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ABSTRACT

We show that subwavelength diffracted wave fields may be managed inside multilayered plasmonic devices to
achieve ultra-resolving lensing. For that purpose we first transform both homogeneous waves and a broad band
of evanescent waves into propagating Bloch modes by means of a metal/dielectric (MD) superlattice. Beam
spreading is subsequently compensated by means of negative refraction in a plasmon-induced anisotropic effective-
medium that is cemented behind. A precise design of the superlens doublet may lead to nearly aberration-free
images with subwavelength resolution in spite of using optical paths longer than a wavelength.
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1. INTRODUCTION

Plasmonics is gaining current space in groundbreaking photonic technologies since it carries the possibility of
moulding the flow of subwavelength wave fields. For instance, generation of nanosized hot spots by means
of metallic nanoparticles and extraordinary transmission of thin films with subwavelength holes and slits have
been extensively analyzed and observed in experiments.1, 2 Relevant applications are high-density waveguiding,
nanoantennas, labels for biomedical research and sensing to mention a few.3 In particular, superlenses are
plasmonic flat devices capable of reconstruct a given scattered wave field with subwavelength features.4 This
phenomenon has been applied successfully in high-resolution optical lithography.5, 6

The image formation by metallic single-layer superlenses is based on the excitation of surface plasmons
polaritons (SPPs) and anti-plasmons on the entrance and exit interfaces.7 As a consequence wave amplification
inside the metallic slab compensates the attenuation produced in the surrounding dielectric. By coupling a few
of these elementary thin lenses we may compose a MD multilayered device capable of transmit high-frequency
plane waves by resonant tunneling.8, 9 Assuming a perfect periodic process, a set of evanescent waves are
effectively converted into propagating Bloch waves with characteristic pseudo-moment and consequently carrying
electromagnetic energy.

Two main concerns are critical in order to achieve a high-fidelity replica of the scattered field. First we will
prevent resonant peaks in the transmittance response that would enhance certain spatial frequencies and thus
disfiguring the image. Secondly we shall preclude dephasing of different spectral components that appear in
the transmission coefficient. The first issue may be treated essentially by using metals and dielectrics whose
permittivities are selectively adjusted, and the second subject is addressed by tuning the filling factors of the
materials involved. As a result the wave fields will propagate inside the multilayered metallic composites in the
canalization regime.10, 11

In this contribution we follow a different approach that leads to control dephasing of subwavelength outputs.
This is based on counterbalancing the phase response of high-transparent metallic superlenses in order to flatten
the overall phase mismatch at the image plane. In geometrical terms, negative refraction of high-frequency
Bloch waves excited by a nanosized object contributes to achieve a nearly-stigmatic subwavelength image. Our
investigation is inspired on the direct observation of light focusing through a photonic crystal flat lens designed
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Figure 1. Illustration of the generalized Airy’s formula for two coupled superlenses, SL1 and SL2.

and fabricated using a III-V semiconductor slab to operate at optical frequencies.12 More sophisticated devices
following the above primitive idea has been presented recently.13 However the spot size of the image field
is clearly diffraction limited. A recent tentative to overcome this limit by using uniform arrays of plasmonic
waveguides has been proposed elsewhere.14, 15 Here we discuss the potential advantages of our proposal based
on the coupling of MD superlenses. Part of this study has been reported elsewhere.16

2. THE PHASE ADDITION RULE

In this section we examine the role of elementary flat superlenses in the optical response of a two-fold coupled
plasmonic device. For that purpose let us consider two thin superlenses that, for simplicity, are immersed in
the same transparent medium of dielectric constant ε. In principle our approach holds for superlenses that are
formed by a single metallic layer, but here we are focused on multilayered structures. When a given TM plane
wave of amplitude H0 and in-plane spatial frequency kx impinges on the front face of the first superlens, the
wave field is partially transmitted with a complex amplitude t1H0; therefore t1 stands for the coefficient of
transmission. In the case that absorption and reflections are negligible, |t1| ≈ 1 for homogeneous waves in the
host medium but this is not necessarily true for evanescent fields, where |kx| > √

εk0 and k0 = 2π/λ0 is the
wavenumber in vacuum. Propagation along the intermediate medium results in an additional factor exp (iβL),
where β =

√
εk20 − k2x. The following step consists of traversing thought the second metallic near-field flat lens.

Assuming a coefficient of transmission t2 for the second superlens, the transmitted field yields t1t2 exp (iβL)H0.
More generally, the Airy’s formula17 would take into account multiple scattered waves giving a transmitted field

Hy = t1t2 exp (iβL)H0

[
1 + r1r2 exp (2iβL) + r21r

2
2 exp (4iβL) + . . .

]
=

t1t2 exp (iβL)H0

1− r1r2 exp (2iβL)
, (1)

where r1,2 is the coefficient of reflection corresponding to a given superlens. This is illustrated in Fig. 1.

In our discussion we will consider that SL1 and SL2 are firmly attached and, as a consequence, we set L = 0
from here on. From Eq. (1) we infer that the phase increment of the transmitted wave with respect to the
incident field is the result of a summation of three terms, corresponding to the arguments of the phasors t1, t2,
and (1− r1r2)

−1
, respectively. In this paper this is called the phase addition rule. In the case that the modulus

of either r1 or r2 is significantly lower than unity, the last phasor may be neglected and the phase of the emerging
field is directly controlled by the arguments of the transmission coefficients t1,2. In this sense, the dependence
of arg(t1) upon kx might be compensated with a prescribed superlens SL2 leading to a ultraflattened curve at

least within a given spectral band. Otherwise the argument of (1− r1r2)
−1

may transform the overall phase
variation in a nonlinear way. Next we consider a procedure to play on the phase addition rule in order to achieve
subwavelength aberration-free images.

3. WAVE ABERRATION COMPENSATION

In Fig. 2 we represent the spectral dependence of the transmission coefficient both in amplitude and phase for
a couple of metallodielectric multilayered devices at λ0 = 485 nm. Fig. 2(a) shows the transmission coefficient
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Figure 2. Transmission coefficient in modulus and phase for finite periodic structures made of silver and a dielectric: (a)
SrTiO3; (b) GaP. In (a) we have N1 = 19 silver layers with a filling factor of f1 = 0.35 within a period of Λ1 = 30 nm. In
(b) we consider N2 = 7 periods of Λ2 = 50 nm for a silver filling factor f2 = 0.50. In both stacked devices the surrounding
medium is the vacuum. (c) The transmission coefficient of the coupled structure.

for a periodic structure consisting of N1 = 20 silver layers (εAg = −7.754 + i0.727) hosted in SrTiO3 (εSrTiO3 =
6.596 + i0.070). The unit cell has a period of Λ1 = 30 nm, and the filling factor of silver is f1 = 0.35.
Also the surrounding medium of the stack is considered to be the vacuo. From the figure of |t1| we observe
that, in practical terms, our finite lattice cannot transmit spatial frequencies beyond kx = κk0, where the
effective index of refraction κ = 4.5 in our numerical example. Since the refractive index of SrTiO3, that is
nSrTiO3 = Re

√
εSrTiO3 = 2.57, is considerably lower than κ = 4.5, a resonant tunneling effect driven by SPPs is

evident. Moreover, a decreasing variation of the phase of t1 in terms of kx is clearly revealed. In Fig. 2(b) we depict
the transmission coefficient for a second lattice made of N2 = 7 silver slabs placed on GaP (εGaP = 13.287).
In this case the period is Λ2 = 50 nm and the filling factor of silver is f2 = 0.50. While the effective index
of refraction κ is comparable with that obtained in the previous case, the phase shows a completely different
behaviour. Now the complex argument of the transmittance increases for higher spatial frequencies kx. Note also
that the phase increment observed in the GaP lattice goes around 3π rads, which approximately corresponds to
the phase decrement attributed to the SrTiO3 multilayer. Then a coupled device including both types of periodic
nano-structures would yield a compensated-phase response. This finding is confirmed in Fig. 2(c) where the net
phase deviation is always lower than π rads within the effective bandwidth |kx| < 5k0.

The different behavior observed in the phase dependence of the transmittance upon spatial frequencies may
be explained from the isofrequency curves of the periodic lattices. In Fig. 3 we represent the dispersion equation17

cos(kzΛ) = cosϕ1 cosϕ2 − η sinϕ1 sinϕ2, (2)

corresponding to P-polarized waves propagating within an infinite periodic multilayered structure, where the
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Figure 3. Isofrequency curves given from Eq. (2) for the hybrid silver-dielectric periodic media containing (a) SrTiO3 and
(b) GaP. Note that k′

z and k′′
z are the real part and the imaginary part of kz, respectively.

metal-dielectric interfaces are parallel to the xy plane. Therefore the component kz = k′z+ ik′′z of the wave vector
represents a Bloch pseudo-moment. In Eq. (2) the period of the structure is Λ = d1 + d2, also ϕq = kqzdq with
q = {1, 2} representing either the dielectric or the metal, 2η = ε1k2z/ε2k1z + ε2k1z/ε1k2z, and finally assuming
ky = 0 then k2qz + k2x = εqk

2
0 represents the dispersion equation within each bulk medium. From Fig. 3 we infer

that the superlattice made of SrTiO3 has an isofrequency curve with normal negative curvature. The propagator
exp (ik′zz) indicates that the dephase accumulated by a wave field is directly proportional to k′z . Neglecting
impedance mismatch at the input and output planes of the multilayered device, we expect that the dependence
of k′z upon kx follows the same variation observed upon the transmission coefficient. Figures 2(a) and 3(a)
indicate that this is in good agreement up to the normalized cutoff frequency κ given by the solution of the
equation k′z(κk0) = k′′z (κk0) that is κ = 4.3. Now we may follow a similar procedure to relate the isofrequency
curve given in Fig. 3(b), which corresponds to the periodic medium containing GaP, with the phase spectral
dependence of the transmission coefficient given in Fig. 2(b). In this case we conclude that the positive curvature
of the dispersion equation explains the phase increment observed at higher spatial frequencies kx.

Phase compensation attributed to coupling of two MD superlattices with isofrequencies of opposite curvature
also renders a geometrical interpretation of our results. For the sake of clarity let us consider the propagation
direction of a monochromatic wave packet with carrier spatial frequency kx0. This wave field flies within a
periodic medium along a direction given by the normal vector 	N = (Nx, Nz), which is calculated from the
isofrequency curve in terms of the group velocity 	vg = ∇�kω in the vicinities of kx0 and ω0. Assuming that the
field propagates in the positive direction of the z axis, that is Nz > 0, we find that the sign of Nx depends
exclusively on the curvature of the isofrequency curve. As a consequence, the wave packet that pass through
the interface of both MD superlattices experiences negative refraction. This is illustrated in Fig. 4 for a wave
packet of carrier frequency (a) kx0 = k0 and (b) kx0 = 3k0. The numerical simulations are performed with
a commercial software based on the finite-element method (FEM). Since attenuation driven by losses in silver
makes difficult a clear observation of the wave-packet trajectory, also we depict the transverse magnetic field
normalized in such a way that the maximum value of |Hy| at a given plane z = z0 is always the unity. When

the fields propagate within the lattice composed of SrTiO3, the angles corresponding with each vector 	N as
measured with respect to the z axis are numerically estimated from Figs. 3(a) and (b) as θ1 = +0.07 rads and
θ1 = +0.28 rads, respectively. Note that these angles are significantly small. If the wave packets travel through
the multilayered medium containing GaP, these angles yield θ2 = −0.12 rads and θ2 = −0.44 rads. We point
out that in both cases C = tan θ1/ tan θ2 ≈ −0.62; moreover C is a quantity that is approximately conserved for
|kx| < 3.5k0. As a consequence a light ray emerging from a point on axis that propagates from a plane z = 0 to
z = L1 in the first medium and, immediately after, travels in the second medium up to z = L1 + L2, such that
C = −L2/L1 holds, gets its way back to the z axis.

In principle, this property holds for a wide spectral range. This is important if we consider a localized
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Figure 4. FEM simulations shown negative refraction on the surface (black dashed line) that joins the MD superlattice
including SrTiO3, set on the left, and that containing GaP. Sub-figures (c) and (d) result from normalizing the modulus
of the magnetic field |Hy| plane by plane.
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Figure 5. FEM simulations shown superlensing of the device composing the MD superlattice including SrTiO3, set on the
left, and that containing GaP. In (a) the slit width is 20 nm and in (b) the slit width is 200 nm. For the sake of clarity,
again we show the modulus of the magnetic field in (c) and (d) as it is normalized plane by plane.
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Figure 6. Modulus of the 1D PSF at the image plane of our diffraction-managed superlens. The 1D PSF of an aberration-
free system maintaining the same |t| is also represented graphically.

source in the input interface of the first MD finite lattice. The light rays emerging from the point object are
conveniently deviated at the surface that separates the periodic media, by means of negative refraction, in such
a way that at the plane z = L1 + L2 all of them are focused. In order words, the condition of stigmatism is
approximately satisfied so that nearly aberration-free images may be formed by our device. We point out that
spherical aberration is not completely removed in this study, a fact that would decrease the resolving power of
the imaging system.18 This is illustrated in Fig. 5 by using FEM simulations in COMSOL Multiphysics. In front
of our device we insert a Cr layer of width 100 nm with a centered slit aperture of 20 nm-width in Fig. 5(a). A
P-polarized plane wave is incident onto the Cr film that collects part of the light, which is guided toward the
entrance surface of the diffraction-managed superlens. Thus the deep-subwavelength wave field in the input is
diffracted inside the first multilayered medium; subsequently it is compressed in the transverse direction as it
propagates along the GaP superlattice. The output magnetic field consists of a strong central lobe whose FWHM
is ρ = 130 nm, that represents only 0.27 λ0. This confirms the subwavelength character of the image-formation
process in spite of the fact that the object plane and the image plane are separated by a distance of 950 nm
that supposes barely twice the wavelength. We have repeated the FEM simulations for other slit widths, and
we have observed that the response of the superlensing device is practically the same whether the slit width is
substantially smaller that ρ. Therefore ρ stands for the limit of resolution of the MD superlens. For wider slits,
on the contrary, the magnetic field at the output plane resembles that at the input plane. In Fig. 5(b) we show
the wave field for a slit aperture of 200 nm. In this case, the beam width that is excited by the plasmonic slit
is conserved not only at the exit but all along the periodic media. This canalization regime is the result of the
strong anisotropy of the two superlattices involved, as shown in Fig. 3. Furthermore, the low-frequency of the
spatial spectrum associated with the scattered electromagnetic waves at the input plane, in this case, leads to
the dominant canalization of the fields.

To estimate the limit of resolution we alternatively employ the so-called 1D point spread function (PSF).
For a multilayered device, the 1D PSF is simply the 1D Fourier transform of the transmission coefficient t(kx)
for TM polarization. Obviously, t(kx) is the ratio of the magnetic field at the output plane and that at input
plane, respectively, provided a P-polarized plane wave of transverse spatial frequency kx. Strictly speaking this
1D PSF is valid for line sources instead of point sources, the latter case treated elsewhere.19, 20 In mathematical
terms we write21

h(x) =
1

2π

∫ ∞

−∞
t(kx) exp (ikxx) dkx. (3)

From a practical point of view, the coefficient t is simply estimated by using a transfer 2×2 matrix formulation.17

Fig. 6 depicts the modulus of 1D PSF at the image plane of our diffraction-managed device. The FWHM of
the central peak shown by |h(x)| is 0.214 λ0, which is very close to the value of ρ obtained from FEM-based
numerical simulations. For the sake of completeness we also represented the 1D PSF for a purely aberration-free
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setup with the same transmission strength |t(kx)|. After performing the corresponding 1D Fourier transform
of |t(kx)| we estimate that the FWHM of the diffraction-free 1D PSF decreases up to a value of 0.195 λ0. We
conclude that the 1D impulse response is not blurred significantly due to aberrations. This is also confirmed
by simply inspection of the small strength associated with the closest sidelobes of the 1D PSF, a fact that is of
relevance in the image formation of either localized scatterers or extended objects.

4. CONCLUSIONS

We conclude that management of subwavelength diffracted wave fields may be employed in multilayered flat
lenses to obtain superresolution. A first MD superlattice with strong anisotropy converts evanescent fields into
propagating Bloch modes. Beam spreading is compensated by using negative refraction. For that purpose, a
second MD superlattice with an isofrequency curve of opposite curvature collects the wide spectrum of incoming
Bloch waves and, after that, they are suitably focused just at the output plane of the superlensing device.
Although our results are highly satisfactory, we believe that substantial improvements may be considered in
future studies.

ACKNOWLEDGMENTS

This research was funded by the Spanish Ministry of Economy and Competitiveness under the project TEC2009-
11635.

REFERENCES

1. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances
in single metallic nanoparticles,” Phys. Rev. Lett. 80, pp. 4249–4252, 1998.
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