

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Orthogonally Pexider functions modulo a discrete subgroup

Author: Wirginia Wyrobek-Kochanek

Citation style: Wyrobek-Kochanek Wirginia. (2012). Orthogonally Pexider functions modulo a discrete subgroup. "Annales Mathematicae Silesianae" (Nr 26 (2012), s. 93-100).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

ORTHOGONALLY PEXIDER FUNCTIONS MODULO A DISCRETE SUBGROUP

WIRGINIA WYROBEK-KOCHANEK

Abstract. Under appropriate conditions on abelian topological groups G and H, an orthogonality $\bot \subset G^2$ and a σ -algebra \mathfrak{M} of subsets of G we prove that if at least one of the functions $f, g, h \colon G \to H$ satisfying

$$f(x+y) - g(x) - h(y) \in K$$
 for $x, y \in G$ such that $x \perp y$,

where K is a discrete subgroup of H, is continuous at a point or \mathfrak{M} -measurable, then there exist: a continuous additive function $A\colon G\to H$, a continuous biadditive and symmetric function $B\colon G\times G\to H$ and constants $a,b\in H$ such that

$$\left\{ \begin{array}{l} f(x) - B(x,x) - A(x) - a \in K, \\ g(x) - B(x,x) - A(x) - b \in K, \\ h(x) - B(x,x) - A(x) - a + b \in K \end{array} \right.$$

for $x \in G$ and

$$B(x,y) = 0$$
 for $x, y \in G$ such that $x \perp y$.

Let G and H be groups and $\bot \subset G^2$ an orthogonality. We say that a function $f\colon G\to H$ is orthogonally additive, if

$$f(x+y) = f(x) + f(y)$$
 for $x, y \in G$ such that $x \perp y$.

Received: 14.02.2012. Revised: 15.06.2012.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 39B55, 39B52.

 $[\]it Key\ words\ and\ phrases:$ additive functions, biadditive functions, Pexider difference, quadratic functions.

In the paper [3] J. Brzdęk considers the Rätz orthogonality (cf.[5]) and, under some assumptions, gives a description of orthogonally additive functions modulo a discrete subgroup, i.e. functions $f: G \to H$ such that

$$f(x+y) - f(x) - f(y) \in K$$
 for $x, y \in G$ such that $x \perp y$,

where K is a discrete subgroup of H. In the papers [7] and [4] authors prove similar theorems (for continuous or measurable functions), but for the orthogonality defined by K. Baron and P. Volkmann in [2], which includes the Rätz orthogonality.

Now we would like to obtain some similar results for the Pexider difference instead of the Cauchy difference, i.e. we assume that functions $f, g, h \colon G \to H$ are orthogonally Pexider modulo a discrete subgroup, which means that they satisfy

$$f(x+y) - g(x) - h(x) \in K$$
 for $x, y \in G$ such that $x \perp y$,

where K is a discrete subgroup of H. We start with the following result.

LEMMA. Let G be a groupoid with a neutral element, H an abelian group, K a subgroup of H. Let $\Delta \subset G \times G$ be a set with

(1)
$$(0,x),(x,0) \in \Delta \quad \text{for all } x \in G.$$

If functions $f, g, h: G \to H$ satisfy

(2)
$$f(x+y) - g(x) - h(y) \in K \quad \text{for } (x,y) \in \Delta,$$

then the following are true:

(a) There are functions $k_1, l_1: G \to K$, $\varphi_1: G \to H$ and constants $a, b \in H$ such that

$$\varphi_1(x+y) - \varphi_1(x) - \varphi_1(y) \in K \quad \text{for } (x,y) \in \Delta$$

and

(3)
$$\begin{cases} f(x) = \varphi_1(x) + a, \\ g(x) = \varphi_1(x) + k_1(x) + b, \\ h(x) = \varphi_1(x) - k_1(x) + l_1(x) + a - b \end{cases}$$

for all $x \in G$.

(b) There are functions $k_2, l_2 \colon G \to K$, $\varphi_2 \colon G \to H$ and constants $a, b \in H$ such that

$$\varphi_2(x+y) - \varphi_2(x) - \varphi_2(y) \in K \quad \text{for } (x,y) \in \Delta$$

and

$$\begin{cases} f(x) = \varphi_2(x) + k_2(x) + a, \\ g(x) = \varphi_2(x) + b, \\ h(x) = \varphi_2(x) + l_2(x) + a - b \end{cases}$$

for all $x \in G$.

(c) There are functions $k_3, l_3 \colon G \to K$, $\varphi_3 \colon G \to H$ and constants $a, b \in H$ such that

$$\varphi_3(x+y) - \varphi_3(x) - \varphi_3(y) \in K \quad \text{for } (x,y) \in \Delta$$

and

$$\begin{cases} f(x) = \varphi_3(x) + k_3(x) + a, \\ g(x) = \varphi_3(x) + l_3(x) + b, \\ h(x) = \varphi_3(x) + a - b \end{cases}$$

for all $x \in G$.

Moreover, each of assertions (a), (b), (c) gives a complete description of solutions of (2), that is, every triple (f, g, h), being of one of the forms described above, is a solution of (2).

PROOF. Setting y = 0 in (2), by (1) we get

(4)
$$\mu(x) := f(x) - g(x) - h(0) \in K \quad \text{for } x \in G$$

and setting x = 0 we have

(5)
$$\nu(y) := f(y) - g(0) - h(y) \in K \quad \text{ for } y \in G.$$

In particular,

(6)
$$f(0) - g(0) - h(0) \in K.$$

Denote a = f(0), b = g(0) and define $\varphi_i, k_i, l_i : G \to H$ for i = 1, 2, 3 by

$$\varphi_{1} = f - a, k_{1} = g - \varphi_{1} - b, l_{1} = h + k_{1} - \varphi_{1} - a + b,$$

$$\varphi_{2} = g - b, k_{2} = f - \varphi_{2} - a, l_{2} = h - \varphi_{2} - a + b,$$

$$\varphi_{3} = h - a + b, k_{3} = f - \varphi_{3} - a, l_{3} = g - \varphi_{3} - b.$$

Using (4), (5), (2) and (6) for every $(x, y) \in \Delta$ we get

$$\begin{split} \varphi_1(x+y) - \varphi_1(x) - \varphi_1(y) &= f(x+y) - a - f(x) + a - f(y) + a \\ &= f(x+y) - \mu(x) - g(x) - h(0) - \nu(y) - g(0) - h(y) + a \in K; \\ \varphi_2(x+y) - \varphi_2(x) - \varphi_2(y) &= g(x+y) - b - g(x) + b - g(y) + b \\ &= f(x+y) - \mu(x+y) - h(0) - g(x) + \mu(y) - f(y) + h(0) + b \\ &= f(x+y) - \mu(x+y) - g(x) + \mu(y) - \nu(y) - g(0) - h(y) + b \in K; \\ \varphi_3(x+y) - \varphi_3(x) - \varphi_3(y) &= h(x+y) - a + b - h(x) + a - b - h(y) + a - b \\ &= f(x+y) - g(0) - \nu(x+y) + \nu(x) - f(x) + g(0) - h(y) + a - b \\ &= f(x+y) - \nu(x+y) + \nu(x) - \mu(x) - g(x) - h(0) - h(y) + a - b, \\ &\in K. \end{split}$$

We also have

$$k_1(x) = g(x) - f(x) + a - b = -\mu(x) - h(0) + a - b \in K,$$

$$k_2(x) = f(x) - g(x) + b - a = \mu(x) + h(0) + b - a \in K,$$

$$k_3(x) = f(x) - h(x) + a - b - a = \nu(x) + g(0) - b \in K,$$

$$l_1(x) = h(x) + k_1(x) - f(x) + a - a + b = -\nu(x) - g(0) + k_1(x) + b \in K,$$

$$l_2(x) = h(x) + k_2(x) - f(x) + a - a + b = -\nu(x) - g(0) + k_2(x) + b \in K,$$

$$l_3(x) = g(x) + k_3(x) - f(x) + a - b = -\mu(x) - h(0) + k_3(x) + a - b \in K$$
for $x \in G$.

The part (b) of this lemma in the case when $\Delta = G^2$ was also obtained by K. Baron and PL. Kannappan in [1], even under some weaker assumptions. Some variations of (2) for functions with values in groupoids were studied by J. Sikorska in [6].

We work with the orthogonality proposed by K. Baron and P. Volkmann in [2], assuming additionally that the last condition in the following definition holds:

Let G be a group such that the mapping

$$(7) x \mapsto 2x, \quad x \in G,$$

is a bijection onto the group G. A relation $\bot \subset G^2$ is called *orthogonality* if it satisfies the following three conditions:

- (i) $0 \perp 0$; and from $x \perp y$ the relations $-x \perp -y$, $\frac{x}{2} \perp \frac{y}{2}$ follow.
- (ii) If an orthogonally additive function from G to an abelian group is odd, then it is additive; if it is even, then it is quadratic.
- (iii) $x \perp 0$ and $0 \perp x$ for every $x \in G$.

For a subset U of a given group and for $n \in \mathbb{N}$ the symbol nU denotes the set $\{nx : x \in U\}$.

Theorem. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that

(8)
$$U \subset 2U \quad and \quad G = \bigcup \{2^nU: \ n \in \mathbb{N}\}.$$

Let $\bot \subset G^2$ be an orthogonality, H an abelian topological group and K a discrete subgroup of H. Assume that functions $f, g, h: G \to H$ satisfy

(9)
$$f(x+y) - g(x) - h(y) \in K$$
 for $x, y \in G$ such that $x \perp y$.

(i) If at least one of the functions f,g,h is continuous at a point, then there exist: a continuous additive function $A: G \to H$, a continuous biadditive and symmetric function $B: G \times G \to H$ and constants $a,b \in H$ such that

(10)
$$\begin{cases} f(x) - B(x,x) - A(x) - a \in K, \\ g(x) - B(x,x) - A(x) - b \in K, \\ h(x) - B(x,x) - A(x) - a + b \in K \end{cases}$$

for $x \in G$ and

(11)
$$B(x,y) = 0 \quad \textit{for } x,y \in G \textit{ such that } x \perp y.$$

(ii) Let \mathfrak{M} be a σ -algebra of subsets of G such that

(12)
$$x \pm 2A \in \mathfrak{M} \quad \text{for all } x \in G \text{ and } A \in \mathfrak{M}$$

and there is a proper σ -ideal \Im of subsets of G with

(13)
$$0 \in \operatorname{Int}(A - A) \quad \text{for } A \in \mathfrak{M} \setminus \mathfrak{I}.$$

Assume moreover that H is separable metric and the following condition (G) is fulfilled:

(G) either G is a first countable Baire group, or G is metric separable, or G is metric and \mathfrak{M} contains all Borel subsets of G.

If at least one of the functions f, g, h is \mathfrak{M} -measurable, then there exist: a continuous additive function $A: G \to H$, a continuous biadditive and symmetric function $B: G \times G \to H$ and constants $a, b \in H$ such that (10) and (11) hold.

Moreover, each of assertions (i), (ii) gives a complete description of solutions of (9).

PROOF. (i): Case 1. Assume that f is continuous at a point. Let $k_1, l_1: G \to K$, $\varphi_1: G \to H$ be as in Lemma (a). Then the function φ_1 is continuous at a point. According to Theorem 1 from [7] we get a continuous additive function $A: G \to H$ and a continuous biadditive and symmetric function $B: G \times G \to H$ such that

$$\varphi_1(x) - B(x, x) - A(x) \in K$$
 for $x \in G$

and (11) hold. Then, according to (3),

$$f(x) - B(x, x) - A(x) - a = \varphi_1(x) + a - B(x, x) - A(x) - a \in K,$$

$$g(x) - B(x, x) - A(x) - b = \varphi_1(x) + k_1(x) + b - B(x, x) - A(x) - b \in K,$$

$$h(x) - B(x, x) - A(x) - a + b = \varphi_1(x) - k_1(x) + l_1(x) + a - b$$

$$- B(x, x) - A(x) - a + b \in K$$

for all $x \in G$.

Case 2. If the function g is continuous at a point then instead of Lemma (a) we use Lemma (b).

Case 3. If the function h is continuous at a point then we use Lemma (c). (ii): If one of the functions f, g, h is \mathfrak{M} -measurable then we use Theorem 1

(ii): If one of the functions f, g, h is \mathfrak{M} -measurable then we use Theorem 1 from [4] instead of Theorem 1 from [7].

For $\perp = G^2$ some special cases were obtained in [1] (cf. Corollaries 6 and 7 there).

If in the Theorem G is Baire and we consider the Baire measurability, then we do not need to assume the first countability of G in order to get the factorization with a separately continuous biadditive term only (cf. Corollary 2 in [4]).

COROLLARY 1. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let $\bot \subset G^2$ be an

orthogonality, H an abelian separable metric group, K a discrete subgroup of H and functions $f,g,h\colon G\to H$ satisfy (9). If G is Baire and at least one of the functions f,g,h is Baire measurable, then there exist: a continuous additive function $A\colon G\to H$, a function $B\colon G\times G\to H$ biadditive, symmetric and continuous in each variable, and constants $a,b\in H$ such that (10) and (11) hold.

If we take $\perp = G^2$, then our Theorem gives us Corollary 2 below. It also leads to another conclusions in the case when we consider Baire or Christensen measurability.

COROLLARY 2. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let H be an abelian separable metric group, K a discrete subgroup of H, \mathfrak{M} a σ -algebra of subsets of G satisfying (12) and such that there is a proper σ -ideal \mathfrak{I} of subsets of G with property (13). If functions $f, g, h: G \to H$ satisfy

$$f(x+y) - g(x) - h(y) \in K$$
 for $x, y \in G$

and at least one of them is \mathfrak{M} -measurable, then there exist a continuous additive function $A: G \to H$ and constants $a, b \in H$ such that

$$\left\{ \begin{array}{l} f(x) - A(x) - a \in K, \\ g(x) - A(x) - b \in K, \\ h(x) - A(x) - a + b \in K \end{array} \right.$$

for $x \in G$.

Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

- Baron K., Kannappan Pl., On the Pexider difference, Fund. Math. 134 (1990), 247– 254.
- [2] Baron K., Volkmann P., On orthogonally additive functions, Publ. Math. Debrecen 52 (1998), 291–297.
- [3] Brzdęk J., On orthogonally exponential functionals, Pacific J. Math. 181 (1997), 247– 267.

- [4] Kochanek T., Wyrobek-Kochanek W., Measurable orthogonally additive functions modulo a discrete subgroup, Acta Math. Hungar. 123 (2009), 239–248.
- [5] Rätz J., On orthogonally additive mappings, Aequationes Math. 28 (1985), 35–49.
- [6] Sikorska J., On a Pexiderized conditional exponential functional equation, Acta Math. Hungar. 125 (2009), 287–299.
- [7] Wyrobek W., Orthogonally additive functions modulo a discrete subgroup, Aequationes Math. **78** (2009), 63–69.

Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice Poland e-mail: wwyrobek@math.us.edu.pl