
Accepted Manuscript

Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid)
based nanocomposites: thermal and morphological properties

Marina Ramos, Elena Fortunati, Mercedes Peltzer, Franco Dominici, Alfonso
Jiménez, María del Carmen Garrigós, José María Kenny

PII: S0141-3910(14)00059-7

DOI: 10.1016/j.polymdegradstab.2014.02.011

Reference: PDST 7251

To appear in: Polymer Degradation and Stability

Received Date: 4 December 2013

Revised Date: 3 February 2014

Accepted Date: 10 February 2014

Please cite this article as: Ramos M, Fortunati E, Peltzer M, Dominici F, Jiménez A, Garrigós MdC,
Kenny JM, Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based
nanocomposites: thermal and morphological properties, Polymer Degradation and Stability (2014), doi:
10.1016/j.polymdegradstab.2014.02.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/19775013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.polymdegradstab.2014.02.011


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

 

Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) 1 

based nanocomposites: thermal and morphological properties 2 

 3 

Marina Ramos1*, Elena Fortunati2, Mercedes Peltzer1, Franco Dominici2, Alfonso 4 

Jiménez1, María del Carmen Garrigós1, José María Kenny2,3 5 

 6 

1Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, Campus San 7 

Vicente del Raspeig, 03080, Alicante, Spain 8 

2Materials Engineering Centre, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni, Italy 9 

3Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain 10 

 11 

*Corresponding author. Marina Ramos. E-mail address: marina.ramos@ua.es 12 

Tel.: +34 965903400 Ext. 3117; fax: +34 965903697.  13 

 14 

Abstract 15 

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-16 

friendly alternatives in applications such as food packaging. In this work, silver 17 

nanoparticles and thymol were used as active additives in PLA matrices, combining the 18 

antibacterial activity of silver with the antioxidant performance of thymol. The 19 

combined action of both additives influenced PLA thermal degradation in ternary 20 

systems. DSC results showed that the addition of thymol resulted in a clear decrease of 21 

the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA 22 

matrices. Slight modifications in mechanical properties of dog-bone bars were also 23 

observed after the addition of the active components, especially in the elastic modulus. 24 

FESEM analyses showed the good distribution of active additives through the PLA 25 

matrix, obtaining homogenous surfaces and highlighting the presence of silver 26 
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nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-27 

based nanocomposites with thymol and silver nanoparticles in composting conditions 28 

indicated that the inherent biodegradable character of this biopolymer was improved 29 

after this modification. The obtained nanocomposites showed suitable properties to be 30 

used as biodegradable active-food packaging systems with antioxidant and 31 

antimicrobial effects. 32 

Keywords: Poly(lactic acid); Thymol; Silver nanoparticles; Nanocomposites; 33 

Degradation. 34 

 35 

1. Introduction 36 

The use of biocompatible and biodegradable polymers has raised in the last years by 37 

their environmentally-friendly character and low dependence of non-renewable 38 

resources [1]. Among them, poly(lactic acid) (PLA) has received most attention due to 39 

its renewable nature, biodegradable character, biocompatibility and adequate 40 

mechanical and optical properties [2-3]. 41 

Within the last years, different technologies, in particular active packaging, have 42 

been proposed to improve the quality and shelf-life of food products [4-5]. Active 43 

compounds have different nature, such as oxygen, ethylene, water or odour scavengers 44 

[6-7], and antimicrobial or antioxidant compounds [8-9]. In this framework, essential 45 

oils extracted from plants or spices are rich sources of biological active compounds, 46 

such as terpenoids and phenolic acids [5]. In particular, thymol is present as one of the 47 

major compounds in thyme and oregano essential oils [10]. This is a phenolic 48 

monoterpene that has received considerable attention as an antimicrobial agent showing 49 

very high antifungal activity and antioxidant performance [11-12]. Different polymer 50 
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matrices, such as polypropylene (PP) and bio-based materials, such as caseinates, soy 51 

proteins and pectins have been proposed as adequate supporters for thymol in active 52 

systems [11, 13-14]. 53 

Silver nanoparticles (Ag-NPs) have been studied in different applications, including 54 

food packaging, due to their strong antibacterial properties [15-16]. Ag-NPs have high 55 

thermal stability and low volatility, and consequently their antimicrobial action could 56 

last longer [17-18]. Martinez-Abad et al prepared PLA films with 0.001-1.0 wt.% silver 57 

ions by the solvent casting technique demonstrating a good incorporation of the silver 58 

ions into the polymer matrix [19]. The PLA-silver composites showed strong in vitro 59 

antibacterial and antiviral activities, with increasing effect at higher silver 60 

concentrations. Fortunati et al. developed a nanobiocomposite based on PLA and 61 

combining silver nanoparticles with cellulose nanocrystals obtaining an antimicrobial 62 

film with enhanced barrier properties [20]. 63 

The effect of different additives on the PLA biodegradation has recently attracted 64 

great interest [21-23]. It is well known that PLA formulations require severe 65 

degradation conditions (as those provided by composting systems) to biodegrade in 66 

times compatible with useful post-use elimination strategies [24]. PLA is receiving 67 

considerable attention for single use applications, such as packaging, but also for more 68 

durable applications, such as car interior parts, textile fibres, flooring materials, among 69 

others [25]. Therefore, it is likely that the applications window of PLA will be greatly 70 

increased in the near future and degradation should be carefully studied to cope with 71 

potential widespread use of this polymer [26-27]. 72 

The aim of this work is the development and characterization of novel 73 

nanocomposites based on PLA, silver nanoparticles (Ag-NPs) and thymol. Moreover, 74 
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the evaluation of the influence of these active components on the composites 75 

degradation in composting conditions has been studied. 76 

 77 

2. Experimental 78 

2.1. Materials 79 

A commercial poly(lactic acid) PLA-4060D (Tg = 58 ºC, 11-13 wt% D-isomer) was 80 

purchased in pellets from Natureworks Co., (Minnetonka, MN, USA). Commercial 81 

silver nanoparticles (Ag-NPs), P203, with a size distribution range from 20 to 80 nm, 82 

were purchased from Cima Nano-Tech (Saint Paul, MN, USA). Ag-NPs were thermally 83 

treated at 700 ºC for 1 h as reported elsewhere [28]. Thymol (99.5 %) was supplied by 84 

Sigma-Aldrich (Madrid, Spain). 85 

2.2. Nanocomposites preparation  86 

Nanocomposites were processed in a twin-screw microextruder (Dsm Explore 5&15 87 

CC Micro Compounder, Heerlen, The Netherlands), with a temperature profile 170-88 

180-190 ºC. PLA pellets were dried overnight at 45 ºC before extrusion to prevent PLA 89 

hydrolysis during processing. The screw speed was 150 rpm and a mixing time of 6 min 90 

was used to obtain the binary system, PLA-Ag-NPs 1 wt% (PLA/Ag). PLA and thymol 91 

binary systems were obtained by addition of 6 or 8 wt% to the polymer and these 92 

systems were named as PLA/T6 and PLA/T8, respectively. Thymol was added in the 93 

last three minutes of the extrusion and the screw speed was then reduced to 100 rpm to 94 

limit losses by vaporization. 95 

Ternary systems with PLA and silver nanoparticles and thymol as additives were 96 

also prepared. A masterbatch of PLA and Ag-NPs was first processed in the extruder at 97 
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170-180-190 ºC temperature profile, screw speed 150 rpm and 3 min mixing time. This 98 

masterbatch was then combined with 6 or 8 wt% of thymol for 3 additional minutes to 99 

produce ternary formulations. Neat PLA with no additives was also processed in the 100 

same conditions and further used as control. After mixing, tensile dog-bone bars (ISO 101 

527-2/5A) were prepared by means of a DSM Xplore 10-mL injection moulding 102 

machine. The injection pressure was set to 12.5 bars and the temperature maintained at 103 

200 ºC. All materials used in this work are summarized in Table 1. 104 

Table 1. 105 

2.3. Nanocomposites characterization 106 

2.3.1. Thermal characterization 107 

Thermogravimetric analysis was performed to neat PLA and PLA nanocomposites 108 

with a TGA Seiko Exstar 6300 (USA). Approximately 8 mg samples were heated from 109 

25 ºC to 700 ºC at 10 ºC min-1 heating rate under nitrogen atmosphere (flow rate 250 110 

mL min-1). 111 

Differential scanning calorimetry (DSC) tests were conducted for the determination 112 

of glass transition temperatures (Tg) by using a DSC Mettler Toledo 822/e 113 

(Schwerzenbach, Switzerland) under nitrogen atmosphere (50 mL min-1). 3 mg samples 114 

were introduced in aluminium pans (40 µL) and were submitted to the following 115 

thermal program: -25 ºC to 250 ºC at 10 ºC min-1, with two heating and one cooling 116 

scans. 117 

2.3.2. Mechanical properties 118 

Tensile tests were used to evaluate the mechanical behaviour of neat PLA and PLA 119 

binary and ternary nanocomposites by using a digital Lloyd instrument LR 30K with a 120 

cross-head speed of 1 mm min-1 and a load cell of 30 kN. The dog-bone-shaped 121 
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specimens (2 mm thick) were prepared by following the procedures indicated in UNE 122 

ISO 527 Standard. Elongation at break (εb), tensile strength (σb) and elastic modulus 123 

(Eyoung) were calculated from the resulting stress-strain curves for all samples according 124 

to ASTM D882-09 Standard procedure [29]. Tests were carried out at room temperature 125 

and all values reported are the average of five measurements. 126 

2.3.3. Field emission scanning electron microscopy (FESEM) 127 

The surface of neat PLA and PLA nanocomposites and the cross section of 128 

PLA/Ag/T6 and PLA/Ag/T8 ternary formulations were analysed by field emission 129 

scanning electron microscopy (FESEM, Supra 25-Zeiss, Jena, Germany) to study their 130 

homogeneity and influence of thymol and Ag-NPs on the PLA morphology. Samples 131 

were coated with a gold layer prior to analysis in order to increase their electrical 132 

conductivity. 133 

2.4. Disintegrability in composting conditions 134 

Disintegration tests in composting conditions were performed by following the ISO 135 

20200 Standard method using commercial compost with certain amount of sawdust, 136 

rabbit food, starch, oil and urea [30]. Tested samples were obtained from the previously 137 

prepared dog-bone bars, which were cut in pieces (15 x 5 x 2 mm3), buried at 5 cm 138 

depth in perforated boxes and incubated at 58 ºC. The aerobic conditions were 139 

guaranteed by mixing the compost softly and by the periodical addition of water 140 

according to the standard requirements. 141 

Different disintegration times were selected to recover samples from their burial and 142 

further tested: 0, 7, 14, 21, 28, 35 and 57 days. Samples were immediately washed with 143 

distilled water to remove traces of compost extracted from the container and further 144 

dried at 37 °C for 24 h before gravimetrical analysis. The disintegrability value for each 145 
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material at different times was obtained by normalizing the sample weight with the 146 

value obtained at the initial time. 147 

The evolution of thermal properties upon disintegrability tests was studied by DSC 148 

from -25 to 250 ºC, at 10 ºC min-1; and the morphological changes in the surface at 0 149 

and 14 days of the incubation test was studied by FESEM. Fourier infrared spectra 150 

(Jasco FT-IR 615, USA) were recorded in the 400-4000 cm-1 range, in attenuated total 151 

reflection (ATR) mode. Finally, photographs of the samples were taken for visual 152 

evaluation. 153 

 154 

3. Results and discussion 155 

3.1. Nanocomposites thermal properties 156 

The effect of the addition of thymol and Ag-NPs in the thermal stability of PLA-157 

based nanocomposites was studied by TGA under nitrogen atmosphere. The weight loss 158 

(TG) and derivative DTG curves of binary and ternary systems are reported in Fig 1(a) 159 

and Fig 1(b), respectively. Table 2 shows the thermal parameters obtained from this 160 

study: initial degradation temperature (Tini), determined at 5% weight loss, and 161 

maximum degradation temperature (Tmax). All materials showed a main peak associated 162 

to the PLA thermal degradation between 330 and 360 ºC, as previously reported [31-163 

33]. A slight reduction in Tmax value was observed by the addition of Ag-NPs. On the 164 

other hand, a significant reduction in Tini values was observed suggesting some loss in 165 

the PLA thermal stability. Meanwhile, thermograms of the PLA-thymol 166 

nanocomposites showed a first degradation step around 120 ºC, which could be related 167 

to the thymol degradation [11]. In summary, TGA results showed that besides the 168 

thermal stability of these nanocomposites was slightly reduced by the addition of 169 
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thymol and Ag-NPs, these formulations could be processed at the same temperature 170 

region (up to 200 ºC) than neat PLA without risking thermal degradation. 171 

Fig. 1. 172 

Table 2  173 

DSC thermograms obtained for all samples and heating and cooling scans after 174 

processing are shown in Fig. 2. Since PLA used in this study is mostly amorphous, a 175 

clear glass transition temperature (Tg) for all samples could be determined (Table 2). 176 

Since this parameter is dependent upon the polymer structural arrangement and 177 

corresponds to the torsion oscillation of the carbon backbone [34], it was expectable 178 

that the addition of thymol could lead to some reduction in Tg, as observed in Table 2. 179 

In fact, binary and ternary systems with thymol showed a decrease in more than 10 °C 180 

on Tg values. This reduction is due to the plasticizing effect of thymol in polymer 181 

matrices [11], increasing the molecular mobility in the polymer structure. A similar 182 

behaviour was reported for the addition of other antioxidants to PLA with a remarkable 183 

reduction on Tg values [31, 35-36]. DSC results also showed that the addition of Ag-184 

NPs had no relevant effect on the PLA Tg values, in agreement with previous studies 185 

[37]. On the other hand, parameters related to PLA nanocomposites crystallization or 186 

melting were not observed due to the amorphous structure of the polymer used in this 187 

study. No effects on polymer crystallization were noticeable after the addition of thymol 188 

and Ag-NPs.  189 

Fig. 2 190 

3.2. Nanocomposites morphology 191 
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Fig. 3 shows FESEM micrographs of neat PLA and PLA nanocomposites surfaces 192 

after processing and before the disintegration test in composting conditions. 193 

Homogeneous surface morphologies were observed for all materials, with no apparent 194 

effects of the thymol and Ag-NPs addition to the PLA matrix. FESEM micrographs 195 

were also taken to cross-section of ternary systems to evaluate the incorporation to the 196 

polymer matrix of both additives (Fig. 4). It was noticed that Ag-NPs were well 197 

dispersed with no apparent agglomerates, which could be probably related to the 198 

presence of thymol in these formulations [38]. 199 

Fig. 3 200 

Fig. 4  201 

 202 

3.3. Nanocomposites mechanical behaviour 203 

The mechanical behaviour of neat PLA and nanocomposites was evaluated and 204 

results are reported in Table 2. The addition of 1 wt% of Ag-NPs to PLA had no 205 

significant effect on the elastic modulus, tensile strength and elongation at break values 206 

as already reported by Kanmani et al. [39]. Some reduction in tensile strength values 207 

was detected on PLA-thymol binary systems, being more evident for the highest content 208 

(8 wt%). This effect could be due to the increase in polymer chains mobility caused by 209 

the presence of thymol in these formulations [11, 40]. 210 

The combined action of thymol and Ag-NPs on the PLA mechanical behaviour was 211 

also evaluated. A slight decrease in tensile strength and elastic modulus of the ternary 212 

formulations was observed resulting in more flexible and stretchable materials. It could 213 

be suggested that the presence of Ag-NPs contributed to the thymol ability to increase 214 

the PLA chain mobility, which also promoted a more effective dispersion of silver 215 
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nanoparticles. These combined effects could be related to the presence of Van der 216 

Waals interactions between the hydroxyl groups of thymol molecules and the partial 217 

positive charge on the surface of the Ag-NPs which affects the mechanical response of 218 

the ternary nanocomposites [3, 40-41]. 219 

 220 

3.4. Degradation in compost 221 

3.4.1. Visual analysis and disintegrability 222 

The visual evaluation of all samples at different degradation times was carried out 223 

and results are shown in Fig. 5. Changes in samples surfaces after different times in 224 

contact submitted to composting conditions were clearly appreciable. All samples 225 

showed considerable modifications in colour and a general loss of transparency after 7 226 

treatment days. These surface modifications were indicative of the beginning of the 227 

polymer hydrolytic degradation process, which was related to the moisture absorption. 228 

Fukushima et al. related the increase in the materials opacity to various simultaneous 229 

phenomena, such as the formation of low molar-mass degradation by-products during 230 

hydrolysis and/or the evolution in crystallinity in the polymer matrix [42]. Indeed, the 231 

general increase in the polymer and nanocomposites crystallinity took place at a higher 232 

rate in their amorphous zones [43]. This important cristallinity behaviour was expected 233 

and it was due to the already reported mostly amorphous character of the PLA used in 234 

this work and the large content in the D-LA enantiomer [44]. Further results at longer 235 

testing times showed that physical degradation progressed with burial time resulting in a 236 

complete loss of the initial morphology and general rupture after 35 days. 237 

Fig. 5  238 
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Fig. 6(a) reports the disintegrability percentage as a function of the testing time for 239 

all materials. Before 14 days, no significant differences were observed between all 240 

samples with a general weight loss. However, after 14 days, those formulations 241 

containing thymol increased their weight loss rate and in consequence the 242 

disintegrability ratio to values higher than 30 %; while neat PLA and PLA/Ag showed 243 

slower degradation rate with values (20.8 ± 0.6) % and (24.4 ± 4.0) % after 21 days, 244 

respectively. These differences in disintegrability rate between those nanocomposites 245 

with and without thymol in their formulations increased after 35 days (Fig. 6(b)). 246 

The PLA/Ag/T8 ternary nanocomposite showed the highest disintegration rate 247 

followed by PLA/Ag/T6 highlighting the high influence of thymol in the diffusion 248 

process of water molecules through the polymer structure, promoting hydrolysis, due to 249 

the increase in chain mobility induced by the combined presence of the additives, as 250 

previously discussed. This behaviour was improved by the homogeneous dispersion of 251 

thymol into the PLA matrix (as it was observed in FESEM micrographs). In addition, 252 

the thymol hydroxyl groups can contribute to the heterogeneous hydrolysis of the PLA 253 

matrix after absorbing water from the composting medium, resulting in noticeable 254 

increase in disintegrability values for PLA nanocomposites with thymol after 14 testing 255 

days. In the initial stages of the composting test, some interaction with formation of 256 

hydrogen bonds between the thymol hydroxyl groups and water molecules could retain 257 

the beginning of the hydrolysis process compensating the higher water diffusion rate in 258 

samples with thymol. However, after 14 days a clear increase in the disintegrability rate 259 

in the case of nanocomposites with thymol (binary and ternary systems) was observed 260 

in comparison with PLA and PLA/Ag. A similar behaviour was already reported by 261 

Sinha Ray et al., who suggested that 14 days could be considered the critical value to 262 

start the heterogeneous hydrolysis processes [45]. The presence of hydroxyl groups in 263 
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the thymol molecules, finely dispersed in the PLA matrix, are responsible of the 264 

formation of labile bonds in the PLA structure and consequently the hydrolysis under 265 

these conditions should be higher by the formation of low molar mass chains [45-46]. 266 

This effect could be even reinforced by synergies between Ag-NPs and thymol, since 267 

Ag atoms could catalyze the disintegration process [15]. 268 

Finally, after 57 days, it was observed that all PLA nanocomposites appeared totally 269 

disintegrated fully satisfying the ISO Standard requirements for a biodegradable 270 

material [30]. 271 

Fig. 6  272 

3.4.2. Chemical analysis (FTIR) 273 

Results obtained for PLA/Ag/T8 before and up to 21 days under composting 274 

conditions were analyzed by FTIR and spectra are reported in Fig. 7. The typical 275 

stretching band of the carbonyl group (-C=O) at 1750 cm-1 attributed to lactide and the -276 

C-O- bond stretching band by the PLA -CH-O- group at 1180 cm-1 were identified in 277 

the spectra [3]. As previously discussed, the hydrolytic degradation took place during 278 

the initial phases of the composting treatment, where the high molar mass PLA chains 279 

were hydrolyzed to form low molar mass oligomers with plenty of available hydroxyl 280 

and carboxylic acid groups [24]. 281 

Fig. 7  282 

FTIR spectra after 21 degradation days showed a considerable decrease in the 283 

intensity of the peaks related to the carbonyl group (-C=O) from lactide at 1750 cm-1 284 

and the simultaneous appearance of a typical IR absorption, next to this band, 285 

corresponding to carbonyl groups of carboxylic acids formed by the hydrolytic scission 286 
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of the ester groups [47]. In addition, the band at 1230 cm-1 corresponding to -C-O- 287 

stretching practically disappeared in the spectra of samples after 7 treatment days [15]. 288 

However, these results did not reveal important differences between binary and ternary 289 

formulations regardless of the thymol concentration. 290 

3.4.3. Morphological analysis (FESEM) 291 

FESEM micrographs of the nanocomposites surfaces after 14 days of degradation 292 

test are shown in Fig. 3. Important differences in the samples surfaces after composting 293 

were obtained. Before the beginning of the burial test (day 0) all materials showed 294 

smooth and neat surfaces, but after 7 days, fractures appeared; in agreement with the 295 

important changes observed in the visual study. The formation of fractures and surface 296 

holes for all samples was clearly indicative of the beginning of the hydrolytic 297 

degradation process [42]. After 14 testing days, those formulations with thymol showed 298 

important fractures up to 2 µm in width (Fig. 3). It was observed that, in general terms, 299 

higher amounts of thymol resulted in more degraded materials submitted to composting 300 

conditions. This effect was particularly relevant for ternary nanocomposites. In fact, 301 

binary and ternary formulations containing 8 wt% of thymol (PLA/T8 and PLA/Ag/T8), 302 

showed highly irregular surfaces with holes. This observation could be related to the 303 

higher amount of thymol and the consequent ability to produce higher hydrolysis rates 304 

with formation and release of low molecular weight compounds, such as simple 305 

alcohols and/or CO2. This transformation could be also related to the action of 306 

microorganisms, which are able to convert these low molecular weight structures into 307 

CO2 and water [24]. 308 

3.4.4. Thermal analysis (DSC) 309 
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Fig. 8 shows the DSC thermograms obtained during the first heating scan for all 310 

formulations as a function of the composting time. It was observed that all 311 

nanocomposites were amorphous before the disintegration test, as expected from the 312 

amorphous characteristics of the PLA used in this study. In these thermograms, 313 

endothermic peaks corresponding to the enthalpic relaxation process were observed in 314 

all materials just after Tg. These peaks are indicative of the aging of the PLA before the 315 

beginning of the test, as it was reported in previous works [33-34]. However, the 316 

initially amorphous samples developed multiple endothermic peaks just after the 317 

seventh testing day. This observation was related to the formation of different 318 

crystalline structures with different perfection degrees in the PLA matrix during 319 

degradation, which was promoted by the hydrolysis process resulting in important 320 

changes in the materials crystallinity. Similar results were already reported by other 321 

authors, who suggested that the appearance of multiple melting peaks could be related 322 

to the formation of different crystal structures due to the polymer chains scission 323 

produced during the degradation process [15, 24, 44]. 324 

Fig. 8 325 

DSC thermograms recorded during the second heating scan (data not shown) did not 326 

reveal crystallization and melting peaks, as it was expected. However, it was observed 327 

that the Tg values, calculated from the second heating scan, decreased with the testing 328 

time, upon 21 days of study (Fig. 9). This behaviour could be associated with the 329 

increase in the mobility of the polymer chains as a consequence of the hydrolytic 330 

process [33]. These new chains formed by lactic acid oligomers with low molar mass 331 

produced a plasticizing effect [44-46]. Nanocomposites with thymol showed a clear 332 

decrease in Tg between 7 and 14 testing days, suggesting that the formation of lactic 333 
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acid oligomers and the addition of thymol would increase the above-referred 334 

plasticizing effect. 335 

Fig. 9 336 

 337 

4. Conclusions 338 

Nanocomposites based on PLA, thymol and silver nanoparticles were developed and 339 

fully characterized. The biodegradation properties under composting conditions were 340 

also evaluated. The combination of the two additives influenced some of the matrix 341 

properties, particularly thermal degradation. DSC results showed that the addition of 342 

thymol resulted in a decrease in the glass transition temperature (Tg) of PLA, favouring 343 

the plasticization of the polymer matrix. Slight modifications in tensile properties of 344 

dog-bone bars obtained from all nanocomposites, especially in the elastic modulus 345 

values, were attributed to the addition of both additives. FESEM micrographs showed 346 

good distribution of the active additives through the PLA matrix, with homogenous 347 

surfaces and highlighting the presence of silver nanoparticles successfully embedded 348 

into the polymer matrix. 349 

The degradation study of all nanocomposites in composting conditions showed that 350 

the inherent biodegradable character of PLA was improved by the addition of thymol 351 

and Ag-NPs, getting a faster degradation rate and meeting the biodegradation legal 352 

requirements. These results suggest the potential of these nanocomposites as 353 

environmentally-friendly active food packaging systems with an intrinsic biodegradable 354 

nature. 355 

 356 
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Figure Captions. 480 

Fig. 1. TG (a) and DTG (b) curves of neat PLA and binary and ternary systems with 481 

Ag-NPs and thymol. 482 

Fig. 2. DSC thermograms for PLA, PLA/Ag, PLA/T8 and PLA/Ag/T8 for the first 483 

heating and cooling scans (a) and the second heating scan (b). 484 

Fig. 3. FESEM micrographs of the surface of nanocomposites before (0 days) and after 485 

14 days of disintegration in compost at 58 ºC (500x) and after 14 days with higher zoom 486 

(10.00 kx). 487 

Fig. 4. Cross section micrographs of PLA/Ag/T6 and PLA/Ag/T8 after processing.  488 

Fig. 5. PLA and PLA nanocomposites before (0 days) and after different times under 489 

composting conditions at 58ºC. 490 

Fig. 6. Disintegrability (%) of PLA and PLA nanocomposites before (0 days) and after 491 

different times in compost at 58 ºC. The line at 90 % represents the goal of 492 

disintegrability test as required by the ISO 20200 Standard.  493 

Fig. 7. FTIR spectra of PLA/Ag/T8 before (0 days) and after different times under 494 

composting conditions. 495 

Fig. 8. DSC thermograms obtained for all materials before (0 days) and after different 496 

times under composting conditions at 58 ºC during the first heating scan (10 ºC min-1). 497 

Fig. 9. Tg values for all materials before (0 days) and after 21 days of disintegration 498 

under composting conditions at 58 ºC during the second heating scan. 499 

500 
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Table. 1. PLA nanocomposites formulated in this study. 501 

 502 

Materials  PLA (wt%) Ag-NPs (wt%) Thymol (wt%) 

PLA  100 - - 

PLA/Ag  99 1 - 

PLA/T6  94 - 6 

PLA/T8  92 - 8 

PLA/Ag/T6  93 1 6 

PLA/Ag/T8  91 1 8 

 503 

504 
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Table 2. Thermal parameters and tensile properties of neat PLA and nanocomposites 505 

after processing. 506 

Samples Tg
a (ºC) Ti

b (ºC) T max
b (ºC) Eyoung

c (MPa) εb
c
 (%) σb

c
 (MPa) 

PLA 56 ± 3 324 ± 12 363 ± 6 3181 ± 35 3.5 ± 0.2 60.3 ± 8.0 

PLA/Ag 56 ± 1 317 ± 8 357 ± 13 3000 ± 172 3.6 ± 0.2 59.7 ± 2.9 

PLA/T6 50 ± 2 327 ± 15 358 ± 7 3289 ± 28 2.7 ± 0.2 52.1 ± 1.3 

PLA/T8 42 ± 1 316 ± 14 353 ± 9 2930 ± 76 2.6 ± 0.3 36.4 ± 3.2 

PLA/Ag/T6 44 ± 1 284 ± 9 337 ± 12 2823 ± 121 3.6 ± 0.3 36.9 ± 3.0 

PLA/Ag/T8 41 ± 1 288 ± 5 336 ± 14 2547 ± 244 2.8 ± 0.2 36.3 ± 2.8 

a, b (n=3; m ± SD) 

a DSC data determined from the first heating scan at 10 ºC min-1  

b Determined by TGA analysis at 10 ºC min-1 in N2 atmosphere. Corresponding with 2nd degradation 
step 

c (n=5 ; m ± SD) 

 507 
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