}\eta' + \eta''$

- η' lepkość ścinania
- η'' lepkość objętościowa
- K^* zespolony moduł ściśliwości
- K moduł ściśliwości
- K ściśliwość molowa
 - K_s molowa ściśliwość adiabatyczna
 - K_T molową ściśliwość izotermiczna
- κ współczynnik ściśliwości
 - κ_s współczynnik ściśliwości adiabatycznej
 - κ_{∞} współczynnik ściśliwości natychmiastowej
 - κ_{str} współczynnik ściśliwości strukturalnej
- λ długość fali
- μ_i potencjał chemiczny *i*-tego składnika
- ψ_i funkcja własna dla neutronów padających
- ψ funkcja własna dla oddziałujących par neutron jądro

- ρ gęstość $\rho_0 = g$ ęstość ośrodka niezaburzonego $\rho^{2^{S^{\circ}C}} = g$ ęstość w 25°C
- τ okres drgań
- τ czas relaksacji
- Ω współczynnik przewodnictwa cieplnego
- ω częstotliwość kątowa (kołowa)

Indeksy symboli funkcji termodynamicznych

0	– substancja czysta
М	– funkcja mieszania
m	– funkcja molowa
id	– faza idealna doskonała
Е	– funkcja nadmiarowa
œ	 nieskończenie wielkie rozcieńczenie
$\mathbf{m} \rightarrow \mathbf{w}$	 funkcja przeniesienia aminy z nieskończenie rozcieńczonego roztworu w metanolu do nieskończenie rozcieńczonego roztworu w wodzie

DODATKI

DODATEK A

Prędkość propagacji fali ultradźwiękowej w binarnych mieszaninach metanolu lub wody z pirydyną oraz jej metylowymi pochodnymi zmierzona metodą "sing – around" pirydyna – metanol (pirydyna partia 1, metanol partia 1, por. Tablica 4.1)

c / (m s ⁻¹)	1049,79	1063,51	1090,40	1114,08	1167,04	1209,26	1244,09	1271,43	1295,17	1313,44	1328,90	1341,92	1352,48
T/K	313,78	313,82	313,74	313,84	313,73	313,77	313,61	313,74	313,65	313,64	313,63	313,66	313,84
c/ (m s ⁻¹)	1069,35	1083,18	1110,33	1134,55	1188,53	1231,30	1266,76	1294,61	1318,26	1337,03	1352,94	1366,15	1377,02
<i>T</i> / K	307,77	307,83	307,77	307,83	307,70	307,79	307,63	307,73	307,69	307,66	307,63	307,67	307,84
<i>c /</i> (m s ⁻¹)	1089,18	1103,10	1130,48	1155,20	1209,92	1253,49	1289,33	1317,65	1341,49	1360,70	1376,70	1390,43	1401,73
T/K	301,79	301,84	301,80	301,85	301,78	301,84	301,75	301,82	301,78	301,73	301,76	301,74	301,86
с/ (m s ⁻¹)	1103,20	1117,56	1145,06	1170,17	1225,47	1269,69	1305,70	1334,35	1358,22	1377,73	1393,94	1407,77	1419,55
T/K	297,57	297,54	297,52	297,54	297,48	297,53	297,51	297,53	297,53	297,50	297,52	297,51	297,57
<i>c /</i> (m s ⁻¹)	1120,24	1134,32	1162,11	1187,98	1243,94	1288,58	1324,89	1354,13	1377,90	1397,97	1414,01	1427,74	1440,87
T/K	292,52	292,61	292,55	292,46	292,44	292,56	292,58	292,50	292,60	292,52	292,65	292,72	292,48
'x	0	0,0200	0,0600	0,1000	0,2000	0,3000	0,4001	0,4999	0,5997	0,6999	0,7999	0,8989	I

2-metylopirydyna – metanol (2-metylopirydyna partia 1, metanol partia 1, por. Tablica 4.1)

<i>с /</i> (m s ⁻¹)	1049,21	1064,18	1092,70	1118,82	1174,28	1216,44	1247,67	1266,34	1286,42	1297,76	1306,13	1311,92	1316,26
T/K	314,03	314,02	314,02	314,02	314,06	314,02	313,94	314,01	314,03	314,06	314,02	314,04	313,96
<i>c /</i> (m s ⁻¹)	1068,81	1084,05	1113,13	1139,77	1196,29	1239,36	1270,86	1290,13	1310,42	1321,92	1330,34	1336,31	1344,48
T/K	308,00	308,00	308,00	307,99	308,02	307,97	307,96	307,97	308,00	308,00	307,98	308,00	306,94
c / (m s ⁻¹)	1088,51	1104,11	1133,68	1160,88	1218,53	1262,39	1294,33	1313,89	1334,54	1346,11	1354,61	1360,81	1364,84
T/K	302,00	302,00	302,01	301,97	301,99	301,99	301,99	301,97	301,99	301,99	301,98	301,98	301,93
c/ (m s ⁻¹)	1102,95	1118,79	1148,73	1176,17	1234,67	1279,21	1311,40	1331,21	1351,98	1363,74	1372,20	1378,45	1382,32
T/K	297,66	297,65	297,65	297,65	297,65	297,64	297,67	297,64	297,67	297,65	297,65	297,66	297,66
<i>c /</i> (m s ⁻¹)	1120,05	1136,05	1166,42	1194,32	1253,70	1298,99	1331,57	1351,56	1372,54	1384,31	1392,99	1399,23	1403,14
T/K	292,57	292,59	292,58	292,59	292,60	292,59	292,61	292,58	292,60	292,62	292,59	292,60	292,62
٦x	0	0,0200	0,0599	8660'0	0,1992	0,3000	0,3993	0,4817	0,6003	0,6994	0,7965	0,8993	1

2,6-dimetylopirydyna – metanol (2,6-dimetylopirydyna partia 1, metanol partia 1, por. Tablica 4.1)

<i>c /</i> (m s ⁻¹)	1050,15	1066,93	1098,34	1126,72	1185,99	1228,47	1257,53	1276,02	1287,61	1293,84	1296,80	1297,10	1296,41
<i>T</i> / K	313,72	313,82	313,84	313,84	313,83	313,86	313,85	313,88	313,84	313,88	313,86	313,90	313,73
c/ (m s ⁻¹)	1072,91	1086,72	1118,89	1147,86	1208,37	1251,93	1281,63	1300,33	1312,13	1318,53	1321,47	1321,65	1321,10
T/K	306,73	307,81	307,81	307,83	307,84	307,84	307,82	307,87	307,83	307,86	307,84	307,89	307,73
c / (m s ⁻¹)	1089,45	1106,61	1139,57	1169,15	1231,24	1275,65	1305,88	1324,92	1336,79	1343,23	1346,23	1346,52	1345,96
T/K	301,72	301,85	301,83	301,83	301,84	301,84	301,83	301,87	301,86	301,88	301,87	301,90	301,76
c/ (m s ⁻¹)	1103,67	1121,13	1154,45	1184,45	1247,57	1292,73	1323,27	1342,51	1354,55	1361,14	1364,13	1364,62	1363,89
T/K	297,45	297,54	297,55	297,57	297,54	297,55	297,54	297,57	297,57	297,56	297,58	297,56	297,48
c/ (m s ⁻¹)	1120,68	1138,37	1172,18	1202,79	1266,96	1312,96	1343,97	1363,46	1375,55	1382,32	1385,33	1385,83	1385,01
T/K	292,41	292,48	292,51	292,51	292,52	292,51	292,49	292,50	292,52	292,46	292,52	292,51	292,48
'x	0	0,0200	0,0600	0,0995	0,2001	0,3000	0,3997	0,4991	0,5990	0,7007	0,8006	0,8989	Т

pirydyna - woda (pirydyna partia 2, por. Tablica 4.1)

<i>c /</i> (m s ⁻¹)	1551,61	1556,99	1551,63	1532,34	1510,75	1485,22	1456,31	1427,74	1402,51	1381,66	1365,12	1350,26
<i>T /</i> K	313,50	313,53	313,47	313,52	313,52	313,53	313,53	313,54	313,51	313,48	313,52	314,22
<i>c /</i> (m s ⁻¹)	1546,97	1559,94	1559,66	1547,96	1530,35	1506,92	1479,38	1450,58	1425,63	1405,17	1389,03	1374,75
T/K	307,50	307,53	307,46	307,51	307,50	307,53	307,38	307,54	307,50	307,46	307,53	308,26
<i>c /</i> (m s ⁻¹)	1540,48	1561,61	1566,67	1563,06	1549,56	1528,28	1501,68	1473,21	1448,59	1428,63	1413,09	1399,62
T/K	301,55	301,56	301,49	301,57	301,56	301,59	301,44	301,58	301,56	301,51	301,57	302,24
<i>c /</i> (m s ⁻¹)	1534,68	1561,98	1571,18	1573,72	1563,29	1543,75	1517,85	1489,57	1465,05	1445,44	1430,51	1417,36
T/K	297,27	297,27	297,19	297,26	297,27	297,27	297,12	297,26	297,26	297,24	297,28	297,99
<i>c /</i> (m s ⁻¹)	1526,46	1561,56	1575,78	1585,95	1579,44	1561,82	1537,70	1508,72	1484,49	1465,55	1451,18	1442,59
T/K	292,23	292,19	292,16	292,22	292,19	292,23	291,82	292,22	292,24	292,20	292,21	291,98
x,	0,0200	0,0600	0,1000	0,2000	0,3000	0,4000	0,5000	0,6000	0,7000	0,8000	0,9000	-

DODATEK B

Gęstość mieszanin binarnych metanolu lub wody z pirydyną oraz jej metylowymi pochodnymi zmierzona densytometrem oscylacyjnym

pirydyna – metanol (pirydyna partia 1, metanol partia 1, por. Tablica 4.1)

<i>p</i> / (kg m ⁻³)	786,514	795,036	810,980	825,565	857,163	882,847	903,980	921,488	936,224	948,940	959,866	969,397	978,036
T/(K)	298,145	298,145	298,145	298,145	298,145	298,145	298,146	298,144	298,145	298,145	298,144	298,143	298,145
ρ/ (kg m ⁻³)	791,227	799,760	815,738	830,352	862,004	887,723	908,877	926,400	941,150	953,882	964,833	974,393	983,071
T/(K)	293,145	293,145	293,145	293,145	293,145	293,145	293,146	293,145	293,146	293,143	293,144	293,146	293, 145
ρ/ (kg m ⁻³)	795,919	804,473	820,477	835,119	866,829	892,581	913,756	931,296	946,062	958,811	969,787	979,378	988,098
T/(K)	288,145	288,145	288,145	288,145	288,146	288,145	288,145	288,145	288,149	288,145	288,145	288,145	288,146
ρ/ (kg m ⁻³)	800,607	809,174	825,209	839,878	871,639	897,425	918,619	936,173	950,960	963,729	974,729	984,357	993,121
T/(K)	283,148	283,144	283,147	283,148	283,147	283,149	283,146	283,145	283,146	283,148	283,145	283,146	283,148
ρ / (kg m ⁻³)	805,277	813,857	829,920	844,615	876,423	902,243	923,459	941,030	955,831	968,623	979,653	989,316	998,127
T/(K)	278,152	278,152	278,150	278,150	278,153	278,152	278,151	278,156	278,151	278,152	278,154	278,156	278,151
'x	0,0000	0,0200	0,0600	0,1000	0,2000	0,3000	0,4001	0,4999	0,5997	0,6999	0,7999	0,8989	1,0000

ρ/ (kg m ⁻³)	762,607	771,037	786,812	806,175	832,554	858,073	879,115	896,570	911,262	923,920	934,772	944,204	952,707
T/(K)	323,146	323,146	323,146	318,145	323,146	323,144	323,146	323,146	323,146	323,146	323,146	323,145	323,148
<i>р </i> (kg m ⁻³)	767,454	775,904	1117,197	806,175	837,544	863,090	884,147	901,607	916,306	928,970	939,813	949,275	957,799
T/(K)	318,145	318,149	318,145	318,145	318,150	318,145	318,146	318,145	318,145	318,149	318,145	318,145	318,145
<i>p</i> / (kg m ⁻³)	772,266	780,733	796,575	811,068	842,495	868,072	889,149	906,616	921,320	933,996	944,870	954,332	962,876
T / (K)	313,149	313,144	313,148	313,145	313,144	313,148	313,149	313,146	313,145	313,144	313,146	313,145	313,145
<i>p</i> / (kg m ⁻³)	777,042	785,527	801,406	815,927	847,412	873,023	894,118	911,598	926,313	938,997	949,887	959,369	967,940
T/(K)	308,144	308,145	308,145	308,144	308,145	308,144	308,144	308,144	308,145	308,145	308,144	308,145	308,145
ρ/ (kg m ⁻³)	781,790	790,294	806,203	820,759	852,299	877,947	899,062	916,554	931,278	943,975	954,887	964,390	972,993
T/(K)	303,146	303,146	303,146	303,145	303,145	303,145	303,146	303,146	303,146	303,146	303,145	303,146	303,147
۲	0,0000	0,0200	0,0600	0,1000	0,2000	0,3000	0,4001	0,4999	0,5997	0,6999	0,7999	0,8989	1,0000

2-metylopirydyna – metanol (2-metylopirydyna partia 1, metanol partia 1, por. Tablica 4.1)

р/ (kg m ⁻³)	786,555	795,288	811,397	825,779	855,337	877,695	894,479	904,914	916,914	924,489	930,501	935,270	939,118
T/(K)	298,143	298,145	298,146	298,144	298,144	298,145	298,145	298,144	298,144	298,144	298,146	298,145	298,144
ρ/ (kg m ⁻³)	791,263	800,006	816,137	830,538	860,132	882,499	899,270	909,681	921,652	929,202	935,194	939,950	943,788
T/(K)	293,146	293,146	293,144	293,144	293,144	293,144	293,145	293,145	293,144	293,144	293,144	293,145	293,146
<i>p</i> / (kg m ⁻³)	795,955	804,713	820,862	835,280	864,907	887,281	904,040	914,433	926,369	933,898	939,871	944,617	948,451
T/(K)	288,145	288,150	288,145	288,147	288,145	288,145	288,145	288,146	288,146	288,146	288,145	288,146	288,148
ρ/ (kg m ⁻³)	800,641	809,407	825,576	840,011	869,670	892,055	908,798	919,173	931,078	938,582	944,540	949,275	953,101
T/(K)	283,149	283,145	283,148	283,149	283,148	283,147	283,147	283,148	283,147	283,143	283,149	283,148	283,144
ρ/ (kg m ⁻³)	805,311	814,083	830,269	844,720	874,410	896,802	913,531	923,886	935,761	943,243	949,187	953,913	957,743
T/(K)	278,151	278,153	278,150	278,150	278,151	278,151	278,152	278,152	278,151	278,151	278,150	278,151	278,155
1x	0,0000	0,0200	0,0599	8660'0	0,1992	0,3000	0,3993	0,4817	0,6003	0,6994	0,7965	0,8993	1,0000

/ (K)	ρ/ (kg m ⁻³)	T/(K)	ρ/ (kg m ⁻³)	T/(K)	ρ/ (kg m ⁻³)	T/(K)	ρ/ (kg m ⁻³)	T / (K)	ρ/ (kg m ⁻³)
	781,829	308,144	777,081	313,145	772,304	318,145	767,496	323,146	762,649
	790,550	308,145	785,788	313,145	781,000	318,146	776,179	323,146	711,317
	806,636	308,146	801,853	313,143	797,041	318,145	792,195	323,145	787,312
	820,999	308,144	816,196	313,145	811,359	318,145	806,492	318,145	806,492
ð.,	850,521	308,144	845,681	313,145	840,811	318,145	835,910	323,146	830,969
	872,871	308,146	868,021	313,146	863,146	318,145	858,237	323,145	853,302
~	889,670	308,146	884,834	313,146	879,973	318,145	875,083	323,145	870,164
5	900,123	308,148	895,310	313,144	890,471	318,146	885,605	323,145	880,709
-+	912,157	308,145	907,382	313,149	902,581	318,146	897,753	323,146	892,897
9	919,759	308,144	915,009	313,145	910,239	318,145	905,441	323,146	900,618
\$	925,793	308,144	921,064	313,144	916,317	318,145	911,547	323,146	906,754
	930,577	308,144	925,868	313,146	921,139	318,145	916,393	323,145	911,627
	934,434	308,144	929,740	313,144	925,029	318,148	920,301	323,146	915,555

2,6-dimetylopirydyna – metanol (2,6-dimetylopirydyna partia 1, metanol partia 1, por. Tablica 4.1)

р/ (kg m ⁻³)	786,557	796,038	813,086	827,838	857,136	877,586	891,610	901,167	907,615	912,053	914,977	916,865	918,018
T/(K)	298,145	298,145	298,144	298,144	298,146	298,145	298,146	298,144	298,145	298,145	298,145	298,146	298,143
<i>p</i> / (kg m ⁻³)	791,265	800,752	817,813	832,584	861,910	882,363	896,347	905,849	912,238	916,627	919,511	921,372	922,508
T/(K)	293,146	293,145	293,145	293,145	293,145	293,145	293,147	293,146	293,144	293,146	293,145	293,144	293,145
ρ/ (kg m ⁻³)	795,960	805,453	822,527	837,321	866,665	887,118	901,067	910,511	916,839	921,179	924,026	925,862	926,984
T/(K)	288,149	288,149	288,149	288,145	288,145	288,145	288,149	288,145	288,145	288,150	288,149	288,148	288,145
ρ/ (kg m ⁻³)	800,648	810,141	827,226	842,025	871,406	891,856	905,772	915,156	921,424	925,712	928,521	930,336	931,446
T/(K)	283,144	283,145	283,146	283,148	283,148	283,145	283,144	283,149	283,145	283,145	283,145	283,145	283,145
ρ/ (kg m ⁻³)	805,315	814,814	831,906	846,721	876,125	896,574	910,450	919,776	925,983	930,218	932,995	934,781	935,886
T/(K)	278,153	278,155	278,155	278,153	278,151	278,156	278,154	278,153	278,155	278,152	278,155	278,153	278,156
۲	0,0000	0,0200	0,0599	0,0998	0,1992	0,3000	0,3993	0,4817	0,6003	0,6994	0,7965	0,8993	1,0000

ρ/ (kg m ⁻³)	762,650	772,091	789,047	808,609	832,864	853,326	867,530	877,362	884,112	888,829	891,967	894,020	895,289		
T/(K)	323,146	323,146	323,146	318,146	323,146	323,146	323,146	323,146	323,146	323,146	323,146	323,146	323,145		
ρ/ (kg m ⁻³)	767,500	776,950	793,923	808,609	837,783	858,242	872,408	882,185	888,871	893,532	896,623	898,639	899,875		
T/(K)	318,148	318,143	318,148	318,146	318,146	318,145	318,145	318,145	318,145	318,147	318,149	318,150	318,145		
ρ/ (kg m ⁻³)	772,307	781,768	798,760	813,462	842,668	863,123	877,253	886,976	893,601	898,203	901,248	903,230	904,440		
T/(K)	313,145	313,146	313,144	313,144	313,147	313,145	313,144	313,144	313,145	313,145	313,144	313,144	313,146		
р / (kg m ⁻³)	777,084	786,551	803,536	818,283	847,519	867,972	882,066	891,736	898,299	902,845	905,849	797,797	908,986		
T/(K)	308,144	308,144	308,144	308,147	308,144	308,145	308,146	308,145	308,145	308,145	308,144	308,145	308,144		
<i>р і</i> (kg m ⁻³)	781,833	791,306	808,336	823,073	852,340	872,791	886,851	896,466	902,970	907,464	910,424	912,342	913,512		
T/(K)	303,145	303,147	303,147	303,145	303,144	303,147	303,146	303,145	303,147	303,147	303,146	303,144	303,145		
'x	0,0000	0,0200	0,0599	8660'0	0,1992	0,3000	0,3993	0,4817	0,6003	0,6994	0,7965	0,8993	1,0000		
ρ/ (kg m ⁻³)	998,174	999,172	1000,567	1001,497	1002,145	1002,656	1003,587	1002,760	1000,344	996,586	992,143	987,758	983,811	980,480	978.039
-----------------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	---------
T/(K)	298,156	298,153	298,154	298,144	298,156	298,143	298,143	298,144	298,143	298,144	298,145	298,145	298,144	298,143	298,145
ρ/ (kg m ⁻³)	999,580	1000,833	1002,675	1003,977	1004,921	1005,691	1007,489	1007,126	1004,961	1001,324	996,943	992,614	988,730	985,460	983.076
T/ (K)	293,154	293,155	293,155	293,145	293,154	293,144	293,145	293,145	293,145	293,145	293,145	293,145	293,146	293,145	293,144
ρ/ (kg m ⁻³)	1000,738	1002,272	1004,606	1006,299	1007,564	1008,614	1011,324	1011,438	1009,530	1006,015	1001,699	997,435	993,625	990,425	988,105
T/(K)	288,155	288,154	288,154	288,145	288,154	288,145	288,145	288,145	288,145	288,145	288,145	288,145	288,145	288,145	288 145
ρ/ (kg m ⁻³)	1001,626	1003,469	1006,338	1008,463	1010,074	1011,423	1015,095	1015,703	1014,055	1010,666	1006,422	1002,232	998,500	995,380	063 130
T/(K)	283,155	283,155	283,155	283,148	283,155	283,145	283,149	283,148	283,148	283,149	283,148	283,149	283,150	283,146	283 148
ρ/ (kg m ⁻³)	1002,210	1004,395	1007,860	1010,457	1012,443	1014,106	1018,791	1019,906	1018,522	1015,261	1011,092	1006,985	1003,345	1000,311	998 141
T/(K)	278,154	278,154	278,154	278,152	278,153	278,156	278,152	278,152	278,152	278,152	278,150	278,151	278,152	278,151	278.150
¹ x	0,0100	0,0200	0,0400	0,0600	0,0800	0,1000	0,2000	0,3000	0,4000	0,5000	0,6000	0,7000	0,8000	0006'0	1.0000

pirydyna – woda (pirydyna partia 2, por. Tablica 4.1)

Dodatek B

'x	T/(K)	ρ/ (kg m ⁻³)								
0,0100	303,156	996,549	308,155	994,716	313,152	992,692	318,155	990,486	323,153	988,116
0,0200	303,155	997,307	308,154	995,255	313,152	993,021	318,155	990,622	323,149	988,065
0,0400	303,156	162,866	308,152	995,853	313,155	993,261	318,152	990,524	318,152	990,524
0,0600	303,145	998,877	308,145	996,120	313,147	993,232	318,145	990,211	323,145	987,011
0,0800	303,156	999,251	308,155	996,229	313,155	993,087	318,156	989,828	323,147	986,468
0,1000	303,149	999,513	308,145	996,260	313,146	992,903	318,146	989,439	323,146	985,875
0,2000	303,144	999,615	308,146	995,577	313,144	991,463	318,145	987,280	323,146	983,024
0,3000	303,145	998,340	308,144	993,867	313,146	989,333	318,145	984,743	323,146	980,095
0,4000	303,146	995,680	308,149	990,967	313,145	986,202	318,145	981,385	323,146	976,513
0,5000	303,146	991,803	308,145	986,975	313,145	982,096	318,145	977,175	323,145	972,199
0,6000	303,146	987,304	308,147	982,423	313,146	977,497	318,145	972,526	323,146	967,512
0,7000	303,146	982,869	308,144	977,945	313,145	972,984	318,146	967,982	323,146	962,947
0,8000	303,145	978,869	308,144	973,902	313,149	968,908	318,145	963,878	323,146	958,823
0,9000	303,145	975,485	308,144	970,472	313,146	965,440	318,146	960,385	323,146	955,310
1,0000	303,145	972,999	308,145	967,948	313,145	962,884	318,145	957,806	323,148	952,714

DODATEK C

Współczynnik absorpcji fali ultradźwiękowej α / (Np m⁻¹) mieszanin binarnych metanolu lub wody z pirydyną oraz jej metylowymi pochodnymi zmierzony w temperaturze 293 K

1x IX	0	0,1000	0,2000	0,3500	0,5000	0,6479	0,8000	T
30,003	23,5	20,3	20,9	26,3	36,6	56,6	100,8	401,3
36,062	36,2	36,7	36,9	44,0	59,4	84,9	145,4	567,0
39,548	42,6	43,3	45,0	53,2	70,3	102,2	176,0	667,7
52,500	77,4	77,8	79,3	94,7	125,2	183,6	309,8	1180,2
60,100	91,2	101,2	103,5	123,4	164,4	239,3	406,1	1618,0
69,940	114,3	142,2	142,4	167,8	228,5	335,1	568,9	2251,8
79,142	149.3	181,1	186,7	220,0	298,0	428,1	710,4	2843,0

pirydyna – metanol (pirydyna partia 3, metanol partia 3, por. Tablica 4.1)

x1 XI	0	0,1000	0,1994	0,3498	0,5001	0,6494	0,7974	-
30,003	23,5	24,5	24,9	29,1	30,7	36,1	43,7	57,9
36,062	36,2	35,6	36,4	38,9	46,0	50,3	66,1	84,4
39,548	42,6	42,5	45,7	50,4	55,6	63,3	78,6	101,0
52,500	77,4	73,4	72,6	85,4	93,6	110,4	138,2	179,8
60,100	91,2	93,7	89,3	109,4	126,3	142,5	173,6	238,8
69,940	114,3	110,3	120,7	180,0	155,2	189,8	222,4	319,1
79.142	149.3	117,9	134,1	180,0	189,7	213,2	300,0	400,0

2-metylopirydyna – metanol (2-metylopirydyna partia 1, metanol partia 2, por. Tablica 4.1)

2,6-dimetylopirydyna – metanol (2,6-dimetylopirydyna partia 2, metanol partia 2, por. Tablica 4.1)

× /	0	0,0997	0,1997	0,3292	0,4993	0,6501	0,7993	1
03	23,5	26,6	26,8	30,5	35,2	37,6	42,4	51,3
62	36,2	36,5	35,2	44,7	53,6	58,5	66,2	77,6
548	42,6	43,5	41,8	57,8	6'19	68,2	78,5	90,1
500	77,4	72,5	77,0	96,6	111,6	122,0	142,8	162,1
00	91,2	89,2	101,6	127,3	144,1	153,2	181,2	208,6
940	114,3	113,8	122,4	176,9	172,7	217,7	233,4	274,7
142	149,3	156,5	158,3	201,6	223,1	269,9	294,9	335,5

por. Tablica 4.
(pirydyna partia 4,
pirydyna – woda

/XHHZ/J	0	0,0500	0,1000	0,1500	0,2000	0,3000	0,3999	0,5000	0,6500	0,8000	-
12,505	4,7	8,1	8,4	7,8	7,6	7,4	6,9	7,3	8,1	12,3	70,6
18,005	8,5	14,0	15,7	14,5	14,7	12,6	12,7	12,9	15,7	23,7	147,4
22,119	12,8	20,5	22,9	21,5	21,5	18,5	19,2	19,5	23,1	38,0	215,1
26,594	17,8	26,3	33,2	31,0	30,4	27,6	28,6	24,4	31,5	55,4	325,7
30,003	22,2	30,5	34,6	33,5	31,5	28,9	26,1	27,1	35,6	61,7	401,3
36,062	31,6	52,5	56,9	56,1	53,8	50,0	46,8	47,3	59,0	96,6	567,0
39,548	37,9	61,8	67,2	66,1	64,9	58,5	55,8	57,4	70,6	115,8	667,7
52,500	47,0	110,8	120,4	118,0	118,7	111,6	102,5	105,8	128,7	194,3	1180,2
60,100	62,4	143,2	160,0	156,8	153,3	142,2	134,4	137,4	169,5	274,7	1618,0
69,940	90'06	186,0	205,5	206,3	6'661	187,5	206,3	184,0	224,9	378,6	2251,8
79,142	122,1	221,4	256,0	253,4	255,7	235,4	253,4	210,6	285,2	479,8	2843,0

2-metylopirydyna – woda (2-metylopirydyna partia 1,2, por. Tablica 4.1)

											_
-	11,5	22,3	33,1	45,8	51,9	84,4	101,0	179,8	238,8	319,1	400,0
0,6997	7,1	14,6	21,6	29,2	33,3	55,2	66,0	118,4	159,2	212,0	267,7
0,4997	8,0	15,8	23,2	32,4	38,9	60,6	72,2	131,2	169,3	224,2	275,9
0,3997	10,4	20,2	29,6	41,2	49,4	75,7	91,3	153,7	207,8	289,6	330,7
0,2960	13,1	26,1	39,0	53,9	64,6	98,9	115,1	207,1	264,3	344,3	418,7
0,2001	15,5	30,9	45,1	62,2	76,9	113,3	133,6	232,9	297,5	390,6	459,3
0,0999	15,2	27,9	41,0	55,1	68,4	98,1	118,9	8,991	253,3	364,6	433,6
0,0600	12,0	23,1	32,2	44,1	50,2	75,3	96,2	153,7	193,8	275,7	309,0
0,0500	11,0	20,3	29,3	36,7	46,2	68,8	80,8	139,1	186,3	240,8	260,0
0,0400	6'6	17,2	25,4	33,4	39,1	59,8	69,1	121,5	159,7	213,9	230,8
0,0200	6,8	11,9	17,3	22,1	22,2	34,7	42,6	75,7	103,3	144,0	174,9
0	4,7	8,5	12,8	17,8	22,2	31,6	37,9	47,0	62,4	90,0	122,1
/WHZ	12,505	18,005	22,119	26,594	30,003	36,062	39,548	52,500	60,100	69,940	79,142

2,6-dimetylopirydyna – woda (2,6-dimetylopirydyna partia 2,3, por. Tablica 4.1)

1x IH	0	0,0300	0,0500	0,0600	0,1001	0,2001	0,3001	0,4002	0,4987	0,6501	0,7972	2
05	4,7	19,5	30,1	38,4	50,7	50,0	36,8	27,2	16,7	10,6	9,4	10,7
05	8,5	32,6	55,9	68,9	92,1	95,8	61,7	51,7	34,4	19,8	17,6	21,5
119	12,8	46,0	50,5	92,6	129,2	135,8	106,7	75,4	49,5	29,4	26,2	30,4
594	17,8	61,9	87,0	126,9	173,9	192,6	151,8	106,8	73,1	43,1	38,6	45,1
03	22,2	69,0	120,7	142,4	202,8	229,9	180,6	125,3	85,2	49,3	42,4	51,3
)62	31,6	96,4	170,6	197,8	275,0	313,5	258,1	184,3	124,2	74,6	66,5	77,6
548	37,9	112,1	191,5	231,2	318,8	369,7	302,8	217,9	148,6	89,9	6'62	90,1
00	47,0	183,2	305,8	359,0	515,6	612,5	517,1	377,5	265,9	161,3	147,5	162,1
8	62,4	227,5	376,4	441,4	674,6	763,0	659,1	473,7	326,4	207,6	185,6	208,6
40	90,0	283,0	464,4	530,5	783,2	958,2	839,3	596,3	430,7	276,2	245,6	274,7
42	122,1	333,4	546,9	647,0	946,6	1159,8	1026,0	773,5	518,2	338,6	305,0	335,5

DODATEK D

Spis publikacji i komunikatów konferencyjnych

Dodatek D

Lista publikacji:

W. Marczak, B. Czech, L. Almásy, D. Lairez, "Molecular clusters In aqueous solutions of pyridine and its metyl derivatives" *Phys. Chem. Chem. Phys.*, DOI: 10.1039/C0CP02771E

W. Marczak, K. Kiełek, B. Czech, H. Flakus, M. Rogalski, "Complexes of 2,6-dimethylpyridine with water in condensed phases and the dynamical cooperative interactions involving hydrogen bonds" *Phys. Chem. Chem. Phys.* 2009, 11, 2668-2679

B. Czech, W. Marczak, "Effects of solvation of 2-methylpyridine and 2,6-dimethylpyridine in dilute solutions in water and methanol on the limiting partial molar compressibility and volume", *Acta Phys. Pol. A*, 2008, **114**, 45-50

B. Czech, M. Dzida, T. Cembala, W. Marczak, "Features of different honeys identified by acoustic method" *Eur. Phys. J. ST*, 2008, **154**, 267-270

Udział w konferencjach naukowych:

B. Świerczek(Czech), M. Dzida, T. Cembala, W. Marczak "*Próba identyfikacji miodów pszczelich metodą akustyczną*", 36th Winter School on Wave and Quantum Acoustics, 26 – 28.02.2007, Wisła (referat)

B.Czech, W. Marczak "Effects of solvation of 2-methylpyridine and 2,6-dimethylpyridine in dilute solutions in water and methanol on the limiting partial molar compressibility and volume", 37^{th} Winter School on Wave and Quantum Acoustics, 25 - 27.02.2008, Wisła (referat)