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Abstract: The development and growth of plant organs is regulated by phytohormones, which
constitute an important area of plant science. The last decade has seen a rapid increase in the
unravelling of the pathways by which phytohormones exert their influence. Phytohormones function
as signalling molecules that interact through a complex network to control development traits. They
integrate metabolic and developmental events and regulate plant responses to biotic and abiotic
stress factors. As such, they influence the yield and quality of crops. Recent studies on barley
have emphasised the importance of phytohormones in promoting agronomically important traits
such as tillering, plant height, leaf blade area and spike/spikelet development. Understanding
the mechanisms of how phytohormones interact may help to modify barley architecture and
thereby improve its adaptation and yield. To achieve this goal, extensive functional validation
analyses are necessary to better understand the complex dynamics of phytohormone interactions and
phytohormone networks that underlie the biological processes. The present review summarises the
current knowledge on the crosstalk between phytohormones and their roles in barley development.
Furthermore, an overview of how phytohormone modulation may help to improve barley plant
architecture is also provided.

Keywords: agronomical traits; barley; genome-wide association studies; phytohormones; plant
architecture; spikelet development

1. Introduction

Manipulating the architecture of agronomic traits in cereals has a clear impact on plant adaptation
to changing environmental conditions and improvement of the grain yield. Currently, much research
is being directed towards the genetic dissection of the architecture and yield of plants so that targeted
traits can be achieved more efficiently. Climate change and a growing human population demand
that new crop varieties have to be better adapted to the local environmental conditions, while still
producing sufficient high-quality yields [1]. The aim of the crop ideotype concepts that were proposed
during the 1960s and 1970s was to enhance grain yield by modifying crop architectural traits through
cereal breeding programmes [2]. The concept of ideotypes in breeding programmes is based on
understanding the morphological, anatomical, and genetic traits and using this knowledge to develop
plants that will produce enhanced grain yields under specified conditions [2]. The most important
factors that define an ideotype are spike architecture, plant height, the number of fertile tillers, leaf
blade area and phase duration [3], all of which are controlled by phytohormones (Figure 1). One of
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the first proposed barley ideotypes indicated that under constant drought stress, the ratio between
the vegetative and generative periods and a smaller leaf area were crucial traits, whereas under
water-sufficient conditions, the canopy profile was one of the most important traits influencing grain
yield [4]. Because of climate change, increasing consumption and changes in human diets, crop
ideotypes need constant improvement [1,5]. The greatest challenge in barley ideotypes is to select a
targeted trait that is both heritable and that can be adjusted for a specific environment.
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Figure 1. Role of phytohormones in plant development traits. Green indicates a positive effect and 
red indicates an inhibitory effect of a hormone on a trait; grey indicates inconsistent experimental 
data; a star * indicates that the inhibitory effect of ABA on leaf area was observed only under drought 
stress. ABA—abscisic acid, BRs—brassinosteroids, CKs—cytokinins, GAs—gibberellic acids, IAA—
auxin, SLs—strigolactones. 
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Because GAs promote both cell proliferation and cell division, mutants with a decreased production 
of GAs or that are insensitive to GAs have shorter culms [20]. BRs also increase cell elongation and it 
has been postulated that they regulate cell growth, i.e., via the promotion of GA accumulation in rice 
[21]. However, in the case of mutants with deficient SL biosynthesis or reduced signalling during 
growth, this might not only be related to the larger number of outgrowing tillers. Additionally, a 
positive effect of SL on the number of cells has been observed and it has been proven that SLs 
stimulate internode elongation independently of GAs [22]. Mutants with short culms have already 
been used successfully in breeding programmes of barley, wheat and rice [23–25]. However, in the 
rush to adapt modern crop plants to changing environmental conditions, the demand for new 
dwarfing alleles remains unabated. One reason is the fact that the phenotypic effect of some alleles 
may depend on the environmental conditions. Although it was shown for one of the HvBRI1 alleles 
(uzu) that a higher temperature (26 °C) resulted in a more drastic dwarf phenotype compared with a 
lower temperature (14 °C), this effect has not been observed for the other known alleles of HvBRI1 
[19]. Among the QTL for plant height in barley that have recently been identified, one that is involved 
in BR biosynthesis, DWARF4 (HvD4) (Table 1) [10], has not yet been described for this species [19]. 
The other gene HvCPD, which encodes the protein that is involved in BR biosynthesis, was previously 
characterised in barley. A mutation in HvCPD results in a semi-dwarf phenotype of the mutant [19] 
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IAA—auxin, SLs—strigolactones.

Most of what we know about the role of phytohormones in the growth and development of
Hordeum vulgare L. (barley) is based on research from other grass species such as Oryza sativa L. [6]
and Zea mays L. (maize) [7,8]. However, recent studies have identified a large set of genes that play
a crucial role in the biosynthesis and/or signalling cascades of hormones, such as brassinosteroids
(BRs), cytokinins (CKs), gibberellins (GAs) and strigolactones (SLs) [9–11]. These results permit the
key hormonal components that regulate the shoot and spike architecture in barley to be predicted.

A powerful tool that is used to analyse and identify the genetic factors that control the complex
architectural traits at a population level is the so-called genome-wide association studies (GWAS).
GWAS has become a widely accepted approach in the study of plants. Basically, it detects associations
between genotypic variations and differences in phenotypes for a given population using the
appropriate statistical model. During the past few years, GWAS has enabled scientists to produce
high-resolution genetic maps of several large-genome crops that have facilitated the identification of the
genes that underlie the natural phenotypic variation of agronomic–architectural traits. In barley, GWAS
has been used to identify single nucleotide polymorphism (SNP) markers that are associated with the
root architecture [12], tillering [10], plant height [10], leaf area [11,13,14] and spike architecture [9,15].
Moreover, GWAS has also shown great potential to unravel the genetic background of architectural
traits of other crop plants [6,16]. Alqudah et al. found that many of the QTL (quantitative trait loci)
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were precisely associated with known plant stature-related phytohormone genes, such as leaf area,
tillering and plant height [10,11]. Therefore, using such a robust approach can help answer genetic
and biological questions about complex traits, for instance, to discover the phytohormone genes that
underlie agronomic traits.

Recent studies have indicated that the most important traits related to increased grain yield in
barley include: (1) an extended phase critical for spike development, including increasing the number
of spikelets and increasing spikelet survival, (2) a higher water-use efficiency and (3) abiotic stress
tolerance, which is related to (4) a greater maximum root depth [3]. Here, we review the recent
advances in understanding the molecular mechanisms of phytohormones in the architecture and yield
of barley.

2. Hormonal Regulation of Agronomically Important Traits in Barley

2.1. Roles of Phytohormones in Plant Height

Combined breeding, genetic and physiological approaches have demonstrated the importance of
hormones in improving plant stature, adaptation and yield. A well-known example is the reduction in
plant height during the Green Revolution in order to increase lodging resistance and limit yield [17].
Three main hormonal players regulate plant height: BRs, GAs and SLs. In barley, disorders in
the biosynthesis or signalling pathways of these hormones, which result in lower production or
insensitivity to a hormone that is produced, leads to dwarf or semi-dwarf forms [18,19]. Because
GAs promote both cell proliferation and cell division, mutants with a decreased production of GAs
or that are insensitive to GAs have shorter culms [20]. BRs also increase cell elongation and it has
been postulated that they regulate cell growth, i.e., via the promotion of GA accumulation in rice [21].
However, in the case of mutants with deficient SL biosynthesis or reduced signalling during growth,
this might not only be related to the larger number of outgrowing tillers. Additionally, a positive effect
of SL on the number of cells has been observed and it has been proven that SLs stimulate internode
elongation independently of GAs [22]. Mutants with short culms have already been used successfully
in breeding programmes of barley, wheat and rice [23–25]. However, in the rush to adapt modern crop
plants to changing environmental conditions, the demand for new dwarfing alleles remains unabated.
One reason is the fact that the phenotypic effect of some alleles may depend on the environmental
conditions. Although it was shown for one of the HvBRI1 alleles (uzu) that a higher temperature (26 ◦C)
resulted in a more drastic dwarf phenotype compared with a lower temperature (14 ◦C), this effect
has not been observed for the other known alleles of HvBRI1 [19]. Among the QTL for plant height in
barley that have recently been identified, one that is involved in BR biosynthesis, DWARF4 (HvD4)
(Table 1) [10], has not yet been described for this species [19]. The other gene HvCPD, which encodes
the protein that is involved in BR biosynthesis, was previously characterised in barley. A mutation in
HvCPD results in a semi-dwarf phenotype of the mutant [19] but no information about any additional
effects of this mutation, i.e., on tillering or leaf area, has been described.
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Table 1. List of the barley genes that are associated with agronomically important traits as identified by genome-wide association studies (GWAS) (according
to [10,11]).

No. Chr. cM
(POP SEQ) Gene Barley High Conf. Gene Contig Identifier Trait Hormone

1 1H 5.38 BRASSINOSTEROID-6-OXIDASE (HvBRD1) AK372445 morex_contig_244330
CAJW010244330 Tillering BRs

2 1H 55.52 GIBBERELLIN INSENSITIVE DWARF1 (HvGID1) AK356665 morex_contig_137029
CAJW010137029 Tillering GAs

3 1H 94.75 GIBBERELLIN 20 OXIDASE 4 (HvGA2ox4) MLOC_13981.1 morex_contig_1566970
CAJW011566970 Tillering and leaf area GAs

4 2H 58.78 GIBBERELLIN-INSENSITIVE DWARF 2 (HvGID2) MLOC_61457.1 morex_contig_41142 Tillering GAs

5 2H 59.91 DWARF 11 (HvD11), CYTOCHROME P450 724B1 AK371371 morex_contig_45000
CAJW010045000 Tillering BRs

6 3H 44.26 DWARF 2 (HvD2), CYTOCHROME P450 90D2 MLOC_62829.1 morex_contig_47012
CAJW010047012 Tillering BRs

7 3H 46.03 GIBBERELLIN 3 OXIDASE 2 (HvGA3ox2) MLOC_12855.1 morex_contig_51542
CAJW010051542 Tillering GAs

8 3H 46.03 DWARF 18 (HvD18) MLOC_12855.1 morex_contig_51542
CAJW010051542 Tillering GAs

9 3H 51.34 BRASSINOSTEROID INSENSITIVE 1 /SEMIBRACHYTIC/Dwarf61
(HvBRI1/ uzu1 HvD61/) MLOC_5176.2 morex_contig_58772

CAJW010058772 Tillering and leaf area BRs

10 3H 62.93 MORE AXILLARY BRANCHES 4/ CAROTENOID CLEAVAGE
DIOXYGENASE 8 /DWARF 10 (HvMAX4/CHvCD8/ HvD10) MLOC_66551.1 morex_contig_51744

CAJW010051744 Tillering and leaf area SLs

11 3H 64.16 GIBBERELLIN 20 OXIDASE 1 (HvGA2ox1) AK364775 morex_contig_2550522
CAJW012550522 Tillering and leaf area GAs

12 3H 106.02 GIBBERELLIN 20 OXIDASE 3 (HvGA20ox3) MLOC_66389.1 morex_contig_51490
CAJW010051490 Tillering GAs

13 4H 59.63 DWARF 4 (HvD4) AK355174 morex_contig_61948
CAJW010061948 Plant height BRs

14 5H 44.02 BRASSINOSTEROID C-23 HYDROXYLASE (HvCPD) MLOC_10658.1 morex_contig_1559549
CAJW011559549

Tillering, plant height
and leaf area BRs

15 5H 46.59 DWARF 53 (HvD53) AK372211 morex_contig_244827
CAJW010244827 Leaf area SLs

16 5H 47.22 BRITTLE CULM12/ GIBBERELLIN-DEFICIENT DWARF 1 (HvBC12/GGD1) AK373790 morex_contig_45441
CAJW010045441 Tillering GAs

17 5H 80.8 DWARF RICE WITH OVEREXPRESSION OF GIBBERELLIN-INDUCED
GENE (HvDOG)s AK359310 morex_contig_1575121

CAJW011575121 Tillering GAs

18 7H 29.95 MORE AXILLARY BRANCHES 2 (HvMAX2) MLOC_4044.5 morex_contig_134615
CAJW01013461 Leaf area SLs

19 7H 77.4 DWARF 35 (HvD35), CYTOCHROME P450 701A6 AK369327 morex_contig_1575857
CAJW011575857 Tillering and leaf area GAs

20 7H 140.65 BRASSINOSTEROID DEFICIENT DWARF 2/ DIMINUTO, DWARF1
(HvBRD2/HvDIM/HvDWF1) MLOC_52405.2 morex_contig_37512

CAJW010037512 Tillering and leaf area BRs

ABA—abscisic acid, BRs—brassinosteroids, CKs—cytokinins, GAs—gibberellic acids, IAA—auxin, SLs—strigolactones.
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2.2. The Role of Phytohormones in Tillering

One of the most important traits that have an influence on yield in cereals is the number of
fertile tillers, which is controlled by environmental, genetic and hormonal factors. Recently, significant
progress has been made in uncovering the hormonal regulation of shoot branching in grasses [26,27].
For a long time, auxin (IAA) [28] and CKs [29] were considered to be key components in regulating
tillering. In cereals such as rice, polar export of IAA from axillary buds is necessary to promote bud
outgrowth and local treatment with IAA inhibits tillering and decreases the level of CKs [30]. CKs are
positive regulators of branching that act antagonistically to IAA and promote tiller bud outgrowth
in barley [29] and rice [31]. With the discovery of the negative role of SLs in regulating the tiller
number in highly branching mutants in rice, it became clear that besides IAA and CKs, SLs represent
a third class of hormones that regulate the tiller number [32]. A recently identified barley mutant in
the SL receptor confirmed that SLs inhibit the export of IAA from tiller buds, thus preventing tiller
outgrowth [18]. GWAS studies have revealed that a hitherto functionally unknown gene in the QTL
for tillering in barley—HvD10—encodes carotenoid-cleavage dioxygenase, which is involved in SL
biosynthesis [33]. Based on observations in rice [34] and barley [35], GAs have also been hypothesised
to regulate branching. Studies in rice have shown that GAs regulate the biosynthesis of SLs [36], thus
indicating that both hormone classes may act together in tillering regulation [37]. This hypothesis
was confirmed by a GWAS analysis showing that the group of genes that is associated with tillering
is dominated by those that are involved in GA biosynthesis and signalling (Table 1) [10]. The role of
BRs in tillering in cereals remains unclear. While Tong et al. [38] reported that elevated BR levels are
related to a lower number of tillers in rice, Wu et al. [39] found a positive correlation between the
expression of the genes that are involved in BR biosynthesis and increased tillering. A decrease in
the tiller number was also found in the barley BR-insensitive mutant uzu [40], but this effect was not
observed in the mutant allelic to uzu [41] and other BR mutants in barley [19]. Interestingly, the genes
encoding the proteins for BR biosynthesis and signalling pathways comprise the second largest group
that is associated with tillering in GWAS studies (Table 1) [10]. A more detailed analysis of individual
mutants in relation to tillering is necessary in order to answer the questions about the role of BRs in
this developmental process.

2.3. Phytohormone Regulation of Spike and Spikelet Development and Fertility

Phytohormones are closely linked with the transition phase and organ development, especially
during the reproductive phase, for instance, the development of spikelets and the floral organs. Spike
development is mainly influenced by GAs since treatment with GAs accelerates spike development
in wheat and induces the expression of the floral meristem identity genes [42]. When wheat plants
are transferred from short- to long-day conditions, the genes that are involved in GA biosynthesis
become upregulated in the apices [43]. REDUCED HEIGHT (RHT), one of the genes used during the
Green Revolution, encodes a protein from the DELLA family, which are negative regulators of GA
signalling. A gain-of-function mutation in RHT not only results in a semi-dwarf phenotype but also
an increase in spikelet fertility [44]. GAs promote heading in spring barley, which demonstrates the
importance of GAs in adaptation and yield improvement through reducing plant height and improving
lodging resistance, which are correlated with higher yields and quality traits [45]. It has long been
hypothesised that other hormones also play important roles in spike and spikelet/floret development.
Wang et al. [46] reported on the effects of hormones injected into the leaf sheath around young spikes
on wheat floret development and grain set. Whereas the injection of CKs promoted the development
of wheat florets, thus increasing the number of fertile florets and the grain set, injections of IAA,
GAs and abscisic acid (ABA) inhibited floret development [46]. Zheng et al. [47] found that wheat
floret development and grain setting were improved by applying synthetic CKs (6-benzylaminopurine,
6-BA). In rice, GAs and kinetin (6-furfuryl amino purine) enhanced spikelet growth and development
and increased the grain yield on all rice branches, while IAA influenced only the distal branches [48].
The endogenous hormone levels in wheat are stage dependent. In the spike and anther developmental
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phases, the level of ABA and GAs is decreased, which might improve fertile florets and grain set [49,50].
Recently, it was shown that the gradients of IAA and CKs are not distributed homogeneously during
spikelet development in barley. While the concentration of IAA is highest in the basal region, declining
towards the apical region, the concentration of CKs display a reverse gradient, declining towards
the basal region [9]. In plants carrying a mutation in the Six-rowed spike2 (vrs2.e) encoding SHORT
INTERNODES (SHI) transcription factor, IAA and CK gradients are absent and spike development
is disordered. Spikes of wild-type plants also have a higher concentration of GAs than the vrs2.e
mutants, where it has a role in shaping the spike architecture by controlling spikelet development and
fertility [9]. In rice, Cai et al. [51] discovered the role of jasmonic acid (JA) in regulating the determinacy
of rice floral meristem and spikelet morphogenesis. Extra Glume 1 (EG1) and EG2 mutants show
changes in spikelet morphology as well as the floral organ identity and number (Table 2). EG1 acts
in JA biosynthesis and EG2 is a JA signalling repressor that produces a defective floral meristem
determinacy (Table 2). The role of phytohormones in spikelet development and fertility might be
applicable to other grasses. Such work provides the basis for improving crop yield. Therefore, whether
hormonal patterns are the cause or the consequence of spikelet fertility in cereal spikes remain to be
explored (Figure 2).

Alqudah and Schnurbusch [52] found that the phase between the emergence of awn primordium
and awn tipping is the most critical phase for spikelet abortion where anthesis or fertilisation occurs [53].
It is a critical yield-determining trait that is genetically controlled and is influenced by environmental
factors [52]. Therefore, proper development of the floral organs such as the anther during this phase
is essential for improving spikelet survival. Phytohormones play an important role in regulating the
development of the floral meristem. Thus, understanding how a phytohormone regulates spikelet
development and fertility is crucial for improving grain yield. Studies in rice have shown how
unregulated GA signalling leads to defects in the formation and development of the floral organs that
in turn increase the sterility of spikelets. The DELLA protein Slender rice 1 (SLR1) acts as a negative
regulator of downstream genes in GA signalling and plays a key role in the development of the floral
organs (Table 2), where a deficiency of SLR1 causes spikelet fertility phenotypes [54]. For instance,
although a gain-of-function in an Slr1-d3 mutant produces normal pistils and stamens, semi-fertile
phenotypes are caused by a low pollen viability [54]. Loss-of-function in the SLR1 mutant slr1-1 clearly
shows sterile phenotypes [55].
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Table 2. Phytohormone-related genes involved in spikelet development and fertility.

Chr Physical pos. Gene Barley HC Gene Annotation Accession GO Term Function Hormone

3H 627490751-627493520 EXTRA GLUME 1 EG1 HORVU3Hr1G089140 Phospholipase A1-II 1 24647160 GO:0006629 Regulation of spikelet
development [51] JA [51]

2H 725648938–725655525 EXTRA GLUME 2 EG2 HORVU2Hr1G112360 jasmonate-zim-domain protein 12 AK069326 none Regulation of spikelet
development [51] JA [51]

4H 16668801–16671743 SLENDER 1 SL1 HORVU4Hr1G006930 DELLA protein AB262980 none Regulation of floral development
and spikelet fertility GAs

1H 441473716–441477633 GIBBERELLIN INSENSITIVE
DWARF1 GID1 HORVU1Hr1G060810 Gibberellin receptor GID1 AK074026 GO:0008152,

GO:0016787 GAs

5H 564406197–564410417 Six-rowed spike 2 VRS2 HORVU5Hr1G081450.1 SHI-related sequence 5 KX601696.1 none
Regulation of spikelet

development and fertility [9], awn
elongation and pistil shape [56]

IAA [57],
GAs [58]

GAs—gibberellic acids, IAA—auxin, JA—jasmonic acid.
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In addition, the GA-insensitive rice mutant gid1-4 displays an abnormality in the development
of organs during anther development [59], thus indicating that GID1 is necessary for the structure
of the anthers. The mutants of EG1 and EG2 (i.e., eg1-3 and eg2-1D), which are involved in JA
biosynthesis and signalling, show defects in the spikelet organ. For example, the mutants develop
extra glume-like structures, the palea exhibit lemma-like, the lodicules in both mutants are transformed
into glume-lodicule mosaic structures and there are decreased numbers of stamens and pistils, which
suggest a role of JA in floral meristem determinacy and floral organ identity [51].
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marks denote that the impact of phytohormones remains undiscovered. ABA—abscisic acid,
BRs—brassinosteroids, CKs—cytokinins, GAs—gibberellic acids, IAA—auxin, SLs—strigolactones.

Youssef et al. [9] revealed that barley spikes (i.e., the two-rowed cv. Bowman) have higher
concentrations of GA20ox (GA 53, GA44 and GA19) in the central spike parts during the white
(WA) and green anther (GA) developmental stages compared with BW-NIL (vrs2.e). IAA has a high
concentration in the basal part of a spike at the WA and GA stages that is in an antagonistic trend to
cytokinin (t-Zeatin) [9]. Although barley spikes have an indeterminate number of rachis nodes, each
node produces three single spikelets—one central and two lateral (e.g., VRS1)—or produces many
spikelets (supernumerary spikelets) per node (e.g., VRS2 and VRS4). Because the lateral spikelets are
sterile in the two-rowed barley (VRS1), one can suppose that the phytohormones might play a role
in the fertility of the lateral spikelets, spikelet development, supernumerary spikelet development
and shaping the spike architecture (Figure 2). Interestingly, because the spatiotemporal patterns of a
phytohormone are in synchrony with spikelet fertility and abortion, understanding the pattern of a
phytohormone along the spike (basal, central and top), a specific spike organ (e.g., anther) and spikelet
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sections (lateral vs. central) during this critical phase (awn primordium and awn tipping) is important
for regulating the yield processes such as spikelet abortion in cereal crops.

2.4. Phytohormone Regulation of the Leaf Area

The last architectural trait, which is also important for adaptation and yield improvement, is the
leaf area, which is strictly related to photosynthesis [60]. The size and shape of a leaf, the leaf position
and exposure to sunlight are associated with photosynthetic efficiency and hence with the amount of
assimilates that are produced by the plant [61,62]. Plants with a higher supply of photoassimilates
can develop more fertile tillers, feed more spikes and increase spikelet survival, which subsequently
improves yield. Because the flag leaf is the main source of carbohydrates for the developing spikes [63]
in cereals, the leaf area plays an important role in the regulation of plant development in both the
vegetative and reproductive phases. Heavily branched mutants usually have more leaves and hence a
larger leaf area as was observed in the SL-insensitive barley mutant hvd14.d [18]. However, it should
be mentioned that a larger leaf area is related to faster transpiration and water loss under drought
stress. A GWAS analysis has revealed nine genes that are associated with the leaf area in barley [11].
Three of them are related to GAs, three to BRs and three to SLs (Table 1) [10,11]. Some of these genes
are specifically associated with this trait, which indicates that GAs, BRs and SLs might regulate the
leaf area independently from traits such as branching. In addition, this analysis provides promising
candidate genes for further analysis of the promotion of leaf development in barley [11]. However,
it has to be stressed that one of the SL genes—a homologue of MAX2—is also involved in the signalling
pathways of other phytohormones [37]. Hence, the hormonal regulation of the development of the leaf
area is still unclear and more advanced molecular genetic analyses are required in order to understand
the mechanisms that underlie this process.

3. Conclusions and Remarks

Population growth and climate change are the driving forces behind the incessant efforts to
improve crop plants. In order to maintain food security, crop adaptation, architecture and grain yield
need to be optimised. In order to achieve this aim, it is crucial to understand the factors that regulate
these important plant features. This is one reason why the functional analysis of individual genes
is necessary to evaluate their precise role. To speed up the process of gene selection for breeding
programmes, large-scale analyses such as GWAS are useful for identifying the genes that are related
to specific traits. Recently, published results have indicated that mutants affected during BR or
GA biosynthesis and signalling may be considered as a source of the alleles that promote tillering.
Knowledge about gene function and gene position within a genome permits the direct and accurate
screening of barley varieties and mutant collections, thus avoiding costly and lengthy phenotypic
studies. This review contributes to establishing a basis for further molecular physiology and genetic
work within the context of barley plant architecture that is based on hormonal effects.
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