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Abstract

Projective planes of order n with a collineation group admitting a
2-transitive orbit on a line of length at least n=2 are investigated
and new examples are provided.
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1 Introduction

A classical subject in �nite geometries is the investigation of a �nite projective
plane � of order n admitting a collineation group G which acts 2-transitively on
a point-subset O of size v of �. It dates back to 1967 and it is due to Cofman
[10]. It is easily seen that either

(i) the structure of a non trivial 2-(v; k; 1) design is induced on O, or

(ii) O is an arc, or

(iii) O is a contained in a line.

This paper focus entirely on the case when O is a contained in a line. Start-
ing form Cofman [11], several papers have been devoted to this case. In [11]
Cofman proves that � is Desarguesian and SL(2; n) E G, under the assump-
tions v = n + 1 (that is O is the entire line), n 6� 1mod 8 and G contains
involutory homologies. Some years later, Schulz [57] and Czerwinski [13] essen-
tially proved that the unique translation planes with a collineation group acting
2-transitively on the line at in�nity, are either Desarguesian or Lüneburg planes.
Actually, they proved this characterization under additional assumptions that
ruled out the possibility for G to contain Baer collineations. Later, such ad-
ditional assumptions were totally dropped with the use of the classi�cation of
�nite 2-transitive groups. In 1981 Korchmáros [44] investigates the general case
v = n + 1 when n = 2r. Apart from the Desarguesian case, the author proves
that either G �= Sz(n) or G �= PSU(3; n).
Also the case v = n has been investigated extensively. In 1986 Ganley and

Jha [19] proved that if v = n, � is a translation plane and l is the line at
in�nity, then � is actually a semi�eld plane. The case v = n is investigated by

1



Hiramine [29] in 1993, without any assumption on the structure of �. Apart
from a few numerical values of n, Hiramine shows that the socle of �G, where
�G denotes the group induced by G on O, is an elementary abelian p-group
for some prime p, the plane � has order n = pr and either �GO � �L(1; pr)
or SL(2; pr) � �GO � �L(2; pr). In 1999 Biliotti, Jha and Johnson classify
the translation planes � for v = n, n 6= 26, when l is the line at in�nity and
�G � A�L(1; pr). In 2000, Ganley, Jha and Johnson [20] classify the triple
(�;O; G) for v = n, when � is a translation plane, l is an a¢ ne line and G
is non solvable. Recently, Biliotti and Francot [7] investigated the general case
v � n, determining all the possible collineation groups.
The problem of classifying the triple (�;O; G) when O � l and the length v

of O is smaller than n, but close to n, is open. An initial result in this direction
is the paper of Biliotti and Montinaro [8] devoted to the case v = n� 3. In that
paper no non trivial cases arise.
The aim of this paper is to investigate the �nite projective planes � of order

n admitting a collineation group G which acts 2-transitively on a subset O of a
line l of �, under the assumption v � n=2. In particular the following results
are obtained.

Theorem 1 Let � be a projective plane of order n and let O be a 2-transitive
G-orbit of length v on a line. If v � n=2 and G is almost simple, then one of
the following occurs:

(1) v = n+ 1, and one of the following occurs:

(a) n = q, � �= PG(2; q) and SL(2; q) E G;
(b) n = q2, q = 22s+1, s � 1, and Sz(q) E G;
(c) n = q3, q = 22s, s � 1, PSU(3; q) E G and G �xes a point of �l.

(2) v = (n+ 1)=2, n odd, and one of the following occurs:

(a) � is the Hall plane of order 9 or its dual, jOj = 5 and SL(2; 5) E G;
(b) n = 2q + 1, q � 3mod 4, q 6= 7, jOj = q + 1 and SL(2; q) E G.

(3) v = n=2, n even, and one of the following occurs:

(a) � is the Johnson-Walker translation plane of order 16 or its dual,
and PSL(2; 7) E G;

(b) n = 2(q + 1), q � 3mod 4, jOj = q + 1 and SL(2; q) E G.

We remark that the result (1) is already known (see [7] and its references
for related examples). So, our task is to prove the results (2) and (3). We also
remark that there are no known examples for the cases (2b) and (3b).

Theorem 2 Let � be a projective plane of order n and let O be a 2-transitive
G-orbit of length v on a line. If v � n=2 and G is of a¢ ne type, then one of
the followings occurs:
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(I) v = n+ 1, n even, and either

(a) �GO � �L(1; v), or
(b) v 2

�
52; 72; 112; 192; 232; 292; 592

	
.

(II) v = n and either

(a) �GO � �L(1; v), or
(b) SL(2; pd=2) E �GO, d even, or

(c) v 2
�
24; 32; 34; 36; 52; 72; 112; 192; 232; 292; 592

	
.

(III) n=2 � v < n and either

(a) �G � A�L(1; v), or
(b) v 2

�
24; 26; 32; 33; 34; 36; 52; 72; 112; 192; 232; 292; 592

	
We remark that the results (I) and (II) are already known (see [7] and [29]

for related examples). So, we have to prove the result (III). We stress that,
while there are no known examples for the case (IIIb), examples of type (IIIa)
occur in the Desarguesian plane of order 8, 9, in the Lorimer-Rahilly plane of
order 16 and in the Johnson-Walker plane of order 16 and in their duals. A
complete description of these examples is given in section 3.
Clearly, theorems 1 and 2 together cover all possibilities for a 2-transitive

collineation group G.

The present paper is structured as follows. In section 2 we �x notation and
the background of the problem, and we recall some results which are useful to
prove theorems 1 and 2. In section 3 a complete description of the examples
provided in the paper is given. In section 4 we give some preliminary reductions
for the structure of the 2-transitive collineation group G. Sections 5 and 6 are
devoted to the proofs of the theorems 1 and 2, respectively. Finally, in section
7, our main problem is investigated under the additional assumption that � is
the projective extension of a translation plane.

2 Background

In the paper group-theoretical and geometrical notation is standard. For the
required background concerning �nite groups the reader is referred to [1], [23]
and [34]. In particular for the �nite groups admitting a 2-transitive permutation
representation we have the following classi�cation.

Theorem 3 Let H be a �nite group with a 2-transitive permutation representa-
tion of degree v and let S = soc(H) be the socle of H. Then one of the following
occurs:

1. S is non abelian simple, and S � H � AutS where S and v are as follows:
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(a) Av with v � 5;
(b) PSL(d; q), d � 2, v = (qd � 1)=(q � 1) and (d; q) 6= (2; 2); (2; 3);
(c) PSU(3; q), v = q3 + 1, q > 2;

(d) Sz(q), v = q2 + 1, q = 22e+1 > 2;

(e) 2G2(q)
0; v = q3 + 1, q = 32e+1;

(f) Sp(2n; 2), n � 3, v = 22n�1 � 2n�1;
(g) PSL(2; 11), v = 11;

(h) Mathieu groups Mv, v = 11; 12; 22; 23; 24;

(i) M11, v = 12;

(j) A7, v = 15;

(k) HS (Higman-Sims group), v = 176;

(l) Co3 (Conway�s smallest group), v = 276.

2. S is an elementary abelian group of order v = pd, where p is a prime.
Identify G with a group of a¢ ne transformations x 7�! xg + c of GF (p)d,
where g 2 G0. Then one of the following occurs:

(a) G0 � �L(1; pd);
(b) SL(a; q) E G0, where a � 2 and qa = pd;
(c) Sp(a; q) E G0, where a � 4, a even, and qa = pd;
(d) G2(q)0 E G0 where q6 = pd and q is even;
(e) G0 �= A6 or A7, pd = 24;
(f) SL(2; 3) E G0 or SL(2; 5) E G0, v = p2 and p = 5; 7; 11; 19; 23; 29,

or 59, or v = 34;

(g) G0 has a normal extraspecial subgroup R of order 25 and G0=R � S5;
(h) G0 �= SL(2; 13), pd = 36.

See for example [40].
A �nite 2-transitive group is said either almost simple or of a¢ ne type ac-

cording to whether its socle is a non abelian simple or an elementary abelian
p-group for some prime p, respectively.
The background concerning �nite projective planes may be found in [33]. Let

� = (P;L) be a �nite projective plane of order n. If G is a collineation group
and P 2 P (l 2 L), we denote by G(P ) (by G(l)) the subgroup of G consisting
of perspectivities with the centre P (the axis l). Also, G(P; l) = G(P ) \ L(l).
Furthermore, we denote by G(P; P ) (by G(l; l)) the subgroup of G consisting of
elations with the centre P (the axis l).
The following theorems deal with projective planes � of order n with a

collineation group G acting 2-transitively either on the points of a line, or on
the points of a line minus one.
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Theorem 4 Let � be a projective plane of order n with a collineation group G
acting 2-transitively on the points of a line. Then one of the following occurs:

(1) � �= PG(2; n) and SL(2; n) E G;

(2) n = q2, q = 22s+1, s � 1, and Sz(q) E G;

(3) n = q3, q = 22s, s � 1, PSU(3; q) E G and G �xes a point of �l;

(4) n = ph � 1, p an odd prime, and G � A�L(1; v);

(5) n = ph � 1, ph 2
�
52; 72; 112; 192; 232; 292; 592

	
, and Gl is sharply transi-

tive on l except possibly for ph = 52 or 292.

For a proof see [7], Theorems 5.2. and 5.5.
Note that, while the there no known examples corresponding to the cases

(3)-(5), the case (2) really occurs in the projective extensions of the Lüneburg
planes.
Now, we consider the case where G �xes an incident point-line pair (L; l) of

� and acts 2-transitively on l � fLg.

Theorem 5 (Hiramine) Let � be a projective plane of order n with a collineation
group G that �xes an incident point-line pair (L; l) of � and acts 2-transitively
on l�fLg. Then n = pd, p prime, and �G contains a normal elementary abelian
p-group acting regularly on l � fLg. In particular one of the following occurs:

(1) �GO � �L(1; pd);

(2) SL(2; pd=2) E �GO, d even;

(3) pd 2
�
24; 32; 34; 36; 52; 72; 112; 192; 232; 292; 592

	
.

In the following result the two previous situations are analyzed under the
further assumption that � is the projective extension of a translation plane.

Theorem 6 Let � be the projective extension of a translation plane of order
n and let (L; l) be an incident point-line pair of �, and let G be a collineation
group of � �xing the line l. Then one of the following occurs:

1. If G acts 2-transitively on l, then l is the line at in�nity and either

(a) � is Desarguesian, or

(b) � is a Lüneburg plane.

2. If n 6= 26, G �xes the point L and acts 2-transitively on l � fLg, where l
is the line at in�nity, then either

(a) � is a Desarguesian, or
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(b) � is a Generalized Twisted Field plane.

3. If n =2
�
34; 36; 112; 192; 292; 592

	
, G is non solvable, G �xes the point L

and acts 2-transitively on l � fLg, where l is an a¢ ne line, then either

(a) � is Desarguesian, or

(b) � is one of the three Walker planes of order 25, or

(c) � is the Dempwol¤ plane of order 16.

See for example [38], theorem 4.3.16, for a proof of the case (1), see [5],
theorem 8.1, for a proof of the case (2), and see [20], main theorem, for a proof
of the case (3). Clearly all these cases really occur. Note that a classi�cation of
the projective extensions of translation planes, when l is an a¢ ne line and one
of the situations (1) or (3) of the Hiramine�s theorem occurs, is not available.
Nevertheless, there are several examples corresponding to each of these situa-
tions (see [6]). In particular in the examples referring to the situation (3), A5
is involved in �GO in many cases.

3 Examples

In this section we provide some examples. It is worth noting that, while exam-
ples 7 and 8 are already known, example 9 is new.

Example 7 Let � be a projective plane of order n, with n � 9, and let G be
a collineation group of �. Suppose that G induces a group �G which has a 2-
transitive point-orbit of length v on a line l. If n > v � n=2, then one of the
following occurs:

(1) � �= PG(2; 4), �G �= AGL(1; 3) and there is exactly one 2-transitive �G-orbit
of length 3 on l;

(2) � �= PG(2; 5), �G �= AGL(1; 3) and there are exactly two 2-transitive �G-
orbits of length 3 on l;

(3) � �= PG(2; 7), G �= SL(2; 3). In particular �G �= AGL(1; 4) and there are
exactly two 2-transitive �G-orbits of length 4 on l;

(4) � �= PG(2; 8), �G �= AGL(1; 4) and there are exactly two 2-transitive �G-
orbits of length 4 on l;

(5) � �= PG(2; 8), �G �= AGL(1; 7) and there is exactly one 2-transitive �G-orbit
of length 7 on l;

(6) � �= PG(2; 9), �G �= AGL(1; 5) and there are exactly two 2-transitive �G-
orbits of length 5 on l;

(7) � �= PG(2; 9), G �= SL(2; 5). In particular �G �= A5 there are exactly two
2-transitive �G-orbits of length 5 on l.
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In particular each of these cases really occurs.

Let � be a projective plane of order n, with n � 9, and let G be a collineation
group of � inducing a group �G which has a 2-transitive point-orbit of length v
on a line l. Assume that n > v � n=2. Clearly v � 3.
If v = 3, then 3 < n � 6. Actually, n < 6 by [33], theorem 3.6. Hence either

n = 4 or n = 5. If � �= PG(2; 4) any subgroup �G of P�L(2; 4) isomorphic to
D6 �= AGL(1; 3) and containing the involution induced by the Frobenius auto-
morphism of GF (4) �xes 2 points on l and acts 2-transitively on the remaining
ones. Thus (1). If � �= PG(2; 5) the group SL(2; 5) induces A5 on l and any
�G �= D6 inside A5 has two 2-transitive point-orbits on l both of length 3, and
hence (2).
If v = 4, then 4 < n � 8. That is n = 5, 7 or 8. The are no examples in

PG(2; 5), since the stabilizer in PGL(2; 5) of three distinct points on a line is
trivial. In PG(2; 7) there is exactly one example: the group G �= SL(2; 3)
has two 2-transitive point-orbits on l both of length 4. Therefore (3). In
PG(2; 8) there is exactly one example: a subgroup �G of P�L(2; 8) isomorphic
to AGL(1; 4) has two 2-transitive point-orbits on l both of length 4. Hence (4).
If v = 5, then 5 < n � 9. If n = 7 or 8, then � �= PG(2; n). Nevertheless

these cases cannot occur, since 5 - jP�L(2; n)j. Therefore n = 9. Then either �
is Desarguesian or � is one of the Hall planes by [59]. It is easily seen that there
exists a subgroup �G �= AGL(1; 5) of P�L(2; 9) splitting l in two 2-transitive
orbits both of length 5 when � is Desarguesian, and hence (6). If � is the
Hall plane of order 9, then the group induced on the line at in�nity by the full
translation complement of � is described in the proof of lemma 5.2 of [18]. It
is easy to check with [21], by using such a description, that the group induced
on the line at in�nity does not contain solvable subgroups with a 2-transitive
permutation representation of degree 5. Nevertheless, the group G �= SL(2; 5)
induces A5 on the line at in�nity and this one is split in two 2-transitive A5-
orbits both of length 5 (see [6]). Thus (7).
If v = 6, then 6 < n � 9. If n = 7 or 8, then � �= PG(2; n). Thus

�G � P�L(2; n) such that �G is 2-transitive orbit on l of length 6. Clearly 5 j
�� �G��.

A contradiction, since 5 - jP�L(2; n)j for n = 7 or 8. So n = 9. Nevertheless
this case cannot occur by [8], theorems 25 and 35, since n� v = 3.
If v = 7, then 7 < n � 9. That is n = 8 or n = 9. If n = 9, then

� �= PG(2; 9) by [58], lemma 8.2. So �G � P�L(2; 9). A contradiction, since
7 j

�� �G�� while 7 - jP�L(2; 9)j. Thus n = 8 and hence � �= PG(2; 8). Let
l be a line of � �= PG(2; 8). Clearly P�L(2; 8) acts on l. Pick any Z7 in
P�L(2; 8). Then Z7 �xes two points P1 and P2 on l and Z7 acts regularly on
l�fP1; P2g. Furthermore, NP�L(2;8)(Z7) �= D14: h�i, where � is the collineation
of � �induced�by a Frobenius automorphism of GF (8). Set O = l � fP1; P2g
and �G �= NP�L(2;8)(Z7). Then �G �= AGL(1; 7) acts 2-transitively on O and
v = 7. Thus (6).
If v = 8, then n = 9. Then � �= PG(2; 9) by [58], lemma 8.2, since 7 j

�� �G��
as �G acts 2-transitively on O and v = 8. A contradiction as above.
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Example 8 In the Johnson-Walker translation plane � of order 16 or its dual,
there exists an a¢ ne line l on which a group G isomorphic to PSL(2; 7) has
two 2-transitive orbits of length 7 and 8.

This example follows by [15], Theorems 4.8-4.10 and Section 5.

Example 9 In the Lorimer-Rahilly translation plane of order 16, in the Johnson-
Walker translation plane of order 16 and in their duals the group G �= AGL(1; 8)
admits a 2-transitive orbit O of length 8 on a line.

Let � be the Lorimer-Rahilly translation plane of order 16, or the Johnson-
Walker translation plane of order 16, or one of their duals. Denote by l1 the
line at in�nity of �. Let T be the full translation group of � and let H �= Z7 be
a subgroup of the translation complement �xing the point O of �. Clearly H
�xes a point P on l1. Let T1 be the subgroup of translations of � of direction
P . Then T1 �xes the line PO and it acts regularly on PO�fPg. Furthermore,
H acts on T1 � f1g and on PO � fP;Og in the same way by [52], proposition
4.2. In particular H leaves a subgroup T2 of T1 of order 8 invariant, since
T0 � f1g �= PG(3; 2) and Z7 �xes exactly a non incident point-plane pair in
PG(3; 2) by [51], Table I. Clearly Z7 is transitive on T1�f1g. Set O = OT1 and
G �= T2:H. Then G �= AGL(1; 8) acts 2-transitively on O and jOj = 8.

We remark that in the other known projective planes of order 16 there are
no examples of 2-transitive orbits of length 8 on a line (see [53], Table I).

4 Preliminaries

Let G be a collineation group having an orbit O of points of � on which G acts
2-transitively, then we call O a 2-transitive G-orbit, or just a 2-transitive orbit.
Furthermore, we say that O is non trivial, if jOj > 1. Note that v � 3, since G
is 2-transitive. In the sequel we assume that v � 5. It is a plain that n � 8.
The following numerical and group-theoretical lemmas will be useful here-

after.

Lemma 10 Let tj, j � 0, and pr, r � 0, be two power of primes such that
pr � 3mod 4. Then the following holds:

(1) If tj = 2pr + 1, then j = 1.

(2) If tj = 2(pr + 1), then t = 2, r = 1 and p is a Mersenne prime.

Proof. The assertion (2) follows by [55], result (B1.1), since t = 2. Hence,
assume that tj = 2pr + 1. Then tj � 3mod 4, since pr � 3mod 4. Thus
t � 3mod 4 and j is odd. In particular 2pr = (t � 1)

�
(tj � 1)=(t� 1)

�
. Hence

2pr�h = t � 1 and ph = (tj � 1)=(t � 1), 0 � h � r, since t and j are odd.
Assume that 0 < h < r. Then p j gcd(t�1; (tj�1)=(t�1)). Hence p j j by [55],
result P1.2 (ii). But this contradicts [55], result A8.5 (1). Assume that h = r.
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Then t = 3 and (3j�1)=(3�1) = pr. Then (p; r; j) = (11; 2; 3) by [61], theorem
3. A contradiction, since pr = 112 and 112 6� 3mod 4. Hence h = 0 and j = 1.
Thus the assertion (1). �

A class of solutions to the �rst Diophantine equation is furnished by the
Sophie-Germain primes (r = 1) [56].

Denote by dj(H), j � 0, the primitive permutation representation degrees
of a group H in increasing order. So, d0(H) denotes the minimal one. If v is a
2-transitive permutation representation degree of H, then d0(H) � v.

Lemma 11 Let H be a 2-transitive non-abelian simple group such that d0(H) =
v. Then either dj(L) > d0(L) +

p
2d0(L) for j > 0, or d1(L) = d0(L) + 1 and

one of the following occurs:

(1) H �= A5 and v = 5;

(2) H �= PSL(2; 7) and v = 7;

(3) H �= PSL(2; 11) and v = 11;

(5) H �=M11 and v = 11.

Proof. The assertion is true when H is sporadic by a direct inspection of
[12]. Elementary calculations with [60] and with [42] show that the assertion
is true also when H is exceptional of Lie type. When H is alternating the
assertion follows by a straightforward calculation by [34], Satz IV.4.6 for v � 9
and by [12] for 5 � v < 9. Assume that H is simple classical group. Then the
assertion follows by [34], haupsatz II.8.27 when H �= PSL(2; q). Furthermore,
the assertion follows by [25] and [49] when H �= PSL(3; q). It remains to
resolve the cases H �= PSL(d; q), d � 4, and H �= Sp(d; 2), d = 2h and h � 3,
by the list given in theorem 3. As a consequence of the structure theorems
given in Kleidman and Liebeck [43], every maximal subgroup of H lies in the
classes [8i=1Ci or in the class S, where the structure of every member of Ci is
shown in [43], Tables 3.5.A-C. Let M be a maximal subgroup of H such that
[H :M ] > d0(H). If M 2 S, then jM j � q3d by [46]. Then [H :M ] � 2v + 1
by an easy calculation. If M 2 [8i=1Ci, then a straightforward calculation of
[H :M ] with [43], Tables 3.5.A-C, with the structure proposition members of
Ci given in [43], Chapter 4, in junction with [9] and with lemma 4 and Table II
of [45], shows that the assertion is true also in this case. �

Lemma 12 Let H be a 2-transitive non-abelian simple group such that d0(H) <
v. Then the following holds:

(1) dj(H) > v +
p
2v for j > 1;

(3) 2d0(H) > v + 1, except

(a) H �= A7, where 2d0(H) = v � 1 and v = 15;
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(b) H �= A8, where 2d0(H) = v + 1 and v = 15;
(c) H �= PSU(3; 5), where 2d0(H) = v � 26 and v = 126.

Proof. In the following table the non abelian simple groups such that
d0(H) < v are listed (see theorem 3):

Table I
PSL(2; 5) v = 6 d0(H) = 5
PSL(2; 7) v = 8 d0(H) = 7
PSL(2; 9) v = 10 d0(H) = 6
PSL(2; 11) v = 12 d0(H) = 11
PSU(3; 5) v = 126 d0(H) = 50
A7 v = 15 d0(H) = 7
A8 v = 15 d0(H) = 8
M11 v = 12 d0(H) = 11
HS v = 176 d0(H) = 100
Sp(2h; 2), h � 3 v = 2h�1(2h + 1) d0(H) = 2

h�1(2h � 1)

The assertion (1) easily follows by a direct inspection in [12] of the primitive
permutation representations of the groups H listed in the Table I and not iso-
morphic to Sp(2h; 2), h � 3. When H �= Sp(2h; 2), h � 3, a similar argument
to that lemma 11, being H classical, proves the assertion also in this case. Now,
the assertion (2) can be easily read o¤ from Table I. �

Let N be the kernel of the action of G on O and set �G = G=N . We may also
assume that G is the minimal preimage of �G. Now, we present some preliminary
reductions for the structure of N .

Lemma 13 N = �(G), where �(G) is the Frattini subgroup of G.

Proof. Let S be any Sylow t-subgroup of N . Then G = NG(S)N by
the Frattini�s argument. Thus S C G by the minimality of G. Therefore N is
nilpotent. Suppose thatN 6� �(G). Then there exists a maximal subgroupM of
G such thatG = NM by [34], satz 3.2 (b). ClearlyM < G andM=(M\N) �= �G.
A contradiction by the minimality of G. Hence, we may assume that N � �(G).
Note that GP is maximal in G for each point P 2 O, since N C GP and �G is
primitive on O. Hence �(G) C GP for each point P 2 O. Therefore N = �(G).
�

Lemma 14 If N 6= h1i, then one of the following occurs:

(1) G �xes a unique point Q on �� l, N is semiregular on �� (l[ fQg) and
jN j j n� 1;

(2) N is semiregular on �� l and jN j j n2. In particular one of the followings
occurs:

(a) jN j j n and N is semiregular on [Y ]� flg for any point Y 2 O;
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(b) n j jN j, n = uj, j � 1, N is a u-group and [N : Na] = n for any line
a of � intersecting l in O;

(c) n j jN j, n = 2j+1, j > 1, N is a 2-group and [N : Na] = n=2 for any
line a of � intersecting l in O;

(d) jN j > n, n = 3 jSj =2, S is a Sylow 2-subgroup of N and S � N �
S �A, where A is a group of order a divisor of 9.

Proof. Suppose there exists � 2 N , � 6= 1, such that � is planar on �. Then
o(Fix(�)) � n=2� 1, since � �xes O pointwise and v � n=2. So (n=2� 1)2 � n
by [33], theorem 3.7. A contradiction, since n � 8. Thus N does not contain
any non trivial planar collineation of �.
Assume there exists an element � 2 N , � 6= 1, such that � �xes a point P

of �� l. Actually, P is the unique point on �� l �xed by �, since N does not
contain any non trivial planar collineation of �. Furthermore, P is the unique
point on �� l �xed by Z(N). Thus G �xes P , since Z(N) C G and Z(N) 6= h1i
being N nilpotent by lemma 13. Hence the assertion (1).
Assume that N is semiregular on �� l. Hence jN j j n2. If N is semiregular

on [Y0] � flg, for some point Y0 2 O, then jN j j n and N is semiregular on
[Y ]�flg for any point Y 2 O, since G is transitive on O. Thus the result (2a).
Assume there exists bX 2 [X]� flg such that NbX 6= h1i for each X 2 O. If

Ne\Nc 6= h1i for some couple of lines e and c intersecting l in distinct points of
O, then there exists 
 2 N , 
 6= 1, �xing the point e \ c which lies in �� l. A
contradiction, since N is semiregular on �� l. Therefore, we may assume that
Nh \Nz = h1i, with Nh; Nz 6= h1i, for any couple of lines h and z intersecting
O in distinct points. In particular Nt < N for each line t of � intersecting
O. Thus [P ] � flg consists of non trivial N -orbits for any point P of O. Let
a 2 [O] � flg, O 2 O, such that Na 6= h1i. Let Sa be the Sylow u-subgroup of
Na, where u is a prime dividing jNaj, and let S be the Sylow u-subgroup of N .
Assume that S = Sa. Then Sa C G as N is nilpotent. Let g 2 G such that
Og 6= O. Since Sa C G, then Sa �xes the line ag and hence the point a \ ag
which lies in �� l. A contradiction, since N is semiregular on �� l. Therefore
Sa < S. Furthermore, jSj � 1 � v(jSaj � 1) since Sa 6= h1i, S C G and G is
transitive on O. Then [S : Sa] � [v(jSaj � 1) + 1] = jSaj. Hence either jSaj � 3
and [S : Sa] > 2v=3, or jSaj = 2 and [S : Sa] � (v + 1)=2. Denote by k the
number of S-orbits on [O]� flg, where O 2 O. Arguing as above with S in the
role of N , as S C G, we see that [O]� flg consists of non trivial S-orbits. Let
x 2 [O]� flg such that

��xS�� � ��yS�� for any y 2 [O]� flg. Then k ��xS�� � n.
Assume that jSxj � 3. Then k � 2 as

��xS�� > 2v=3 and n � 2v. If k = 1,
then

��xS�� = n. Hence n = uj , j � 1, as ��xS�� = uj . Thus N = S as jN j j n2, and
we have the assertion (2b). Assume that k = 2. Then [O] � flg = xS [ bS for
some line b of [O]� (flg[xS). Hence n =

��xS��+ ��bS��. Assume that ��xS�� < ��bS��.
Then

��xS��u � ��bS��, since S is a u-group. Hence ��bS�� > 2vu=3 as ��xS�� > 2v=3.
Then 2vu=3 + 2v=3 < n, as n =

��xS�� + ��bS��. A contradiction, since u � 2 and
n � 2v. As a consequence

��xS�� = ��bS��. Hence n = 2uj as ��xS�� = uj . Then u = 2
11



and n = 2j+1 by [33], theorem 13.18. Then N = S as jN j j n2. In particular��xN �� = ��bN �� = n=2. That is the assertion (2c).
Assume that jSxj = 2. Then k � 3 as

��xS�� � (v + 1)=2 and n � 2v. Note
that Sx = S(x \ l; l), since jSxj = 2, Sx < N and N cannot contain non trivial
planar elements. Thus jSyj � 2 and

��yS�� � ��xS�� for any y 2 [O] � flg. Hence��yS�� = ��xS��, since ��xS�� � ��yS�� for any y 2 [O] � flg. Then n = k jSj =2, k � 3.
If k � 2, then N = S as jN j j n2, and we have again the assertions (2b) and
(2c). If k = 3, then n = 3 jSj =2. Hence S � N � S � A where A is a group of
order a divisor of 9, as jN j j n2. Thus the assertion (2d). �

Recall that soc( �G) denotes the socle of �G. Also, recall that either �G is almost
simple or of a¢ ne type, since �G is 2-transitive on O. We treat these two cases
separately.

5 �G is almost simple.

Assume that �G is almost simple. We treat the cases N 6= h1i and N = h1i
separately.

5.1 The unfaithful case.

Assume that N 6= h1i. We continue investigating the structure of N .

Lemma 15 If �G is non abelian simple, then one of the following holds:

(1) G is a covering group for �G;

(2) There exists a Sylow t-subgroup S of N such that �G � SL(V ), where
V = S=�(S). In particular jSj � 1 + d0( �G).

Proof. Assume that N � Z(G). Then G0 is a covering group for �G by [1],
theorem 11.33.3, since �G is a non abelian simple group. Furthermore, G0 = G
by the minimality of G. Thus the assertion (1).
Assume that N 6� Z(G). Then there exists a Sylow t-subgroup S of N such

that S 6� Z(G), since N is nilpotent. Set V = S=�(S), where �(S) is the
Frattini subgroup of S. Clearly G acts on V . Let R be the kernel of the action
of G on V . If U is the Sylow u-subgroup of N , where u is a prime, u 6= t,
then [S;U ] = h1i, since N is nilpotent. This yields N E R E G, since S0 �
�(S), being S a t-group. If R = G, then each Sylow r-subgroup of G, with
r 6= t, centralizes S by [23], theorem 5.1.4. That is CG(S) � N . Furthermore,
CG(S) C G as S C G. Then N C CG(S)N E G. Hence G = CG(S)N , since �G
is non abelian simple and CG(S) � N . Actually, G = CG(S) since N = �(G)
by lemma 13. A contradiction, since S 6� Z(G). Hence R < G. Then R = N
as �G is non abelian simple. Then �G � �L(V ), since V is a vector space over
GF (t). Actually �G � SL(V ), since �G is non abelian simple. In particular G
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acts not trivially on the points of PG(V ) and hence jV j � 1 + d0( �G). Thus the
assertion (2). �

We point out that the condition in (2) of lemma 15 in conjunction with the
information contained in the paragraphs 5.3 and 5.4 of [43] furnishes a lower
bound for V and hence for N . This lower bound is generally greater than
1 + d0( �G).

Lemma 16 Let 
 a set of non trivial N -orbits of points (respectively lines) of
� having the same length. If G leaves 
 invariant, then j
j =

P
j�0 �jdj(

�G),
where �j � 0 for j � 0, and

P
j�0 �j > 0. In particular j
j � d0( �G).

Proof. Assume that G �xes an element in 
. Then G = GXN for some
point X of � such that XN 2 
. Actually G = GX , since N = �(G) by
lemma 13. This yields

��XN
�� = 1. A contradiction, since XN 2 
 and 
 is

a set of non trivial N -orbits of points of �. Thus G acts on 
 as �G and this
moves each element of 
. Therefore 
 is union of non trivial �G-orbits. Since
each non trivial �G-orbit has length a multiple of some primitive permutation
representation degree dh( �G) of �G, h � 0, we have that j
j =

P
j�0 �jdj(

�G),
where �j � 0 for j � 0, and

P
j�0 �j > 0. In particular j
j � d0( �G). �

Lemma 17 �G 6�= P�L(2; 8).

Proof. Assume that �G �= P�L(2; 8). Clearly 28 < n � 56. Set L be the
minimal preimage of PSL(2; 8) in G and set H = L\N . Assume that H = h1i.
Then L �= PSL(2; 8). It is known that any involution � in L �xes exactly four
points on O, since jOj = 28. Then � is a Baer collineation of �. Thus either
n = 36 or n = 49, since n must be square and 28 < n � 56. The former is
ruled out by [33], theorem 3.6, since o(Fix(�)) = 6, and the latter is ruled out
by [30]. Hence, we may assume that H 6= h1i. Then H = �(L) by the argument
of lemma 13 with H in the role of N , since L=H �= PSL(2; 8) is primitive on O
as jOj = 28. Now, assume that H � Z(L). Note that, the assertion of lemma
15 is still true if we replace �G with L=H, since the 2-transitivity is actually
not required in that lemma. Thus there exists a Sylow t-subgroup S of H
such that PSL(2; 8) � P�L(V ), where V = S=�(S), since L=H �= PSL(2; 8).
Then either jV j � 37 or 82 j jV j by [43], theorem 5.3.9 and proposition 5.4.13,
respectively. Therefore either jHj � 37 or 82 j jHj, since V = S=�(S). Then
jHj > n in any case, since n � 56. Thus n and jHj are power of the same
prime, n j jHj and jHj j n2 by lemma 14 with H in the role of N , since H is
transitive on O. This rules out the case jHj � 37, since n � 56. Then 82 j jHj
and hence n = 25, since 28 < n � 56. Let 
 be the set of H-orbits on � � l.
Then j
j = 24=�, since n = 25, jHj = 82�, with � a power of 2, and since H is
semiregular on �� l. On the other hand, j
j = �09, with �0 � 0, by lemma 16,
with L in the role of G and H in the role of N , since 9 is the unique primitive
permutation representation degree of L=H less than 16. A contradiction. Hence
L is a covering group for PSL(2; 8) by lemma 15. Then L �= PSL(2; 8), since the
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Schur multiplier of PSL(2; 8) is trivial by [43], theorem 5.1.4. A contradiction
by the above argument. �

As �G � P�L(2; 8), then soc( �G) is a 2-transitive on O (this follows by a
direct inspection of the list given in theorem 3). Thus, we may assume that
�G = soc( �G). Hence �G is a 2-transitive non abelian simple group.
Let K be the kernel of the action of G on l � O. Clearly K E G. Since

KN=N E �G and since �G is non abelian simple, then either G = KN or K � N .
Actually G = K in the �rst case, since N = �(G). So, either G = K and G
�xes l �O pointwise, or K � N . Now, we investigate the relationship between
N and K.

Lemma 18 If �G � PSU(3; 5), then either N = N(l; l) or N = N(Q; l) for
some point Q 2 �� l. In particular N � K.

Proof. Assume that N 6� K. Then there exists a point P 2 l�O such that��PN �� > 1. Let 
 be the set of N -orbits on PG. Then j
j � d0( �G) by lemma 16,
since N C G and

��PN �� > 1. Hence ��PN �� d0( �G) � ��PG��, since j
j = ��PG�� = ��PN ��.
This yields 2d0( �G) � v + 1, since

��PN �� � 2, PG � l � O and jl �Oj � v + 1.
Then d0( �G) < v. In particular

��PN �� = 2 and either �G �= PSL(4; 2) or �G �= A7,
by lemma 11 (2), since �G � PSU(3; 5) by our assumption.
Assume that �G �= PSL(4; 2) or �G �= A7. Note that n + 1 � v + 2d0( �G) in

any of these cases. Thus either n = 30 and �G �= PSL(4; 2), or n 2 f28; 29; 30g
and �G �= A7, since n � 2v. The case n = 30 is ruled out by [33], theorem 13.18.
Hence �G �= A7 and n 2 f28; 29g. Assume that 2 k jN j. Then N contains a Baer
collineation of �, since N �xes O pointwise and

��PN �� = 2. A contradiction.
Thus 22 j jN j. Let L be a Sylow 2-subgroup of G. Then 25 j jLj, since 23 j jA7j
and 22 j jN j. It is easily seen that there exists a non trivial subgroup L0 of L
�xing at least 2 points on � � l, since n2 6� 0; 1mod 25 as n 2 f28; 29g. Then
L0 \N = h1i, since N �xes at most one point �� l by lemma 14. Then L0 and
hence G contains an involution � acting faithfully on O. In particular � is Baer
collineation of �, since � �xes at least 3 points on O by [51]. So, n must be a
square. A contradiction. Hence N � K and the assertion follows by lemma 14.
�
At this point we study the cases when either N = N(l; l) or N = N(Q; l)

for some point Q 2 �� l, for d0( �G) = v and d0( �G) < v, separately.

5.1.1 The case d0( �G) = v.

In this subsection, under the assumption d0( �G) = v, we prove that for N =
N(l; l) or N = N(Q; l), where Q 2 � � l, the group G is a perfect central
extension of �G and that each involution of G lies in N . This yields that the
Sylow 2-subgroups of G are dihedral, and then we use the Gorestein-Walter
theorem [24] to complete this case.

Proposition 19 If N = N(Q; l), Q 2 � � l, then N = K. Furthermore, the
followings occur:
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(A) n = 2v � 1 and G acts on l � O as �G in its 2-transitive permutation
representation of degree v;

(B) G is a covering group for �G;

(C) Each involution of G lies in N .

Proof. We proceed in a series of steps.

(A) G acts on l�O as �G in its 2-transitive permutation representation
of degree v. In particular N = K and n = 2v � 1.

Assume that G �xes a point A on l � O. Denote by � the set of N -orbits
of points of AQ � fA;Qg. Then j�j = (n � 1)= jN j, since N is semiregular
on AQ � fA;Qg. In particular j�j � d0( �G) by lemma 16, since G acts on �.
This yields d0( �G) jN j � n � 1, since j�j = (n � 1)= jN j. A contradiction, since
d0( �G) = v, n � 2v and jN j � 2. Thus G �xes no points on l � O. Hence
N = K, where K is the kernel of the action of G on l � O, by lemma 18.
Moreover, G acts on l � O as �G and �G �xes no points on l � O. This yields
n + 1 � v =

P
j�0 �jdj(

�G), where the �j , j � 0, and
P

j�0 �j > 0, since each
�G-orbit on l�O is a multiple of some dh( �G), h � 0, and since jl �Oj = n+1�v:
Actually, either �0 = 1 and �j = 0 for j > 0, or there exists �j > 0, such that
��j = 1, d�j( �G) = v+1 and �j = 0 for each j � 0 such that j 6= �j, since d0( �G) = v.
If the latter occurs, then n = 2v. Furthermore, �G is one of the exceptions listed
in lemma 1. Nevertheless no one of these exceptions really occurs, since v must
be even by [33], theorem 13.18. Hence �0 = 1 and �j = 0 for j > 0 for any
admissible case. Then n = 2v� 1 hence G acts on l�O as �G in its 2-transitive
permutation representation of degree v.

(B) G is a covering group for �G.

Assume that N � Z(G). Then there exists a Sylow t-subgroup S of N such
that jSj � 1+v by lemma 15, since d0( �G) = v. Furthermore, either 2 jSj � n�1
or jSj = n � 1 since S � N and jN j j n � 1. The former is ruled out, since
2(v + 1) � n � 1 as jSj � 1 + v and n � 2v. Hence S = N and jSj = n � 1.
Thus n � 1 = tk, k � 1, since S is a t-group. This yields t = 2 and hence
v = 2k�1 + 1, since n = 2v � 1. Assume that G contains a Baer collineation
of �. Thus n must be a square. Then n = 9 and k = 3 by [55], result A5.1,
since n�1 = tk. A contradiction by [30], theorem A. Hence G contains no Baer
collineations of �. Now, let S be any Sylow 2-subgroup of G. Then S �xes a
point C on O, since v is odd and v > 2. Thus S = SBN and SB \ N = h1i
for some point B 2 QC � fQ;Cg, since N is regular on QC � fQ;Cg being
N = N(Q; l) and jN j = n�1. In particular each involution in SB is a homology
of � with center lying on l and axis distinct from l, since G �xes l, G contains
no Baer collineations of �, n is odd and SB\N = h1i. Moreover, any involution
in SB commutes with some involution in N being N � S. Then N contains
exactly one involution by [39], lemma 2.1 (ii), since N = N(Q; l). Actually,
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the previous argument yields there exists at most one involutory homology in
G with given center and axis. Then �G �= PSL(2; q), q odd, by [14], theorem
1, since �G is non-abelian simple. Then v = q + 1, q odd, since d0( �G) = v. A
contradiction, since v = 2k�1 + 1.

(C) Each involution of G lies in N .

Suppose there exists an involution � 2 G � N . Assume that � is a Baer
collineation of �. Then

p
n+ 1 = 2k�, where k� denotes the number of points

of � �xed by � on O and on l � O, since G acts on O and on l � O as �G in
the same way by (A). Hence k� = (

p
2v � 1 + 1)=2. Note that v is known and

k� is easy to be recovered from the structure of �G and the action of �G on O
for each 2-transitive non abelian simple group �G listed in theorem 3. Hence, we
may �lter the list given in theorem 3 with respect to k� = (

p
2v � 1+1)=2. So,

it remains to investigate the following admissible cases:

(i) �G �= Av, v � 5;

(ii) �G �= PSL(d; q), d � 2, q = pr, (d; q) 6= (2; 2); (2; 3).

Assume that �G �= Av, v � 5. Note that v =2 f6; 7g, since n = 2v � 1
must be a square. Thus N �= Z2 by (B) and by [43], theorem 5.1.4, since
N 6= h1i. Let Y 2 O and denote by � the set of N -orbits on QY � fQ;Y g.
Then j�j = (n� 1)= jN j, since N is semiregular on QY � fQ;Y g. Furthermore
GY acts on �, since N C G. In particular �GY �= Av�1. Assume that GY �xes
an element on �. Then GY = GY;ON and GY;O \ N = h1i for some point
O 2 QY � fQ;Y g, since N is semiregular on QY � fQ;Y g. In particular GY;O
acts on l � fY g as �GY . Now, pick a 3-cycle � in GY;O. Clearly � �xes v � 3
points on O, since GY;O acts on l � fY g as �GY . Then � �xes v � 3 points
on l � O, since the action of G on O and on l � O is the same. So, � �xes
exactly n � 6 points on l, since n = 2v � 1. Furthermore, � �xes the points Q
and O, with O;Q 2 � � l, since � lies in GY;O. Therefore, � �xes a subplane
of � of order n � 7. Then (n � 7)2 � n by [33], theorem 3.7. This yields
either n = 9 or n = 10, since n � 9 by our assumption. Nevertheless these
cases cannot occur by [30], theorem A, and [33], theorem 13.18, respectively.
As a consequence, GY moves each element on �. Therefore � is union of non
trivial �GY -orbits. Since each �GY -orbit on � is a multiple of some dj(Av�1),
j � 0, then

P
j�0 �jdj(Av�1) = j�j. That is 2

P
j�0 �jdj(Av�1) = n� 1, since

j�j = (n � 1)= jN j and N �= Z2. Then �0 = 1 and �j = 0 for j > 1, since
do(Av�1) = v � 1 and n = 2v � 1. Hence �GY �= Av�1 acts in its 2-transitive
permutation representation of degree v�1 on �. Then there still exists a 3-cycle
� in G �xing n�6 points on l and at least 2 points on QY �fY g. Hence � �xes
a subplane of � of order n� 7. Again a contradiction.
Assume that �G �= PSL(d; q), d � 2, q = pr, (d; q) 6= (2; 2), (2; 3). Note that

(d; q) 6= (2; 5); (2; 9), since the cases PSL(2; 5) �= A5 and v = 5, PSL(2; 9) �= A6
and v = 6 have been ruled out above. Also the case (d; q) = (2; 7) and v = 7,
or (d; q) = (2; 11) and v = 11 are ruled out since in this cases n is a non square.
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Thus d0( �G) = (qd�1)=(q�1) by [9]. Hence n = 2
�
(qd � 1)=(q � 1)

�
�1. Let E

be an elementary abelian subgroup of G of order qd�1 which induces on O of a
group projective transvections with the same �xed hyperplane. Let B be a point
on O �xed by E. If there exists a non trivial element � in E �xing a point on
QB�fQ;Bg, then � is planar on �. In particular � �xes exactly 2(qd�1�1)=(q�
1) points on l, since the action of G on O and l � O is the same, and since �
�xes exactly (qd�1� 1)=(q� 1) points on O. So

�
2
�
(qd�1 � 1)=(q � 1)

�
� 1
�2 �

2
�
(qd � 1)=(q � 1)

�
� 1 by [33], theorem 3.7. Thus d = 2 and hence G �=

SL(2; q) by [41], theorem 7.1.1(i), since q =2 f5; 7; 9; 11g. A contradiction, since
the unique involution of G �= SL(2; q) lies in N . Hence E is semiregular on
QB � fQ;Bg. Thus qd�1 j n � 1. Then either d = 2 or (d; q) = (3; 2), since
n = 2

�
(qd � 1)=(q � 1)

�
� 1. Again a contradiction.

The above argument lead us to assert that each involution in G � N must
be a homology of � as n is odd. Assume that N has even order. Any involu-
tion in G commutes with N as G is a covering group for �G by (B). Thus N
contains exactly one involution by [39], lemma 2.1 (ii), since N = N(Q; l), N
has even order and since G � N contains involutions. Actually, the previous
argument yields that exists at most one involutory homology in G with given
center and axis. Then G �= SL(2; q), q odd by theorem 1 of [14] and by [41],
theorem 7.1.1(i), since G is a covering group for �G and since q =2 f5; 7; 9g. A
contradiction, since there are no involutions in G�N . Hence N has odd order.
Let � be any involution of G�N . Then � �xes exactly 2 points on l, since � is
a homology and � �xes l. In particular � �xes exactly one point on O and one
on l�O since the action of G on O and l�O is the same. Thus GD=N has even
order for any D 2 O. Moreover, GD1;D2

=N has odd order for any two distinct
points D1 and D2 of O, since N has odd order and each involution in G � N
is a homology of �. Then �G �= PSL(2; 2s), or �G �= Sz(2s), or �G �= PSU(3; 2s)
by [3]. Actually, G �= SL(2; 5), or �G �= Sz(8), or �G �= PSU(3; 2s) and N �= Z3
by [43], theorem 5.1.4, as N 6= h1i. Nevertheless the case G �= SL(2; 5) cannot
occur, since N �= Z2 and any Sylow 2-subgroup of G is isomorphic to Q8. The
case �G �= Sz(8) cannot occur by [33], theorem 3.6, since n = 129. Finally, the
case �G �= PSU(3; 2s) cannot occur, since n = 23s+1 + 1 while jN j = 3 must be
a divisor of n� 1. �

Proposition 20 If N = N(l; l), then N = K. Furthermore, the following
occur:

(A) G �xes exactly one point X on l �O.

(B) n = 2v and G acts on l � (O [ fXg) as �G in its 2-transitive permutation
representation of degree v.

(C) N = N(X; l).

(D) Each involution of G lies in N .

(E) G is a covering group for �G.
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Proof. Assume that N = N(l; l). We proceed in a series of steps.

(A) G �xes at least a point X on l �O.

Assume that �G �xes no points on l �O. Then l �O is union of non trivial
�G-orbits. This yields n + 1 � v =

P
j�0 �jdj(

�G), where �j � 0, j � 0, andP
j�0 �j > 0, since each �G-orbit on l � O is a multiple of some dh( �G), h � 0,

and since jl �Oj = n+ 1� v. At this point we may use the same argument of
part (A) of proposition 19 to show that n = 2v� 1 and G acts on l�O as �G in
its 2-transitive permutation representation of degree v. Set jN(l; l)j = ph with
h > 0, jN(C; l)j = pi with i � 0, for any C 2 O, and set jN(D; l)j = pj , j � 0,
for any D 2 l�O. Clearly i+ j > 0, since N 6= h1i. Furthermore h � i; j. Then

(1) (pi � 1)(n+ 1)
2

+ (pj � 1)(n+ 1)
2

+ 1 = ph,

since �G has the same 2-transitive permutation representation on O and l �O,
and since v = (n+ 1)=2. By managing (1), we have that

(2) (pi + pj)(n+ 1) = 2(ph + n).

As p j n and h > 0, then p j (pi + pj)(n + 1) and hence i; j > 0. Furthermore
pi j n and pj j n, since N(C; l) is semiregular on [D] � flg and N(D; l) is
semiregular on [C]�flg. Thus pf j n, where f = max fi; jg. Then pf j (pi+pj),
since pf j (ph + n). Hence i = j, with i; j > 0. Then � is a translation plane
and N is regular on �� l by [33], theorem 4.26. Therefore G = NGO for some
point O 2 �� l. Then G = GO, since N = �(G) by lemma 13. So, N �xes O.
A contradiction, since N is semiregular on �� l. Thus N hence G �xes at least
a point X on l �O.

(B) G acts on l � (O [ fXg) as �G in its 2-transitive permutation rep-
resentation of degree v. In particular N = K and n = 2v, v even.

Suppose that G �xes l�O pointwise. Assume there exists a point P of l�O
such that N(P; l) = h1i. Let � be the set of the N -orbits on [P ]�flg. By lemma
16, we have that j�j � d0( �G). By an argument similar to that used in (A) of
proposition 19 implies that n = 2v and N �= Z2, since j�j = n= jN j, d0( �G) = v
and v < n � 2v. Thus N � Z(G). Let x 2 G, x 6= 1, such that o(x) j v � 1.
Note that v � 1 is odd by [33], theorem 13.18, since n = 2v. Then x �xes v + 1
points on l, since G �xes l � O pointwise and jl �Oj = v + 1. Furthermore x
�xes a point R on � � l, since n = 2v. Let � 2 N . Then R� 2 Fix(x), since
N � Z(G). Note that R� 6= R, since � 2 N , R 2 �� l and N = N(l; l). Thus
x is planar on � and o(Fix(x)) � v. Then v2 � n � 2v by [33], theorem 3.7.
A contradiction, since v > 2. Hence, we may assume that N(B; l) 6= h1i for
each B 2 l �O. Let Y be any point of l �O. Let � be the set of the N -orbits
on [Y ] � flg. Then j�j = n= [N : N(Y; l)], since N(Y; l) < N as N(B; l) 6= h1i
for each B 2 l � O. A similar argument to that used above yields n = 2v and
[N : N(Y; l)] = 2 for any Y 2 l � O, since d0( �G) = v and v < n � 2v. Thus
N �= E4 and hence jl �Oj = 3. That is n + 1 � v = 3. A contradiction, since
n = 2v and v � 5.
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(C) N = N(X; l).

Assume that N(X; l) < N . We may repeat the previous argument on the
set of the N -orbits on [X] � flg to show that [N : N(X; l)] = 2. Hence N
is an elementary abelian 2-group, since N = N(l; l) and N(X; l) < N . Set
jN(X; l)j = 2f , f � 0, and set jN(C; l)j = 2i, i � 0, for any C 2 O. Set also
jN(D; l)j = 2j , j � 0, for any D 2 l � (O [ fXg) by (B). Then

(2i � 1)v + (2j � 1)v + 2f = 2f+1.

Furthermore (i; j) = (1; 1); (1; 0); (0; 1), since [N : N(X; l)] = 2. If (i; j) = (1; 1),
then f = 1 and v = 1 by [33], theorem 4.26. A contradiction. Hence, either
(i; j) = (1; 0) or (0; 1). It is easily seen that v = 2f and n = 2f+1 in any of these
two cases. In particular jN(X; l)j = n=2. We may assume that (i; j) = (0; 1),
since the role of i and j can be exchanged in the following argument. Note
that N(X; l) C G, since G �xes X. Assume that N(X; l) � Z(G). Then
jN(X; l)j � 1+ v, since G acts on N(X; l) as �G being N abelian and d0( �G) = v.
A contradiction, since jN(X; l)j = 2f = v. Hence N(X; l) � Z(G). Let � be
an element of order a prime dividing v � 1. Then � must a 2-element by [23],
corollary 5.3.3, since N=N(X; l) �= Z2 and N(X; l) � Z(G). A contradiction,
since v � 1 is odd. Hence N = N(X; l).

(D) Each involution of G lies in N .

Suppose there exists an involution � 2 G�N . Assume that � is a (C�; l�)-
elation of �. If C� = X, then N < G(X;X) C G. A contradiction, since
�G is non-abelian simple. Hence C� 6= X. Furthermore a� 6= l, since � =2 N .
Denote by R the normal closure of h�i in G. Then G = RN , since �G is non-
abelian simple. Actually, G = R by the minimality of G. Hence G is generated
by involutory elations. Moreover N = F (G), where F (G) denotes the Fitting
subgroup of G, since N is nilpotent and �G is non-abelian simple. Since 4 j

�� �G��
by [22], then �G is isomorphic to PSL(3; q), or to PSU(3; q), or to SL(2; q), or
to Sz(q), or to A6, where q = 2r, by [27]. A contradiction in any case, but
A6, since v must be even by [33], theorem 13.18. Nevertheless the case �G �= A6
is ruled out by [36], since n = 12. Hence, we may assume that � is a Baer
collineation of �. Then

p
n + 1 = 2k� + 1, where k� is the number of points

of � �xed by � both on O and on l � (O [ fXg). Hence k� =
p
v=2. Now,

arguing similarly to part (C) of proposition 19, we may reduce to investigate
the following admissible cases:

(i) �G �= Av, v � 5;

(ii) �G �= PSL(d; q), d � 2, q = pr, (d; q) 6= (2; 2), (2; 3).

Assume that G �= Av, v � 5. Let Y 2 O and denote by 	 the set of
N -orbits on [Y ] � flg. Then j	j = n= jN j as N is semiregular on [Y ] � flg,
being N = N(X; l) with X 6= Y . Furthermore, GY acts on 	, since N C G.
In particular �GY �= Av�1. Assume that GY �xes an element on 	. Then
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GY = GY;rN and GY;r \ N = h1i for some point r 2 [Y ] � flg. So, � may
be picked in GY;r as product of two transpositions on O. Then � �xes exactly
n � 7 points on l, other than X, since �G acts on O and on l � (O [ fXg) in
the same way. Then (n � 7)2 = n by [33], theorem 3.7. A contradiction. As a
consequence, GY moves each element on 	 and 	 is union of non trivial �GY -
orbits. Since each �GY -orbit on 	 is a multiple of some dj(Av�1), j � 0, thenP

j�0 �jdj(Av�1) = j	j. That is jN j
P

j�0 �jdj(Av�1) = 2v as j	j = n= jN j
and n = 2v. A contradiction for v 6= 6; 8, by lemma 11 applied to �GY �= Av�1
as d0(Av�1) = v�1 and jN j � 2. Actually, the case v = 6 and �GY �= A5 cannot
occur by [36], since n = 2v. Hence �G �= A8 and n = 16. In this case � �xes 4
points on O and 4 points on l�O. So � �xes at least 8 points on l and � =2 N .
A contradiction by [33], theorem 3.7.
Assume that G �= PSL(d; q), d � 2, q = pr, (d; q) 6= (2; 2), (2; 3). Note

that (d; q) 6= (2; 5); (2; 7); (2; 11), since v must be even by [33], theorem 13.18.
Also, the case (d; q) = (2; 9) is ruled out, since PSL(2; 9) �= A6. Thus d0( �G) =
(qd�1)=(q�1) by [9] and hence n = 2(qd�1)=(q�1). Note that q is odd and d
is even, since v must be even. Moreover n 6� 0; 1mod p. So, a similar argument
to that used in the part (C) of proposition 19 shows that G always contains
planar p elements �xing 2(qd�1�1)=(q�1) points on l�fXg, as n 6� 0; 1mod p.
This yields d = 2 by [33], theorem 3.7. Hence G �= SL(2; q) by [41], theorem
7.1.1.(i), since q =2 f5; 7; 9; 11g. A contradiction, since the unique involution of
G �= SL(2; q) lies in N .

(E) G is a covering group for �G.

Assume that N � Z(G). Then there exists a Sylow t-subgroup S of N ,
such that jSj > 1 + v by lemma 15. On the other hand, jSj j 2v since S � N ,
jN j j n by (C), and n = 2v by (B). Thus jSj = n, since jSj > 1 + v. Hence
S = N . Then N is a 2-group and n is a power of 2, since n = 2v and jN j j n2.
Let A 2 O. Then N(A; l) = h1i by lemma 14, since jN j = n. Thus N is
regular on [A] � flg and hence GA = GA;sN and GA;s \ N = h1i for some
point s 2 [A]� flg. Furthermore GA;s �= �GA. Then GA;s must have odd order,
since each involution in G actually lies in N by (D) and since N = N(X; l)
with X 6= A. This yields that each involution in �G �xes no points on O. Then
�G �= PSL(2; q) with q � 3mod 4, by [2]. By lemma 15 (2), we have that
PSL(2; q) � PSL(V ), where V = S=�(S) and this implies jSj > 1 + v as
d0( �G) = v. Actually, in this case jSj � 2(q�1)=2 by [43], theorem 5.3.9, since
q � 3mod 4. Then 2(q�1)=2 � 2(q+1), since jSj j 2(q+1) as S � N , jN j j n and
n = 2(q + 1) with q � 3mod 4. A contradiction, since q 6= 7; 11 as q � 3mod 4
and d0( �G) = v. �

Theorem 21 Let � be a projective plane of order n and let O be a 2-transitive
G-orbit of length v on a line with n > v � n=2. If G is almost simple and
d0( �G) = v, then one of the following occurs:

(1) � is the Hall plane of order 9 or its dual, G �= SL(2; 5) and jOj = 5;
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(2) n = 2q + 1, G �= SL(2; q) with q � 3mod 4, q 6= 7, and jOj = q + 1;

(3) n = 2(q + 1), G �= SL(2; q) with q � 3mod 4, and jOj = q + 1.

Proof. Note that N �= Z2, unless �G �= PSL(3; 4) or �G �= Sz(8), by proposi-
tion 19 (B) and (C), by proposition 20 (D) and (E), and by [43], theorem 5.1.4,
since d0( �G) = v. Assume that �G �= PSL(3; 4) or �G �= Sz(8) and assume that
N � Z2. Note that the case n = 2v cannot occur by [33], theorem 13.18, since v
is odd in both cases. Then n = 2v�1 and N = N(Q; l) for some point Q 2 �� l
�xed by G by proposition 20. Nevertheless the case �G �= Sz(8) cannot occur
by [33], theorem 3.6, since n = 129 in this case. Hence �G �= PSL(3; 4) and
n = 41. Let U be a Sylow 2-subgroup of GJ , where J is any point of O. Then
U must be semiregular on QJ � fQ; Jg, since each involution in G lies in N
by proposition 19 (3). Hence jU j j n � 1. A contradiction, since 26 j jU j and
n = 41. Hence N �= Z2 in any admissible case. Thus each Sylow 2-subgroup
S of G is isomorphic either to Z2m or to Q2m for some positive integer m in
any case by proposition 19 (C) and proposition 20 (D). In the �rst case we have
S=(S \ N) �= Z2m�k , where 0 < k � m. Nevertheless this case is ruled out
by [22], theorem 4, applied to �G, since this one is non abelian simple. Hence
S �= Q2m and hence S=(S \ N) �= D2m�1 , since S \ N �= Z2. By [24], either
�G �= PSL(2; q) with q odd, or A7. If �G �= A7 then n = 28 or 29, and this case
cannot occur by the same argument of proposition 18. Hence, we may assume
that �G �= PSL(2; q) with q odd. Assume that q = 5. Then n = 9 or n = 10,
since d0( �G) = 5. Actually the latter is ruled out by [33], theorem 13.18. Hence
n = 9 and either � �= PG(2; 9), or � is the Hall plane of order 9 or � is the
dual of the Hall plane of order 9 by [59]. Thus the assertion (1).
Assume that q = 7. Then either n = 13 or n = 14 since d0( �G) = 7. The

latter is ruled out by [33], theorem 13.18. Hence n = 13. Then � �= PG(2; 13) by
[48], since d0( �G) = 7. Hence �G � PGL(2; 13), since G �xes l. A contradiction.
Now, assume that q = 9. Then either n = 11 or n = 12, since d0( �G) = 9. The
latter is ruled out by [36]. Hence n = 11 and � �= PG(2; 11) by [47]. Hence
�G � PGL(2; 13), since G �xes l. A contradiction. Hence q =2 f7; 9g. Thus
G �= SL(2; q) by [41], theorem 7.1.1.(i), for q 6= 5, as q =2 f7; 9g.
Assume that n = 2v � 1. Let R be a Sylow 2-subgroup of GB , where B

is any point of O. Then R must be semiregular on QB � fQ;Bg, since each
involution in G lies in N . Hence jRj j n � 1. Then jRj = 2 and hence R = N ,
since n � 1 � 2mod 4, being n = 2v � 1 and v = q + 1. Thus q � 3mod 4 and
we have the assertion (2).
Finally, assume that n = 2v. Then v is even by [33], theorem 13.18. Thus

q must be odd. Assume that q � 1mod 4. Let R be de�ned as above. In this
case 8 j 2(q + 1), since R �= Q2m , m � 3, must be semiregular on [B] � flg,
n = 2(q+1) and the unique involution in G is an (X; l)-elation, where X is the
unique point on l � O �xed by G. A contradiction. Hence q � 3mod 4. Thus
the assertion (3). �

It should be stressed that, if there exist planes of type (2) with n a prime
power, then n is actually a prime by lemma 10 (1). Furthermore, if there exist
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planes of type (3) with n a prime power, then n is a power of 2 and q is a
Mersenne prime by lemma 10 (2). Nevertheless, as we will see in section 7, in
these cases � cannot be the projective extension of a translation plane.

5.1.2 The case d0( �G) < v.

In the following we assume that �G � PSU(3; 5). Then either N = N(Q; l),
Q 2 �� l or N = N(l; l) by lemma 18. We treat these two cases separately. In
particular, for each of them, we show that G is a perfect central extension of �G.
Now, since the groups satisfying d0( �G) < v are listed in table I of lemma 12, we
complete this subsection with a case by case investigation.

Lemma 22 If N = N(Q; l), Q 2 �� l, then n = 23 and G �= SL(2; 11).

Proof. Assume that N = N(Q; l), where Q is a point of � � l �xed by G.
Assume also that G �xes a point P of l � O and let 
 the set of N -orbits on
QP �fQ;Pg. Then j
j = (n� 1)= jN j, since N is semiregular on QP �fQ;Pg.
Hence

(3) n = 1 + jN j
X
j�0

�jd0( �G),

where �j � 0, j � 0, and
P

j�0 �j > 0, by lemma 16. Assume that N � Z(G).
Then jN j � 1+d0( �G) by lemma 15. By composing the previous inequality with
(3) and by bearing in mind that n � 2v, we obtain 1 + d0( �G) + d0( �G)2 � 2v.
Now, �ltering the groups of the Table I with respect to the previous inequality,
it is easily seen that no cases arise. Hence G is a covering group for �G by
lemma 15. Then the groups �G �= M11 or �G �= Sp(2h; 2), h > 3 are ruled out
by [43], theorem 5.1.4, since N 6= h1i by our assumption. For the remaining
groups, we have �0 � 2 and �j = 0 for j > 0 by lemma 12, since N 6= h1i. In
particular, jN j � 3 again by lemma 12 (3). Thus either N �= Z2 or N �= Z3 for
the groups of the Table I by [43], theorem 5.1.4. Hence n = 1 + jN j�0d0( �G),
�0 2 f1; 2g and jN j 2 f2; 3g. By lemma 12 and since v < n � 2v, it is
easily seen that the admissible cases of the Table I are G=Z2 �= PSL(2; 5) and
n = 11, G=Z2 �= PSL(2; 7) and n = 15, or G=Z2 �= SL(2; 9) and n = 13
or G=Z3 �= PSL(2; 9) and n = 19, or G=Z2 �= PSL(2; 11) and n = 23, or
G=Z2 �= PSL(4; 2) and n = 17, or G=Z3 �= A7 and n = 21 or G=Z2 �= A7 and
n = 29, or G=Z2 �= HS and n = 201, or G=Z2 �= Sp(6; 2) and n = 57. Actually
the cases G=Z3 �= A7 and n = 21, G=Z2 �= Sp(6; 2) and n = 57, or G �= HS=Z2
and n = 201 cannot occur by [33], theorem 3.6. The case G=Z2 �= PSL(2; 7)
and n = 15 cannot occur by [31]. If G=Z2 �= PSL(2; 5) and n = 11, then � �=
PG(2; 11) and hence �G � PSL(2; 11) by [47]. Nevertheless, this case cannot
occur, since �G �= PSL(2; 5) contains involutions �xing a point on O and hence
on l, while PSL(2; 11) does not. Assume that G=Z2 �= SL(2; 9) and n = 13.
Then �G � PGL(2; 13) by [48]. A contradiction. Hence G=Z3 �= PSL(2; 9) and
n = 19. In this case there exists an involution � in G �xing at least 4 points on l,
since n+1 = 20 and jOj = 10. Clearly � =2 N . Therefore � is a Baer collineation
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of �. A contradiction. Assume that G=Z2 �= PSL(2; 11) and n = 23. Then
G �= SL(2; 11) by [41], theorem 7.1.1.(i). Since 8 - n � 1, then there exists an
involution �xing a point on PQ�fP;Qg. Such a involution must lie outside N .
A contradiction. Assume that G=Z2 �= PSL(4; 2) and n = 17, or �G �= A7 and
n = 29. Let J be a Sylow 2-subgroup of G. Then 26 j jJ j for G=Z2 �= PSL(4; 2)
and jJ j = 24 for G=Z2 �= A7. Furthermore, J �xes a point X of O, since
jOj = 15. Then JZ 6= h1i for some Z 2 XQ � fX;Qg, since jJ j - n � 1. In
particular JZ \ N = h1i and [J : JZ ] � 23. Hence JZ acts faithfully on O. In
particular JZ contains involutions �xing at least 3 points on O by [51]. Such
involutions are Baer collineations of �, since JZ \N = h1i. Hence n must be a
square. A contradiction. As a consequence, G cannot �x points on l�O. Then
l�O consists of non trivial �G-orbits, since G acts on l�O as �G. Since each �G-
orbit is a multiple of some di( �G), i � 0, we have that n+1 = v+

P
j�0 �jdj(

�G),
where �j � 0, j � 0, and

P
j�0 �j > 0. Hence either n = v + d0( �G) � 1 or

n = 2v � 1 or n = 28 and �G �= A7 or n = 30 and �G �= PSL(4; 2) by lemma
12, since n � 2v. The latter is ruled out by [33], theorem 13.18. Assume that
n = 28 and �G �= A7. Then N has odd order as jN j j n� 1. So, there exists an
involution �xing 3 points on O by [51] and not lying in N . Such a involution
must be a Baer collineation of � and hence n must be a square. A contradiction.
Hence, assume that n = v + d0( �G)� 1. Then all the groups of the Table I, but
�G �= PSL(2; 9) and n = 15, �G �= A7 and n = 21, �G �= Sp(2h; 2) and n = 22h�1,
G=Z2 �= HS and n = 275, are ruled out by [33], theorem 13.18. Nevertheless
the groups �G �= PSL(2; 9), �G �= A7 and �G �= Sp(2h; 2) cannot occur by [31],
by [33], theorem 3.6 and by [26], respectively. Hence G=Z2 �= HS and n = 275.
Let X be a point on O. Then �GX �= PSU(3; 5):Z2 by [17], Appendix B. Now,
let S be a Sylow 2-subgroup of GX . Clearly jSj = 26, since N �= Z2. Then S
�xes a point B on O � fXg, since jOj = 176. Furthermore there exists a non
trivial subgroup of S0 of S, such that [S : S0] � 22, which �xes 3 points on O
and a point on �� (l[fQg). Thus S0\N = h1i. Therefore, S0 contains a Baer
collineation of � and hence n must be a square. A contradiction.
Assume that n = 2v � 1. The above arguments rule out the cases �G �=

PSL(2; 5) and n = 11, �G �= PSL(2; 7) and n = 15, �G �= Sp(2h; 2) and n =
2h(2h � 1) � 1 and �G �= HS and n = 351. Furthermore, the same argument
of theorem 21 rules out the case �G �= PSL(2; 9) and n = 19, and the above
argument used to rule out �G �= A7 and n = 29, maybe applied to rule out
also the case �G �= PSL(4; 2) and n = 29. Finally the case �G �= M11 and
n = 23 cannot occur by [43], theorem 5.1.4, since N � Z2 �Z11 in this case. A
contradiction. Thus G �= SL(2; 11) and n = 23. �

Lemma 23 If N = N(l; l), then either n = 16 and G �= SL(2; 7), or n = 24
and G �= SL(2; 11).

Proof. Assume that �G does not �x any point on l�O. Then l�O consists
of non trivial �G-orbits. At this point we may use the same argument of lemma
22 to show that either n = 2v � 1, or n = v + d0( �G) � 1, or n = 28 and
�G �= A7. Actually, the case n = 2v � 1 is ruled out by the same argument
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of proposition 20 part (A). Hence, either n = v + d0( �G) � 1, or n = 28 and
�G �= A7. Assume that n = 28 and �G �= A7. If jN j � 4, we may apply the same
argument of lemma 18 to ruled out this case. Hence N �= Z2. Then jJ j = 24,
where J is any Sylow 2-subgroup of G. Furthermore, J �xes a point O of O,
since jOj = 15. Then Jm 6= h1i for some m 2 [O] � flg, since jJ j - n. In
particular Jm \N = h1i and [J : Jm] � 23. Hence Jm acts faithfully on O. In
particular Jm contains involutions �xing at least 3 points on O by [51]. Such
involutions are Baer collineations of �, since Jm \ N = h1i. Hence n must be
a square. A contradiction. Therefore n = v + d0( �G) � 1. Then each case of
Table I, but �G �= HS and n = 275, is ruled out by the same argument of lemma
22. In the remaining case N has odd order as jN j j n2 and n is odd. So, it is
easily seen that there exists an involution in G which is Baer collineation of �.
A contradiction, since n = 275. Hence, we may assume that G �xes at least a
point X on l � O. Assume that jN j > n. Then N(X; l) < N . Let 	 be the
set of N -orbits on [X] � flg. Note that each N -orbit on [X] � flg has length
[N : N(X; l)], since N = N(l; l) and N(X; l) < N . Clearly, G acts on 	 as
N C G. Then j	j � d0( �G) by lemma 16. A contradiction, since j	j � 3 by
lemma 14, as jN j > n. Thus jN j j n. Assume that N � Z(G). There exists a
Sylow t-subgroup S of N such that �G � SL(V ), where V = S=�(S) by lemma
15. We have jV j � b, where b = tr(

�G) and r( �G) is a suitable lower bound for
dimGF (t)(V ). Indeed, such a lower bound can be easily recovered from [43],
in particular it can be recovered from the theorem 5.3.9 and the proposition
5.4.13 when �G is classical, from the proposition 5.3.7 and when �G �= A7, and
from the proposition 5.3.8 when �G �= HS or �G �= M11. This information must
be combined in some cases with [12] in order to determine b as follows: pick
�G �= M11 for example, then r(M11) = 5 by [43], proposition 5.3.8. Hence
jV j � t5. From [12], we see that t > 2. Hence b = 35 and jV j � 35. The same
argument can be repeated for each group listed in the Table I. Then jV j � b
and hence jN j � b as V = S=�(S) and S � N . On the other hand, it must
be b � n, since jN j j n. By a direct inspection of the Table I, we have that
�G �= PSL(2; 7) and jN j 2 f8; 16g, �G �= PSL(4; 2) or �G �= A7 and jN j = 16,
�G �= Sp(2h; 2), h � 3, and 22h j jN j are the unique cases satisfying the inequality
b � n. Assume that �G �= PSL(2; 7). Then n = 16, since 9 � n � 16, jN j j n
and jN j 2 f8; 16g. Let C � G such that C �= Z7. Then Fix(C) �xes a subplane
of � of order at least 2, since n � 2mod 7. Actually, Fix(C) �= PG(2; 2) by [33],
theorem 3.7, since n = 16. Thus �G cannot �x l � O pointwise. Hence l � O
consists of either a �G-orbit of length 7 plus 2 points �xed by �G, or a �G-orbit of
length 8 plus 1 point �xed by �G by [17], Appendix B, since �G �= PSL(2; 7). Let
T � NG(C), such that T �= Z3. Then Fix(C) � Fix(T ), since T �xes 2 points
l\Fix(C) at least in any of the two possible orbital con�gurations of l�O. This
yields that T must �xes a further point on l, since jl � (l \ Fix(C))j = 14. So,
Fix(T ) �= PG(2; 4) by [33], theorem 3.7, since n = 16. Since a Z3 normalizes
exactly one Z7 in �G, there exists a point A 2 Fix(T ) � (Fix(C) [ l) such that
Z3 � GA � Z7:Z3. Then Z3 � GAN � Z7:Z3. Let 
 be the set of N orbits
on � � l. Then 162= jN j = �17 + �28, with �1; �2 � 0 and �1 + �2 > 0, by
lemma 16, since j
j = 162= jN j. Note that �1 > 0 since Z3 � GAN � Z7:Z3.
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Also �2 > 0, since GBN
�= Z7:Z3 for any B 2 Fix(C)� l. It is a straightforward

calculation to show that the above Diophantine equation has solutions only for
jN j � 4. A contradiction.
Assume that �G �= PSL(4; 2) or �G �= A7 and jN j = 16. Then n = 16 as

jN j j n and 15 < n � 30. Hence there exists H < GO, where O 2 O, such that
H �= PSL(2; 7) and H \N = h1i, since N is regular on [O] � flg as jN j = 16.
Clearly � cannot be Desarguesian, since the full collineation group induced on
a line is P�L(2; 16) and A7 � P�L(2; 16). Then � is either the Lorimer-Rahilly
plane of Johnson-Walker plane or they duals by [15]. A contradiction, since the
full collineation group induced on a line in any of these planes is isomorphic to
PSL(2; 7)� S3 by [37].
Assume that �G �= Sp(2h; 2), h � 3, and 22h j jN j. Then n = 22h, since

jN j j n and v < n � 2v with v = 2h�1(2h + 1). Then GO = GO;eN and
GO;e \ N = h1i for some line e 2 [O] � flg, since N is regular on [O] � flg as
N = N(X; l) with X 2 l � O. Then there exists an involution in GO;e �xing
22h�2 points on O by [17], Example 5.4.3. A contradiction by [33], theorem 3.7.
Hence, G is a covering group for G by lemma 15.
Note that the groups �G �= M11 or �G �= Sp(2h; 2), h > 3 are ruled out by

[43], theorem 5.1.4, since N 6= h1i by our assumption. In particular N is cyclic
and jN j � 3 for the remaining groups of the Table I by [43], theorem 5.1.4.
As a consequence, N = N(X; l). Assume that G �xes a further point Y on
l � O. Then G acts on the set 	 of N -orbits on [Y ] � flg. Then j	j = n= jN j
as N(Y; l) = h1i. Then n = jN j

P
j�0 �jdj(

�G), with �j � 0, j � 0, andP
j�0 �j > 0 by lemma 16. Actually, �j = 0 for j > 1 and (jN j ; �0; �1) =

(2; 0; 1); (2; 1; 0), or (jN j ; �0; �1) = (3; 1; 0) and �G �= PSL(2; 9), or �G �= A7, or
(jN j ; �0; �1) = (2; 2; 0) and �G �= A7 by lemma 12, since N 6= h1i and v < n � 2v.
Let r 2 [Y ]�flg. Then GrN = GrN and Gr\N = h1i. In particular Gr �= �GrN ,
where �GrN is the stabilizer in a �G-orbit on	 of length d0( �G), or 2d0( �G), or v. So,
if jGrj is even, then Gr contains involution which are Baer collineations �, since
they �x the points X and Y on l and n is even. So n = jN j (�0d0( �G)+�1v) must
be a square. It is a plain to see that unique groups of the Table I satisfying one
the previous numerical conditions are either G �= SL(2; 7) or G=Z2 �= PSL(4; 2),
and n = 16. Nevertheless, the latter is ruled out by the same argument as above,
since PSL(2; 7) � Gr. Therefore G �= SL(2; 7) and n = 16. Let C and T be
de�ned as above. The above argument still works to show that Fix(C) � Fix(T ),
with Fix(C) �= PG(2; 2) and Fix(T ) �= PG(2; 4). This, in particular, still forces
l �O to consist of a �G-orbits of length 7 plus 2 points �xed by G again by the
above argument. Now, Let D � NG(T ) such that D �= Z4 as G �= SL(2; 7).
ClearlyD acts on Fix(T ) andD �xes exactly 3 points on l\Fix(T ). In particular
D � P�L(3; 4) as Fix(T ) �= PG(2; 4). A contradiction, since P�L(3; 4) contains
no cyclic subgroups of order 4 �xing exactly 3 points on a line. Assume that
jGrj is odd. Then G �= SL(2; 11) and n = 24 by a direct inspection of the Table
I. Let L � G, such that L �= Z11. Then L �xes a subplane of � of order at least
2, since n + 1 = 25 and since G �xes the points X and Y on l � O. Actually,
o(Fix(L)) = 2 by [33], theorem 3.7, since n = 24. Let T � NG(L) such that
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T �= Z5. Clearly T acts not trivially on Fix(L). Hence T � PSL(3; 2), since
Fix(L) �= PG(2; 2). A contradiction. Hence X is the unique point on l � O
which is �xed by G. Thus either n = v + d0( �G) or n = 2v or n = 29 and
�G �= A7. Assume the latter occurs. Then G � N contains an involution, as
jN j j n and n is odd. This involution is a Baer collineation of �, since it �xes 3
points on O by [51]. A contradiction.
Assume that n = v + d0( �G). The case �G �= A7 and n = 22 and �G �= A8 and

n = 23 are ruled out by [33], theorem 13.18, and by [26], respectively. Again,
we may apply a similar argument to that of lemma 22 in order to rule out the
cases G �= SL(2; 11) and n = 23 or �G �= HS and n = 276 (in this case n is even
and there exists also a 2-subgroup of GA, A 2 O, of order 4 at least, �xing 2
points on O and 2 on � � l). Hence G �= SL(2; 9) and n = 16. Let U � G,
such that U �= E9. Clearly NG(U) �= U:T , where T �= Z8, since G �= SL(2; 9).
In particular NG(U) �xes a point on R on O, since jOj = 10. Then U �xes
a least a line r of [R] � flg, since n = 16 and U �= E9. Note that T acts
semiregularly on [R] � flg, since the unique involution of T generates N and
N = N(X; l) with X 2 l � O. Thus

��rT �� = 8. Moreover, rT � Fix(U) since
T � NG(U) and r 2 Fix(U). Hence T �xes at least a point on s � fRg for
each s 2 rT , since n = 16. In particular there exists a non trivial subgroup U0
of U , such that [U : U0] � 3 �xing at least 3 points on l. Therefore Fix(U0) is
subplane of �, since Fix(U) � Fix(U0). In particular o(Fix(U0)) � 7, since rT[
flg � [R] \ Fix(U0). A contradiction by [33], theorem 3.7, since n = 16.
Assume that n = 2v. Note that any admissible case of Table I, but G �=

SL(2; 7) and n = 16, or G �= SL(2; 11) and n = 24, is ruled out by the similar
arguments to that used above. Thus the assertion. �

Now assume that the case �G �= PSU(3; 5) is admissible. The following
theorem completes this subsection and shows that the assertions (2) and (3) of
theorem 1 are true when d0(soc( �G)) < v.

Theorem 24 One of the following occurs:

(1) n = 16 and G �= SL(2; 7);

(2) n = 23 or 24 and G �= SL(2; 11).

Proof. It remains to rule out the group �G �= PSU(3; 5) in order to prove
this theorem by propositions 22 and 23. Assume that N � Z(G). Then there
exists a Sylow t-subgroup S of N such that �G � SL(V ), where V = S=�(S)
by lemma 15. Then either jV j � 220 by [43], theorem 5.3.9 when 5 - jV j, or
56 j jV j by [43], proposition 5.4.13. Hence either jN j � 220 or 56 j jN j. On the
other hand, either jN j j n� 1 or jN j j n2 by lemma 14. By composing all these
bounds on the order of N , we see that the unique admissible case is 56 j jN j
and jN j j n2, since n = 2v and v = 126. This yields n = 250, since 53 j n and
126 < n � 252. A contradiction by [33], theorem 13.18. Hence, G is a covering
group for PSU(3; 5). Thus N �= Z3 by [43], theorem 5.1.4, since N 6= h1i by
our assumption. Thus any involution � in G actually lies in G � N . So, it is
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well known that � �xes exactly 6 points on O. Hence n is a square. Thereforep
n 2 f12; 13; 15g, since 126 < n � 252 and since

p
n = 14 cannot occur by

[33], theorem 3.6. Note that CG(�) is non solvable, since it has a section which
is isomorphic to PGL(2; 5). Thus the cases

p
n = 12 or 15 are ruled out by

[36] and [31], respectively. Hence
p
n = 13. Then Fix(�) �= PG(2; 13) by [48].

Denote by �CG(�) the group induced on Fix(�) by CG(�). Then �CG(�) acts
trivially on Fix(�), since 5 j

�� �CG(�)�� while 5 - jPGL(3; 13)j. Thus there exists
an element of order 5 in PSU(3; 5) �xing the same 6 points on O �xed by �. A
contradiction. �

5.2 The faithful case.

In this subsection we deal with case N = h1i. Since G is simple, either K = h1i
and hence G has a non trivial orbit on l�O, or G = K and hence G �xes l�O
pointwise.
This subsection is structured as follows. If G has a non trivial orbit on l�O,

we reduce to the case d0(G) < v by using the arguments of parts (C) and (D) of
the propositions 19 and 20, respectively. Then we show that the involutions in
G are Baer collineations of � by using the results of Ho-Gonçalves [32]. Finally,
a case by case investigation, show that � is the Johnson-Walker translation
plane of order 16 or its dual, and G �= PSL(2; 7). If G �xes l�O pointwise. We
reduce to the cases n = v + 1 by using lemma 11. At this point, we show that
G admits another 2-transitive orbit of length v not contained in a line which is
in contrast with the order n of �.

Proposition 25 If there exists a non trivial G-orbit on l � O, then � is the
Johnson-Walker translation plane of order 16 or its dual, and G �= PSL(2; 7).

Proof. Assume there exists a non trivial G-orbit O0 on l � O. So n �
v + d0(G). If d0(G) = v, then either n = 2v � 1 or n = 2v. At this point
we may use the arguments of parts (C) and (D) of the propositions 19 and
20, respectively, to rule out these cases. Hence d0(G) < v. Assume that G
contains an involutory perspectivity. If there exists a point P 2 � � l such
that GP = h1i, then jGj � j�� lj. This yields v(v � 1)� � 4v2, since n � 2v
and since jGj = v(v � 1)�, � � 1. Thus either � = 5 and v = 5, or � � 4.
Then either G �= PSL(2; 5) and n = 11 or n = 12, or G �= PSL(2; 7) and
n = 15 or n = 16 by a direct inspection of the Table I. Nevertheless the former
cannot occur, respectively, by [47], since jOj = 6, and by [36]. Also the latter
cannot occur, respectively, by [31], and by [15], since G contains involutory
perspectivities and jOj = 8. Hence G is totally irregular on �. Then G �=
PSL(2; 5) and n = 11 or n = 12, or G �= PSL(2; 7) and n = 15 or n = 16
by [32], theorems 1 and 2. Again a contradiction. Hence each involution is a
Baer collineation of �. So n must be a square. Then either G �= PSL(2; 7)
or G �= PSL(2; 9) when n = 16, or G �= A7 or G �= A8 and n = 25, or
G �= PSU(3; 5) and n 2

�
132; 142; 152

	
, or G �= HS and n 2

�
172; 182

	
, or

G �= Sp(2h; 2), h � 3 and n = 22h. Actually, the cases G �= PSU(3; 5) and
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n 2
�
132; 142; 152

	
cannot occur by the same argument of theorem 24. The

case G �= Sp(2h; 2), h � 3, and n = 22h cannot occur by [33], theorem 3.7,
since G contains Baer involutions �xing 22h�2 points on O by [17], Example
5.4.3. Assume that G �= A7 and n = 25. Then there exists an involution in G
�xing at least 7 points on l by [51] and since jl � (O [O0)j = 4. A contradiction
by [33], theorem 3.7. Assume that G �= A8 and n = 25. Then there exists an
involution in G �xing at least 10 points on l by [51] and since jl � (O [O0)j = 3.
A contradiction by [33], theorem 3.7. Assume that G �= PSL(2; 9) and n = 16.
Set fXg = l � (O [ O0). Let S be a Sylow 2-subgroup of G. Then S = h�; �i
with �4 = 1, �2 = 1 and �� = ��1. Note that jFix(�) \ lj = 3,

��Fix(�2) \ l�� = 5
and jFix(�) \ lj = 5, since l = O [ O0 [ fXg, and since G �= PSL(2; 9) acts in
its 2-transitive permutation representations of degree 10 and 6 on O and on O0,
respectively. Furthermore,

��Fix(�2) \ Fix(�) \ l�� = 3. This yields Fix(�2) �=
Fix(�) �= PG(2; 4) and Fix(�) �= PG(2; 2) with Fix(�) � Fix(�2). Moreover,
Fix(�2)\Fix(�) �= PG(2; 2) and Fix(�)\Fix(�) consists of 3 collinear points of
Fix(�2) including X. Thus

��Fix(�2)� (Fix(�) [ Fix(�) [ l)�� = 10. Let U � G
such that U �= E9. Is is easily seen that Fix(U) exactly 2 points on l, since
the 
 = (123)(456) lies in U and 
 is f.p.f. on O0. Thus Fix(U) cannot be
a subplane of �. Then there exists a line r of � such that Fix(U) � l � r.
In particular Fix(G) � Fix(U) and jFix(U) \ Fix(�)� lj � 3. Hence, there
are at least 2 points of � � l (lying in Fix(�) � l), say X1 and X2, such that
GX1

�= Z2 and GX2
�= Z4, since Fix(G) � Fix(U), since Fix(U) � l � r, since

Fix(�) \ Fix(�) consists of 3 collinear points of Fix(�2) including X, and since
the are no proper subgroups of G of order divisible by 20. Then j�� lj � 270,
since XG

1 [XG
2 � �� l with

��XG
1

�� = 180 and ��XG
2

�� = 90. A contradiction, since
n = 16. Finally, if G �= PSL(2; 7) and n = 16, then � is the Johnson-Walker or
its dual translation plane of order 16 and the G-orbits on l have lengths 8, 7, 1
and 1 by [15]. Thus the assertion. �

Theorem 26 Let � be a projective plane of order n and let O be a 2-transitive
G-orbit of length v on a line with n > v � n=2. If G is almost simple and G
is faithful on O, then � is the Johnson-Walker translation plane of order 16 or
its dual, and G �= PSL(2; 7).

Proof. Assume that G �xes l �O pointwise. Assume also that n � v + 2.
Thus any involution in G is a Baer collineation of �, since jl �Oj � 3. Then
n+ 1� v �

p
n+ 1 and hence v + 2 � n � v +

p
2v, as n � 2v. Suppose there

exists a point Y on l�O such that G admits an orbit O� of length v on [Y ]�flg.
If G admits also a further non trivial G-orbit on [Y ]�flg, then � has order 16,
G �= PSL(2; 7) and v = 8 by the dual of the proposition 25. A contradiction
by [15], since G �xes l�O pointwise and jl �Oj = 9 in this case. Then G �xes
[Y ]� (flg[O�) linewise. If there exists a line r in [Y ]� (flg[O�) such that G
�xes two points on r � fY g, then G is planar on �. In particular o(Fix(G)) =
jl �Oj � 1, since G is transitive on O and G �xes l � O pointwise. Then GO
is planar on �, since Fix(G) � Fix(GO). Furthermore, o(Fix(GO)) = jl �Oj,
since G is 2-transitive on O. So o(Fix(GO) = o(Fix(G)) + 1. A contradiction
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by [33], theorem 3.7. Note that G and GO are still planar if G �xes a point,
other than Y , on at least two distinct lines of [Y ] � (flg [ O�). So, also this
case cannot occur. Hence, there exists at least a line m in [Y ] � (flg [ O�)
on which G does not �x any point, since j[Y ]� (flg [ O�)j � 2 as n � v + 2.
Then m � fY g consists of non trivial G-orbits. It should be stressed that
G cannot admit orbits of length v on m � fY g, otherwise � has order 16,
G �= PSL(2; 7) and v = 8 by the proposition 25, in contrast with the above
argument. Let P 2 m � fY g. Then

��PG�� > 1, since m � fY g consists of
non trivial G-orbits. Clearly

��PG�� = �dk(G) for some primitive permutation
representation degree dk(G), k � 0, of G. Assume that d0(G) = v. Clearly
G � Sp(2h; 2), h � 3, by the same argument of the proposition 25. Then
�v �

��PG�� � v +
p
2v, since PG � m � fY g, n � v +

p
2v and dk(G) > v.

Thus � = 1 and
��PG�� = v + 1 by lemma 11. Since n � v + 2, then there exists

Q 2 m � (fY g [ PG). Then
��QG�� > 1, since m � fY g consists of non trivial

G-orbits. Then
��QG�� = v + 1 by he previous argument with Q in the role of P .

So n � 2v + 2, since PG [ QG � m � fY g. A contradiction. Thus d0(G) < v.
Note that the above argument yields

��PG�� = �d0(G) by lemma 12 and since G
cannot admit orbits of length v on m � fY g. So, each admissible non trivial
G-orbit on m � fY g must be a multiple of d0(G). This implies n = �d0(G),
� � 1. Moreover, n must be a square and v+2 � n � v+

p
2v. Now by a direct

inspection of the Table I, it is easily seen that no cases arise. Thus [Y ] � flg
cannot contain orbit of length v for any Y 2 l � O. At this point we may use
the previous argument to show that for any Z 2 l�O, the set [Z]�flg consists
of a G-orbit of length v + 1 plus a line �xed by G, since G cannot be planar
on �. In particular G is one of the exception groups listed in lemma 11. Then
n = 9 and G �= PSL(2; 7), since n must be a square. A contradiction by [30],
theorem A, since G contains Baer collineations of �.
Assume that n < v + 2. That is n = v + 1, since n > v. Note that G �xes

exactly a triangle � having l as its side. In particular each side of � consists
of the vertices of � which are �xed by G and of a 2-transitive G-orbit of length
v. This implies that GO �xes a subplane of � isomorphic to PG(2; 2). Then
there exists a point Q 2 Fix(GO)� (l [�) such that

��QG�� = v. Clearly QG is
not contained in a line, since QG � � � (l [ �) and Fix(G) = �. If QG is a
v-arc, then QG[� is a hyperoval. Then G �= PSL(2; 2s), s � 2, or G �= Sz(2s),
s � 3, s odd, or G �= PSL(2; 2s), s � 2, by [4], Main theorem. Thus n = 2is+2,
i 2 f1; 2; 3g, respectively, and s � 2. This yields n � 2mod 4. A contradiction
by [33], theorem 13.18. Hence QG is the set of points of a non trivial 2-(v; k; 1)
design D (see the preliminaries of [7]). By [40], theorem 1, we have that either
D �= PG(2; q), G �= PSL(3; q) and hence n = q2 + q + 2, or D is Hermitian
Unital, G �= PSU(3; q), q > 2, and hence n = q3 + 2, or D is Ree Unital and
G �= 2G2(q), q = 32m+1, m > 1, and hence n = q3 + 2. If q is even, then
n � 2mod 4 as q > 2 (clearly the case G �= PSL(3; 2) and n = 8 cannot occur).
This is impossible by [33], theorem 13.18. Hence q is odd. Now, it easily seen
that G contains an involution �xing the 2 points of l � O and exactly either
q+1 points on O when D is a Unital, or q+2 points on O when D �= PG(2; q).
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So, either n = (q + 2)2 or n = (q + 3)2 by [33], theorem 3.7. A contradiction in
any case. Thus G cannot �x l�O pointwise and hence the assertion follows by
the proposition 25. �

This completes the proof of that the results (2) and (3) of theorem 1.

6 The a¢ ne case

Throughout this section soc( �G) is assumed to be an elementary abelian p-group
for some prime p. Hence O is endowed with the structure of a GF (p)-vector
space and the zero vector in O is denoted by O. Let jOj = pd, p prime, d � 1.
Then �G = �T �GO, where �T is the whole translation group ofO and �GO � �L(t; p).
By [28] a structure of d�-dimensional vector space V over a �eld L �= GF (ph),
h j d, d = hd�, may be de�ned on O in such a way that �G � A�L(d�; ph) and
O is identi�ed with the zero-vector of V .

6.1 The faithful case.

Assume that N = h1i. Then �G = G and hence G = TGO.
In this subsection we prove the following result whose proof relies essentially

on theorem 3.

Theorem 27 If v =2
�
52; 72; 112; 292; 592

	
, then G � A�L(1; v) and one of the

followings occurs:

(1) n = v + 1, v = 2d or v � 3mod 4;

(2) n = 2v � 1;

(3) n = 2v, v = 2d;

(4) n�
p
n+ 1 = v and v is a prime.

Proof. Let K be the kernel of the representation of G on l � O. Since G
is primitive on O, then either K = h1i or T � K � G by [17], theorem 4.3B,
since T = soc(G). Assume that K = h1i. Then there exists X 2 l � O such
that the kernel of the action of G on XG is trivial again by [17], theorem 4.3B.
Set O0 = XG. Then v j jO0j by the O�Nan-Scott theorem (see, for example,
[17], theorem 4.1A.), since v = jT j. Thus n � 2pd � 1, since O [ O0 � l and
v = pd. Actually, either n = 2pd � 1 or n = 2pd, since n � 2pd. In particular,
we obtain that the action of G on O and on O0 is the same. Assume that G
contains a Baer involution of �. Then n is a square. If n = 2pd � 1, then
either (n; p; d) = (2392; 13; 4) or p is odd and d � 2 by [55], results A11.1 and
the result of page 141. Nevertheless, the former is ruled out by [30], theorem
A. Thus d � 2 and hence d� � 2. At this point we may use [28], lemma 5.10,
to show that G � A�L(1; v). Thus the assertion (2). Assume that n = 2v.
Then v = 2d and d is odd by [33], theorem 13.18, and since n is a square.
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Thus d� is odd, since d� j d. Therefore, by theorem 3, either G � A�L(1; 2d)
or SL(d�; 2h) E GO, d� � 3. Assume that the latter occurs. Let 
 be any
involution of GO inducing a transvection on O. Then 
 �xes 2d�h points on O
and the point in l � (O [ O0). So, 22(d�h) � 2d+1 by [33], theorem 3.7, since

 is a Baer collineation of � and n = 2d+1. This yields 2(d � h) � d + 1.
Thus d� = 3 and h = 1, since d = d�h and d� � 3. Hence SL(3; 2) � GO and
n = 16. A contradiction by [15], since jOj = 8 and G is of a¢ ne type. Thus
G � A�L(1; 2d) and we obtain the assertion (3).
Assume that each involution in G is a perspectivity of �. If n = 2v�1, then

each involution in G must �x exactly 1 point on O and 1 point on O0, as n is
odd. Thus v must be odd. Then either G � A�L(1; v) or SL(2; ph) E GO or
pd 2

�
34; 36; 192; 232

	
by [28], theorem 6.7, since pd =2

�
52; 72; 112; 292; 592

	
by

our assumption. Actually, the cases pd 2
�
34; 36; 192; 232

	
cannot occur by [33],

theorem 3.6. Assume that SL(2; ph) E GO. Then there exists an element � of
order p inducing a transvection on O and on O0. Then � �xes 2ph points on l.
Clearly (n; p) = 1, since n = 2v � 1. Furthermore (n� 1; p) = 1, since p is odd.
Therefore � �xes subplane of � of order 2ph�1. Then (2ph�1)2 � 2p2h by [33],
theorem 3.7. A contradiction. Thus G � A�L(1; v) and hence the assertion (2).
If n = 2v, then v = 2d by [33], theorem 13.18. Then G is solvable by [2], Satz 1.
In particular by G � A�L(1; v) by [35], theorem XII.7.3. That is the assertion
(2).
Assume that T � K � G. Assume also that jl �Oj � 2. Then jl �Oj = 2

and hence n = pd + 1, since n > v and v = pd. If 4 j jGOj, then GO contains a
Baer involution of �, since jl �Oj = 2. Thus n must be a square. Clearly d � 2.
Then n = 9 and v = 8 by [55], result A5.1. A contradiction by [30], theorem
A. Hence 2 k jGOj. Then G � A�L(1; v) by [28], theorem 5.15. Furthermore,
either p = 2 or pd � 3mod 4, as pd � 1 j jGOj. Thus the assertion (1).
Assume that jl �Oj > 2. Assume also that v is even. Then each non trivial

element in T is a Baer collineation of �, since jl �Oj > 2 and T � K. Thus
n+1� v =

p
n+1, since T �xes l�O pointwise and T is regular on O. Hence

v =
p
n(
p
n� 1). A contradiction, since v = pd and v > 4. Hence v is odd.

Assume that GO contains the involutory O-dilatation �. Suppose that T
does not contain planar elements. If there exists X 2 �� l such that TX 6= h1i,
then TX = T , since T is abelian, T �xes l�O pointwise and T does not contain
any planar element. Thus T is semiregular on XY � fX;Y g for any Y 2 l�O
again by the facts that T �xes l � O pointwise and T does not contain any
planar element. Then v j n � 1 and hence n = v + 1, since v < n � 2v. A
contradiction, since jl �Oj > 2. Hence T is semiregular on �� l. In particular
p j n. Assume that � is a (C�; a�)-perspectivity of �. Let 
 2 T , 
 6= 1.
Then �
 is the O
-involutory dilatation of G. Furthermore, �
 is a (C�
; a�
)-
perspectivity, where C�
 2 l and a�
 6= l. Clearly �
 6= �, as O
 6= O. Then
h�; �
i �xes a� \ a�
 pointwise. A contradiction, since h�; �
i \ T 6= h1i and
(a� \ a�
 ) \ (� � l) 6= ;. Hence � is a Baer collineation of �. Then p j

p
n,

since p j n and n is a square. Assume there exists a point P 2 l �O, such that
T is semiregular on [P ]� flg. Then v j n and hence n = 2v, since v < n � 2v.
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A contradiction by [33], theorem 13.18, since v is odd. Hence, for each point
B 2 l � O, there exists a line rB 2 [B] � flg such that TrB 6= h1i. Assume
there exists a point D 2 l � O such that D� 6= D. Then TrD �xes also rD�,
since � acts as the inversion on T . Thus TrD �xes the point rD \ rD� lying
on � � l. A contradiction, since T is semiregular on � � l. As a consequence,
l\Fix(�) = (l�O)[fOg. Then n+1�v =

p
n, since jl �Oj = n+1�v. That

is n�
p
n+ 1 = v. A contradiction, since p j

p
n and v = pd. Hence T contains

a non trivial planar element � . Assume that � is a (C�; a�)-perspectivity, then
C� 2 l and a� 6= l, since � is the involutory O-dilatation in GO and O � l. Note
that (C�; a�) 2 Fix(�), since � inverts � . So � �xes O, since either C� = O
or fOg = a� \ l. A contradiction, since O 2 O, while � is semiregular on O.
Hence, � is a Baer collineation of �. Then � �xes l � O pointwise, since �
is planar, � �xes l � O pointwise and � �xes only the point O on O. Thus
jl �Oj =

p
n. That is n+1� v =

p
n and hence (

p
n� 1)2+(

p
n� 1)+ 1 = v.

Then either v = p or (
p
n � 1; v) = (18; 73) by [55], result A7.1. Assume that

(
p
n� 1; v) = (18; 73). Clearly � acts on Fix(�) trivially by [33], theorem 13.18,

as o(Fix(�)) = 18. Hence Fix(�) � Fix(�). A contradiction by [33], theorem
3.7, since o(Fix(�)) = 19. Therefore v = p and we have the assertion (4).
Assume that G does not contain involutory dilatations. Then SL(d�; ph) E

GO with d� odd by theorem 3, since v is odd. Let � be the involution in GO
represented by the matrix A = diag(�I2; Id��2). Then � is a Baer collineation
of � �xing exactly pd�2h points on O. Then p2(d�2h) � n, by [33], theorem
3.7. Thus d� = 3 as d� is odd and d� > 1. Let L � CGO

(�), where L =
hdiag(C; 1) : C 2 SL(2; q)i. Let L0 be the kernel of the action of L on Fix(�).
Clearly h�i E L0 E L. Actually, L0 < L, otherwise L would contain planar
p-elements of � inducing transvections on O (for example pick B = diag(B0; 1)

where B0 =
�
1 1
0 1

�
). Then L0 = h�i and L=L0 �= PSL(2; q) acts on Fix(�)

�xing q points on O. It easily seen that L=L0 contains a Baer collineation �� of
Fix(�) �xing a further point on Fix(�) \ l �O, since L=L0 �= PSL(2; q) cannot
be a group of perspectivities of Fix(�) with axis Fix(�)\ l. Thus o(Fix(�)) � q2
by [33], theorem 3.7. Then n � q4 again by [33], theorem 3.7. A contradiction,
since n � 2q3 and q is odd. �

6.2 The unfaithful 2-transitive orbits.

Throughout this subsection we assume that N 6= h1i.
The proof of theorem 29, which is the main theorem in this subsection, is

structured as a follows. We �rstly show that G can be written in a �nice�form
(see the following lemma). Then we reduce to case N � Z(G), otherwise lemma
15 provides a lower bound for jN j which is in contrast with the possible upper
bounds given in lemma 14. At this point we essentially use the Schur multipliers
(see [41]) to obtain the assertion.

Lemma 28 The followings hold:
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(1) G = UGO, where U is a normal p-subgroup U of G such that U=(U\N) �=
�T ;

(2) If GO = HN with H \N = h1i and H quasisimple, then N � U .

Proof. Let T be the full preimage in G of �T . Then T = UN , where U is a
Sylow p-subgroup of T . Furthermore, G = NG(U)T by the Frattini�s argument.
Actually G = NG(U), since T = UN and N = �(G). Hence U C G. Moreover,
UGO induces �G on O, since N < GO. Then G = UGO by the minimality of G.
Thus the assertion (1).
Assume there exists H � GO such that GO = HN with H \N = h1i and H

quasisimple. Then G = UH by (1), since N = �(G). Furthermore, U\H = h1i,
by [23], theorem 3.1.3, since H �= �GO and U \H is a normal p-subgroup of H.
Clearly UN=U is isomorphic to a normal subgroup of H. Thus U=(U \ N) is
isomorphic to a subgroup of Z( �GO), as H �= �GO, the group �GO is quasisimple
and N is nilpotent. In particular U=(U \ N) has order coprime to p by [23],
theorem 3.1.3. Hence N = P � Z, where P = U \ N and Z is isomorphic to
a subgroup of Z( �GO), as N is nilpotent. In particular, Z is cyclic as Z( �GO) is
so by [23], theorem 3.2.1. Let W be the Sylow t-subgroup of N , with t 6= p.
Then W � Z as N = P � Z. Thus W is cyclic. Moreover, W C G as N is
nilpotent. Then G acts on W with kernel Q. Then G=Q � Aut(W ). Actually,
Q = G by [23], theorem 1.3.10 and lemma 5.4.1, since W is cyclic, N � Q and
G = UH with H quasisimple. Thus Z is central in G and hence UN = U�Z as
(jU j ; jZj) = 1. This yields UN \H = h1i, since U \H = h1i and Z \H = h1i.
As a consequence Z = h1i and N � U . Thus the assertion (2). �

Theorem 29 Let J =
�
24; 26; 32; 33; 34; 36; 52; 72; 112; 192; 232; 292; 592

	
. Then

one of the followings occurs:

(1) �G � A�L(1; v), or

(2) v 2 J .

Proof. Deny. By theorem 3, we have that if �G = �T �GO is 2-transitive on
O, then �G = �T :soc( �GO) is still 2-transitive on O and soc( �GO) is quasisimple.
Thus, we may assume without loss of generality that �GO = soc( �GO). Hence �GO
is quasisimple. In particular, we have the following possibilities for �GO:

(i) �GO �= SL(d�; ph), d� � 2;

(ii) �GO �= Sp(d�; ph), d� even and d� � 4;

(iii) �GO �= G2(ph), d� = 6 and p = 2.

We treat the cases N 6� Z(G) and N � Z(G) separately.

(I) The case N 6� Z(G).
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Assume that N 6� Z(G). Then the same argument of lemma 15 yields that
G acts on V with kernel R, where V = S=�(S), S a Sylow t-subgroup of N
such that S 6� Z(G), and N E R E G. Assume that R = G. Then each
Sylow r-subgroup T of G, with r 6= t, centralizes S by [23], theorem 5.1.4.
Thus CG(S) � N and [G : CG(S)] = th, h � 0. Furthermore, CG(S) C G as
S C G. Hence N C CG(S)N E G. Set L = CG(S)N . Clearly, either L = G
or [G : L] = ti for some 1 � i � h. Actually, the former is ruled out by the
same argument of lemma 15. Thus [G : L] = ti and hence

�
�G : �L

�
= ti as

N C L. Then �L= �T C �G= �T and
�
�G= �T : �L= �T

�
= ti as �T � �L by [17], theorem

4.3.B. This implies that �GO must contain a normal subgroup of index ti. A
contradiction, since �GO is quasisimple. Then R < G. Hence, either R = N or
�T � �R < �T :Z( �GO), since �G = �T �GO. Assume that �T � �R � �T :Z( �GO). Set
H = G=R. Clearly H � P�L(V ), since V is a vector space over GF (t). Note
that H �= �G= �R, since �G= �R �= ( �G= �T )=( �R= �T ). This yields that H is isomorphic to
a central extension of �GO=Z( �GO), since �G= �T �= �GO and since �R= �T is isomorphic
to a subgroup of Z( �GO). Thus H � PSL(V ), since H � P�L(V ) and H
is quasisimple. Recall that �GO is one of the groups listed above. So, if the
representation is in coprime characteristic then jV j � 2Rp0 (H) by [43], corollary
5.3.3, theorem 5.3.9 and corollary 5.4.14.(i), since v =2 J . This yields jV j > 4v2
for v > 8. Hence jN j > 4v2 for v > 8 as V = S=�(S) and S a Sylow t-subgroup
of N . A contradiction, since jN j � 4v2 as jN j � n2 by lemma 14 and n � 2v.
Hence v � 8. Actually v = 8, since v = pd, d � 2 and v � 5. In particular
N is regular on � � l as jN j = 26. Then G = GCN for some C 2 � � l.
Actually G = GC , since N = �(G) by lemma 24. A contradiction, since N is
semiregular on � � l. Thus the representation of H as a subgroup of PSL(V )
is in the natural characteristic. Therefore v j jV j by [43], corollary 5.3.3. and
proposition 5.4.13, since �G � A�L(1; v) and v =2 J . As a consequence v j jN j
for N < R < G. Finally, assume that R = N . Then �G � PSL(V ). Then, by
the above argument with �GO, O 2 O, in the role of H, we still obtain v j jN j.
Hence v j jN j in any admissible case.
Assume that jN j j n � 1. Then G �xes a unique point Q on � � l and

N is semiregular on � � (l [ fQg) by lemma 14. Then jN j = n � 1, since
v j jN j and v < n � 2v. Thus GO = GO;AN with GO;A \ N = 1, for some
point A 2 OQ � fO;Qg. Then G = UGO;A by lemma 28, since G = UGO,
GO = GO;AN and N = �(G). Then the same argument of theorem 27, with �G
in the role of G, rules out this case, since �G � A�L(1; v), v =2 J and v = pd.
Assume that jN j j n. Then jN j = n and n = 2v, since v j jN j and v < n � 2v.

Therefore v = 2d and n = 2d+1 by [33], theorem 13.18. Furthermore, N is
semiregular on [O] � flg where O 2 O by lemma 14. Let 
 be the set of N -
orbits on [O] � flg. Clearly j
j � 2, since v j jN j and n = 2v. Thus GO �xes

 elementwise. Then GO = GO;aN for some line a 2 [O]� flg. Then the same
argument of theorem 27, with GO;a in the role of GO, rules out the case d odd.
Hence d is even and n is a non square as n = 2d+1. Thus GO;a must have odd
order, since v and n are even and GO;a �= �GO. Therefore �GO must have odd
order. Hence G is solvable by [2], Satz 1. In particular G � A�L(1; v) by [35],
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theorem XII.7.3. A contradiction.
Assume that jN j > n. Then either n j jN j and n is a prime power, or

n = 3 jJ j =2 where J is the Sylow 2-subgroup of N by lemma 14. Then either
n = 2v, or n = 3v=2 and v even, since v j n2 as jN j j n2, and since v < n � 2v,
respectively. Note that v is even also in the �rst case by [33], theorem 13.18.
Let 
 be de�ned as above. Then j
j � 3, since each N -orbit on [O] � flg has
length n=3 at least by lemma 14. Thus GO �xes 
 elementwise, since GO is
quasisimple. Hence GO = GO;bN for some line b 2 [O] � flg. We stress that
GO;b \N 6= h1i, since Nb 6= h1i being jN j > n. Now, we may repeat the above
argument, with GO;b in the role of H and Nb in the role of N to assert that
either v j jNbj or Nb � Z(GO;b). Assume that v j jNbj. Then jN j � vn=3, since
[N : Nb] � n=3 as j
j � 3. Let 	 be the set of N -orbits of points on � � l.
Then j	j � 6, since N is semiregular on �� l and jN j � vn=3. It is a plain to
see that G �xes 	 elementwise, since v � 8. So G = GAN for some A 2 �� l.
Actually G = GA, since N = �(G) by lemma 24. A contradiction, since N is
semiregular on �� l. Hence Nb � Z(GO;b). Then GO;b = G0O;bN where G0O;b is
a covering group for �GO by [1], theorem 11.3.33. Hence, G0O;b \N is isomorphic
to a subgroup of the Schur multiplier of �GO. If �GO �= SL(d�; ph), d� � 2, then
G0O;b \N = h1i by [41], theorem 7.1.1 (i), since v =2 J . If �GO �= Sp(d�; ph), d�
even, d� � 4, then G0O;b \N = h1i by [41], theorem 2.5.12 for p is odd, and by
[43], theorem 5.1.4 for p = 2, since �GO is perfect, d� � 4 and v =2 J . Finally,
if �GO �= G2(p

h) and p = 2, then G0O;b \ N = h1i by [43], theorem 5.1.4, since
v =2 J . Thus G0O;b \N = h1i in any admissible case. Then the above argument
with G0O;b in the role of GO;a rules out this case. Actually, such a argument
works when we replace n = 2v with n = 3v=2. So, also the case n = 3v=2
cannot occur.

(II) The case N � Z(G).

Assume that N � Z(G). Then GO = G0ON with G0O a covering group for
�GO by [1], theorem 11.3.33. Hence, G0O \N is isomorphic to a subgroup of the
Schur multiplier of �GO. Actually, G0O \N = h1i in any admissible case by the
above argument, with G0O in the role of G

0
O;b. Then N � U by lemma 28 (2).

Furthermore, there exists � 2 G0O, such that o(�) is a primitive prime divisor
of v � 1 by [43], theorem 5.2.14, since �G � A�L(1; v) and v =2 J . Then � acts
irreducibly on U=(U \ N) �= �T by [28], Section 5 and theorem 3.5. Then each
proper �-invariant normal subgroup of U lies in N . Therefore � acts trivially
on each proper �-invariant normal subgroup of U , since N = Z(GO). Then U
is special and N = �(U) by [23], theorem 5.3.7, since U=N �= �T and N 6= h1i.
Recall that K is the kernel of the representation of G on l�O and N = �(G).
If K < G, then there exists a non trivial G-orbit O� on l � O. Let � be the
set of N -orbits on O� and let F be the kernel of the representation of G on �.
Clearly N E F E G. If F = G, then G = GXN for some X 2 O�. That is
G = GX , since N = �(G). A contradiction, since X 2 O� and O� is a non
trivial G-orbit. Therefore R < G. If R = N , then G induces �G on O�. Then
v j jO�j by the O�Nan-Scott theorem, since v =

�� �T ��. This forces N to �x l �O
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pointwise. Then either n = 2v � 1 and N = N(Q; l) with Q 2 �� l, or n = 2v
and N = N(l; l) by lemma 14, since n � 2v. Since �G � A�L(1; v) and v =2 J ,
and since G0O \N = h1i and G0O �= �GO, then the arguments of theorem 27 still
works and hence we may rule out the cases n = 2v � 1 and n = 2v.
Now, assume that N < R < G. That is h1i < �R C �G. Hence U � R, by

[17], theorem 43.B, since N � U , �U = �T and �T = soc( �G). Thus U �xes �
elementwise. Then U = UYN for each Y 2 O�, since N � U . Furthermore,
since N = �(U), then U �xes O� pointwise. Hence N < U � K � G and
hence N = N(l; l) or N(Q; l) with Q 2 � � l by lemma 14. Assume that
N = N(l; l). Clearly N(X; l) = h1i for any X 2 O, since N � Z(G). Hence
there exists a point E 2 l �O such that N(E; l) 6= h1i, since N 6= h1i. Assume
that N(E; l) < N . Then G acts on the set � of N -orbits on [E] � flg, since
N � Z(G). If U �xes some element in �, then U = UrN for some r 2 [E]�flg,
since N � U . As a consequence, U = Ur since N = �(U). A contradiction,
since Nr = N(E; l) and N(E; l) < N . Thus U moves each element in �. In
particular, G induces �G on �, and �G does not �x any element in �. Then v j j�j
by the O�Nan-Scott theorem, since v =

�� �T ��. Then n = v [N : N(E; l)], since
j�j = n= [N : N(E; l)]. Thus [N : N(E; l)] = 2 and n = 2v, since v < n � 2v.
Since �G � A�L(1; v), v =2 J and since G0O \N = h1i and G0O �= �GO, it is easily
seen that the argument of theorem 27 still works and we may again rule out the
case n = 2v. Therefore N = N(E; l). Assume that v is even. If there exists
� 2 U � N , � involution, then � is a Baer collineation of � �xing the v + 1
points of l�O, since n = 2v and since U �xes l�O pointwise. Then v2 � n by
[33], theorem 3.7. A contradiction, since n = 2v and v > 2. As a consequence
U �N does not contain involutions. Thus U must be semiregular on [Y ]� flg
for any point Y on l � (O [ fEg), since U �xes l � O pointwise, N C U and
N = N(E; l). Thus jU j j n. Then n = 2v and N �= Z2, since jU j = v jN j and
N 6= h1i. Hence v is even as N � U and U is a p-group. A contradiction by
the same argument as above. Assume that v is odd. Assume also U �xes a line
f of [E]� flg. If U is semiregular on f � fEg, then n = 2v, since jU j = v jN j.
A contradiction by [33], theorem 13.18, since v is odd. Thus UD 6= h1i for
some D 2 f � fEg. Then UD �xes DN pointwise, since N � Z(G). Then
there exists a non trivial element � in U � N �xing DN [ (l � O) pointwise.
Thus � is planar on �, since jl �Oj � 2,

��DN
�� � 2 and DN � � � l. So

o(Fix(�)) = n�v. If n+1�v =
p
n, then v is a prime by arguing as in theorem

27. A contradiction, since �G � A�L(1; v). Thus v is odd and n+ 1� v <
p
n.

In particular, n � v +
p
2v by [33], theorem 3.7, since n � 2v. Recall that

G0O \N = h1i. The same argument of theorem 27 implies that G0O contains an
involution � inducing an involutory O-dilatation on O. So v is a square and
hence n cannot be a square, since v < n � v +

p
2v. Clearly � cannot be a

Baer collineation of �. Thus � is an involutory (C�; a�) perspectivity. Clearly
C� 2 l and a� 6= l since � =2 N and � �xes l. Thus there exists a point W
on l � O such that

��WH
�� > 1. Let � be the set of �-orbits on WH . Then

j�j =
��WH

�� =2, since � is central in H, a� 6= l and H is transitive onWH . Then
j�j � d0(H=Z(H)) by [43], proposition 5.2.1. Hence 2d0(H=Z(H)) � n� v + 1,
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since j�j =
��WH

�� =2 and ��WH
�� � n�v+1. Actually, (2d0(H=Z(H))�1)2 � 2v,

since v < n � v +
p
2v. At this point, it is a straightforward calculation to

show that no one case satis�es the previous inequality by bearing in mind that
d0(H=Z(H)) is given in [9]. Hence U does not �x lines of [E] � flg. Therefore
[E] � flg is union of non trivial �G-orbits. Thus v j n, since the length of each
these orbits is a multiple of v by the O�Nan-Scott theorem, as v =

�� �T ��. Hence
n = 2v. Again a contradiction.
Assume N = N(Q; l) for some Q 2 � � l. Then N is semiregular on

QB�fQ;Bg, where B is any point of l�O. If U is semiregular on QB�fQ;Bg,
then jU j j n � 1. Then 2v � n � 1, since jU j = v jN j and N 6= h1i. A
contradiction, since n � 2v. In particular there exists �1 2 U �N �xing a point
C of QB � fQ;Bg. Then �1 is planar on �, since �1 �xes the points C and Q
on � � l and since U �xes l � O pointwise. At this point the same argument
used for the case N = N(E; l), with �1 in the role of � , still works and we may
rule out this case. This completes the proof. �

7 Translation Planes

In this section we investigate what theorems 1 and 2 say when � is the projective
extension of a translation plane of order n and O is a 2-transitive G-orbit of
length v on a line l, with n > v � n=2. The case when O has length v with
v � n is already contained in section 2.

Theorem 30 Let � be the projective extension of a translation plane of order
n and let O be a 2-transitive G-orbit of length v on a line l. If n > v � n=2 and
G is almost simple, then one of the following occurs:

1. � is the Hall plane of order 9 or its dual, jOj = 5 and SL(2; 5) E G. In
particular l is the line at in�nity;

2. � is the Johnson-Walker translation plane of order 16 or its dual, and
PSL(2; 7) E G. In particular l is an a¢ ne line.

Proof. Suppose that � is the projective extension of a translation plane
of order n. Then n = tj where t is a prime and j � 1. Assume that n =
2q + 1, q � 3mod 4, q 6= 7, jOj = q + 1 and SL(2; q) E G. Then j = 1 by
lemma 10 (1). So � is Desarguesian. Then PSL(2; q) � PGL(2; n), since G
induces the group PSL(2; q) on l. Since PSL(2; q) contains non trivial elements
�xing 4 points on l, namely 2 points on O and 2 points on O0, we have a
contradiction. Now, assume that n = 2(q + 1), q � 3mod 4, jOj = q + 1 and
SL(2; q) E G. Then n = 2j and q is a Mersenne prime by lemma 10 (1). Clearly
G � P�L(2h; 2j1), with j = j1h, since G leaves invariant the line at in�nity.
Thus SL(2; q) � PSL(2h; 2j1), since SL(2; q) E G. Then 2h > (q � 1)=2 by
[43], proposition 5.3.2 and theorem 5.3.9, since q 6= 5; 9 as q is a Mersenne
prime. Hence 2(q + 1) � 2(q�1)=4, since n = 2j and n = 2(q + 1). An easy
computation shows that the previous inequality is impossible for q > 19, since q
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is odd. Hence q � 19. Actually q = 7, since q must be a Mersenne prime. Thus
SL(2; 7) E G and n = 16. A direct inspection of the list of the full collineation
groups of all translation planes of order 16 given in [16] (see also [54]) rules out
this case. So, the cases (2b) and (3b) of theorem 1 cannot occur when � is the
projective extension of a translation plane of order n. Thus the assertion follows
by theorem 1, since n > v � n=2. �

Theorem 31 Let � be the projective extension of a translation plane of order
n and let O be a 2-transitive G-orbit of length v on a line l, with n > v � n=2.
If G is of a¢ ne type, G acts faithfully on O and v =2

�
52; 72; 112; 292; 592

	
, then

G � A�L(1; v). Furthermore one of the following occurs:

1. n = 2v � 1, v = pd. In particular, either (pd; n) = (134; 2392) or n = t2s

and d � 2;

2. n = 2v, v = 2d.

Proof. Suppose that � is the projective extension of a translation plane.
Then n = tj , j � 1, for some prime t. Assume that O is a 2-transitive G-orbit
of length v on a line, with n > v � n=2 and v =2

�
52; 72; 112; 292; 592

	
. Assume

also that G is a collineation group of � of a¢ ne type acting faithfully on O.
Then G � A�L(1; v) and n satis�es one of the relations (1)-(4) given in theorem
27. Assume that n = v + 1 with v = 2d or v � 3mod 4. If v = 2d then either
d = 3 and n = 9 or n is a Fermat prime by [55], result (B1.1). If n = 9, then
� is either Desarguesian or one of the Hall planes. Nevertheless these planes
cannot occur since 7 j jGj, as G is 2-transitive on O, O � l and v = 8. Thus n
is a Fermat prime and hence � is Desarguesian. Then G � PGL(2; n). Thus
2d(2d � 1) j 2d(2d + 1)(2d + 2), since G is 2-transitive on O and n = 2d + 1. A
contradiction, since n > 5 by our assumptions.
Assume that n �

p
n + 1 = v and v = p. Then G = AGL(1; p). In this

case the group G �xes l � O pointwise and the element � in G of order p is
planar by theorem 27 (see its proof). Hence � �xes a subplane of � of order
tj � p as n = tj , j � 1. Then tj � p j tj as � is a translation plane. So
t = p = 2 and n = tj = 4. A contradiction, since n �

p
n + 1 = p. Thus

either n = 2v � 1 with v = pd, or n = 2v with v = 2d by theorem 27. The
second case leads to the assertion (2). Hence, assume that n = 2v � 1 with
v = pd. Then 2pd = tj + 1 as n = tj . Assume that j is not a power of 2. Then
th + 1 j tj + 1 for some integer 1 � h < j. Then p j th + 1 and hence tj + 1 has
not primitive prime divisors for j > 1, as 2pd = tj + 1. Then tj = 8 by [55],
result (P1.7)(ii). A contradiction, since t must be odd. Therefore j = 1 and
hence t = 2pd � 1. So, � is Desarguesian. Then G � PGL(2; t), since G leaves
invariant l. Since pd = (t + 1)=2 and the Sylow p-subgroup of G is normal in
G, then G � NPGL(2;t)(Zt+1). So pd(pd � 1) j 2(t + 1), since G is 2-transitive
on O. Then pd � 1 j 4, since t = 2pd � 1. Hence pd = 5 and n = 9, since v � 5.
A contradiction, since n = t with t prime. Hence j = 2h, h � 0. If d > 2, then
(pd; tj) = (134; 2392) by [55], result (A11.1) and result of page 141. Thus the
assertion (1). �
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We remark that, while there are no known examples corresponding to the
case (1) of the previous theorem, the example 9 is an example for the case (2).
Indeed (2) and (6) in example 7 does not correspond to the case (1) of the
previous theorem, but correspond to particular cases of theorem 29. Finally, we
remark that there are no improvements of theorem 29 when � is the projective
extension of a translation plane.
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