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Abstract: Himalayan treelines are exposed to above average climate change impact, resulting in
complex tree growth–climate relationships for Himalayan Silver Fir (Abies spectabilis (D. Don) Spach)
at central Himalayan treelines. The majority of recent studies detected current tree growth sensitivity
to dry conditions during pre-monsoon seasons. The aim of this study was to analyze growth–climate
relationships for more than a century for a treeline ecotone in east-central Nepal and to test for Blue
Intensity (BI; used as a surrogate of maximum late wood density) as climate proxy. We determined the
relationships of Abies spectabilis radial tree growth and BI to climate by correlating both to temperature,
precipitation and drought index data. The results showed a significantly unstable dendroclimatic
signal over time. Climate warming-induced moisture deficits during pre-monsoon seasons became a
major factor limiting radial tree growth during recent decades. Earlier in time, the dendroclimatic
signal was weaker, predominantly reflecting a positive relationship of tree growth and summer
temperature. Compared to radial tree growth, BI showed a different but strong climate signal.
Temporally unstable correlations may be attributed to increasing effects of above-average rates of
climate warming. An extended network of Himalayan tree-ring sites is needed to further analyze
cause–effect relationships and to solve this attribution problem.

Keywords: Blue Intensity; climate warming; Himalayan Silver Fir (Abies spectabilis), Nepal Himalaya;
temporal dynamics; tree growth–climate correlation; treeline ecotone; tree-ring width

1. Introduction

Mountains of the world, including the Himalaya, belong to the regions most affected by climate
change. Warming trends of the annual mean surface air temperature of up to 1.5 ◦C were detected over
the Tibetan Plateau and the Himalaya during the period 1991–2012 [1–3]. Above-average warming rates
trigger multiple vegetation responses such as changes in phenology, productivity, species composition
of communities, structure, and elevational ranges of species [4–7]. In this regard, elevational shifts of
alpine treelines and tree growth–climate relationships have received much attention (e.g., [8–12]).
However, the knowledge concerning tree growth sensitivity and response to climate change is

Forests 2018, 9, 267; doi:10.3390/f9050267 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0003-3036-5572
https://orcid.org/0000-0001-5175-0758
http://www.mdpi.com/1999-4907/9/5/267?type=check_update&version=1
http://dx.doi.org/10.3390/f9050267
http://www.mdpi.com/journal/forests


Forests 2018, 9, 267 2 of 30

still rather limited [13–15]. Growth–climate relationships are influenced, inter alia, by length and
temperature of the growing season [16–18]. Other influencing factors include moisture availability,
nitrogen deposition, winter snowpack, snow melt and frost intensity [14–16,19]. Tree growth and
various climate variables do not show consistent relations. In the Himalaya, climate–growth relations
vary across different regions even for the same species [20–22]. Thus, more tree-ring based studies on
different treeline tree species, tree-ring proxies and various mountain regions are needed to close this
knowledge gap.

Various treeline tree species have been analyzed for tree growth–climate relationships in the
Himalayan subregions (e.g., [23–27]). One of the frequently studied species is the widely distributed
Himalayan Silver Fir, Abies spectabilis (D. Don) Spach. Some Abies spectabilis studies found a positive
correlation of radial tree growth and the temperature of the current and previous growing season
(e.g., [28,29]). Others pointed to a limitation of tree growth by winter temperature (e.g., [30,31]) or by
available moisture in precipitation-deficient pre-monsoon seasons (e.g., [11,32,33]). With regard to
generally sparse and partially inconsistent results, in some cases, even from study areas relatively near
to each other (e.g., [10]), additional studies are needed, preferably from near natural sites.

Tree-ring width–climate relations are generally recognized to be stable over time [34–36]. However,
climatic factors formerly limiting tree growth can alter and/or lose their limiting character while
other factors become main drivers [37–39]. For instance, previously temperature-sensitive tree-ring
widths showed less or no sensitivity to temperature in recent decades, sometimes even resulting in
inverted tree growth-temperature relations [38,40–44]. Such inversions of the tree growth–climate
relationships during an analyzed period are termed “divergence problem” [43] while “divergence
phenomenon” [43,45] and “divergence effect” [43,46] are related to declines in temperature sensitivity.
Divergence effects matter especially in the context of tree-ring based climate reconstruction [43,46,47].
A climate warming-induced increase in evapotranspiration and consequent moisture stress was
often mentioned as the potential main cause for divergence effects [43,48], possibly linked to
temperature thresholds [49]. Other climate-related causes include direct limitation by precipitation [38],
differential responses to maximum and minimum temperatures [43], and changes in seasonality,
e.g., of winter precipitation and snowmelt [19]. Decreasing stratospheric ozone concentrations as
well as global dimming caused by cloud cover changes and atmospheric contamination, both
influencing photosynthesis efficiency and tree productivity, are further potentially relevant factors [43].
In summary, anthropogenic impacts are most likely causing the divergence phenomenon [43,50]. From
a methodological point of view, divergence problems might result from “detrending end effects”,
caused by the detrending procedure of tree-ring series [43,46]. The majority of chronologies in
which the divergence phenomenon was detected originated from high latitudes (e.g., [38,51,52]),
however, there is also evidence from other regions, including high mountains [46,53,54]. Variations
of environmental factors within the area of origin of a chronology might also cause diverging tree
growth–climate interactions (e.g., [48,55]), often termed individualistic tree growth responses [47,55,56]
rather than divergence phenomena. As long as trees growing within the same stand are not genetically
and physiologically identical, some degree of individual response to environmental factors can be
expected in the frame of natural adaptation. The knowledge of divergence effects and the stability of
explicitly moisture-related relationships is still deficient [57].

The majority of central Himalayan tree-ring studies investigated growth–climate relationships
for rather short periods due to the lack of long instrumental records of climate data. Some recent
studies used gridded climate data that cover longer time periods without referring to divergence
of correlations or without finding unstable ones (e.g., [58]). Unstable correlations of Abies spectabilis
tree growth with climate variables were recently mentioned by a couple of studies [28,59]. However,
the number of studies that investigate temporal stability and potential divergence phenomena in the
Himalaya is insufficient, pointing to a great need for further research.

Maximum latewood density (MXD), a function of latewood cell size and cell wall thickness [34],
provides a strong climate signal, especially of growing season temperature in high latitudes and
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elevations [60,61]. The integration of wood density and its relation to climate can increase the
precision of biomass and carbon sequestration estimations based on tree-ring width or CO2 fluxes
measured by eddy covariance [62–64]. The only study on the relationship between climate and
MXD of Abies spectabilis from Nepal [65] showed a significantly positive influence of pre-monsoon
and monsoon temperatures and a negative impact of monsoon precipitation on minimum wood
density, while mean and maximum densities correlated positively with late-monsoon and the entire
growing season temperatures, respectively. Another study from the western Indian Himalaya showed
a negative relationship of June temperature and Abies spectabilis MXD, pointing to late spring moisture
sensitivity [59].

Blue Intensity (BI) has increasingly been applied in recent years as a reliable surrogate for
MXD [66–70]. The BI parameter is measured as value of the blue light absorbed by wood surface
recorded directly from the RGB (red, green, and blue light components) digital image [70,71]. The close
relationship of MXD and BI might be attributed to the effective absorption of short wavelength energy
by lignin and potentially co-varying structural wood components [67,70]. BI studies which could
provide an additional climate proxy and improve carbon allocation estimates were not conducted in
the Himalaya so far.

This paper analyzes long-term growth–climate relationships for a treeline ecotone in east-central
Nepal, and the applicability of BI as a climate proxy. We hypothesize that the occasionally detected
instability of Abies spectabilis tree growth–climate relationships over long timeframes is a general
pattern which is also emergent in the Rolwaling treeline ecotone. We further hypothesize that BI as a
wood density proxy should be less affected by climatic changes due to the previously assessed stability
of wood density signals. To contribute to a better understanding of the dependence of tree growth
on (changing) climate in the central Himalaya, this paper aims at: (i) analyzing the relationships of
Abies spectabilis radial growth, measured by tree-ring width, to climate variables on the basis of more
than one century-long gridded climate data; (ii) investigating the temporal stability of tree ring width
(TRW)–climate relationships to check whether diverging growth trends occur in the course of distinctly
changing climate conditions; and (iii) analyzing the relationships of Abies spectabilis BI (as a surrogate
for MXD) and their temporal stability to the aforementioned climate data in order to compare the
temporal stabilities of the BI and TRW signals.

2. Materials and Methods

2.1. Study Area and Sampling Site

We collected tree-ring samples at a north-facing slope in the Rolwaling valley, Gaurishankar
Conservation Area, Dolakha District, East Central Nepal (Figure 1). The samples originate from the
upper subalpine forest between ca. 3700 and 4000 m a.s.l., i.e., from the lower section of the treeline
ecotone. The cored individuals grow in a mixed forest composed of Abies spectabilis and Betula utilis
D. Don with Rhododendron campanulatum D. Don and Sorbus microphylla (Wallich ex J. D. Hooker) Wenzig
as a second tree layer. Abies spectabilis and Betula utilis are co-dominant constituents in the lower part
of the subalpine forest with an increasing percentage of Betula towards higher elevation. Above the
sampling area, at the treeline, the subalpine forest gives way to a dense Rhododendron campanulatum
krummholz belt which is replaced upslope by alpine vegetation dominated by Rhododendron dwarf
thickets (cf. [72–74]). Soils in the treeline ecotone are classified as podzols [18]. Due to the valley’s
remote location, inaccessibility, low population density, and relevance for the Buddhist mythology [75],
the entire treeline ecotone is in near-natural condition [72]. The study site’s climate is classified
as temperate with dry winter and warm summer (Köppen-Geiger Cwb) [76]. The seasons are
usually defined as winter (December to February), pre-monsoon/spring (March to May), monsoon
(June to September), and post-monsoon (October to November) [77]. Precipitation during monsoon
season accounts for ca. 80% of the total annual precipitation. The pre-monsoon season is a dry period
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with high solar insolation, maximum temperatures, small amounts of precipitation and low available
soil water capacity (cf. Figure 2) [18,78].Forests 2018, 9, x FOR PEER REVIEW  4 of 32 
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Figure 2. Climate charts of used CRU data. See Figure 1 for the location of the grid cells. The entire
period of CRU data availability (a) shows higher amounts of precipitation in November and June
and lower annual mean temperatures compared to last decades (b). Diagrams were produced with R
package climatol [79].
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2.2. Tree-Ring Data

The target species, Abies spectabilis, occurs as a common coniferous species in the central
Himalayan arc between 3000 and 4200 m a.s.l. [80]. We applied standard sampling and core preparation
methods [36,81]. We sampled all individuals growing within randomly selected 20 × 20 m2 plots
in homogenous stands at the upper subalpine forest which were established for intensive treeline
ecological studies (e.g., [73]). For further details on site-ecological conditions, see [72–74,82]. In addition,
we cored old trees around these plots to increase the pool of data for dendroecological and
dendroclimatological analyses. We collected at least two cores per tree during two sampling campaigns
in 2013 and 2014. In total, 359 radii of 114 trees were prepared and scanned in darkroom conditions
at 2400 dpi, in RGB mode using an Epson Perfection V850 optical flatbed scanner. To measure BI,
the scanner was calibrated according to the International Colour Consortium (ICC) standard with the
use of a standard calibration target (IT 8.7/2) printed on Kodak Professional Endure paper and the
SilverFast 8.0 scanning software (LaserSoft Imaging, Kiel, Germany). Both TRW and BI were measured
in CooRecorder 8.1.1 software (Cybis Elektronik & Data AB, Saltsjöbaden, Sweden). Samples with rot
and compression wood were excluded from measuring since the occurrence of compression wood
in tree ring biases the climatic signal [83,84]. The settings in CooRecorder were adjusted to measure
only BI of the latewood, therefore one collector was applied. The fir wood was characterized by a clear
pattern of annual ring boundaries and lack of resin ducts, therefore a rather wide area of BI probing
was selected (the dimensions of the so-called “frame”: 100/3/50 pixels, width/front/late wood
overlap respectively with the relative margin between frames maximum 50%); for details see [71,85].
All TRW and BI series were cross-dated visually in CDendro 8.1.1 (Cybis Elektronik & Data AB,
Saltsjöbaden, Sweden) and statistically in Cofecha 6.06P software (Laboratory of Tree-Ring Research,
University of Arizona, Tucson, and Instituto Argentino de Nivologia y Glaciologia (IANIGLA),
Mendoza, Argentina) [86].

We started building the TRW chronology with 359 radii of 114 trees initially. Due to poor quality
(mold, decay, and distorted growth patterns due to compression wood and branches) and short length
(distorting juvenile effects), cross-dating was not reliable for all series (low inter-series correlation).
Thus, some series were not included in TRW and/or BI chronologies. In total, we included 81 radii of
51 trees and 87 radii of 52 trees in the final TRW and BI chronologies, respectively. However, the two
chronologies do not represent exactly the same bunch of cores (but they originate from the collection
of 359 radii), i.e., samples fitted partially only to TRW and/or only to BI chronologies. For instance,
BI could not be measured on samples which were partly rotten or affected by compression wood due
to significant changes of color, including reflectance of blue light. As a result of visual and statistical
cross-dating we added five missing rings in single series of both chronologies (1877, 1887, 1892, 1906
and 1963). The raw TRW and BI chronologies exhibited significance (p < 0.001) for the long term
declining growth trends, interrupted by several breakpoints that were also visible for individual trees.
Therefore, standardization was applied to remove the age trends in series of both proxies.

The standard TRW and BI chronologies were calculated by applying a 100-year cubic smoothing
splines with fixed 50% variance cutoff in the software ARSTAN 44h3 (Tree-Ring Laboratory,
Lamont-Doherty Earth Observatory, Palisades, New York, USA) to remove age-related growth trends [87].
To assess unbiased temporal stability of the tree growth–climate relations, we applied a spline that
preserves low frequency variability following [88]. To reduce heteroscedastic behavior of the tree-ring
series, we applied a data-adaptive power transformation prior to the detrending process [89].

To assess chronology quality and properties, we calculated the following statistics for the entire
chronology and for the analyzed period 1902–2012: mean sensitivity, mean inter-series correlation,
running and mean R-bar, running and mean expressed population signal (EPS), signal-to-noise
ratio, and first-order autocorrelation. Mean sensitivity shows the interannual variability of tree
growth. Mean inter-series correlation is the average of all individual series’ master chronology
correlations coefficients and indicates the common stand-level signal. The signal strength throughout
the chronology is represented by the running and the mean R-bar which represent correlations
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between all series in 30-year windows with 15-year overlap. EPS was calculated for the same periods
revealing the common variability in a chronology. It depends on sample depth and shows how much
a chronology is dominated by individual tree signals rather than by a coherent stand level signal.
EPS threshold values are subjective. Similar to EPS, although even more dependent on the sample
size, signal-to-noise ratio quantifies the strength of an observed common high-frequency signal among
trees in the chronology. First-order autocorrelation shows the influence of previous year’s growth on
current year’s growth [34,36,90–93].

2.3. Climate Data

We used the University of East Anglia Climatic Research Unit (CRU) Time-Series (TS) 4.00
climate dataset [94,95]: mean temperature, maximum (actually mean maximum) temperature,
minimum (actually mean minimum) temperature, and precipitation (monthly sums) for the period
1901–2012. In addition, we made use of the drought indices one- and three-month SPEI (Standardized
Precipitation-Evapotranspiration Index) [96] based on CRU data which are commonly applied to
monitor drought conditions. SPEIs, calculated over periods of different time scales, support the
identification of cumulative periods that cause water deficits. We used the CRU TS google earth
interface [97] to examine which instrumental records contribute to the grid cell data. All gridded
datasets at 0.5◦ spatial resolution were accessed by Koninklijk Nederlands Meteorologisch Instituut
(KNMI) Climate Explorer [98], and the means of two grid cells closest to the site (extending from 27.5◦ to
28◦ N and 86◦ to 87◦ E; Figure 1) were calculated. These cells cover roughly the extent of the Rolwaling
valley. The inclusion of further neighboring cells decreased the tree growth–climate correlation
coefficients, most likely due to less elevated terrain in the southern grid row and Trans-Himalayan
position of the northern grid row.

To investigate temporal changes of local climate, we fitted nonparametric local polynomial
regressions (LOESS) to monthly precipitation sums and monthly mean temperatures to visualize
potential non-linearity of the trends during the entire period analyzed (1901–2012). The fitting and
plotting was done with the scatterplot() function of the car 2.1–5 package [99] in R 3.4.1 [100]. We
calculated monthly and yearly differences of mean temperature and precipitation sums between the
means of the first and last 30 years of the investigated period (1901–1930 vs. 1984–2012) to gain
information on the intensity of climate change represented by the CRU data.

2.4. Tree Growth–Climate and BI–Climate Correlations

To analyze the relationships between the standardized TRW and BI chronologies and the
climate variables, we calculated Pearson’s correlation coefficients and confidence intervals by using
a stationary bootstrapped correlation function with optimal block length selection [101,102]. We
calculated correlations for all months and seasons from previous year’s May (first month of the
previous growing season) to current year’s September (last month of the current growing season) at
a level of significance of p < 0.05. Climate conditions of the previous year can pre-condition trees
physiologically and may affect biochemical processes and tree growth of the current season [34].
Since climate data were available from 1901 onwards, and to refer to previous growing seasons,
the correlations were calculated for the 1902–2012 period. In the first year of correlations (1902),
chronologies contained 42 TRW and 18 BI series originating from 27 and 14 trees, respectively, which
in both cases constitute the lowest replications for the studied period.

We calculated static correlations of TRW and BI with mean, mean minimum and mean maximum
temperatures, precipitation sums, and SPEI for single months and seasons. To examine the stability of
correlations for the analyzed period, we calculated 31-year moving window correlations [103] with
one year offset between consecutive windows of TRW and BI.

Moving window correlations were computed for monthly mean temperatures and precipitation
sums. While moving windows are suitable to detect the presence of stable periods over a range of
time, evolutionary interval correlations reveal the lengths of specific periods [103]. To find the lengths
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of most recent periods with stable correlations, we used backward evolving window correlations
with an initial window size of 31 years that increases in one-year steps starting from 2012 backwards.
All correlation analyses were computed with the dcc() function of the treeclim 2.0.0 package [104] in
R 3.4.1 [100].

3. Results

3.1. CRU Climate Data Trends

Temperature trends were positive in all months of the period 1901–2012 (Table 1), however,
the intensity of the increase changed over time (Figures 3 and A1). The annual mean temperature of
the last 30 years of our TRW chronology (1982–2012) was 0.87 ◦C warmer than the first 30 years of the
investigated period (1901–1931, p < 0.05). The temperature was significantly stable in June and July
(+0.44 ◦C and +0.05 ◦C, respectively; p < 0.05), while the increase was significant and most pronounced in
November and December (both +1.56 ◦C, p < 0.05). Additionally, winter season (DJF, +1.31 ◦C, p < 0.05)
and pre-monsoon season (MAM, +0.89 ◦C, p < 0.05) temperatures increased significantly. The changes
did not proceed linearly (Figures 3 and A1): after an increase until the mid-20th century, temperatures
stagnated or decreased slightly, followed by an increase beginning from ca. the 1970s until the end of the
investigated period in 2012. This pattern was obvious in all months except February and July. February
temperatures increased linearly. By contrast, July temperatures showed a slight decrease during the first
part of the period, followed by a more pronounced increase towards the 21st century.

Table 1. Differences between means of precipitation sums and mean temperature of the periods
1901–1931 and 1982–2012 for single months and the entire year.

Mean Temperature (◦C) Precipitation (mm)

January 1.07 * 4.68
February 1.32 * −4.74

March 1.36 * −9.88
April 0.79 * 6.40
May 0.53 * 44.73 *
June 0.44 −78.10 *
July 0.05 42.82

August 0.41 * −103.49 *
September 0.37 * −2.17

October 0.97 * 3.83
November 1.56 * −3.44
December 1.56 * 8.01

Year 0.87 * −7.25

Note: Asterisk indicates significant differences at p < 0.05; data source: CRU, see Section 2.

Precipitation values of all months have fluctuated over the investigated period without any clear
trend (Figures 3 and A2). Comparing the first and last 30 years of the investigated period, annual
precipitation did not change significantly (p < 0.05). However, monthly precipitation sums showed
trends in different directions: they increased significantly (p < 0.05) in May (+45 mm) and decreased in
June (−78 mm) and August (−104 mm). Changes in other months were not significant (cf. Table 1).
Due to the high interannual variability of monthly precipitation sums, periods of different trends are
less distinctly visible in comparison to temperature. However, the non-parametric regressions showed
two or three trend segments for most months (cf. Figures 3 and A2). The last directional change of the
trends occurred during the second half of the 20th century, at ca. 1970. The changes in temperature
and precipitation trends are also reflected by SPEI trends.
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Figure 3. Monthly (January, April, and May; see Figures A1 and A2 for all months) and annual
CRU TS 4.0 mean temperature and precipitation sums: non-parametric trends 1901–2012 of the
study area. The solid and dashed red lines show locally weighted scatterplot smoothing (LOESS)
and corresponding spread smooths, respectively. For comparison, the green line illustrates a linear
regression. The dashed black line indicates 1972, i.e., the first year of the period that was analyzed by
static tree growth–climate correlations.

3.2. TRW and BI Chronologies

The span of the TRW and BI chronologies (Figures 4 and 5) ranged from 1748 to 2012 and 1819
to 2012, respectively. Distinct growth reductions occurred in TRW in 1818, 1891, 1906, 1968, and 1999
(Figure 4), and in BI in 1820, 1838–1841, 1850, 1862, and 1962 (Figure 5). Running EPS of TRW chronology
was greater than the arbitrary [93] threshold of 0.85 in all periods except the first one centered upon
1840 with EPS of 0.61 (Figure 4). In case of BI chronology EPS was <0.85 in the periods centered upon
1865, 1880, 1925, and 1940 (Figure 5). Running R-bar changed in course of the TRW chronology and
ranged from 0.19 in the period centered upon 1930 to 0.58 in the period centered upon 1870 (Figure 4).
In the case of BI, R-bar ranged from 0.08 in the period centered upon 1940 to 0.35 in the 1865 period
(Figure 5). The static descriptive statistics of TRW and BI chronologies are presented in Table 2.

Table 2. Descriptive chronology statistics.

TRW Chronology
Interval 1748–2012

TRW Correlation
Analyses Interval

1902–2012

BI Chronology
Interval 1819–2012

BI Correlation
Analyses Interval

1902–2012

Mean sensitivity 0.099 0.082 0.024 0.019
Mean R-bar 0.324 0.337 0.217 0.176

First-order autocorrelation 0.696 0.671 0.522 0.436
Mean expressed

population signal (EPS) 0.910 0.947 0.853 0.903

Signal-to-noise ratio NA 18.031 NA 4.358

NA: not available.
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and corresponding EPS (b) and R-bar values (c). The lighter sections of the graphs show the part of the
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3.3. Moving and Evolving Window Correlations of TRW and BI Chronologies with Climate in the Period
1902–2012

Since we found rather weak static TRW–climate and BI–climate correlations for the entire
investigated period (Figure A3), we tested the temporal stability of correlations by applying 31-year
moving windows with a one year offset to compare both proxies. Both TRW and BI showed distinct
changes in correlations with mean temperature and precipitation over time for the 1902–2012 period.

3.3.1. Moving TRW–Climate Correlations

The interdependence of TRW and climate variables alternated during the investigated period
at least once from positive to negative correlation or vice versa. Phases with significant correlations
without these alternations did not exceed ca. 50 years, and most of the periods were distinctly
shorter. To characterize the changes, we consider periods of at least four consecutive significant
31-year windows.

There was a period of positive correlations of TRW and summer temperature (August: 1941–2001;
June: 1940–1976). Negative correlations of TRW and temperature occurred in spring (February to May)
from the beginning of the 1970s until the end of the investigated period (2012, cf. Figure 6).

TRW and March precipitation correlated negatively during the mid-20th century. This relation
inverted and shifted by one month, resulting in a positive correlation of TRW and April precipitation
from 1972 until the end of the investigated period. TRW and July precipitation correlated negatively
at about the same time. In addition, there were several significant correlations of TRW and previous
year’s climate variables (cf. Figure 6). In summary, both TRW–temperature and TRW–precipitation
moving windows showed a fragmented pattern of significant tree growth–climate relationships with
long insignificant phases.
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Figure 6. Tree-ring width chronology–mean temperatures and tree-ring width chronology–precipitation
sums moving window correlations. Periods with asterisk indicate significant (p < 0.05) correlations.

3.3.2. Moving BI–Climate Correlations

The BI–temperature correlations showed a more stable, less fragmented pattern in comparison to
TRW–temperature relations (Figure 7): there were long periods of rather strong positive BI–temperature
correlations in all months of the current growth year except January and July. This pattern lost strength
and significance from the ca. 1970s onwards, and current January and February showed windows
with negative BI–temperature correlations from 1976 until the end of the investigated period.
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The correlations of BI with precipitation showed a smaller number of significant periods (Figure 7):
from 1927 to 1976 BI and September precipitation correlated positively. This relation was replaced
by a negative BI–August precipitation correlation lasting from 1946 to 1990. Negative correlations
of BI and precipitation occurred in late spring and summer (May, June: 1978–2012, July: 1969–2003).
In addition, there were several significant positive correlations of BI and previous year’s climate,
especially temperature, with the longest and most significant ones in November and December
(cf. Figure 7). In summary, a similar change in BI–climate correlations as in the case of TRW in
the second half of the 20th century is obvious, however, without reaching comparable significant
correlation coefficients during the period after 1970s.Forests 2018, 9, x FOR PEER REVIEW  11 of 32 
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Figure 7. Blue Intensity chronology–mean temperatures and blue Intensity chronology–precipitation
sums moving window correlations. Periods with asterisk indicate significant (p < 0.05) correlations.

3.4. Static Correlations of TRW and BI Chronologies with Climate in the Period 1972–2012

3.4.1. Static TRW–Climate Correlations

Radial growth, measured by TRW, and climate variables showed continuously strongest
correlations towards the end of the investigated period. Evolving windows of TRW–climate and
BI–climate relations (Figures A4 and A5) showed that the stable periods from 2012 backwards differ in
length, depending on the considered combination of climate variable and month. On average, 1972
was identified as the onset of the phase of stable correlations. Thus, it can be considered to represent
the beginning of the most recent era of Abies spectabilis TRW and BI (see Section 3.4.2) in our study area.

We found significant static correlations of TRW with climate variables mainly during winter and
spring for both single months and seasons of recent decades (Figure 8). The correlation analyses showed
a significantly negative relationship between radial growth and mean (r = −0.46), minimum (r = −0.38)
and maximum temperature (r = −0.47) for the current year’s pre-monsoon season (March–May).
Moreover, we detected significant negative correlations of mean (r = −0.32) and maximum (r = −0.35)
temperature during winter prior to the current growing season (December–February) (Figure 8).

Precipitation sums and TRW correlated significantly positively during current January (r = 0.31)
and April (r = 0.35). The current monsoon season (June–August) exhibited a significant negative
correlation of radial growth and precipitation sum (r = −0.33) (Figure 8). We found significantly
positive correlations of TRW to one-month SPEI variables (January: r = 0.27, April r = 0.33) (Figure 8)
pointing to pre-monsoon moisture sensitivity, in line with the relations of TRW to temperature
and precipitation.
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3.4.2. Static BI–Climate Correlations

Compared to TRW, BI exhibited similar correlations to temperature (Figure 9). Winter season prior
to growing season (December–February) showed negative correlations of BI with mean temperature
(r = −0.43, p < 0.05), also reflected in minimum and maximum temperature correlations of single
months. In addition, we found negative correlations of BI with mean and minimum temperatures
of the single months of the pre-monsoon period and the whole monsoon season of the current year
(e.g., May mean temperature r = −0.28, June to August minimum temperature: r = −0.43).Forests 2018, 9, x FOR PEER REVIEW  13 of 32 
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The January precipitation influenced BI positively (r = 0.36) (Figure 9). There was a strong negative
correlation of BI with precipitation during the pre-monsoon (r = −0.44; March–May) and monsoon
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(r = −0.38; June–August) periods. BI showed a positive relationship with the one-month SPEI drought
index during winter season (r = 0.46; December–February), confirmed by correlations of one- and
three-month SPEI during single winter months. In contrast to TRW, there was a negative relation of BI
and moisture in May and pre-monsoon season (Figure 9).

In summary, these results indicate that both radial growth and BI were influenced positively
by low temperature in winter and spring prior to the current growing season. Radial tree growth
was influenced positively in years with high precipitation in current January and April and low rain
intensity in July. BI results were similar in winter; however, they differ in pre-monsoon and monsoon
seasons (Figures 8 and 9). It is particularly remarkable that the results are different from those obtained
for the 1902–2012 period (cf. Figure A3).

4. Discussion

4.1. TRW and BI Chronologies

TRW and BI chronologies’ descriptive statistics coincidentally indicated their applicability for
climate correlations. The chronologies’ mean sensitivity showed low interannual variability, an inherent
characteristic of Himalayan humid environment TRW chronologies (e.g., [11,33,105]). Mean R-bar
values showed a rather low common signal throughout the chronology, pointing to a rather poor
agreement between single series. However, this is also a common characteristic of Himalayan
chronologies [11,27,106]. The running R-bar values varied distinctly over time and the low values in
some periods might point to ecological disturbances or stand dynamic processes [36]. The study site is
to our knowledge virtually free from direct human intervention. Thus, any disturbances are of natural
origin. According to the running EPS values, the chronologies reliably represent the population signal
during the entire period that was subjected to growth analyses [90,93]. The autocorrelation values
showed that the current year’s tree growth was influenced by physiological effects that originate in the
previous year [34]. The growth reductions in the TRW chronology in 1818 might be connected to the
Mount Tambora eruption in 1815 [24], the reductions in 1968 and 1999 coincide with winter droughts
in Nepal [107,108], while the reduction in 1906 followed upon an extreme weak monsoon epoch [109].

4.2. Tree Growth–Climate Relationships during Recent Decades (1972–2012)

Our results for the period with most stable correlations (1972–2012) suggest that Abies spectabilis
tree growth was sensitive to temperature induced moisture deficits during the pre-monsoon
season. We found a negative relationship between radial tree growth and spring temperature,
indicating a negative relation of growth with evapotranspiration, which is enhanced by temperature.
In addition, the positive correlation of TRW and precipitation of April points to moisture sensitivity
during spring [34]. This result is in line with several previous studies on Abies spectabilis growth
patterns [11,12,24,32,33,59,65,110,111] and those of other coniferous species from sites in the Himalaya
and the Tibetan Plateau [58,105,112–115]. Compared to the present study, correlation coefficient values
of the aforementioned studies were mostly in a similar, rather low range.

Studies of other tree species in the Himalaya exhibited comparable results. For instance,
Ren et al. [116] showed the direct dependence of the onset of xylogenesis of a Juniperus species on late
spring precipitation. Betula utilis, a broadleaved species, showed a positive correlation with spring
precipitation and a negative one with spring temperature [8,9,117]. In contrast, Shrestha et al. [28]
showed negative influence of May precipitation on Abies spectabilis radial increment at a treeline
site further west (Langtang National Park). The difference might be attributed to anthropogenic
disturbance in Langtang and/or differing micro-climate conditions.

In line with our results, Kharal et al. [111] reported a negative correlation of Abies spectabilis tree
growth and previous year’s December temperature. Several other studies showed relationships
to winter temperatures which differ from ours, such as positive correlations of Abies spectabilis
radial growth, linked to freezing stress and other related processes [10,30,31,110,118]. Similarly,
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Borgaonkar et al. [113] and Sohar et al. [59] showed a positive relationship to winter temperatures for
two conifer species in the western Himalaya.

Results on tree growth–climate relationships at our site during early and mid-20th century more
or less corroborate those of other studies highlighting current summer and previous year’s autumn
temperatures as main limiting factors of Abies spectabilis’ radial increment [10,12,28,29,110]. These
studies used climate records of differing origin and length (station, 1978–2007 [28]; CRU, 1947–2006 [29];
CRU, 1901–2011 [10]; station, 1959–2004 [110]; station, 1970–2013 [12]), exacerbating comparability and
causing differences in the temporal variability of correlations cf. [28,29,59], this study.

Tree-ring width correlated positively with January precipitation in our study area. This
finding is contrary to results that point to a negative impact of winter moisture availability
on the radial tree growth in central Nepal [11,28,31]. The reported negative impact might be a
consequence of deeper snowpack that retards the melting process and the soil temperature increase
in spring, resulting in a delayed onset of cambial activity [19,119]. Other studies did not assess a
negative relation of snow precipitation and following growing season tree growth (e.g., [65,120]).
Once melted, snow precipitation might contribute to moisture availability during the dry spring
season months [18,19,28,29]. The results of TRW–one-month SPEI correlations show growth limitation
due to soil water content deficits in January and April, underpinning the results from correlations of
TRW with temperature and precipitation. The significant one-month SPEI correlation points to a short
cumulative period of water deficit [121] due to excessive monsoon precipitation occurring each year,
resulting in high available water capacity during summer and autumn [18].

In contrast to spring drought-related relationships, we found a significantly negative correlation
of radial growth with monsoon season (JJA) precipitation. These results are consistent with those
from two rather dry sites located in the Mustang and Manang regions of Nepal [11,111]. The central
Himalaya receives the majority of annual precipitation during summer season. The amount of water is
by far sufficient to saturate the soil water content, and to cover the water demand of the vegetation, even
in years with relatively low amount of precipitation. Thus, we suggest that the negative correlations
might indicate that precipitation acts as a proxy for cloud cover and light conditions, respectively,
influencing tree growth [122]. If the cloud cover is reduced, trees receive higher insolation, causing
enhanced assimilation processes and radial growth. At the same time, the impact of insolation on
air temperature might be reduced due to the energy-consuming evaporation process. These linkages
might inhibit the TRW–summer temperature correlations to reach the level of significance, while
the improved light conditions enhance radial growth, resulting in significantly negative correlation
with precipitation.

In contrast to other studies [10,28,29,110], we did not find a significant correlation of TRW with
temperature or precipitation of the previous growing season (May–September). Nevertheless, the high
first-order autocorrelation value of the TRW chronology points to a distinct influence of previous
year’s tree growth on current year’s growth [34,115]. The negative correlation of TRW with October
and September precipitation might indicate a physiological preconditioning for the following year [34].
Reduced precipitation and subsequent higher irradiation might enable trees to gain more carbon
and/or cause a larger starting size of the cambial zone for the following year [34,122]. However,
this result should be carefully interpreted as we assume the period of cambial activity to end before or
early in October according to measured soil and air temperatures [82,123].

In summary, a rather wide spectrum of different radial growth–climate relationships exists at
regional and local scales within the Himalayan region of Nepal. With regard to spring moisture
sensitivity, our results largely correspond to results of other studies from sites in Nepal and different
Himalayan regions. However, some of the published results, including those from study sites near
to ours, showed differing relations of tree growth with temperatures and precipitation of the winter
prior to growing season. The general east-west precipitation gradient in the Himalaya [124] does
explain variations in tree growth–climate relations to a limited extent only. In line with several
previous studies [11,28–31,58,59,125], we assume that deviating results are caused by local variations
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of the heterogeneous environment, which are not captured by sparse (and rather short) records of
climate data from high elevation sites or derived gridded data [126]. Moreover, spatially differing
characteristics of climate factors at local and regional scales need to be considered when drawing
generalized conclusions. For instance, the date of monsoon onset affects radial increment in different
intensity at dry and wet sites [28]. Finally, soil conditions, micro-topography, light conditions, land use
and other site factors might be reasons for differences in tree growth–climate relationships.

4.3. Changing Long-Term Tree Growth–Climate Relationships (the Entire 20th Century)

The static correlation of the whole CRU data period (Figure A3) showed rather low correlation
coefficients, in line with previous studies from the Himalaya (e.g., [10–12]) and other regions [106,127].

The reliability of growth–climate correlation results depends inter alia on the quality of climate
data. The warming trend during the 20th century is well reproduced by the gridded CRU climate data
used in our study. However, the Rolwaling CRU spring precipitation data might obscure difficulties
in modeling precipitation data for complex terrain [78,128] as negative trends of station data [3]
and reconstructions [33,115,129,130] for the western and central Himalaya during spring of recent
decades are not visible. Since the CRU climate data are based on station data [94,131], length and
quality of sparse local climate data records from the region might influence tree growth–climate
correlations. The CRU methodology includes measures to produce high quality data in regions with
sparse instrumental records. Despite these efforts, the combination of only few stations with long
continuous records in vicinity of the grid cells and complex terrain might induce non-significant tree
growth correlation results, especially in early periods.

The increase in availability and in quality of station data from Nepal at finer spatial resolution since
the 1960s [132] coincides with the beginning of the stable correlation period. Thus, the increasing data
quality could play a certain role regarding more stable tree growth–climate relationships during recent
decades [59]. However, CRU data are widely used in dendroclimatological studies (e.g., [106,133]),
also in mountain regions [54,127,134,135] including the Himalaya [10,29,58,59,136] and their use is
recommended for regions with sparse cover of stations despite certain limitations [137].

The detrending method could potentially cause a putative divergence phenomenon [88]. In our
study, while using a smoothing spline method for detrending, each individual series was evaluated to
preserve low frequency variability but to avoid the artificial increase of the index values of the last
years of the chronology. Moreover, the comparison of moving window correlations of tree-ring data
detrended in different ways showed no substantial differences (see Figure A6). Thus, we rule out
“detrending end effects” as origin of unstable correlations.

Age effects and microsite differences could also cause unstable tree-ring width–climate
correlations [46]. Consistent with unstable tree-ring width–climate correlations, the TRW signal
strength (R-bar) alternated during the period 1902–2012. These variations in R-bar over time might
indicate disturbances [36] or modulations of the relationships by, e.g., tree age or spatially varying
environmental variables such as soil properties and light conditions [138,139].

Changes of the tree growth–climate relationships over time could also point to differentiated
responses of groups of trees to climate (e.g., younger vs. older individuals). After splitting the
chronology into subsets with old trees (minimum age of 100 years) and young trees, we found similar
unstable radial growth–climate correlations for each subset as for the chronologies with all trees of
any age (Figures A7 and A8). In addition, the individual tree response to climate (not presented here)
is similar to those of the standard chronologies. Thus, temporal changes of the tree growth–climate
relationship do not originate from such differences in tree age.

However, despite the cores originate from one site there might be finer-scaled differences of age
structure of trees and their relation to climate caused, for instance, by small-scale spatial differences in
soil temperature and soil moisture [82]. Small-scale fire, insect outbreaks and geomorphic events or
age-related tree deaths might cause disturbances, contributing to variation in tree response. Differences
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in intra- and inter-specific competition for nutrients or light could also result in varying tree responses.
All these environmental factors could cause variance in tree growth which is not explained by climate.

Although effects of non-climatic factors cannot be ruled out, we assume climatic changes to be
the root cause for unstable TRW–climate correlations. The observed instability of tree growth–climate
correlations and their tendency towards negative relation with temperature and towards moisture
sensitivity corroborate various reported divergence phenomena from high latitudes and mountainous
environments (e.g., [38,42,46,51,54,140,141]). In the Himalaya, only few studies with significant
long-term correlations exist. A dendroclimatic study of Pinus smithiana (Wall.) Boiss showed stable
negative correlations with spring temperature for the whole analyzed period from the end of 19th to the
beginning of 21st century [58]. Sohar et al. [59] found unstable dendroclimatic signals of Abies spectabilis
growth in the western Himalaya during the CRU data period with climate change effects and potential
inaccuracies in the CRU data as potential reasons. However, stable periods do not match with those
of the present study. Shrestha et al. [28] showed unstable Abies spectabilis and Pinus wallichiana A. B.
Jackson growth–climate relationships for central Himalayan sites with climatic changes as potential
causes for instability. Here, a comparison to our results is complicated by differing window sizes and
length of investigated periods. Most studies correlated tree growth and climate over shorter periods of
time, based on availability of local station data or chronology length (30–60 years), and did not test
correlation results for stability [10,11,28,29,32,33,110,111,115,142].

According to the results of our moving correlations, we assume that Abies trees have become
more climate-sensitive during the reinforced climate warming period beginning in the 1970s. Similar
to the alterations of radial tree growth–climate correlations and of its signal strengths, the climate
changed non-linearly, with a temperature increase in the early 20th century, a stable phase during the
mid-20th century and pronounced warming during the last decades of the 20th and the beginning
of the 21st century. The period of stable climate conditions coincides with a positive relationship
of TRW to summer temperature and a negative one to March precipitation, pointing to sufficient
moisture availability in spring and growth limitation mostly by low summer temperature. During the
climate warming phase earlier in the century, the negative relation of tree growth and May temperature
indicated moisture sensitivity. This signal was less significant as during the ca. last 40 years of the
investigated period, but already apparent. We suppose that the climate warming-induced increase in
evapotranspiration and the consequently intensified moisture stress triggered a shift from summer
temperature to spring moisture limited growth response and the stabilization of the correlations
towards the end of our investigated period. This is consistent with the change in temperature (Figure 3)
and SPEI trends of the study area and intensified spring droughts in the central Himalaya during
recent decades [115]. Thus, increased drought might have caused the divergence in growth–climate
relationships as observed in other studies [53,143,144], with Abies spectabilis trees showing growth
plasticity towards the changing environment as other coniferous species do (e.g., [46,48,133,145]).
Obviously, this potential adaptation contributed to the rather low responsiveness of the Rolwaling
treeline to climate warming [73], and may be crucial for its future sensitivity to climate change.

Until the end of the period of relative stable climate conditions in the mid-20th century (Figure 3),
tree growth was limited by previous winter and current spring and summer temperature, and related
inversely to winter precipitation and snow height, respectively (Figure 6). These linkages were also
found in some studies for the period after the mid-20th century [11,28,31]. Moreover, stable correlations
for the whole 20th century exist for a negative relation of tree growth to spring drought [58] as well as
for a positive relation to summer temperature [10]. Obviously, some studies neglected information
of specific periods or individual trees by the static analysis [48], and/or there might be sites, where
climate warming has reached or not reached the potential threshold [43] towards temperature-induced
moisture deficits during pre-monsoon season.
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4.4. Suitability of Blue Intensity as a Climate Proxy

On the surface, BI–climate correlations exhibited similarities in comparison to correlations of TRW.
In detail we found significant differences. BI yielded slightly lower climate correlation coefficients in
case of static correlations, but the BI–climate relationships turned out to be generally more stable over
time. In line with TRW correlations, BI showed an unstable temporal pattern of climate correlations,
however, there were distinctly longer, more significant stable periods. As in the case of TRW–climate
correlations, the BI–climate relationships changed towards positive relations with spring precipitation
and negative with spring temperature towards the end of the investigated period. This change,
however, was less pronounced, and occurred later in comparison to TRW. BI static correlations for the
recent four decades did not show spring moisture sensitivity, but a negative relationship to winter and
summer temperatures as well as to spring and summer precipitation.

BI correlated positively to spring and summer temperature during a long period, covering nearly
the entire 20th century, in line with results of correlations between climate and maximum latewood
density (MXD) of Abies spectabilis growing near treeline in far western Nepal [65]. The temperature
of current year’s August played an important role in both cases: MXD correlated positively with
August and September temperature [65] while BI was in positive relation to temperatures of July and
August. Similarly, Abies spectabilis MXD of a study in the NW Himalaya correlated amongst others
with September temperature [59]. The slight differences in seasons might result from differences in
natural settings between both study areas in terms of micro-climates, soil types, etc. The quality
and length of climate data used to perform climate–growth investigations are different as well.
Our positive temperature signal for spring and early summer during 20th century was not apparent
in the MXD signal, but distinctly visible in correlations of mean and minimum density [65]. Most
likely, the latewood formation at our site depends to a greater extent on temperature conditions and
consequently carbon acquisition earlier in the year. In contrary to our results for the last decades,
Sano et al. [65] did not find any significant correlation of MXD to precipitation. Given the temporal
pattern of our correlations, this difference might be attributed to the fact that their MXD chronology
ended more than ten years earlier.

Opposite to TRW, BI–climate correlations were not related to moisture conditions during spring.
We assume that the formation of latewood cells occurs during the late growing season when moisture
and temperature are sufficient. Moreover, latewood density is in general rather related to climate
conditions of the entire growing season. BI might be limited by moisture availability in future since
the moving window correlation pattern (Figure 7) showed that it already lost its previously positive
relation to spring temperature. The different temporal patterns of the correlations of TRW and BI
indicate the potential of BI to gain additional information on interannual growth patterns in relation
to climatic conditions. Similar to MXD, BI is potentially more useful for climate reconstructions in
comparison to TRW [66]. Using BI, additional knowledge could be obtained on, e.g., Abies spectabilis
biomass acquisition.

5. Conclusions

Abies spectabilis growth–climate correlations in the Rolwaling valley changed during the 20th
century, most likely to be attributed to intensified climate warming during the second half of the
20th century. In recent decades, Abies spectabilis radial growth has been mostly limited by moisture
availability during pre-monsoon season. Winter and pre-monsoon seasons receive the smallest amount
of annual precipitation, while sharply rising temperatures in spring increase evaporation, leading to
enhanced drought stress when cambial activity starts after winter. Ongoing climate warming will
aggravate droughts most likely affecting Abies spectabilis more adversely in future and challenging
its plasticity.

Blue Intensity of Abies spectabilis was shown to be a climate proxy in this study for the first time.
The BI signal was more stable and showed higher correlation coefficients compared to radial increment,



Forests 2018, 9, 267 18 of 30

especially with temperature during the 20th century. It was less affected by spring moisture sensitivity
in comparison to tree growth.

Our results accentuate those of most other studies, but show also some differences. To detect
underlying mechanisms for temporally and spatially varying results, further studies from different
locations are needed to evaluate tree growth response to climatic variables in relation to small-scale
climate data and other site properties (e.g., stand structure, gravitational mass movement,
geomorphology, slope, aspect, and soil) and their variations. In addition, future studies should analyze
individual growth responses to these factors to quantify strategies of single trees or groups of trees.
However, the availability of data representing the local climate over sufficient time periods, especially
precipitation characteristics of the mountainous terrain at high spatial and temporal resolution, will
remain a major challenge.
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Figure A1. Cont.
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Figure A1. Monthly CRU TS 4.0 temperature non-parametric trends 1901–2012 of the study
area. The solid and dashed red lines show locally weighted scatterplot smoothing (LOESS) and
corresponding spread smooths, respectively. For comparison, the green line illustrates a linear
regression. The dashed black line indicates 1972, i.e., the first year of the period that was analyzed by
static tree growth–climate correlations.
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Figure A2. Cont.
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Figure A2. Monthly CRU TS 4.0 precipitation non-parametric trends 1901–2012 of the study
area. The solid and dashed red lines show locally weighted scatterplot smoothing (LOESS) and.
corresponding spread smooths, respectively. For comparison, the green line illustrates a linear
regression. The dashed black line indicates 1972, i.e., the first year of the period that was analyzed by
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Figure A3. The 1902–2012 static correlations of tree-ring width (TRW, left) and Blue Intensity (BI, right)
with temperature, precipitation and drought indices for current and previous year’s months and
current year seasons. Three-month SPEI correlations were calculated for the period 1903–2012. Solid
bars indicate significant correlations (p < 0.05).
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Figure A4. TRW–mean temperatures and TRW–precipitation sums evolving window correlations.
Periods with asterisk indicate significant (p < 0.05) correlations.
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Figure A5. BI–mean temperatures and BI–precipitation sums evolving window correlations. Periods
with asterisk indicate significant (p < 0.05) correlations.
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Figure A6. Non-detrended TRW–mean temperatures and non-detrended TRW–precipitation sums
moving window correlations. Periods with asterisk indicate significant (p < 0.05) correlations.
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Figure A7. Older trees with minimum age of 100 years (a) show unstable radial growth–climate
interactions similar to younger trees with an age of less than 100 years (b).
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Figure A8. Older trees with minimum age of 100 years (a) show unstable Blue Intensity–climate
interactions similar to younger trees with an age of less than 100 years (b).
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