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Preface

The task of this book is to present the theory of the scales of Banach
spaces and the role they play in the modern theory of Partial Differential
Equations. Some parts of the theory of interpolation are analysed here
too. The book gathers the results of previous investigations on this subject,
completed with the new ones.

The present study is directed to the mathematics students finishing al-
ready their university career, mathematicians and other people interested in
mathematical science. To understand it, the basic knowledge from the fields
such as a course on functional analysis containing the basics of Sobolev
spaces and integral calculus in Banach spaces are required. Every reader
should also be familiar with the theory of distributions and the Fourier
transform, but the elementary theorems related to both of them can be
found in Appendix A.

The book is divided into three parts. The first one introduces the reader
into the theory of the interpolation spaces, gives its brief description and
presents the basic properties of interpolation spaces.

As the precursors of the theory of interpolation we can consider M. Riesz
and O. Thorin, who in the thirties proved the theorem of the interpolation of
the spaces LP(2). In 1939 the generalization of these results was published
by J. Marcinkiewicz. After the Second World War the theory was inves-
tigated by i.a. A. Zygmund, A.P. Calderén, E. Gagliardo and J.L. Lions
along with J. Petree, who perceived the interpolation spaces as traces for
variants of Sobolev spaces. The more complete description of the theory
of interpolation spaces can be found i.a. in the monographs of H. Triebel,
L. Tartar and A. Lunardi.

The aim of the second, main part of the book, is to present the con-
struction of the scale of the Banach spaces, generated by such an operator
A: D(A) € X — X of the type (w, M) that 0 € p(A). In this part we
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can find the description which contains the characterization of the scale of
Banach spaces and the scale of dual spaces.

The object of the last part is to show the applications of the theory given
before in specific problems. We introduce the class of sectorial operators,
which were widely considered i.a. by T. Kato, H. Tanabe and D. Henry,
H. Amann, A. Lunardi. The connection of this class with the operators of
the type (w, M) is analysed here too. It is also possible to find in this part
some properties of the scale of Banach spaces, defined for sectorial operators.
Finally, we deal with the investigation of the existence and smoothness of
the solutions of some Cauchy’s problems, considered on different spaces on
the scale of Banach spaces.

The structure of the book is as follows:

Chapter 1: introduces the definition of fractional powers of operator and
describes their basic properties.

Chapter 2: first deals with the spaces Dy and describes their properties
and shows that they coincide with some interpolation spaces. Next, the
classical approach to the theory of interpolation spaces is given and differ-
ent methods of introducing these interpolation spaces, e.g. K-method and
trace method of real interpolation and complex method of interpolation are
presented. In this chapter can also be found the definition of the operator
of the type (w, M (0)).

Chapter 3: this short chapter gives the characterization of the domains
of fractional powers of operator through infinitesimal generators of bounded
semi-groups or bounded analytic semi-groups.

Chapter 4: this crucial chapter contains two sections. The first one
considers inductive limits and projective limits of sequences of Banach spaces
and their properties. The second one shows construction of the scale of
Banach spaces for the linear operator of the type (w, M (#)), which resolvent
set contains (0. Next the characterization of the scale of Banach spaces is
discussed.

Chapter 5: the aim of this chapter is to introduce a few examples of the
scales of the Banach spaces. One of the examples leads to definition of the
fractional Sobolev spaces, which are useful spaces considered in the theory
of Partial Differential Equations.

Chapter 6: presents sectorial operators, describes their properties and
gives some basic examples of such operators.

Chapter 7: is devoted to some applications of the theories given before.
At the beginning we consider the operators defined on different levels of the
scale, that is to say for the operator A: D(A) C X — X we consider its
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restrictions or extensions A|x- for the spaces in the scale (X?),cg, generated
by this operator. We show that if the operator A is closed or sectorial
then all the operators A|x- are also closed or sectorial. Next we present
the theorem which shows that under certain assumptions the scales of the
Banach spaces can be achieved by using the method of complex interpolation
spaces. Finally we will give the examples that justify the consideration of
the spaces with fractional exponents on the scale.
Chapter 8: deals with the Cauchy’s problem

u + Au= F(u), t>0,
u(0) = up.

We consider the local X?#-solutions as well as their existence and uniqueness.
Next we reveal a few examples of Cauchy’s problems for which we search
the local X*-solutions.

Appendix A: contains basic facts referring to the theory of distributions
and Fourier transform.

Acknowledgments. [ would like to express my deepest gratitude to
Professor Tomasz Dlotko for his patience, help, the time spent correcting
this book and the inspiration he gave me when I was writing it. I sincerely
appreciate the comments on my work made by the listeners of the Seminar
of the Department of Differential Equations. I am also greatly indebted to
Professor Pawet Strzelecki whose valuable remarks significantly improved
the manuscript. Finally, I am grateful to the Institute of Mathematics at
the University of Silesia for the financial support.

Lastly, but above all, I thank my wife for her patience, support and help.






Chapter 1

Fractional powers of operators

In this chapter we construct a family of closed operators with domains
which set up a special collection of subspaces of a given Banach space X.
Results concerning fractional powers of operators can be found among others
in monograph of H. Amann [4], H. Triebel [40], in a sequence of papers
of H. Komatsu (|23], [24]), in books of J.W. Cholewa and T. Dlotko [9],
R. Czaja [12].

Let (X,| - ||) denote a Banach space and let us assume that
A: X O D(A) — X is a closed linear operator with the domain D(A)
dense in X such that the resolvent set of A contains (—o0,0) and satisfies

AN =AY <M, )€ (—00,0), (1.1)

where M is a constant independent of A\. When 0 € p(A) then we call
such type of operators positive operators of type M. Because of the equality

AN —A)"t = A\ — A)~! — I there exists a constant L such that
AN~ A <L A€ (~00,0). (12)

When 0 € p(A) we can define fractional powers of operator A for exponent
z € C, Rez < 0 by the Dunford integral.

Definition 1.0.1. For z € C, Rez < 0, we define fractional powers of

operator A by
1
A= —— | (A= A)"ta), (1.3)
211 T
where the path I' encircles the spectrum o(A) counterclockwise, avoiding
the negative real axis. Furthermore, we set

AV =1,

where I denotes the identity operator on X.
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The set I' can be chosen as the curve consisting of the three segments:

4 1 1 .
a0 _ _ it . <
{ se .56( 00, 4M>}7{4M€ .|1/)|_9},
se: s e Loo
’ AM’ ’

with 6 € [r — arcsin ﬁ,ﬂ'). Now we show that the definition of A* for
Rez < 0 does not depend on the choice of a particular 6.

(1.4)

Proof. To prove it, let us consider 7 — arcsin 5+ < 6; < 65 < 7 and for

2M
a fixed z € C such that Rez < 0 set
1 1
A — N\ — A~ dA A — (A=A~ dA
01 2mi Jr,, ( ) r T 27 /r92 ( )

where T'p, and T'g, are the curve I' as in (1.4) with € replaced, respectively,
by 61 and 5. For s > ﬁ consider two arcs given by

Cf = {Seiwl 91 < QIZ) < 02}, CS = {Seid]; — 92 < 1/] < _91}

Observe that

l

and analogously

1
- A=A

02
g 2M + 1 S SRQZ/ e—wlmz du} 0
2 1+s 0, 5—00

1
H/ N (A=At dx
2 Jeg

Therefore the Cauchy’s Theorem (see Theorem 7.2.1 in E. Hille, [21], p.163)

implies that for fixed z € C with Rez < 0 the operator A* does not depend

on the particular choice of § € [r — arcsin 517, 7). O

— 0.
5—00

We can prove (see Lemma 3.0.5 in R. Czaja [12]) that A* is one-to-one
operator for Rez < 0, thus we can define fractional operators A* for Rez > 0.
But first let us prove some easy lemmas which state that operators A* for
Rez < 0 are well-defined and convergent.
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Lemma 1.0.2. When A: D(A) C X — X is a positive operator of type M,
then

=M {)\E(C 35<0 |)\—S|_2’]\’4}Cp(z4)
and
2M +1

0= 4)7 < =

, for all A € Epy.

Proof. Fix A € Zj7. Then there exists s < 0 such that |A — s| < ‘Sl . We
have

A—A=(s— AT+ \—-s)(s—A)).
Letting B =1+ (A —s)(s — A)~! € L(X) we see that

ls] M 1

7= Bl = A =slls= 47 < g = 5 <1
It implies the existence of B~! € £(X) and
R v i
— |1 =Bl
Hence A € p(A) and (A — A)~t = B71(s — A)~!. Moreover, we have

1A= =BT = D)(s =A™+ (s = )7 <
< BT =1lll(s = )7+ li(s = A7 <
2M  2M |s| + |\ — s

< 2= AT S < T
2M 1 2M +1
< (1+—
<5 () =2
which completes the proof. O

It is easy to notice that

1 1
{/\ € C: |arg\| > W—arcsinm} U {)\ eC: |\ < 2]\4} CZum,

which shows that we can indeed choose the integration path I' in p(A).

Lemma 1.0.3. Let A: D(A) C X — X be a positive operator of type M and
z € C be such that Rez < 0. Then the operator A% is bounded and analytic
in {z € C: Rez < 0}.
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Proof. Since the integrand in (1.3) is a continuous function with values in
L(X) and analytic of the variable z € C, the integral

z 1 z -1
Bn——% Fn)\ (A—A)"" d,
where I', = 'N {\ € C: |A\] < n}, n € N, is well-defined and constitutes
an analytic function By, with values in £(X) (see S. Saks, A. Zygmund [34],
p.107). The integral in (1.3) is defined in an improper way. Below we show
that it exists and is almost uniformly convergent in Iy = {z € C: Rez < 0}.
Let K be a compact subset of Il and fix € > 0. Then there exists §; > 0
and d2 < 0 such that |Imz| < §; and Rez < 3 < 0 for any z € K. Let
ng € N be such that ng > ﬁ and

2N 1P

- % ng <€
Having n > m > ng we see that
-m
187 = Bl = |5 [ (s (s = ) (=) ds

—-n
1 n
_ 27 (SeiO)z(seiG _A)—leie ds S
e
m

—m

< L [ eresmn(=s)4oms <2M+1> st

2T —
—n
n

+1/6Rezln391mz <2M+1> ds <

2 s
m

n
<92. i (2M+1)69|Imz|/€Rezlnsl ds —
27 S

m

_ 2M + 160|Imz| /n SReZ} ds =
T m s
_2M —+ 169\1m2| 1

T Rez

2M +1 1
Ml P9 —ngz < e.
02

(mRez o nRez) <

<
T
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We conclude (see S. Saks, A. Zygmund [34|, p.116) that B € L(X)
for z € C such that Rez < 0 and the mapping z — B? is analytic in
{z € C: Rez < 0}. O

Now we define fractional powers of operator A* for Rez > 0.

Definition 1.0.4. We set for z € C, Rez > 0,
A7 = (A1 X DR(AT?) — X.

Finally, we can prove that for Rez = 0 an operator B,: D(A) — X,
B,x = AA* 1z = A* 1Az, is a well-defined closable operator in X. Addi-
tionally, By = I

Definition 1.0.5. Let z € C be such that Rez = 0. We define
A* = B,: XQD(E)—)X.

Within the following theorems we discuss some elementary properties
of the fractional operators and a very important interpolation inequality,
which will be useful in introducing a scale of Banach spaces. We omit proofs
of them, which may be found among others in papers of R. Czaja [12],
H. Komatsu [23], [24] or H. Tanabe [36].

Theorem 1.0.6 (Theorem 3.0.12 in [12]).

(a) For z € C such that Rez > 0, A* is a closed operator in X.
(b) If z1,2z2 € C are such that Rez; > Rezg > 0, then D(A*) C D(A*) C X.
(¢) Forn €N the power A™ coincides with the product A--- A.

(d) For z € C such that Rez > 0 we have clD(A%) = X.
(e) If z1,22 € C are such that Rezi,Reza,Re(z1 + 22) # 0 or z1,292 € R,
then

ARy = AR ARy = A2 ARy, 1 € D(AY)
where w € {z1, 22,21 + 22} and Rew = max{Rez1, Reza, Re(z1 + 22)}

Theorem 1.0.7 (Interpolation theorem, Remark 2.3.1 in [36]). For any
o < T < 0 there exists a constant C(o,T,60) such that

|ATul| < C(o,7,0)|A%ul| 7 | A%u[7=, u e D(A).

Next we show another characterization of the operator A®.
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Theorem 1.0.8 (Theorems 3.0.7 and 3.0.13 in [12]). If n € N and z € C
are such that 0 < Rez < n, then

—z __ F(n) * S—z+n—1 s - g
A _rm—zﬁuyé (s+4)™d
and
Az = T — 2)T(2) /0 A"(s+ A) ds, € D(A"). (1.5)

In this theorem operators A? are independent of the chosen integer n.
In the papers of H. Komatsu [23] we can find another definition of fractional
powers of operator where we do not have to assume that A has a dense
domain and 0 € p(A). It was shown, however, that if Rez > 0, A% is
an operator in D(A) and it is determined by a restriction Ap which has
a dense domain in D(A). Thus our requirement on a domain D(A) is not

restrictive as far as we consider the exponent z with a positive real part. As

a consequence, we have

AMA+A) D" —— 2, meNzecX. (1.6)

A—00



Chapter 2

Interpolation spaces

M. Riesz proved the following “interpolation” result in 1926, in the case
po < qg. This restriction was removed by O. Thorin in 1938. It was often
called the convezity theorem.

Theorem 2.0.1. If py,p1,q0,q1 € [0,00] and a linear map A is continuous
from LPo(Q) into L (Y) and from LP*(Q) into LI (Y), then for 6 € (0,1)
it is continuous from LP?(QY) into L% ('), where

1 1-6 0 1 1-6 6
Py Po n q q0 Q1

and one has

”AHL(LPG (2),L9% (7)) < HAHL LP0 (2),L9 (') HAH[,(Lm 0),L91(Q))"

Thorin’s proof used a property of the modulus of holomorphic functions,
the three lines theorem, stating that if f(z) is holomorphic in the strip
0 < Rez < 1, continuous on the closed strip 0 < Rez < 1 and such
that |f(iy)] < Mp and |f(1 + iy)| < M; for all y € R, then one has
|£(0 +iy)| < M3=OMY for all 9 € (0,1) and y € R.

Later on the idea of Thorin was used again by E. M. Stein, a general
method of complex interpolation was developed by A.P. Calderén, J.L. Lions
and M. Krein.

If f € LP(Q), then Holder’s inequality gives [, | f| dz < ”fHLp(Q),Uz(F)l/p/
for all measurable subsets E of £ (here p denotes a measure which defines
the space LP(Q2) and p' is such that 1%4— 1% =1). J. Marcinkiewicz introduced
a space sometimes called weak LP spaces denoted by LP>°(€2), which is the
space of (equivalence classes of ) measurable functions g for which there exists
a constant C such that

/ lg| da < Cp(E)'”
E
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for all measurable subsets F C Q. It contains LP(Q2), but if Q@ C RY and

p € [1,00), it also contains functions like W In 1939, J. Marcinkiewicz
published the following result, as a note without proof. Two different proofs

were added later by M. Cotlar and A. Zygmund.

Theorem 2.0.2. If po,p1,q90,q1 € [0,00] and a linear map A is continu-
ous from LPO(Q) into LP°(Q)) and from LP () into LI°(Q), then for
0 € (0,1)it is continuous from LP?(QY) into L% (Y), under the condition that
po < qy, where py and qp are given by (2.1).

The results of M. Riesz, O. Thorin, J. Marcinkiewicz, were generalized
as the theory of interpolation. The main contributors were N. Aronsztajn,
A.P. Calder6on, E. Gagliardo, J.L. Lions, J. Petree, but similar techniques
have been also used by specialists of harmonic analysis, like E.M. Stein.

2.1. Spaces Dj

By LP(X) we denote the space of all X-valued strongly measurable func-
tions f: (0,00) — X such that

[fller = (/000 lF ()P d)\/)\>p < oo, forpell,o0);
[fllzee = sup [If(M)] < oo.

su
0<A <0
Here d\/\ denotes the Haar measure on multiplicative group (0, c0). Addi-

tionally we accept p = co— as an index. L (X) represents the subspace
of all functions f € L*°(X) such that /l\ir% f(A) =0 and )\lim f(A) =0.
— —00

Definition 2.1.1. Let 0 < ¢ < m, where ¢ is a real number and m € N
and p € [1,00]. We denote by Dy, = Dy .(A) the space of all x € X such
that A% (A(\ + A)~1)™z € LP(X) with the norm

lzllpg,, = llzllx + [IA7(AN + A~ 1o x)-

It is easy to see that DJ ,, is a Banach space.

Proposition 2.1.2 (Proposition 1.2 in [24]). If integers m and n are greater

than o, the spaces Dy ., and Dy ,, are identical and have equivalent norms.
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Proof. Tt is enough to show that Dy, = Dy .., when m > o. Because of
(1.2) every z € Dy ,,, belongs to Dy, .. Since

SOMAG+ AT = mAm A+ 4) )

we have

A
N (AN + A Hmg = m)\gm/o " (Al + A)H™ e dp /. (2.2)

This shows

m

I (AN A+ A) ™)™l o (x) < IN7 (A +A) )™ ]| o).

m-—o
0l

Definition 2.1.3. Let ¢ > 0 and p € [1,00]. We define Dy as the space
Dy ., with the least integer m greater than o.

Remark 2.1.4 (Proposition 1.4 in [24]). If 4 > 0, pu(p + A)~" maps D
continuously into DJ +1. Futhermore, if p < co—, we have for every = € Dy

pp+A) e 52 asp— oo
Proof. Let x € DJ. Since

INFAN+ AT+ A) e <
< A+ AT A+ AN AN+ A7) ™| <
< uML|AT (A + A) 7)™,

(g + A)~ 'z belongs to DITL,
Let p < co—. If z € D(A), then

(A A Y u(p+A) e = (AN+A) D"z —(AN+A) " H™(u+A) "t Az

converges to (A(A + A)~1)™z uniformly in A. On the other hand,
(AN + A)~"H™u(p + A)~! is uniformly bounded. Thus it follows that
(AN +A)"H™u(p+ A)~! converges to (A(X+ A)~1)™z uniformly in A for
every x € X. Since ||(A\+ A)"H)™u(p+ A7 < M||[(AX + A)~Hma|,
we obtain the second part of our remark. O

Theorem 2.1.5 (Theorem 1.5 in [24]). Dy C Dy, ifo>1orifo=r1 and
p < q. The injection is continuous. If ¢ < co—, Dy is dense in Dy.
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Proof. First we prove that D], p < oo is continuously embedded in DZ,_.
Let x € Dy. Applying Hélder’s inequality to (2.2), we obtain

_ m _
I (AN +A) ]| £ ——————[|n7(Ap+ A) ) T ma| o),
((m —o)p')?
where p’ = Z%. Hence z € D7,. Counsidering the integral over the interval

(11, A), we have similarly

m—o

127 (A + A) ™)™ < /;m_g 17 (A + A~ ||+

+((m_rz)p/)pl/ (1_/;:_;)'

(/ oA+ A dm);

The second term tends to zero as p — oo uniformly in A > p and so does
the first term as A — co. Therefore, x € D7__.

Since A7 (A(A+A)" )™z € LP(X)NL*>®~(X), it is included each L4(X) with
q € [p,00).

If 7 < o, D, is contained in D7 for any q. Hence every Dy is contained
in D.

Let ¢ < co—. Repeated application of the previous remark shows that D;*m
is dense in Dy for positive integer m. Since D contains some D;er, it is
dense in Dy. O

In terms of spaces Dy we can prove that the equality (1.5) holds for all
x € DY for every 0 < Rez < 0. Then the fractional power A* for Rez > 0
is the smallest closed extension of operators A?| Dg for all o > Rez.

Lemma 2.1.6 (Lemma 2.3 in [24]). If m is an integer, m > 0, then

N
A"z = lim m ATLAN + A)TH™ L a
N—o0 0

Proof. By (2.2) we have
N
m/ ATLHAN+ A)TH™ g dh = N™(A(N + A)~ 1™,
0

If x € D(A™), N"(A(N+A)"H)™"z = (N(N+A)~1)™ A™z tends to A™x as
N — oo by (1.6). Conversely, if N (A(N+A)"H™mz = AM(N(N+A)"Hmy
converges to an element y, z € D(A™) and y = A™x. Then A™ is closed (see
A.E. Taylor [38], Theorem 6.1) and (N (N + A)~!)™z converges to z. [
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Proposition 2.1.7 (Proposition 2.4 in [24]). If 0 < Rez < o, there is
a constant C(z,0,p) such that
Rez _
1A%zl < C(z,0,p)IN (AN + A) ™)™l 5 Izl

for all x € Dy.

Proof. Holder inequality gives

r

1400 < |apiaas| | G+ a7l an +

+/ INTTNT (AN + A)"H)™z|| dA/A| <
t

L'(m)
< | -\
[T (a)T(m — «)
LmtRez 75Rez—a " i
| TRy el + A7 (AN+ A7 x\Lp(X)]
e ((0 — Rez)p') ¥

Taking the minimum of the right-hand side over ¢ varying in the set (0, c0),
we obtain our statement. O

Proposition 2.1.8 (Proposition 2.5 in [24]). If u > 0 then Dj(A) =
= Dy (u+ A) with equivalent norms.

Proof. Let x € Dy ,,,(A) with m > 0. Since

m—k
m 5

-m m —m, & -m
A A+ 4+ A)""x|| < CIIA™A + p+ A) x| w (A + p+ A) ")
for k € {1,2,...,m — 1}, we have that
X7 ((p+ A A+ p+A) ) e = X7 (0™ +mp™ At -+ A A ptA)

belongs to LP(X). The converse is proved in the same way. O

Theorem 2.1.9 (Theorem 2.6 in [24]). Let 0 < Rez < 0. Then x € Dy if
and only if x € D(A?) and A%z € Dg*ReZ.

Proof. Let z € Dj and m > o. Clearly x € D(A?). To estimate the integral
)\U—RQZ(A()\ + A)_l)mAZ:I} —

F(m))\afRez

= R A AT G Ay
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we split it into two parts. First

A
M"Rez/o P AN+ A (A + A" dul| <
A
< )\U—Rez/ 'UJRez—l duLm”(A(A+A)_1>mx" =
0
= L™(Rez) 'A7(AN + A) "™z € LP(X)

and the second part

Ao~ Rez /A T AR+ A) YA+ A) Y7 dul| <

< LA /A HR | (Al + A) )™ dps/p

also belongs to LP(X) because Rez — o < 0.
Conversely, let A*z € Dj —Rez Tf n is an integer greater than Rez we have

n—Rez Rez

[A*7 A+ )7 < OA" A+ A7 [[(A+ AT

< C/)\fRez'
Thus it follows that

XA+ A) 7)™ ]| < A7 AT+ A) (AN + A) ) A% <
< ONRE (AN + A) ) A% € IP(X).

This completes the proof. O

Proposition 2.1.10 (Proposition 2.8 in [24]). For every Rez > 0
DY** C D(A%) C DE*.

Proof. It is enough to consider only the case z = 1. The former inclusion is
clear from Lemma 2.1.6. The latter follows from (1.6), because

MAN+ A ™22 = A A+ A1 =AM+ A4) HAz =0

for x € D(A) as A — oc. O
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2.2. Definition of interpolation spaces
S(p7 97 X7 P, 9 - ]-7 Y)

Let X and Y be Banach spaces contained in a Hausdorff vector space Z.
Lions and Petree defined the mean space S(p,0, X;p,0 —1,Y), p € [1, 0],
6 € (0,1), of X and Y as the space of the means

x = / u(A) dA/A,
0
where u(\) is a Z-valued function such that
Mu(\) e LP(X) and M7lu()) € LP(Y). (2.3)
S(p,0,X;p,0 —1,Y) is a Banach space with the norm

HxHS(pﬂ,X;pﬂ*l,Y) =

:inf{max(||A9u(A)HLp(X),|yA9—1u(A)\|Lp(Y)):x:/o u(\) d)\/)\}.

Theorem 2.2.1 (Theorem 3.1 in [24]). S(p,0,X;p,0 — 1,D(A™)),
p € [l,00], 8 € (0,1), coincides with ng(A).

Proof. On the base of Proposition (2.1.8), we may assume, without loss of
generality, that A has a bounded inverse. In particular, D(A™) is normed

by ||A™z||. Further, if we change the variable by N = A, condition (2.3)
becomes

A0u(\) € LP(X) and A0V AMy()) € LP(X). (2.4)
Suppose z € Dy and define
u(X) = cATA™ (A 4+ A) "M,

_ T'(@m)
where ¢ = W Then

A7u(A) = c(A + A" (AN + A) D™ € LP(X)

and
ATTTAMU(N) = AT (AN + A)_l)zmx € LP(X).
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Thus u(A) satisfies (2.4) with o = mf. Moreover, it follows from Lemma

(2.1.6) that
- I'(2m) /OO -1 —1\2m g4—
u(N) dA/A = ATTHAN+ A MA ™"y = x.
|y ann = e [+ a7
Therefore, = belongs to S(p, =, X;p, & — 1, D(A™)).
Conversely, let z € S(p, =, X;p, > —1,D(A™)) so that = is represented by
integral [ u(X) dA/A with the integrand satisfying (2.4). Then

N (AN +A)™Hme = (AN + A)~Hmae /:O 1o plu(N) dA/ A+
+ (A + A)~Hmpo—m / ' " " T A (N dAJ A
0

Since both (A(X\ + A)~™1)™ and (A(A + A)~!)™ are uniformly bounded,
A7(A(X+ A)~1)™2 belongs to LP(X), that is « € DY. O

Now we define class of operators called of type (w, M (60)).

Definition 2.2.2. Let A be a closed operator densely defined in X. The
operator A is said to be of type (w, M(6)) if there exists w € [0,7) and
M > 1 such that £, = {\ € C: |argA\| > w} C p(A) and

IAA—A)7Y <M, for <0,

and, for all # € (w, 7] there exists a number M (#) > 1 such that the inequal-
ity

INA = A)7H| < M(8),
holds in |arg A| > 6.
Remark 2.2.3. Any operator which is of the type (w, M(#)) with0 <w <7
has a dense domain and satisfies (1.1).

Theorem 2.2.4 (Theorem 3.2 in [24]). Let A be an operator of type (w, M (0)).
Then -
Dy (A%) = Dp*(A), 0<z<;,0’>0.

Proof. 1t is sufficient to prove it in case 0 < z < 1, because otherwise we
have A = (Az)% with 0 < 1 < 1. On the base of Theorem 2.1.9 we may also
assume that o is sufficiently small.

Basing on H. Komatsu [23] Proposition 10.2 we have

sinz /°° \otlrz—zo
0

N AP A+A*) g =
(A+4%) e A2 4+ 2\T% cos Tz + T2

TZJA(T+A)_1$ dr/T.

™
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Since the kernel

()\717_,2)170'
1+ 2\ 17%) cosmz + (A~ 17%)2’

0<o <1,

defines a bounded integral operator in LP(X), D;*(A) is contained in Dy (A?).
If z = % with an odd integer m, we have conversely

DI (Aw) C Dy (A).

In fact, let © € DZ(A%). Since

m

NAWZ™ + A) o = 27 T[ (A% (@h + Am) e,
i=1
where ¢; are the roots of (—¢)™ = —1 with ¢ = 1, and since

Am(gih+ Am)™Y, e {l,...,m},

are uniformly bounded, then A A(A\™ + A)~!z € LP(X). Changing the
variable by X = X\, we get Am A\ + A) "'z € LP(X).

In general case choose an odd number m such that 0 < % < z. Since
1

Am = (Az)ﬁ, we have

zo o z zZom L zo
DZ7(A) C D(A%) € D™ (Aw) C D7 (A). O

2.3. Complex interpolation space

We introduce the complex method of interpolation. It is considered by
H. Triebel [40] and L. Tartar [37] among others.

Definition 2.3.1. For two Banach spaces Xy and X1, the complex method
of interpolation consists in considering the space F(Xp, X;) of functions
f: C — Xy + X1, holomorphic on the open strip 0 < Rez < 1, continuous
on the closed strip 0 < Rez < 1, and such that f(iy) is bounded in X and
f(1+iy) is bounded in X7, equipped with the norm

11| = max {sup || f (iy)[| xo, sup || f (1 + iy) [ x, }-
yeR yER
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For 0 < 6 < 1, we define

[Xo, X1]p = {a € Xo + X1: Fpep(xo,x,) a = f(0)},

with the norm
a = inf .
[ ||[X0,X1]9 FB)=a £l

Of course such a space contains XoNX1, as we can take f to be a constant
function taking its value in Xg N X7. So we have inclusions

XoNX; C [Xo,Xl]g C Xo+ Xj3. (2.5)

Now we prove one very important property of an interpolation space, called
the interpolation property. It says that [, -|g is the interpolation functor.

Lemma 2.3.2. Let Xy, X1, Yo, Y1 be Banach spaces and 0 < 8 < 1. There
exists a constant C > 0 such that for all A € L(Xo,Yo) N L(X1, Y1),

Al £(1x0,x100,v0.1100) < CllAl2(x0,v0) 1Al X0 11) -

Proof. If A € L(Xo,Yy) N L(X1,Y1), then g(z) = Af(z) satisfies a property
similar to f with the spaces Yy and Y7, so that we has

HACLH[Y(J,Yﬂe < maX{HAHE(Xo,Yo)a HA||L(X1,Y1)}HG’”[Xo,Xl]e'

We may replace max{[|All (o vo): [ Allecenriyt by TAIE S, vy 14120, 30y
by considering g(z) = e **+%?Af(z) instead, which results in getting the
quantity max{e_59||A||£(X07y0) e (1_9)||AHL(X1,Y1)} appear, and then one

_ NAllexg.v0) O

minimizes in s by taking e® = TAlecvn”
1,71

Next we introduce some other properties of this interpolation functor.
Theorem 2.3.3. Let Xo, X1 be Banach spaces and 0 < 0 < 1.

(a) [Xo,X1]p = [X1, Xo]1-0-
(b) If Xo C X1 and 0 < 0 < 6 < 1, then

Xo C [Xo, X1]s € [Xo, X1]o, € X1

(C) [f X() = Xl, then [X(),Xl]g = X() = Xl.
(d) There exists a constant Cg > 0 such that for all a € Xo N X7 we have

—0 [4
HxH[Xo,Xl]g S C@H'x”ﬁ(o H'/L‘||X1
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Proof.

(a) Let f € F(Xo,X1). Then the function g(z) = f(1 — z) belongs to
F(X1, Xo) and inf o) || f]| = inf y1_g)=a [l9]-
(b) Let Xg C X3. From (2.5) we have

Xo € [Xo, X1]o C X;.

Because of 0 < 6 < 61 < 1, there exists a 0 < A < 1 such that 8 = M.
Till the end of the proof we have to show that

[Xo, X1]p C [Xo, [Xo, X1]g, ]a-

Let a € [Xo,X1]p and f € F(Xo,X1) be such that f(0) = a. De-
fine a new function g(z) = f(6h2). Of course g(A\) = f(hA) = a.
Function g is holomorphic in the strip 0 < Rez < 1 and continu-
ous in its closure. g(iy) = f(61iy) is bounded in Xy and because of
1 (01 +613y) [l x0,x1]5, < [If]], function g(1+iy) is bounded in [Xo, X1, -
Thus g € F(Xo, [Xo, Xi]p,) and [|g[| < [|/]-

(c) Follows directly from (b). O

Corollary 2.3.4. For 0 < 6y < 61 < 1 and 0 < X < 1 the following
nclusion holds

[Xo0, X1]oo(1-2)+0:2 < [[Xo0, X1gy, [X0, X1]6,]a-

Proof. The proof is the same as for the point (b) of the previous Theorem
if we take g(z) = f(0o(1 — 2) + 012). O

2.4. Another definition of interpolation spaces;
Real interpolation space

In this section we introduce methods of the real interpolation. We
present facts without proofs only. We refer to the papers of A. Lunardi [29],
H. Triebel [40] or L. Tartar [37] for more details.
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2.4.1. The K-method

Let X and Y be Banach spaces with Y C X, so that there exists ¢ > 0
such that
lylx <cllylly, forallyeY.

We describe briefly the construction of a family of intermediate spaces be-
tween X and Y, called real interpolation spaces, and denoted by (X,Y ),
(X,Y)p, with 0 <0 < 1,1 < p<oco. We follow the so called K-method.
Throughout this section we set é = 0.

Definition 2.4.1 (Definition 1.2.1 in [29]). For every z € X and ¢ > 0, set

K(t,2)= K(t.0,X,Y) = in (lallx +1]ply)
aeX,bey

From Definition 2.4.1 it follows immediately that for every ¢ > 0 and
x € X we have

(i) min{l,t}K(1,z) < K(t,z) < max {1,t} K(1,x),

(i) K(t,2) <[lz]x. (2.6)

Definition 2.4.2 (Definition 1.2.2 in [29]). Let 8 € (0,1], p € [1, 0], and
set

(X,Y)op = {z € X:ult) =t 2Kt z) € LP(0,00)},
(X,Y)p={z € X: lim tK(t,z) =0},

and X
_g—1
[zllop = It » K (t,2)l| Lr(0,00)

It is easily seen that the mapping « — ||z[/g, is a norm in (X,Y)g .
Since t +— K (t,z) is bounded, it is clear that only the behaviour near ¢t = 0
of t "9 K (t, r) is significant in the definition of (X,Y)s, and (X,Y)y. Indeed,
one could replace the half line (0, c0) by any interval (0, a) in Definition 2.4.2,
obtaining equivalent norms.

For § = 1, from the first inequality in (2.6) (i), we get

(X,Y)l = <X7Y>1,p:{0}7 p < oQ.

Therefore, from now on we shall consider the cases (6,p) € (0,1) x [1, o]
and (0,p) = (1,00).
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If X =Y, then K(¢,2) = min{1,¢}||z||. Therefore, as one can expect,
(X, X)gp=(X,X)1,00 =X for § € (0,1), p € [1,00], and

1
1 »
lellocsre, = (g ) lellx, 6 (0.1)p € [Loc)
2/l (x,x)5.0 = lzllx, 6 €(0,1].
Some inclusion properties are stated below.

Proposition 2.4.3 (Proposition 1.2.3 in [29]). For § € (0,1), 1 < p; <
< po < 00, we have

Y C (va)e,pl - (Xv Y)@,pg c (Xa Y)9 - (X> Y)G,oo - Y.
For 0 < 0y <60y <1 we have
(Xv Y)QQ,OO C (X7Y)91,1'

Proposition 2.4.4 (Proposition 1.2.4 in [29]). ((X,Y)sp, |- |lop) is a Ba-
nach space.

Corollary 2.4.5 (Corollary 1.2.5 in [29]). For 6 € (0,1], (X,Y)p is a Ba-
nach space endowed with the norm of (X,Y ) oo-

Proposition 2.4.6 (Corollary 1.2.7 in [29]). For 6 € (0,1), p € [1,00] and
for (0,p) = (1,00) there is a constant ¢ > 0 such that

—0 0
lyllop < cllyllx *lvly, vey.

Now we present the definition of the space Jy

Definition 2.4.7 (Definition 1.2.2 in [29]). Let 6 € [0,1]. A Banach space
FE such that Y C F C X is said to belong to the class between X and Y if
there is a constant ¢ such that

—0 0
lzlle < cllzllx =]y, = €Y.
In this case we write E € Jyp(X,Y).

Below we inmtroduce some important examples.

Example 2.4.8 (Proposition 1.1.2 in [29]). Let k, m be positive integers
such that £ < m. Then:

(i) CF(R,X) belongs to the class Jx between C(R, X) and CJ"(R, X);
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(ii) C*(R™) belongs to the class Jx between C(R") and C™(R");
(iii) if © is an open set in R” with uniformly C™ boundary, then C*()

belongs to the class Jx between C(2) and C™(£2).

The statement of Proposition 2.4.6 can be rephrased by saying that every
(X,Y)g pbelongs to Jp(X,Y). In particular, (X,Y);, belongs to Jy(X,Y).
Later we will see that in fact space E belongs to the class Jyp(X,Y) if and
only if (X,Y ) is continuously embedded in FE.

2.4.2. The trace method

We describe now another construction of real interpolation spaces, which
is one of the most common in the literature and which will be useful for
proving the other properties.

Definition 2.4.9 (Definition 1.2.8 in [29]). For 6 € [0,1), p € [1, o], set
V(p? 97 Y? X) =

= {u: Ry — X|ug =t pult) € LP(0,00;Y),vp = t° 72 () € LP(0, 00; X) 1,
with
lully po,v,x) = ol Lr 0,007y + 1V6ll Lr(0,00:%)-

Moreover, for p = oo we define a subspace of V (00, 6,Y, X) by
Vo(00,0,Y,X) = {u € V(c0,0,Y, X): lim|[t%u(t)||x = lim ||t/ (t)|y = 0}.
t—0 t—0

It is not difficult to see that V(p,0,Y, X) is a Banach space endowed
with the norm || - [|y(,6,v,x), and that Vp(oo,0,Y, X) is a closed subspace of
V(00,0,Y, X). Moreover, if § < 1, any function belonging to V' (p,0,Y, X)
has a X-valued continuous extension at ¢t = 0. Indeed, for 0 < s < ¢ from
the equality u(t) — u(s) = fst W' (o) do, for p € (1,00), it follows

u(t) —u(s)||x < </: (% (@) dojo ’ </St . d0>é

< Nully oy la(1 — 0)] 71 (1900 — s20-0)y3.

with ¢ = %. By using similar argumentation, we see that if p = 1 or p = o0,
then u is Lipschitz continuous (respectively, (1 — 6)-Holder continuous) near

t=0.
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In this section we shall use the Hardy-Young inequalities, which hold
for every positive measurable function ¢: (0,a) — R, a € (0, 00], and every
a>0,p>1:

() Joeeor (fg o(s) ds/s)” dt/t < & [ s7oro(s)P ds/s 2
(i) [y toP ([ o(s) ds/s)" dt/t < < Jo s*Pp(s)P ds/s

We shall use the following consequence of inequality (2.7) (i).

Corollary 2.4.10 (Corollary 1.2.9 in [29]). Let u be a function such that
1

t > ug(t) = t" vu(t) belongs to LP(0,a; X), with a € (0,00], 6 € (0,1) and

p € [1,00]. Then also the mean value

1 t
u(t) = / u(s) ds, t>0
tJo
-1
has the same property, and setting vg(t) = teTU(t) we obtain

1
HUQHLP(O,CL;X) < 1— HHUQHLP(()@;X)-

With the aid of Corollary 2.4.10 we are able to characterize the real
interpolation spaces as trace spaces.

Proposition 2.4.11 (Proposition 1.2.10 in [29]).
For (6,p) € (0,1) x [1,00] U{(1,00)}, (X,Y)g, is the set of the traces at
t — 0 of the functions in V(p,1 —0,Y, X), and the norm

Hng:p = inf{HuHV(p,l—G,Y,X): xr = u(()),u € V(p7 1- 97Y7X)}

is an equivalent norm of (X,Y )y . Moreover, for 6 € (0,1), (z,Y)q is the
set of the traces at t = 0 of the functions in Vo(oco,1 —0,Y, X).

By Proposition 2.4.11, if z € (X,Y )y, or € (X,Y)y, then x is the
trace at t = 0 of a function u belonging to LP(a,b;Y) N WiP(a,b; X) for
0 < a < b. A. Lunardi [29] states in Remark 1.2.11 that it is possible to
find a more regular function v € V(p,1—-0,Y, X) (or v € Vy(p,1—-6,Y, X)),
such that v(0) = z, which belongs to WP (a,b;Y) N W?2P(a,b; X).

By means of the trace method it is easy to prove some important density
properties.

Proposition 2.4.12 (Proposition 1.2.12 in [29]). Let § € (0,1). For

p € [1,00), Y is dense in (X,Y)pp. For p = oo, (X,Y)q is the closure
of Y in (X,Y )gp.
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In the previous section we have seen that every (X,Y )y, belongs to
Jo(X,Y). In particular, (X,Y ) belongs to Jg(X,Y). Now we can charac-
terize all the spaces in the class Jyp(X,Y).

Proposition 2.4.13 (Proposition 1.2.13 in [29]). Let 6 € (0,1), and let E
be a Banach space such that Y C E C X. The following statements are
equivalent:

(i) E belongs to the class Jo(X,Y),
(ii) (X,Y)o1 C E.

2.4.3. The Reiteration Theorem

We need some preliminaries about certain classes of intermediate spaces
between X and Y. We have introduced the class Jy in the previous section,
and we have shown that a Banach space F such that Y C E C X belongs
to Jo(X,Y) if and only if (X,Y)g 1 is continuously embedded in E. Now we
define another class of intermediate spaces.

Definition 2.4.14 (Definition 1.2.14 in [29]). Let E be a Banach space such
that Y C E C X, and let § € [0,1]. E is said to belong to the class Ky
between X and Y if there exists k& > 0 such that

K(t,x) <kt’|zl|lp, =€ E,t>0

In other words, E belongs to the class Ky if and only if it is continuously
embedded in (X,Y )y . In that case, we write £ € Ky(X,Y).

By Definition 2.4.14 and Proposition 2.4.13, a space E belongs to
Ko(X,Y)N Jp(X,Y) if and only if

(X,Y)o1 CEC (X,Y)p,00-

Now we are able to state the Reiteration Theorem.

Theorem 2.4.15 (Theorem 1.2.15 in [29]). Let 0 < 6y < 0; < 1. Fix
0 € (0,1) and set w = (1 —0)0y + 001. The following statemants hold true.

(i) If E; belongs to the class Ky, (i € {0,1}) between X and Y, then
(EO)E].)@,p g (ny)wpv forpe [1700]7 (EO)E].)@ g (Xay)w
(ii) If E; belongs to the class Jy, (i € {0,1}) between X and Y, then

(Xa Y)w,p C (EOaEl)G,pa fOTp € [1,00], (Xa Y)w(E07E1>9-
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Consequently, if E; belongs to Kp,(X,Y) N Jp,(X,Y), then
(E0>E1)9,p = (X7 Y)w,pa forp € [1700]7 (EO>E1)9 = (va)wa

with equivalence of the corresponding norms.

Remark 2.4.16 (Remark 1.2.16 in [29]). By proposition 2.4.3, (X,Y)s,
and (X,Y)g belong to Ko(X,Y) N Jy(X,Y) for 6 € (0,1) and p € [1,0].
The Reiteration Theorem yields

((X7Y)6’0,QO7 (Xa Y)917(11)9,p = (Xv Y)(179)90+901,P’

(X, Y )y, (X, Y)gy )0 = (X, Y) (1-6)00-+061 >

(X, Y)a0,0: (XY )01)op = (X, V) (1-0)00+001 5
for 69,0; € (0,1), p,q, 90,1 € [l,00]. Moreover, since X belongs to

Ko(X,Y)N Jo(X,Y) and Y belongs to Ki(X,Y) N Ji(X,Y) between X
and Y, then

((X, Y)Go,qv Y)Q,p - (X7 Y)(170)90+091’ ((X7 Y)907 Y)9 - <X7 Y)(170)90+97

and
(Xa (X7 Y)91,q)9,p = (X, Y)9197p (Xa (Xa Y)91)9197

for 0790701 € (071)7 p,q € [1,00]

2.4.4. Some examples

We will provide here the examples of some important interpolation spaces.

Theorem 2.4.17 (Theorem 1.2.17 in [29]). For 6 € (0,1), m € N, it holds
(C(R™),C™(R™))p,00 = C™(R™),

with equivalence of the respective norms.

Corollary 2.4.18 (Corollary 1.2.18 in [29]). For 0 < 0; < 6, 0 € (0,1) it
holds
(C(RY), €O (R")) 0 = CO 01020 ().

Theorem 2.4.17 and Corollary 2.4.18 yields the characterization of other
interpolation spaces between spaces of functions defined in arbitrary smooth
domains.
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Corollary 2.4.19 (Corollary 1.2.19 in [29]). Let 0 < 61 < 6 and o € (0,1).
If Q is an open set in R™ with uniformly C% boundary, then

(091 (ﬁ)’ 002 (ﬁ))moo _ 091—1-0(92—91)(@)’

with equivalence of the respective norms, and if 61 + o(f2 — 01) is not an
integer, then
(C*(Q),C%(Q)), = KO0 (Q).



Chapter 3

Infinitesimal generators of semi-groups

In this chapter we consider infinitesimal generators of bounded semi-groups
and analytic bounded semi-groups. The results are taken from the papers
of H. Komatsu [23]| and [24].

3.1. Infinitesimal generators of bounded
semi-groups

Throughout this section we assume that (X, || - ||) is a Banach space and
{T}}+>0 is a bounded strongly continuous semi-group of operators in X and
—A is its infinitesimal generator:

T: = exp (—tA), ||T]] < M.
A is an operator of type (5, M (0)).
Definition 3.1.1. Let 0 < 0 < m where ¢ € R and m € N and let
p € [1,00]. We denote by Cp,, = Cp,,(A) the set of all elements x € X

such that
t7 (I —-Ty)"x € LP(X). (3.1)

As is easily seen, Cp,, is a Banach space with the norm
lzlleg,, = il + 11877 = Te)™ || e (x)-
Since (I — T3)™ is uniformly bounded, condition (3.1) is equivalent to the
fact that t=7(I — T3)™z belongs to LP(X) near to origin.
Proposition 3.1.2 (Proposition 4.2 in [24]). If z € CF,,, then x belongs to
D(A?) for all 0 < Rez < o and
1
Kz,m

oo
Afr = / t* Y I -T)™z dt, 0<Rez<o
0
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where ~
Kom = / N1 —eTH™ at.
0
Theorem 3.1.3 (Theorem 4.3 in [24]). CF,, coincides with Dy with equiv-
alent norms.

Theorem 3.1.4 (Theorem 4.4 in [24]). Let 0 < Rez < m. If there is
a sequence €j — 0 such that the limit

y = lim
J—=00 Ny m

o0
/ YT - T)™x dt
€j

exists in a weak topology in X, 1.e. the topology generated by all linear
continuous functionals on X, then x € D(A?) and y = A*x.

Conversely, if v € D(A?), then

A%z = lim 1
e—0

/ YT = T)™x dt

z,m Je

exists in strong topology in X.

3.2. Infinitesimal generators of bounded analytic
semi-groups

Let (Ti)i>0 be a semi-group of operators analytic in a sector
largt| < § — w, w € [0,%), uniformly bounded in each smaller sector
largt| < § —w —¢, € > 0. We call such a semi-group a bounded analytic
semi-group.

It is known that the negative of an operator A generates a bounded
analytic semi-group if and only if A is of the type (w,M(#)) for some
w € [0,%). A bounded strongly continuous semi-group 7; has a bounded
analytic extension if there is a complex number z with Rez > 0 such that

ATy < Ct™R= >0 (3.2)

with a constant C' independent of ¢. Conversely, if T} is a bounded analytic,
(3.2) holds for all Rez > 0.

Definition 3.2.1. Let 0 < 0 < Rez; and p € [1,00]. We denote by
B?. = BY, (A) the set of all z € X such that

p;z1 p,z1

tReA=T AT 0 e [P(X).
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BJ ., is a Banach space with the norm

| Bg..,

= [l + [[£7* 77 A% Ty 1 )

Proposition 3.2.2 (Proposition 5.2 in [24]). Let 0 < Rez < . Then every
r € By, belongs to D(A®) and

z 1 > z1—2—1 gz
Ap=—— | plgarg gt
[(z1—2) Jo

where the integral converges absolutely.
Theorem 3.2.3 (Theorem 5.3 in [24]). B

g
p;z1
P
ular, By , s independent of z1.

coincides with Dy . In partic-

Theorem 3.2.4 (Theorem 5.4 in [24]). Let 0 < Rez < Rez;. If

1 o L
_ 1 z1—2—1 g21
y= sljlg(] F(Zl — Z) / t ATy dt

exists in a weak topology, i.e. the topology generated by all linear continuous
functionals on X, then x € D(A?) and y = A*z. If x € D(A?), then

1 oo
A%z = lim / trF AR T dt
e—0 F(Zl — Z) €

exists in strong topology in X.






Chapter 4

Scales of Banach Spaces

To start with a simple example let us consider first a Hilbert space H
with a countable base supplied by a selfadjoint operator.

Let H be a real separable Hilbert space and A: D(A) C H — H be an
unbounded, closed, positive selfadjoint, linear operator with compact resol-
vent. Let 0(A) = {\, }nen be the non-decreasing sequence of the eigenvalues
of A counted with their multiplicity, converging to +oo, with Ay > 0, and let
{en}nen be a Hilbert basis of eigenvectors of A; so that Ae, = Ape,. Thus

oo
the spectral representation of A is given by: if u = > upe, € D(A) C H
oo

n=1
then Au = > Ayupe, € H and
n=1
D(A) = {u €eH:u= Zunen and Z A2 un]? < oo} ;
n=1 n=1

for more details see K. Yosida [41].
A. Rodriguez Bernal in his paper [32] constructs the fractional powers of
such operator A (see chapter 1) and gives their following characterization.
For a € [0, 00) we denote

oo o0
X% = {u €EH:u= Zunen and Z A2 s |* < oo}

n=1 n=1

and A%: D(A%) = X* — X% = H is defined by

A% = i Aupen, if wu= iunen € D(AY).

n=1 n=1
The expression

1
00 2
lulla = [[A%ullr = (Z \/\n|2“|un|2>

n=1

defines a hilbertian norm in X¢.
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Domains of the operators A%, « > 0 can be considered in more gen-
eral framework. Let a € R. We define X% as the linear space of real se-

oo
quences T = (Zp,)nen such that > |\, [>**|x,|? < 0o, endowed with the norm
n=1

0 2
Izl = <21 \)\n|2°‘|xn|2> . We can observe that when « > 0, then there
n=

exists an isometry between the spaces (X%, | - ||o) and (X%, | - [lo). To
simplify, both X< and X% will be denoted as X®. Now our aim is to present
basic properties of the spaces X¢.

Proposition 4.0.1.

(1) (X |- |la) is a Hilbert space for every a € R.
(i) If a« > B, then X C X® with continuous (compact if & > B) and dense
mjection.
(i) If o, B € R and 0 € [0,1], then for every x € X7 where v = max («, 3),
we have

01,.]1-0
[2llpara-0ys < lllallzlz™.

The proof of this Proposition can be found in A. Rodriguez Bernal [32],
p- 6.

A sequence of the space satisfying properties (i)—(iii) is called a scale of
Hilbert spaces. In this chapter we will construct a scale of Banach spaces
which will have the same properties.

4.1. Inductive Limits and Projective Limits
of Sequences of Banach Spaces

Let {(En, || - |ln): n € No} be a sequence of Banach spaces such that
E, C Epy for all n € Ny and the embeddings are all continuous, i.e. for
each n € Ny there exists a constant M,, > 0 such that

lullns1 < Mp||ulln, forall u € E,. (4.1)

In this case there always exists a corresponding sequence of new norms | - |,
on E, which are equivalent to ||-||, respectively and which are monotonously
decreasing, i.e.

[t|nt1 < |uln, uw€ E,,n € Np. (4.2)
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Indeed, it is enough to set

{ o =1l (43)

| lnt1 = m” g1, neN

Therefore in the sequel of this section we always assume the monotonicity
of the sequence of norms || - ||,

On the vector space E* = |J E, the locally convex inductive topology
n€eNp

Tinda is imposed; a balanced convex U in ET is a neighbourhood of zero
n (ET, Twa) if UN E, is a neighborhood of zero for all n € Ny. In gen-
eral, topological properties of a subset G in E cannot simply be reduced
to the corresponding properties of the set G N E,, in E, (n € Ng). For
instance, 5. M. Maxkapos [30], p.172, has given various examples of induc-
tive limits in which bounded set in (E™, Ti,q) is not bounded in any of the
spaces (Enp, || - ||n), or even not situated in any of them. However, there
exists a condition which ensures that a set G is contained and bounded in
(E*, Tina) if it is bounded in some E,, (ng depends on G); such a sequence
{E,: n € No} or its inductive limit £ is said to be regular.

Example 4.1.1 (IIpumep 1 in [30]). Let X, be the space of all sequences
(@i,5)i,jen fulfilling the conditions:

(a) viE{n-{—l,n—‘,—Q,...} aaiER lim Tij = Qj.
j—o0

(b) lim 724 =0, i€ {1,2,...,n}.
J

oo 117

We can define the norm in the space X, by

— = —_— h o= 7
], = llz(ln b e Vhere e 1 for i > n.

It is easy to see that (X, || - |l») is a separable Banach space for all n € N
and
Xn - Xn-l—la n € N.

Let X+ = ind,,—s0 X, be inductive limit of spaces X,,. Observe that the
topology in (X, Tiuq) is not weaker than the topology coming from the

|1
norm ||z|| = sup T2
ijen 't

Consider the sequence A = (X(k’n))k,neN where

—1 while j =2m,i <n,m <k,

(kyn) _ (kn)y (k) _
X (Xm )WGN’ where XW { 1 in anothers cases.
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Observe that A C X; and || X*™)|; =1 (k,n € N), so A is bounded in X,
and is bounded in Xt. Let

(n) _ (M) (n) _ —1 while j =2m,i <n,
Y (yU )ijen Yij 1 in anothers cases.

We have 4™ € X,, and taking into consideration that lim yfln.) does not
Jj—o0

exist, we can see y(™ ¢ X,,_;. Next we have || X(F) —y(m)|| = 2

— 0.
2k+3 k—o0

Thus X () k;—> y™ in X* and the sequence B = (y(™),¢cy is contained
—00

in a closure of the bounded sequence A in Xt (B C cly+A), therefore
bounded in Xt. Whereas y(™ ¢ X,,_1, sequence B is not included in none
of the spaces space X,,. Thus the inductive limit X is not regular.

Theorem 4.1.2 (Theorem in [14] and Theorem I.1.1 in [19]). Let K,, be
the unit closed ball in E,. If for all sequences {e,,: m € Ny} of positive
n
numbers and for all n € Ny, sum > e, Ky, is closed in E,i1, then the

m=0
inductive limit E+ = ind,,_soo E,, is Teqular.

Proof. Let A C ET be T-bounded and not 7,,-bounded for all n € N.

Assume that for all n € N there are ¢, > 0 and z,,, € A, m € {1,...,n}
with
1 n
— Ty K = Uy, 1,...,n}. 4.4
— ¢;5 Up, me{l,....n} (4.4)

Then, because U,, C Up+1, (4.4) holds for all m,n € N:

1 oo
—4dm U = Un, N
T ¢ U m €

n=1

A nonempty T-neighborhood of zero is contained in U and (%xm)meN
T-converges to zero (A being 7-bounded). A contradiction is established.
Thus (e,,) and (x,,) with (4.4) will be constructed: A ¢ K7, so there is an
x1 € A\ K1, €1 := 1. Proceeding by induction, assume that n € N, ¢,,, > 0
and x,, € A with

1 n
— Ty ¢ E el =U,, m<n
m

i=1
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are given. By the assumption of the theorem, U, is closed in E,;1; then
%xm € En41 \ Uy, which is open. Therefore, there exists an opened neigh-
borhood V with %xm —V C E,q1\ U, and there exists €,,+1 such that
Em+1Knt1 CV, thus

1
E«’I;m ¢ Un+ent1Kny1 =:Upp1, m<n

(2 need not be elements of F,,;1). Since Uy,41 is bounded in E, 11, the set
A is not contained in (n+1)U,11, what implies the existence of an z,+1 € A
with

1 n+1
it ¢ Upy1 = ;&Kz O

As a consequence of the idem theorem we have the following corollaries.

Corollary 4.1.3 (Corollary 1 in [14] and Corollary 1.1.1 in [19]). If there
exists a semireflexive locally convex space F' and an injective continuous
operator T: E* = ind,, oo B — F such that TK,, is closed for all n € Ny,
then space ET is regular.

Proof. All TK,, are o(F, F*)-compact and because of

they are closed in particular: T being injective and continuous yields that
the application of the Theorem 4.1.2 applies. O

Corollary 4.1.4 (Corollary 2 in [14] and Corollary 1.1.2 in [19]).
Let (Fy, |- |ln) be a sequence of reflexive Banach spaces such that F,, 11 C F),
for alln € N and for alln € N

[ulln < Nlullntr, v e F.

Then the inductive limit of the sequence of dual spaces E,, = F is regular.

Proof. Under our assumption F, is a Banach space with the norm | - ||},
such that F, C E,1q and for all n € N

Nullrer < llull,, w€ Ey.

The unit ball K,, in E, is o(E,, Fy,)-compact and the inclusion map is
o(En, F,) — o(En+t1, Ft1) continuous, so K, is o(Fy41, Fj41)-compact
and closed. O
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As a consequence of Corollary 4.1.4 we can prove what follows:

Corollary 4.1.5. Inductive limit of a sequence of locally convex spaces with
weakly compact inclusion is regqular.

Proof. Proof of this corollary is based on previous Floret’s Corollary and on
the Grothendieck’s Lemma:

Lemma 4.1.6. Assuming K be a balanced, convex, weakly compact sub-
set of a locally convex space E, then there is a Banach space B such that
lin(K) = B’ isometrically and lin(K) = B — E is o(B',B) — o(E,E’)
continuous.

In this Lemma lin(K) denotes linear hull of a set K equipped with the
Minkowski norm m 4. ]

Another proof of this corollary, not based on the results of K. Floret, can
be found among others in H. Komatsu [25|, Theorem 3, p.372.

If the inductive limit £ = ind,,_o E), is regular, then it easily follows
that E is bornological and barreled. In addition, if an interpolation-type
inequality is satisfied, then we can also characterize converging nets or se-
quences, Cauchy nets or sequences and compact sets in E* and consequently
obtain the completeness of E+.

Theorem 4.1.7 (Theorem 1.1.4 in [19]). Suppose that the inductive limit
E™ is reqular and that ET is continuously embedded in some Banach space
(E,|| - |). Assume that for each n € Ny there is k > n and a function
G RT X RT — R such that the interpolation inequality

lully < Enr(llulln, lull),  we En (4.5)

holds. Additionally assume function ¢y, i, is monotone in each of its variables
and such that ¢p 1 (t,s) = 0 as s = 0 for each fized t. Then we have

(i) A set {un: o € I} in ET converges (to zero) in ET if and only if it
converges (to zero) in some E,.
(i) A set {un: « € I} in Et is a Cauchy net in ET if and only if it is
a Cauchy net in some E,.
(iii) A subset G in ET is compact if and only if it is compact in some E,
(the same is true for relative compactness.)
(iv) E* is complete.
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Proof.

(i)

(i)
(iif)

Assume that a set {uy: a € I} converges to zero in ET. Then it is
bounded in E* and the regularity of inductive limit ET implies the
existence of some n € Ny such that {uy: a € I'} C E,, and |lua|| < M,
for all a € I where M, is a positive constant. On the other hand, the
continuity of embedding from ET into F ensures that the net converges
to zero in E, i.e. |lug]| — 0. Then, by assumption, there exists some
k > n and a function ¢y, j such that (4.5) is satisfied. In particular

uallr < d)n,k(HuaHm uall) < ¢n,k(Mn7 uall),

from which follows that ||uq|| — 0. The converse is trivial.

The proof is entirely similar to that of (i) and is omitted.

Let the subset G be compact in ET. In particular it is bounded in E*
and the regularity of inductive limit implies the existence of some n € Ny
such that G C E,, and |lu|| < M, for all u € G, where M, is a positive
constant. By our assumption we can choose some k > n such that (4.5)
is valid. Then for a given sequence {u,,: m € I'} C G, the compactness
of G in E* implies the existence of a subsequence {u,,,} — v € G in
E* and hence in E, i.e. ||u, —v| — 0 as m’ — co. From

[ = vllk < Gnp(l[tm = Vllns ([t = v]]) < G,k (2Mn, [[um = vl]),

can be followed directly that {u,,»} — v in Ej. This shows the sequential
compactness of G in Fj, which is however equivalent to the compactness
in the Banach space Ej. The converse is trivial.

Take a Cauchy sequence {u,: n € N} in ET. Then, from (ii) it is
a Cauchy sequence in FE, for some n € N and, because E, is a Ba-
nach space, converges in E,. Applying (i), we have that {u,: n € N}
converges in ET. O

Remark 4.1.8. In the papers of K. Floret [15] and U. Sztaba, W. Kierat [22],
the authors introduce another way to construct inductive limits. They as-
sume that spaces in the sequence are locally convex linear-topological Haus-
dorff spaces. They prove additionally that the inductive limit can be com-
plete under weaker assumptions than ours.

In analysis we meet projective limits as well as inductive limits of Banach

spaces. However, the theory of projective limits of Banach spaces is much
simpler and more “classical” than that for inductive limits. For completeness
and easier citation we state the following standard results on projective limits
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of Banach spaces, the proof of which is straightforward and can be found
in standard textbooks on functional analysis and generalized functions (for
example I. M. Gel'fand, et al. [16]).

Let there be given a sequence of Banach spaces {(Fy,| - ||n): n € No}
such that Fj, 11 C F, for all n € Ny and let all the embeddings be continuous,
i.e. assume that for each n € Ny there exists M,, > 0

lulla < Maljullns1, u € En. (4.6)
If we set N o
0 — 0,
4.7
{|-|n+1=M1...Mn||-HnH, ne N, )
then each of the new norms | - |, on F, is equivalent to the original || - ||,

and they are monotone increasing:
[“In <+ lnt1, 7 €No. (4.8)

Let us assume F~ = [\ F, to be non-empty and equip F'~ with locally con-
neNp
vex topology  Thoj genmerated by the sequence of norms

{I - ln: n» € No}. A neighbourhood of zero U, . is defined by a positive
integer p and € > 0, and consists of all uw € F'~ which satisfy the p inequalities
llulh < e, [Jull2 <e, ..., |lullp < e, which is equal to the set of all u € F'~
satisfying ||ul[,. We can introduce a metric in space F'~ by

plu) = 3 gl

n —
=2 1+ lu— vl
The distance p is invariant with respect to a translation and defines a topol-
ogy in I~ which is identical with the original topology.

Proof. First, take U, , with n € N and n > 0. Take € € (0,1) such that
1= <nandr < 5. We will show that K,(0,7) C Uy,,. Take u € K,(0,r),

then L _luln <71 < 57 and Jull, < li—s <1

27 1+|lulln
Next, take r > 0. Then, because of the sequence 2% — 0, there exists
oo
keNsuchthat%i% ..,2k> . We have ) %S% TakeuEUké.
i=k+1
k . 00 k
Then p(0,u) < Z % “ + Y 5 < Z 55 + 4 < 7. This shows that

i= k+1 i=1
Uk,g - Kp(O,T'). [
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Then we conclude:
Theorem 4.1.9 (Theorem I1.1.5 in [19]).

(i) A sequence {u,: n € No} in F~ converges (to zero) in (F~, Tproj) if and
only if it converges (to zero) in all the spaces F,.
(i) A sequence {un: n € No} in F~ is a Cauchy sequence in (F~, Tproj) if
and only if it is a Cauchy sequence in each of the spaces F,.
(i) A set G in F'~ is compact in (F~, Tproj) if and only if it is compact in
each of the spaces F,,. The same applies to relative compactness.
(iv) F~ is a Frechét space.

Proof. (iv) Suppose that (um)men is a Cauchy sequence in F'~. From (ii),
() men is a Cauchy sequence in each F, and has a limit (™ in each
of these spaces. Within the view of the F;,, C F},_1, all of the elements
u(™) (n € N) are, in essence, the same element, which, therefore, belongs
to each of the Fi,, so belongs to F'~. Let us denote this element of F'~

by u. Since ||ty — ull, — 0 for every n € N we have u = lim w, in
m—00 n—0o0

the topology of F'~. Thus, F'~ is a complete space. O

Now we proceed to characterize the continuous mappings between spaces
which are inductive limits or projective limits of sequences in Banach spaces.

Theorem 4.1.10 (Theorem 1.1.6 in [19]). Let {(Ep,| - ||g,): n € No} and
{(Ens |l - l5,): n € No} be two sequences of Banach spaces with inductive

limits EY and ET respectively, and let E* satisfy the condition in The-

orem 4.1.7. Let {(Fn, || - [|r,): n € No} and {(Fy,| - |z ): n € No} be
two sequences of Banach spaces with nonempty projective limits F~ and F~
respectively.

(a) For a linear mapping T: ET — E* the following conditions are equiva-
lent:

(i) T is continuous.

(i1) If a sequence {um: m € No} is contained and converges (to zero)
in E, for some n € Ny, then {Tu,: m € Ny} is contained and
converges (to zero) in some Ej.

(iii) For any n € Ny there exists an 1 € Ng and a constant My > 0
such that

[Tullg, < Mugllullg,, u€ En. (4.9)

(b) For a linear mapping T: F~ — F~ the following conditions are equiva-
lent:
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(i) T is continuous.
(ii) If a sequence {um: m € Ny} converges (to zero) in each Fy, then
{Tu,: m € No} converges (to zero) in each Fj.
(iii) For any n € Ng there exists an n € Ny and a constant My 5 > 0
such that
ITully, < Mosllulls,, weF.

(¢) For a linear mapping T: EY — F~ the following conditions are equiva-
lent:
(i) T is continuous.
(i1) If a sequence {umy,: m € Ny} is contained and converges (to zero) in
E,, for some n € Ny, then {Tu,,: m € Ny} converges (to zero) in
all the spaces Fy, (k € Np).
(iii) For each n,k € Ny there exists a constant My, > 0 such that

HTU’HFk < Mn,k

lullg,, ué€ E,.

(d) For a linear mapping T: F~ — ET the following conditions are equiva-
lent:
(i) T is continuous.
(ii) If a sequence {um,: m € Ny} converges (to zero) in all the spaces
F,, (n € Ny), then {Tup,: m € No} is contained and converges (to
zero) in some Ej,.
(iii) There exists a n,k € Ng and a constant M, > 0 such that

| Tu|g, < Mykllu|lp, weF™. (4.10)

Proof. As in all the four cases the proofs are similar, we focus on the proofs
of (a) and (d) only.
(a) First we prove the case of (a).
(i) = (ii) is trivial.
(ii) = (iii) Suppose that there exists an n € Ny such that
sup |[|Tul|z = o0, i€ No.

lull 2, =1

Then, for each i € Ny we can find a sequence {u;;: j € Np} such
that
luijllp, =1 and  |[Tuyllz > 5% j € No.

Form the diagonal sequences {T'u;;: i € No} and {u;;: n € No}. We
have for each j € Ng and ¢ > j

I Twiill g, > 1 Twiil , =
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and consequently

)l

J

— 00 as ¢ — oo for each j € Ny.

However
|

1 )
- =—-—=>0asi— co.
)

E, 7

The two relations above contradict with the statement in (ii). Thus
we have proved the equivalence of (ii) and (iii).

(i) = (ii) If a sequence {up: m € Ny} is contained in some E, and
converges to zero there, then it converges to zero in ET and from
the continuity of 7" it follows that {Tu,,: m € Ny} converges to zero
in E*. Theorem 4.1.7 (i) ensures the existence of some 72 € Ny such
that {Tu,,: m € Ny} is contained, and converges to zero, in Ej.

(iii) = (i) Let us consider the restriction of T' to the subspace E,
(n € Np). For a sequence {uy,: m € Ny} lying and converging
to zero in E,, since there exists an 7 € Ny such that (4.9) holds,
{Tup,: m € Ny} converges to zero in Ej and therefore in ET. Thus
all the restrictions are continuous. Now let U be a convex neigh-
borhood of zero in ET. Obviously T-(U) is convex in E* and
E,NT YU) = (T|g,)*(U) is a neighborhood of zero in E,. So
T~1(U) is a neighborhood of zero in E* and T is continuous.

(d) Now we prove the case (d).

(iii) = (ii) is obvious.

(ii) = (ili) Suppose that there is no pair of n and k such that (4.10)
is valid. Then for any n,k € Ny we can find a sequence
{tnk,j: 7 € No} in F~ such that

tngille, =1 and |Tunp,llm, > 52, for all j € N.

Now we form a sequence {v;: j € Ny} with v; = u;;;. For each
n € Ny we have

vj
J

; 1
v—,] =—, forall j >n.
J F; J

<
Fp

For each k € Ny we have

SIS

>j forall j >n.

Ej
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The above readily lead to the conclusion that

Yj
J
()

J
which is a contradiction to the statement in (ii).

(iii) = (i) is obvious.
(i) = (ii) follows from the Theorem 4.1.7 (i). O

—— 0 foralln € Nyg
F, J7©

—— oo forall k € Ny
B, j—o0

Corollary 4.1.11 (Corollary 1.1.7 in [19]). In each of the four cases in the
Theorem above, a linear operator T is continuous iff it is bounded, i.e. it
maps bounded subset into bounded subset.

Corollary 4.1.12 (Corollary 1.1.8 in [19]).

(Y = E, (F)y = Fr

n€Np n€Ng
Corollary 4.1.13 (Corollary 1.1.9 in [19]).

(a) IfET = Et are vector spaces, then the following are equivalent:

(i) ET = E™T as topological vector spaces and both Et, ET satisfy the
mentioned condition in Theorem 4.1.10.

(ii) If a sequence {uy,: m € No} is contained and converges (to zero) in
some E,, so it does in some E; and vice versa.

iii) For any n € Ny there exists some n € Ny and a positive constan

iii) F Yy Ny th st en €N d 17) tant
M, 7 such that T maps E, into E; and

lullg, < Muallullg,, & En,

and vice versa.
(b) If F~ = F~ are vector spaces, then the following are equivalent:
(i) F~ = F~ as topological vector spaces.
(ii) If a sequence {un,: m € No} converges (to zero) in each of the spaces
F, (n € Ny), then it is convergent in each of the spaces F5 (7 € Np).
(iii) For any n € Ny there exists some n € Ny and a positive constant
M, 7 such that

lull . < Myallullr,, weFT,

and vice versa.
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4.2. Regular Spaces and Hyper-spaces

Let (X,| - ||) be a Banach space and let B be a linear operator of the
type (w, M(0)) in X which resolvent contains 0.

Definition 4.2.1 (Definition .2.1 in [19]). Let o € (0, 00).

L Xp = (D(B),| - llo.B), where |luloz = [[B7ul for u € D(B%);
Xp = (X -1
| - llo,B is often abbreviated as || - ||,.
2. X357 is the completion of (X, || - ||=5,B), where
[ull-0,5 = llull-o = |1 B™ul|
for u € X.

Proposition 4.2.2 (Proposition 1.2.2 in [19]). The scale of spaces
{X%: 0 € R} is a scale of Banach spaces. For any 7 > o > 0 we have
the relation

XpCX3CXCX5" CXym

where every smaller space 1s densely and continuously embedded into any
bigger one.

Having a scale of Banach spaces {X%: 0 € (—00,400)} we can construct
its inductive limits and projective limits.

Definition 4.2.3 (Definition 1.2.3 in [19]).

1. For 0 € (—o0,00], X3~ = () X with a projective limit topology;
<0
XFm =X7.
2. For ¢ € [~00,00), X%t = |J X% with a inductive limit topology;
>0

(—00)+ _ y=
X5 = x>

We shall remark, because of Proposition 4.2.2 above, the inductive limits
and projective limits are well defined for any sequence of Banach spaces with
monotonic indices converging to their righthand limits.

Proposition 4.2.4 (Proposition 1.2.4 in [19]). Among the Banach spaces
{Xg: 0 € R}, the inductive limits {XG: 0 € [—00,00)} and projective
limits { X3~ : 0 € (—00,00]}, the following relations hold (0 < 0 < T < 00)
Xy CXptCXpC XL CXZPCXECXE CXphCXp
XpC XY CXp7t CXp7C X7 CXZ T CX"C X7 CXp™.
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In this case each smaller space is densely and continuously embedded into
a bigger one except for X7

We omit a proof of this Proposition again only mentioning that X7
(1 > 0) is known to be dense in X7~ via the same procedure as we used to
prove that D(B7) is a core for B? (0 < o < 7).
The next two theorems clarify the topological properties of these spaces of
inductive limits and projective limits.

Definition 4.2.5. A barreled set in a topological vector space is a set which
is convex, balanced, absorbing and closed. A barreled space is Hausdorff
topological vector space where every barreled set in the space is a neigh-
bourhood of zero. A Montel space is a barreled topological vector space
where every closed and bounded set is compact.

Theorem 4.2.6 (Theorem 1.2.5 in [19]). Assume that either the Banach
space is reflexive or all the operators B~ (o > 0) are compact in X. Then
we have

1. All the inductive limit spaces XG* (0 € [—o00,+00)) are regular.

2. For any o € R a bounded net {us: a € I} in X% converges (to zero) if
and only if it converges (to zero) in some Xp, (T > o).

3. For any 0 € R a bounded net {uq: o € I} in X§' is a Cauchy net if
and only if it is a Cauchy net in some XF,, (T > o). All the spaces X]‘;J“
(o0 € R) are complete.

4. For any 0 € R a set G in X? s compact if and only if it is a compact
set in some Xf (T > o). The same is true for relative compactness.

5. Each of the spaces X}_’;r (o € R) is barreled and bornological; it is Montel
if and only if all the mappings B~7: X — X (7 > 0) are compact.

Proof. It is readily seen that for each ¢ > 0 the isometry operator
B77: X — X% extends uniquely to an isometry operator from X ;7 onto X
still denoted by B™7; its inverse extends B?: X% — X and is denoted by
B? again. In this way, via X, we have an isometric operator from X% onto
X5, denoted by B°~7, for each 0,7 € R.

(1) If the Banach space is reflexive, so is each X% (o0 € R). It is also
evident that B~7: X — X (7 > 0) is compact iff the inclusion mapping
from X% into X7 is compact. Then the regularity for each of the
inductive limit space X%t (0 € [—00, 00)) follows from Corollary 4.1.4
and the remarks following it.
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(2), (3), (4) are consequences of (1) and Theorem 4.1.7 since now we have
an interpolation inequality

0= =0
lull- < Clo,7,0)|[ul & [ul i (0 <7< 6)

which is just a corresponding property for fractional powers (see Theo-
rem 1.0.7). Here for fixed o we apply £ = X% in Theorem 4.1.7.

X%Jr is barreled and bornological since it is regular. If all the mappings
B7": X — X (7 > 0) are compact, then, equivalently, all the inclusion
mappings i: X% — X% (0 € R) are compact. Thus, if G is bounded and

closed in X%, then by (1) there exists 6 > o such that G is bounded in X$%.
0+o
Hence it is compact in X B% , and so it is in X]‘;r. This shows that X?’ is
Montel. Conversely, assume that Xf;“ is Montel for some o € R. For 7 > 0
and a bounded set G in X, B~(“t7)G is bounded is Xg”, and so it is in
X%". Since X% is Montel, B~(°*7)( is relatively compact in X, 2", By (4)
above there exists some 0 € (0, 1) such that B~(e+7)@G is relatively compact
in X%H7. This in turn is equivalent to B7H97 B~(e+7)G = B~(1=07G heing
relatively compact in X, and so is B-"G = B~°B~(1=9)7G_ This proves the
compactness of B~ for each 7 > 0. O

Theorem 4.2.7 (Theorem 1.2.7in [19]). Let o € (—o0,+00]. Then we have:

1. X7~ is a Frechét space.

2. A sequence in X7~ converges (to zero) if and only if it converges (to
zero) in each of the spaces Xp, (T < o).

3. A sequence in X7~ is a Cauchy sequence if and only if it is a Cauchy
sequence in each of the spaces X5 (T < o).

4. A set G in X7 is bounded (compact) if and only if it is bounded (com-
pact) in each of the spaces XJ, (1 < o). The same applies to relative
compactness.

5. X7~ is Montel if and only if all the mappings B~": X — X (7 > 0) are
compact.

If the Banach space (X, || - ||) and the operator B are replaced by the
dual space (X*, | - ||«x) and the dual operator B*, then we obtain another
scale of Banach spaces (X*)%. (0 € R) and their inductive limits (X*)%t
(0 € [-00,00)) and projective limits (X*)%. (o € (—00,00]). The norm of
(X*)%. is denoted by || - ||l+,B,s, sometimes abbreviated to || - [|«,,. There is
a natural duality relation between the two scales of spaces.
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Theorem 4.2.8 (Theorem 1.2.8 in [19]).
(X3) = (X")g7 and X§ — [(X*)57]* (0 > 0) isometrically via the duality
pairing (-, )o: Xg x (X*)57 = C

(u, f)o = (B%u, (B")"f), weXp,fe(X)p (4.11)
where (-,-) is the duality pairing between X and X*. If, furthermore, the

space X is reflexive, then X% = [(X*)57]" isometrically by the same duality
pairing (4.11).

Proof. For u € X% and f € (X*)57 we have

[{u, Flo| = [(B7u, (BY)"7 )| < [lullo]l £+~ (4.12)

Now let f € (X*)57 be given and set g = (B*)7?f € X*. There exists
a sequence {v,} C X such that [|v,]| = 1 and |(vn, g)| — ||g|/+«. Putting
Uup = B™%vy, then u, € X%, ||unll, = 1 and

[(un, ol = 1w, g)l = llglls = 11+~ (4.13)

Then (4.12) and (4.13) together imply that F' = (-, f)o: X% — C belongs
to (Xp)* and [[F[| = [ fl+~o-

Conversely, if F': X% — Cis in (X§)*, then, since X% and X are isometric
to each other under the mapping B, there exists a unique g € X* such that
F(u) = (B%u, g) for u € X%. Putting f = (B*)?g we have f € (X*)57 and
F(u) = (u, f)o. Thus we have shown that (X%)* = (X*)57 isometrically
via duality pairing (4.11).

Let now u € X% be given and put v = B°u € X. Then, the Hahn-Banach

theorem ensures the existence of some g € X* such that |(v, g)| = ||v]|||g||«-
Putting f = (B*)™%g we have f € (X*)57 and
[(w, ol = 1w )| = llullo /| fll«,—o- (4.14)

(4.12) and (4.14) together imply that U = (u,),: (X*)57 — C belongs to
[(X*)57]" and ||U|| = [Ju||s. This shows that X7 < [(X*)57]* isometrically.

Let now X be reflexive. For given U € [(X*)37]*, since (X*)57 and X*
are isometrically to each other, there exists a unique v € X** = X such that
U(f) = (w,(B")"7f) = (B7u,(B*)"7f) = (u, f)o

where v = B™7v € Xg. Thus, if X is reflexive, then X% = [(X*)57]*
isometrically via the duality pairing (4.11). O



4.2. Regular Spaces and Hyper-spaces 55

Lemma 4.2.9 (Lemma 1.2.9 in [19)]).
1. Given o > 0. Then

(u, fo = (u, f) forue X% and f € X™.
2. Given 0 <o <71 < 00. Then
(W, Flo = (u, f)r forue Xp and f € (X*)52.

Thus the mapping (-,-): |J Xg x (X*)57 = C is well defined in natural

>0
way.

Proof.

(u, f)o = (Bu, (B*)"7f) = (Bu,(B"7)"f) =
= (B77B%u, f) = (u, f).

(u, f)r = (BTu, (B*) 7 f) = (B B%u, (B")""~7/(B*) ™ f) =
— (BT*O’BO’,L% (Bf(rfo))*(B*)fo'f) —
= (B%u, (B)"7f) = (u, f)o-

Theorem 4.2.10 (Theorem 1.2.10 in [19)]).
1. Let o € [0,00). Then

(XEH) = (X577, (X)) = x5t

and if furthermore X is reflexive, equality “=" holds instead of “—".
2. Let 0 € ]0,00). Then

(X5 = Ot (057 = X
and if furthermore X 1is reflexive, equality “=" holds instead of “—".

All the equality relations above hold via the duality pairing (-, -).

Proof. The conclusion here directly follows from Theorem 4.2.8, Lemma 4.2.9
and Corollary 4.1.12. O

We now turn to the study of extendibility of the operator A in X to
spaces X 57 (o > 0) or their inductive limits or projective limits.
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Theorem 4.2.11 (Theorem 1.2.11 in [19]). Suppose that the space X is re-
flexive. Let A: D(A) € X — X be a densely defined operator and
A*: D(A*) C X* — X* its dual operator. Then:

1. For given o,7 > 0 the operator A extends uniquely to the continuous
operator from X5 to X5 iff (X*)5. € D(A*), A*(X*)5 C (X))
and A*|(X*)E* is continuous from (X*)g. to (X*)%..

2. For given 0,7 € (0,00) the operator A extends uniquely to the continuous
operator from X5t to X5 iff (X*)5. € D(A*), A*(X*)% C (X%
and A*|(X*)7E; is continuous from (X*)g. to (X*)%..

3. For given o,7 € [0,00) the operator A extends uniquely to the continuous
operator from X7~ to X357~ iff (X*)5: C D(A*), A*(X*)GE C (X*)%E
and A*\(X*); is continuous from (X*)Gt to (X*)Gt.

Proof. (1) (=) Set Ay; = (A*|(x+)7,)". Then, since [(X*)5.]* = X" and
[(X*)%]" = X357 by Theorem 4.2.8 applied to B* and X* and by
the reflexivity to X, the standard theorem on the dual of a continu-
ous operator from a Banach space to another (see e.g. Corollary 10.6
in [31], p.41) implies that A, is a continuous operator from X7
to X57 and |4, .|| = ”(A*‘(X*)g*)”- Let us show that A, is an
extension of A indeed. In the following (-, )+ X57 X (X*)G. = C
(0 > 0) stands for the duality pairing between (X*)%. and X 57 and,
of course, it has similar properties to (-, -), as stated in Lemma 4.2.9
above; (-, ), is understood similarly to (-,-). By definition, we have

(u, A" flow = (Aot flrs u € Xp°, f € (X")B-.
If, ue D(A) C X C X57 and f € (X*)%. then

(u, A" flox = (u, A°f) = (Au, f) = (Au, f)rs-

Thus
<AU7 f>7',* = <Z077u, f>7,*7 f € (X*)TB*v

which implies that A, ,u = Au. The uniqueness follows from the
density of D(A) in X and X in X;°.

(=) Assume that A extends the continuous operator from X ;7 to X7,
denoted by A, . Set A*| = (A,,-)*. Then, since (X57)* = (X*)%.
and (X57)* = (X*)5. by Theorem 4.2.8 applied to X* and B* and
by the reflexivity of X, A*| is a continuous operator from (X*)%. to
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(X*)%. and ||A*| || = ||As.-||. If we can show that (X*)5. C D(A*)
and A*|( Xoy7, = A*|, we have completed the proof. By definition

(ZU,TUJ f>7'7* = <u7A*’f>O',*7 u € Xgahf € (X*)%*
If, w € D(A), then

(Au, f) = (Aortt; frw = (U, A flow,  f € (X7)p
which implies that for every f € (X*)5. (A, f): D(A) € X —» C
is continuous and therefore f € D(A*), thus (X*)5. C D(A¥).
Furthermore, for f € (X*)%., the above equation can be rewritten
as

<u7 A*f>a,* = <u7 A*’f>a,*7 (VRS D(A)
This together with the density of D(A) in X and X ;7 implies that
A*f = A*|f. Thus A*](X*)}TB* = A*|.

(2) (<) Set A*\(X*)TB: = S. Then, by assumption, S is a continuous
operator from (X*)%. to (X*)%.. By Theorem 4.2.10 we have
(X)) = X571 and [(X*)%.]* = Xz5°". The dual operator
S*: X571 — X571 is well defined via the duality pairing

(u,Sfy=(S*u, f), wue X§U+,f € (X")g-- (4.15)

A proof similar to the corresponding part of (1) above shows that
S*|p(ay = A. Let us prove the continuity of S*. Given ¢’ € (0,0).
By the continuity of S, Theorem 4.1.10 (b) implies the existence of
some 7' € (0,7) such that

HSf”cr’,* < CU’,T’”fHT’,*v fe (X*)E,: (4-16)
Let u € Xg"/ C X57". Then (4.15) and (4.16) imply S*u € X;T,
and

(since (X*)%x is_dense in (X* g*)

[S%ull -7 = sup  [(S™u, f)r ]

FeE(xXNT
17l =1
= sup [(STw, f)]= sup [<u,Sf>][<
fe(x)Ty fe(x*)Ty
11, =1 171l =1

< Cop ol o

Thus Theorem 4.1.10 (1) is necessary to ensure the continuity of S*.
The uniqueness of the extension follows from the denseness of D(A)
in X and X in X5V,
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(=) Assume, conversely, that A extends to a continuous operator from
X577 to X357, denoted T. Define this dual T* via the duality
pairing

(Tu, f)e = (uw,T"f), weXp™" fe (X5 (4.17)

It is a well-defined operator from (X*)%. to (X*)%.. If u € D(A)
and f € (X*)%., then

(A’U,, f) = <Au7 f)* = <Tu7 f>* = <U7T*f>* = (’U,,T*f)7

which implies that f € D(A*) and A*f = T*f. This proves that
(X*)p- € D(A") and A*| xuyro =T

B*
Let us show that T* is continuous. Fix ¢’ € (0,0). By virtue of the
continuity of T: X577 — X57", Theorem 4.1.10 (1) guarantees
the existence of some 7’ € (0, 7) such that

I Tul|—r < Cor |t —gr, uweE X57. (4.18)
For f € (X*)%., (4.17), (4.18) imply that T*f € (X*)%. and

[T fllor s = sup  [(u, T" florul = sup  [(Tw, f) | <

uE(X)%_ ue(X)%_
llull _,r=1 lull _,r=1
< C‘r’,o/HfHT’,*-

By Theorem 4.1.10 (2) we have the continuity of 7*.
(3) The proof is completely parallel to that for (2) above and is omitted. [

We have a few remarks to the latest theorem:

(a) The conclusion in (2) is still true for 0 = co or 7 = o if we assume
that (X™*)%. is dense in X™* in case 7 = oo and if we replace the concept
of continuity of operators by a formally stronger one, as is described in
Theorem 4.1.10 (i).

(b) Similarly to (2) and (3) above we also have characterization of operators
A in X which is extendibly continuous to one from X§U+ to X57 or
from X57 to X571 in terms of its dual operator A*.

(c) Instead of one space X and one operator B we have entirely similar re-
sults on the continuous extendibility of an operator A: D(A) C X — Y
to one from X ;7 to Y7, et al. for two spaces X and Y and operators
B and C.
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To conclude the present section we put all the results above in a perspec-
tive. Take a reflexive Banach space X and an operator B of type (w, M)
therein such that 0 € o(B). Along with the space X and the operator B
we have the dual space X* and the dual operator B* which have similar
properties. Using the domains of the fractional powers B? and (B*)? we
construct the scales of Banach spaces X% (0 € R) and (X*)%. and we form
the scales of spaces of their inductive limits and projective limits, namely,
X% and (X*)%F (0 € [—00,+0)), X%~ and (X*)%. (0 € (—o0, +o)).
Thus we have the following diagram (o > 0):

— —o— — —o+ 0—
XX 2 Xp" DXp7 2 X7 DXy DX,

(X*) 52 2 (X7 2 (X532 2 (X957 2 (XM 2 X7

XD2OXWDOX% DXZDXZ DXy,
X* 2 (X% O (X% 2 (XM)% 2 (XN 2 (X%

If X and X* are suitable spaces of functions and the operators B and B*
are appropriately taken (usually differential operators), then various classical
functions spaces appear as spaces X or (X*)%. (0 > 0), and different test
function spaces and their corresponding generalized function spaces emerge
as the spaces of inductive limits or projective limits with nonnegative indices
and nonpositive indices respectively. Thus, we call the spaces to the right of
X and (X™) in the diagram regular spaces and those to the left hyper-spaces.
Theorems 4.2.6 and 4.2.7 clarify the topological structures of all the spaces of
inductive limit and projective limit. Theorems 4.2.8 and 4.2.10 establish the
duality between the two scales of spaces in the diagram above (i.e. between
spaces of smooth functions and generalized functions). Theorem 4.2.11 gives
additionally criteria which ensure that an operator initially acting on smooth
functions could be extended to spaces of generalized functions. In short, our
frame is a kind of Gel’fand-Shilov triple in a Banach space setting. We notice
that in general the space to the right of X, in the above diagrams, cannot be
embedded into its dual spaces, i.e., the ones to the left of X*. However, if X
is a Hilbert space, this can always be done as long as we identify the duality
of the Hilbert space with itself. Also, in some instances, spaces that are
enough” on the right of the X can be embedded to the spaces ,enough” on
the left of X*. Anyway, the spaces right to X and X™ together are included
in the total of the spaces left to X and X* together.

An important role in the applications play the inclusions between differ-
ent Sobolev spaces.
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Theorem 4.2.12. If Q@ C R" is a nonempty bounded open set with the

boundary of class C™ with m € N and if 0 <k <m, 1 <p < q < oo are
such that

n n

m——>k——,

p q

then W™P(Q) is continuously injected in W*4(Q).

Theorem 4.2.13 (The Nirenberg-Gagliardo inequality). If @ C R” is
a nonempty bounded open set with the boundary of class C™ with m € N
and if 0 <r <k, 1<p,qr<ooandf € [0,1] are such that

k—Z<(1—0)(l—?)+0<m—2)

and

then the inequality
lullwraiy < Cllullfymo@lulyy g, w € W™P(Q)NWH(Q),

holds with a constant C' > 0 independent of u.

The proof of these theorems can be found in D. Henry [20], p.37 and
Proposition 1.2.2, Remark 1.2.1 in J.W. Cholewa, T. Dlotko [9]. The fol-
lowing corollary is consequence of the two previous theorems.

Corollary 4.2.14. If Q C R" is a nonempty bounded open set with the
boundary of class C™ with m € N and if 0 <k <m, 1 <p < g < oo and
0 € (£,1] are such that

m@—ﬁ<k—ﬁ,
p q

then W™P(Q) is continuously injected in W*4(Q2) and the inequality
lullwraiy < Cllullfyms@lulay, ©€ W™ (Q).

holds with a constant C' > 0 independent of u.

Below we prove a similar result for domains of fractional powers of a pos-
itive operator of type M. This and others examples of such embeddings
theorems can be found in section 1.6 of D. Henry’s book [20].
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Theorem 4.2.15 (Theorem 1.6.1 in [20]). Let Q be a nonempty bounded
open subset of R™ with the boundary 0 of class C™ with m € N. Assume
that p € (0,00) and A is a positive operator of type M in X = LP() such
that D(A) = X! is continuously injected in W™P(S). Then for o € (0,1] it
holds
X CWEUQ) if ma—— > k-2,
p q
for k e NU{0},p < g < o0, and the natural injection is continuous.

Proof. Let 6 be chosen so that

ma—ﬁ>m9—ﬁ>k—ﬁ.
p p q
Thus k
~<fh<a<l. (4.19)
m

By the Nirenberg-Gagliardo inequality (see Corollary 4.2.14), we get
WmP(Q) C Wk4(Q) and

lullway < Cllullymmay a5y, ue W™ (@),
Since X! = D(A) is continuously injected in W™P(£2), we have
lulwra) < Clullfllull iz, «e X (4.20)

Let us consider the identity operator I: LP(Q) D W™P(Q) — WH4(Q). By
(4.19), (4.20) and Exercise 11 in D. Henry’s book [20], there exists a constant
K > 0 such that

lullwra@) = IHullwra@) < Klulla, ue X (4.21)

Fix u € X Since X7 is a dense subset of X%, we take u, € X',
n € N, such that u,, — u in X“. Observe that (4.21) implies that {u, }nen
is a Cauchy sequence in W*4(Q) and thus convergent to some v € W"4(Q).
Since W*4(Q) is continuously injected in LP(2), we know that u, — v in
LP(Q). However, for n € N, we have

[ = vllr() < cllu = unlla + [[un = vllLr(o)
sou=uv € Whk4(Q). Moreover, we obtain
[ullwra@) < Kllulla,  uwe X,

which completes the proof. O






Chapter 5

Examples of scales of Banach spaces

In this section we provide some examples of the regular and hyper-spaces.
Example 5.0.1. Let X = [? (1 < p < 00). In X we introduce a natural

norm
© O\
Jul = (Z mrp) .

k=0

Consider a sequence of complex numbers (Ag)ren, such that
|arg \i| < w, for some w € [0, 7) (5.1)

and
|Ak| > a, for some constant a > 0 (5.2)

for all k € Nyg. Having sequence of numbers we define an operator B as
follows: D(B) = {u = (ug)ken, : (Asuk)ken, € P} and

Bu = (Agug)ken-
It is easy to see that for all £ € Ny and A <0

Al if0<w<73,
Alsinw if § <w <,

|)\)\k]2{

and
IA = Ak| > Asinw for A € Xy, 1.

Therefore operator B is of type (w,1) if 0 <w < § and of type (w L) if

’ sinw
5 <w < . In particular it is m-accretive if w = §. Furthermore,

(A= B)'u=((A =) "ur)ren, for A € p(B).
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Condition (5.2) implies that {A € C: |\| < a} C p(B). Thus, for ¢ > 0, by
definition

1 1
B %u=— [ AN°0A=B) 'udr\=— [ X77((\ = \) tug) d\ =
Y 27 T ( ) Y 27 T (( k) Uk)

1
= < / )\_U()\ - )\k)_l dA - uk> = ()\_Uuk),
27TZ T

where the integration path I' can be taken {\ € C: arg\ — § = ®} C p(B)

for appropriate ® € (w, 7). Therefore, by definition, for o > 0

Xp =17} ={u= (w) € P ||ullpo = <Z(|Ak|"lwl)p> < 00}

k=0
For —o < 0 we have

o »
PO = {u = () [l = <Z<|Ak|—”|uk|>p> < oo},

k=0
Then it is readily seen that I[P>~7{\;} is a normed space isometric to [P under
the mapping ¥ > (ug) — (Afur) € P~7{\}. So »"~7{\;} is a Banach
space. Moreover, [P is dense in [P""7{\;}. Namely X577 = P77{\;}. We
set X% = 1P = PO{\;}. If no confusion is incurred, IP°{\;} (0 € R) is
abbreviated to [P?. This applies, of course, also to the inductive limits
X0 =1\t = U P"{\} (0 € [-00,00)) and the projective limits

T>0
X7 =" {\} = N PT{\} (0 € (=00, 0]).
70
For 1 < p < oo, X* = (IP)* = l9where ¢ = ;P7 and B*: D(B*) C 17 — [P

is defined by

D(B*) = {u = (ug) € 1%: (Auy) € 19},

B*u = (A\yuz).
Thus, in accordance to the notations above, (X*)% = 197{\;} (¢ € R).
Then Theorems 4.2.8, 4.2.10 imply that (IP7)* = 1977 for all 1 < p <

and o > 0; (1979)* = [P7 forall 1 < p < o0, o > 0; 17 < (I°79)*; and
similarly for the inductive and projective limits.

Remark 5.0.2. Let us consider Cauchy’s problem for second order ordinary
differential equation

{ 2+ X =0, te(0,m),
z(0) = z(7) = 0.

This problem, for A = \,, = n?, has solutions z,,(t) = sinnt.
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It shows that the sequence (A,)nen of eigenvalues for operator —%
generates the scale of the Banach spaces (P7{\,}.

Example 5.0.3. Let X = LP(R") with standard norm and define the op-
erator B as follows:

D(B) ={u € LP: A(z)u(z) € LP},
Bu = A(z)u(z),

where A denotes complex-valued measurable function on R" satisfying the
conditions

A(z) e LY
|A(z)] > a >0, forae xzeR"
larg A(z)| < w, for a.e. z € R", with w € [0, 7).
Then, using the same arguments as in the previous Example, we can prove
that:

(B=7)(z) = [A(@)] "u(z), foro >0,

Xp = LP7{A(2)} = {u e LF: (/(M(x)\”\U(w)\)p dm) "< oo},

X% =17,
Xp7 = LP77{A(2)} =

3 =

_ {u-measurable on R": ( / (M@ [u(z)))? d:v) < oo},

o = [P )

Example 5.0.4. Let X = LP(R"), 1 < p < oo with the usual norm | - [|,.
The operator B in LP is given by

D(B) ={ue LP: Aue LP},
Bu = (I — A)u.

We note that the operator B is well-defined on S and &', the Schwartz test
functions space and the tempered distribution space. Let F and F~! be the
Fourier transform and its inverse, which acts on S and S’ continuously. We

have
FOM-Bu=M\-1-2%Fu, uesS.
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Therefore, if A € [1,00) then (A — B): &’ — &’ is invertible and

1

WF_I[()\ —1—2?)] *u.

(M —B)lu=Fl(\A-1-2?)Fu] =

According to Young’s inequality we have
1A = B) tullp < (~ReA+ 1) Hfullp, ue L.

For ¢ > 0 and u € LP, by definition

(B~7u)(z) = % / N[O — B)~Lu](z) dA =
2m/)\ TEHAN =1 —2?)Fu] d\ =

=F" [ /)\"()\—1—332) d\Fu| =
21 Jr
= F (14 2*) 7 Ful.
Therefore,
X%? =WoP = {u e LP: |F'(1+ 22)°/2Ful, < oo}
For —o < 0 we have
WP = {u: F~Y(1 +2?)"/?Fu € L"}

with the norm
[ull—op = [ F1 (1 + 22) "2 Ful|,.

Since each WP is isometric to LP under the mapping
F Y142 2F: WP — P,

it is a Banach space itself. We can show the density of LP in W~7P. So
X7 =wow,

Next we formulate two easy propositions. The proofs can be found in
Liu Gui-Zhong [19].

Proposition 5.0.5. If F~Y(1 4+ 22)(7=9)/2 ¢ 142 4 = }%, then
WoP s W,

Proposition 5.0.6. Ifp < < ,q >4 and (0( T)Z; > 1, then WP «— W™,
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We can find similar theorem in R.A. Adams [1] (Theorem 7.63 (c), (d),
p. 221)

Theorem 5.0.7.

(i) If T < o then WP C WP,

(ii)Tga(mdz'feither1<p§q§#{T)p<ooorp:1and

1<g< ’;+T < oo then WP C W™,

n—

The spaces WP are called fractional Sobolev spaces. The next theorem
informs us that when o is an integer, then the spaces WP coincide with the
classical Sobolev spaces. This property was first proved by A.P. Calderén.

Theorem 5.0.8. Forp € (1,00) and k-positive integer we have
WhP = {u e LP: D°u € LP,|a| < k}

with equivalent norm

Z [ D%ullp.

|| <k

Proof of the theorem above can be found in the chapter V section 3.4 of
Stein [35].

Example 5.0.9 (Example VI in [19]). Let X = LP(R"), 1 < p < oo with
1

the usual norm |[ul|, = ([ [u[? dz)?. Consider the Heat-Diffusion Equation
in the space of tempered distributions D’

2
Ou _ 07u. (5.3)
ot 0x?
Here the differentiation with respect to x is understood in the sense of the
tempered distributions, while that with respect to ¢ is of the topology &’.
Since the Fourier transform F and its inverse are continuous on D', the
above equation (5.3) is equivalent to

O(Fu)

5 = —2’Fu.

Hence the formula for solution of the initial value problem of (5.3) easily

follows
82 2
+9° 1 —
eoZy=Fle ™ Fy=

2Vt
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52
If u € LP, then €'2:2 u, = v(z) extends to an entire function v(¢) (¢ = z +iy)

which is given by

1 (z+iy)? 1 2 @=02+2i(x—Q)y
e & xu(z) = et [ e~ i u(¢) dC.
W (z) N (€) d¢

Furthermore, Young’s inequality leads to the estimate

v(() = v(ztiy) =

2
. ¥
[o(x + i) llpa < e [lullp.
Indeed,

_(2=0%+2i(z—Q)y
4t

S dc=1.

5=,

2 -1 2

Put B = <e§w2) with D(B) = R(ef??\m). It is not difficult to show

that the operator B is of the type (0, M) for some M > 0 and for ¢ > 0,
2 -1 2

Bt = (etaaaﬂ\m) . Therefore, by definition, X% = R(etfﬂ@?\m) for t > 0.

52
Thus, we need to characterize R(e'2:7|1p) explicitly.

In view of the above consideration, let us assume that v(¢) = v(z + iy)
is an entire function such that

[o(@ + iy) e < Me™', 2,y €R, (5.4)

where M and s are nonnegative constants. We intend to find some ¢t > 0
2

e}
and u € LP such that v(x) = ' u(z). A heuristic consideration suggests
the following candidate for u

(n—iz)? 1 Xl (e—¢)?
1t dn = T4 dc. 5.5
u(.’B 9 /* ”7) n 2/t /;Ooie ’U(() C ( )

Of course, we must prove now the convergence of the above integrals for
2

o
ue LP and €07 u = v(z).

Lemma 5.0.10. If v(¢) is an entire function satisfying condition (5.4)
above, then for any s' > s there exists « = (s, s, p) such that

sup |v(z +1y)| < aMesV’.
z+iyeC
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Proof. By the mean value theorem we have (R > 0)

v(r +iy) = —5 v((@+C) +ily +n)) dldn.

2
TR Jictin<R

An application of Holder inequality leads to

. 1 1 . » ’
Iv($+zy)!<ﬁ(m2)l </|C+ml<R\v((w+C)+Z(y+n))! dCdn> :

O

According to the lemma above we are now certain that for each entire
function v satisfying (5.4) for some s > 0, the integral (5.5) converges as
longas 0 <t < 4—18. Furthermore, the Cauchy integral theorem enables us to
transfer the path of integration so that (¢ € R)

1 c+00 1 9
— @(I—O
u(z) = N /C_OO e v(¢) d¢. (5.6)

In particular, for ¢ = = we have

u(z) = e 2y (z +1in) dn. (5.7)

Q\F

We omit proofs of these lemmas, because they are rather straightforward.
We can find them in [19].

Lemma 5.0.11. Let v be an entire function satisfying condition (5.4) As
in the lemma above. Then, for t < ﬁ, function u(z) in (5.5) is well-defined
and is given equivalently by (5.6) and (5.7). Moreover, u € LP and for any
a€ (s ,4t) the following statements holds

M (1 )2 (g—s)p2
lilly < 5 o= lle” e e, (58)

Lemma 5.0.12. Assume that all the conditions in the above Lemma 5.0.11
are satisfied. Then

etiﬂ%u(az) = v(z).

Definition 5.0.13. Let p > 1 and s > 0. Let AP® denote the normed space
of entire functions v(() such that

el =supe ([ poa i)l de)” < . (59)
R

yeR
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Proposition 5.0.14. For each p > 2 and s > 0, the space AP is a Banach
space.

Proof. Let (vy) be a Cauchy sequence in AP®*. Then for any € > 0 there
exists an IV € N such that

1
|Up, — Upn|p,s < sup e~V </ |on(x + iy) — vy (2 + iy) [P d:v) ! <e, (5.10)
yeR R

for n,m € N. Then, for any given s’ > s, Lemma 5.0.10 implies that

sup |op(x 4+ iy) — vp(z +iy)| < ase’’?’.
x+iyeC

This estimate shows that the sequence of functions (v,,(x 4 iy)) converges
to an entire function v(z + iy) uniformly on each strip {z + iy: |y| < b}
(b > 0). Upon fixing n and letting m — oo in (5.10), in view of Lebesgue’s
dominance converge theorem we conclude that v € AP and v, — ¥ in AP"5.
Thus the space AP® is complete. O

Definition 5.0.15. For s € (0,00], let AP*T = ] AP be the inductive

o<s

limit of the family of Banach space {AP7: o < s}.
For s € [0,00), let AP~ = (| AP? be the projective limit of the family of
o>s
Banach space {AP7: o > s}.
As summary of the above discussion we obtain:

Theorem 5.0.16. Fort € [0,0)
(LP) = Ap-(ae)+ topologically.

Fort € (0, 0]
(LP) = Ap-(25) - topologically.
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Sectorial Operators

Let us denote a sector of the complex plane:
Sap={AeC:p<|arg(A\—a)| <7, A#a} (6.1)

where a € R and ¢ € (0, 7).

Definition 6.0.1. Consider a linear closed and densely defined operator
A: X D D(A) — X acting in a Banach space X. Then A is a sectorial
operator in X if and only if there exists a € R, ¢ € (0,%) and M > 0 such
that the resolvent set p(A) contains the sector S, 4 and

_ M
(A —A) l”L(X,X) < m, for each A € S, 4. (6.2)

We shall remark, that when A is a sectorial operator, A, = A+ w for an
arbitrary w € R is also a sectorial operator. In addition, we have

Reo(Ay) > a+ w,

so it is always possible to choose w > 0 for which Reo(A,,) > 0.

Now we introduce some equivalent conditions for being a sectorial oper-
ator. For proof, we refer to an example to book of J. Cholewa, T. Dtotko [9],
Proposition 1.3.1 (p.33).

Proposition 6.0.2 (Proposition 1.3.1 in [9] and Theorem 2.2.4 in [12]).
Let A: X D D(A) — X be a linear closed and densely defined operator in
a Banach space X and consider operators A, = A+ w with w € R. Then
the following conditions are equivalent:

(a) A, is sectorial in X for some w € R,
(b) A, is sectorial in X for each w € R,
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(¢) There exists M > 1, k,w € R such that the resolvent set p(A,) of Ay
contains a half plane {\ € C: ReX < k} and

M — ALY < M,  for ReX < k.

Remark 6.0.3. Let ¢ € (0,5) and a € R. Let A: X O D(A) = X
be a linear closed and densely defined operator in a Banach space X. In
the previous sections we have introduced the notion of operator of type
(w,M(8)). Of course, if the operator A is sectorial with sector Sy, then
it is of type (w, M). Now we remark that when A is of the type (w, M(0)),

then A is sectorial in X with sector Sp ¢, for some € > 0.
Proof. Fix arbitrary ¢ € (0,7—w) and 0 € [w+¢,2n—w—¢]. Take a € (0, §)
such that sina < ﬁw) and set

Vo=0—-a,0+a)N[w+e2n—w—c¢], Ug={AeC: arg\ € Vp}.

Take A € Up \ {0} and let \g € C with arg Ao = 0 be chosen so that A is the
projection of Ay on the ray {z € C: argz = argA}. Thus \g € p(A) and
|Ao| > |A|. Moreover, we have

| Aol 1 - 1
2M(0) ~ 2[[(Ao —A)7H T [[(Ao =AM

’)\ — )\0’ < |)\0]sina <

Using Theorem 1.1.11 in Czaja [12] (p.14), we obtain A € p(A) and

IO =) < YA = Aol (o = AT 1o = )" <
n=0

: Z (2) \Ao\ M\i(\e)'

Therefore for all § € [w+¢, 2T —w —¢], there exists a Vg-open neighbourhood
of 0 in [w+¢e,2m —w — ¢] and a constant M (#) > 1 such that

2 M (6)
Al

(A=A < for A € C\ {0},arg X\ € Vj.

By the compactness of [—7 + w, ™ — w], we see that there exists M > 1 such
that

M
I =)~ <
[A]

so A is sectorial in X with the sector Sp . O

for A € C\ {0}, ]|arg \| > w + ¢,
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6.1. Examples of Sectorial Operators

In this section we want to introduce some examples of sectorial operators.
Examples of sectorial operators are analysed in particular in J.W. Cholewa,
T. Dlotko [9], D. Henry [20] and R. Czaja [12]. We start with two simple
standard examples.

Example 6.1.1. Each bounded linear operator defined on a Banach space
X is sectorial.

Proof. If A is bounded linear operator in X then
{AeC: A > [[Allgxx)} S p(A) and (A—A)1 =) T
n=0

In particular, the half plane {\ € C: ReA < —2||Al[z(x x)} is contained in
p(A) and

_ — (NAlzx 0\ = (1\"
A= 4 v < 3 (FREE0) < Y (F) <2

Therefore A is sectorial as a consequence of Proposition 6.0.2. OJ

Example 6.1.2. If X, Y are Banach spaces and A is sectorial in X, B is
sectorial in Y, then the product operator (A4, B): D(A) x D(B) - X x Y,
where (A, B)(z,y) = (Az, By), is sectorial in X x Y.

Proof. Let S, 4 and Sy, be the sectors given respectively for A and B.
Define ¢ = min (a,b), C = (A,B), and C_, = (A —¢l,b — CI). Then
{\ € C: ReX < 0} is a subset of p(C') and

— const.
10T = ) eorom < 5
for ReA < 0. Hence C is sectorial in X X Y as a result of Proposition
6.0.2. O

Proposition 6.1.3 (Perturbation result, Proposition 1.3.2 in [9]). Let

A: D(A) — X be a sectorial operator in a Banach space X. Let us consider
a closed, linear operator B: D(B) — X such that D(A) C D(B) C X and
let B is subordinated to A according to the condition

|Bv|lx < c||Av||x + |v||lx, veX. (6.3)

If the condition (6.3) holds with ¢ < My (My is defined in (6.8)), then the
perturbated operator A+ B with D(A + B) = D(A) is sectorial in X .



74 Chapter 6. Sectorial Operators

Proof. Based on Proposition 6.0.2 take £k < 0, w € R such that, for
A, = A+ wl,
{Ae C: ReX <k} C p(Ay)

and
IAAT — Au) Migx.x) € M, for Red < k. (6.4)

Condition (6.3) then leads to
IBullx < clAuwvlx + " lvllx, veX, (6.5)

where ¢’ = ¢ + c|w|.
The crucial step of the proof is to show that there exists kg < k such
that
Lep(BOX —A,)™"), re <k (6.6)

For this we shall use (6.4) and (6.5), estimating as follows
B — Ay)~ol|x <
< el Au(M = Au)"Mollx + (M = Aw)ollx <
< /(M = Ay) (AT — Ay) ol x+

+ AT = Ay) Mollx + (A = Ay)lolx < o0
< <c(1 + M)+ C/|l/<\|4> lvl|x, veX.
Under the restrictions
c< 2(1iM) — My, AM < | (6.8)
we further have from (6.7) inequality
IBOT — 40) lew) < 5. (6.9)

Since the spectral radius of a bounded linear operator on X does not exceed
its £(X, X) norm (see K. Yosida [41], chapter VIII, section 2), condition (6.9)
shows that number 1 is contained in the resolvent set of B(AI — A,)7 !, i.e.
(6.6) is proved with

ko = min (k, —4c" M).
Then, for Re\ < kg, we have:

(M = (Ay+ B)) "' = (I = BAT — Ay) )M — A,)) ' =

=N - A) YT -BO\ - A,)"H 1,
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which, in presence of (6.4) and (6.9), leads to the estimate
1A = (Aw + B) lexx) <

- “1v— AM

<N = Ao) eI = BT = Au) ™) Mg x) < e
Since A, + B = (A + B)., the operator A + B fulfills the requirements of
Proposition 6.0.2, what completes the proof. O

The next result provides us with a lot of examples of sectorial operators.

Proposition 6.1.4 (Proposition 1.3.3 in [9] and Theorem 5.1.2 in [12]). Let
H: H D D(A) — H be a densely defined, linear, selfadjoint operator in
a Hilbert space H. If, in addition, A is bounded below in H, that is there
exists m € R such that

(Az,z)g > m||z||%, =z € D(A), (6.10)
then A is a sectorial operator in H.

Proof. Let us recall that the spectrum of a selfadjoint operator is contained
in the real axis. Moreover, since A is bounded below, o(A) have to be
contained in the interval [m, co). This implies in particular that the sector

Sm&:{)\e(C:Z§|arg(/\—m)|§7r,)\7$m}

is contained in the resolvent set of A.

We will now prove, for A € Sn,%, the validity of the estimate (6.2).
Let A € Sm& and take A’ = A — m. Only the following cases are the only
possibilities.

Case 1: A\ = X + m, where Re)\ < 0. In this case, since A — mI must be
symmetric and nonnegative whereas —2ReX > 0, we obtain:
AT = Az = [(NT — (A —mID))z||F =
= [NPl|2|3 — 2ReX (A = nl)a, )i + (A = nl)x|F >
> NPl F-
Case 2: A = X +m, where [Im)'| > |ReX|. Then we have:
AT = Azl = |(N'T — (A —mD))z||F; =
= [ImX'[?|lz]|F + [[(ReX'T — (A —mI))z|[f; >

> I )\/2 2 > |)\/|2 2
2 X2l 2 =5~/
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As a result of the two inequalities above it is seen that

A —m|
M —Azx||g > x| g,
I )zllm > 7 ] 22
for each A € Sy, =, x € D(A), which is the counterpart of (6.2). O

The most important among applications is the case when the constant
m in condition (6.10) is positive. Such operators we called positive definite.

Now, basing on Proposition 6.1.4, we introduce some important examples
of positive, sectorial operators.

Example 6.1.5. The unbounded operator I — A: H?(R") — L2*(R") is
positive definite and sectorial.

Proof. For the functions ¢, € C5°(R™) let us choose an open ball B(0, ) in
R™ with centre in 0 and radius r, which contains their supports. Integrating
twice by parts we obtain:

10~ 20 do = [ oG e [ Ag(wIE) de =

R

R

= (@)y(x) da — / &(2)AP(z) dz =
B(0,r)
= . o) [(I — A)ip(a)] de,

SO

(I =A)o, ) pomny = (&, (I = A)Y) oy, &, € Cg°(R™). (6.11)

Moreover, integration by parts gives us:
[ - mo@ie@ de= [ Jo@P do— [ Aow)oa) do -
n n B(0,r)
= [ o@P e+ [ vo) e
n B(0,r)
> [P dr,

where V = (ai ..., 72-), and thus

T1 Y Oxn

(I = 2)6,0) p2gny > 01 72n, @ € CGO(R™). (6.12)
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Since C§°(R") is dense in H?(R™), (6.11) and (6.12) ensure that I — A on
H?(R™) is a positive definite symmetric operator in L(R"). Let us consider
Fourier transform F' and let us recall that it is an isomorphism of the space

S C H?(R") of rapidly decreasing complex-valued functions. We denote its
inverse on S by F~!. Take ¢ € C§° € S and set

h(z)=F! (1 +1’€‘2F¢(§)> (), =€R"™

Note, that h € S and

1

FIU = M) = Fh(E) = FANE) = {em

Fo(€) + [¢*Fh(€) = Fg(¢),
for £ € R™.

Applying F~! we obtain [I — Alh = ¢. This shows that R(I — A) is
dense in L?(R"), since it contains C§°(R™). In addition, we infer from the
density of C§°(R") in H?(R"), (6.12) and Schwarz inequality that

I(I = A)@llr2®ny > 10l r2mn), ¢ € H*(R™).

From this we conclude that (I — A)¢ = 0 implies ¢ = 0, and thus
(I —A)~': R(I — A) - H*(R") exists and is bounded in L*(R"). Hence
1 € p(A). Since the Laplace operator considered in L?(R™) on the domain
H?(R™) is closed, the resolvent operator is closed and bounded, that is its
domain R(I — A) is closed in L*(R"). This shows that R(I — A) = L*(R")
and as a consequence of Proposition 6.1.4 and the fact that the linear opera-
tor in Hilbert space H is self-adjoint whenever it is symmetric and its range
coincides with H, I — A is sectorial and positive definite operator. O

We omit the proofs of next two examples, which we can find for example
in the paper of J. Cholewa, T. Dtotko [9] and R. Czaja [12].

Example 6.1.6. —A: H?(Q)NH(Q) — L?(Q2), where 9Q € C?, is sectorial

and positive definite.

Example 6.1.7. A%: H4(Q)NHZ () — L?(2), where 00 € C*, is sectorial
and positive definite.
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Applications

In this section we will show the applications of the theory described
earlier to some operators.

Assume that (X, || -]|) is a Banach space, and let A: D(A) C X — X
be a sectorial operator in X. We consider a scale of the Banach spaces
(X%)acr, generated by operator A and space X. Then we can consider
operators A|xa: Xt C X — X for a € R given by

(i) if @ = 0, then an operator A|x: X! C X — X coincides with A: D(A) C
CX—X,

(ii) if & > 0, then X is a dense subset of X and X“*! is densely contained
in X!, so we can consider an operator A|y«: X°t! C X% — X as
a restriction of A: D(A) C X — X to the set X°*! ie.

1
Alxexr = Az, 1z X*TH

(iii) if @ < 0, then the space X is a completion of the space X in the norm
| - |lxe, so we can consider an operator A|ya: X%t C X% — X< as
a realization (extension) of A: D(A) C X — X, i.e.

Alxor = Az, ze€XTI'nX.

First we prove that when an operator A: D(A) C X — X is densely
defined and closed, then all operators A|xa: Xt C X% — X% for « € R
are closed.

Lemma 7.0.1. When A|lx: D(A) C X — X is a closed densely defined
operator such that (—o0,0] C p(A|x) and there exists a constant M > 1
such that

I(s = A) ) < e 00

then all operators A|xa: Xotl € xo 5 X« for all a € R are closed.
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Proof. Take o > 0 and a sequence (z,)qen of the elements of the space
Xotl which converges to some z in X® such that (A|xaxy)nen also con-
verges to some y in X®. Then we have that (A|x)%z, € D(A|x) for all
n € Nand (A|x)%z, tends to (A|x)*x, A|x(A|x)*z, tends to (A|x)*y. The
closeness of an operator A|x implies z € D(A|x) and (A|x)*™ 'tz = (A]x)%
so Alxex = y.

For a < 0 the proof is similar. O

Now we prove similar lemma for sectorial operators.

Lemma 7.0.2. When Alx: X! C X — X is a sectorial operator with
Reo(A|x) > 0, then also all operators Alxe: X1 C X - X® fora € R
are sectorial.

Proof. From the previous lemma we know that operators A|x« are closed
and densely defined for all & € R. Now we estimate the resolvent of A|xa.

Since Alx is sectorial in X, there are a € R, M > 0 and ¢ € (0, %) such

that sector S 4 is contained in the resolvent set p(A|x) of A|x and

_ M
H(A — A’X) 1.’I]HX S m”l’“){, A E Sa7¢,$ (S Xl. (71)

Let o > 0. For A|xo we will show that
Sap © p(Alxe),

_ M
1A = Alxe) " yllxe < mllyllxw A€ Sagy € X7

If A € Sg,4, then to each y € X corresponds a unique = € X1 satisfying
(A=A|x)z = (A|x)*y. Applying (A|x)~® to both sides of the latter equality
and noting that

(Alx)" N = Alx)z = (A= Alx)(Alx) %z, =€ X! (7.2)

we conclude that the equation (A — A|x«)Z = y has a unique solution
T € X for each y € X®. Consequently, the inverse (A — A|ya)"! is
defined on X®. Based on (7.2) and the estimate (7.1), we finally verify that

1A = Alxa)"tyllxe = (A = Alx) 'yllxe = [(Alx)*(A = Alx) " 'yllx =
= [0 = Alx) " (Alx)*yllx <

<

M
1A%yllx = —— llyllxe,

M
A —al A —al

forall A € 5,4 and y € X“.
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For z < 0 we first note that the space (X, || - ||x«) is a completion of
the space (X, || - || x«), so for every y € X there exists a sequence (ypn)neN
of elements of the set X such that ||y, — y||xo — 0.

Take A € Sy ¢. Then for every n € N for y, € X there exists a unique
T, € X% such that (A — A|x)z, = (A]x)*yn. Note that:

(Alx) " *“N=Alx)x = —-A|x)A|x) %z, =z€ Xt
Thus

yn = (Alxa) " (Alxa)"yn = (Alx)"(Alx)"yn =
= (Alxe) ™" (A = Alx)zn = (A = Alx)(Alx) " “2n.

Then defining #,, = (A|x) %z, € X! and noting that X7 C X1+ we see
that

jn:()\_A|Xo‘)_lyn7 n € N.

Since the operator (A — A|x«)! is bounded in X (because it is sectorial in
X), it is also bounded in X'~®. Then the sequence (i, )nen converges to
some z in X179 so it converges also in X'T®. Since the operator (A— A|xa)
is closed (cf. Lemma 7.0.1), we obtain x € X7 and y = (A — Al xa)z.

We omit the proof of the estimate for resolvent set because it is almost the
same as in the case o > 0. O

Lemma 7.0.3. Assume that the operator A|ppq): LP(Q) — LP(S2) is secto-
rial. Then also the operator A\Hé(Q), the restriction of the operator Alr»(q)

to the space H}(SY), and the operator Alg-1(q), the extension of Alryq) to
the space H=1(Q), are sectorial.

Proof. Since A is sectorial in L?(Q), there are a € R, M > 0 and ¢ € (0, 5)
such that the sector S, 4 is contained in the resolvent set p(A) of A and

M

0= A7 Pl < gl i@y A€ Sag f € L@, (73)

First, we prove that A is sectorial in H1(2). Take A € S, 4, f € H ()
n .

and choose fY f1 ... f" € L%*Q) such that f = f0 — % [, (see
i=1
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L.C. Evans, [13], Theorem 1, p.283 for characterization of the space H~1(12)).
Let u € H}(2) and X € S, 4. Then

1 = A7 ) s sy syl =
= — A7t Oy " iux, T
— (A - A) A;f +3o1 ldn

glﬂu—mlmﬂummwp@+

n
+ IO = A 2ol | 22

i=1

’/\ ‘HfOHLQ o llullzz@) + Z ‘)\ HJ”HL2 e, L2

SM—aW%WW<W%mm+zﬂﬂhm0-

i=1

Taking infimum of the right side of the above inequality we obtain

KO = )7 ) -1 @) ma Il < o ’HfHH @ lull g @)

which concludes this part of the proof.

Next, we show sectoriality of A in H(2). Let f € H}(Q) and X\ € Sy 4.
Then

_ _ "0 _
I =) gz = 1A= A7 fllza) + Z I (A= 4) Yl
= (A=A fllee +ZH (A—A)" ifHL?(Q) <

M
= h—al (Hf”L + Z 5 f||L2 Q))

M
= m“fHHg(Q)
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Now we formulate a theorem which describes the relation between a com-
plex interpolation method and scales of the Banach spaces.

Theorem 7.0.4. Let A be a sectorial operator in a Banach space X such that
Reo(A) > 0 and ||A"||x) < const.(¢) for all t € [—¢,€] with some & > 0
(such A have ‘bounded imaginary power’). Then the following interpolation
formula holds

(X%, X0y = X005 for o, 8>0,0 € (0,1),
together with the corresponding moments inequality
lollxa-0asos < cO)llolSsllvllxs ve X NX7a,820,0€(0,1).

Proof of this theorem can be found in paragraph 1.9.3 of [40].
Because X = X° and D(A) = X!, taking @« = 0 and 8 = 1 in Theo-
rem 7.0.4 we conclude that:

Corollary 7.0.5. Under the assumptions of Theorem 7.0.4, X? are inter-
mediate spaces between X and D(A) when 6 € (0,1), that is,

X’ =D(A%) = [X, D(A)]s

and
o]l < c(O)[|Av]|% vl %, v € D(A).

Let us now come back to the Proposition 6.1.3 where the perturbation
result for the sectorial operator was introduced. Having shown that the per-
turbed operator is sectorial it is important to observe how the perturbation
influences the domains of its fractional powers. For perturbations described
in Proposition 6.1.3 it is easy to conclude that the corresponding fractional
power spaces remain unchanged.

Corollary 7.0.6. Let A: D(A) — X be a sectorial operator in a Banach
space X and consider a closed, linear operator B: D(B) — X such that
D(A) C D(B) C X and B is subordinated to A according to the condition

1Bullx < cllAv]lx + cllvllx, veX. (7.4)

Additionally, if the operators A and A+ B have bounded imaginary powers
and Rec(A) > 0 and Rec(A + B) > 0, then the following equality holds

D((A+ B)?) = D(4%), ze€(0,1).
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Proof. Since D(A) C D(B), we have D(A+ B) = D(A). Then using Corol-
lary 7.0.5 we obtain

D(A%) = [X,D(A)]. = [X,D(A+ B)]. = D((A+ B)?), ze€(0,1).

O

Following examples justify the consideration of the spaces with fractional
exponents on scale. In particular, it will be showed that investigating only
the classical Sobolev spaces is insufficient and we must consider also the
fractional Sobolev spaces.

Example 7.0.7 (Korteweg-de Vries Equation). In this example Cauchy’s
problem for the Korteweg-de Vries equation

(7.5)

Ut + Uz + vty =0, >0, €R,
u(0,z) = up(x).

will be discussed.
A. Pazy in his book [31] introduces the spaces H*(R), for every s € R,
as follows: let u € L?(R) and then we set

Julls = ( La+eriraop df)é ,

where F' denotes the Fourier transform. The linear space of the functions
u € L3(R), for which ||u|s is finite, is a pre-Hilbert space equipped with the
scalar product

(1, 0)s = /R (1+ €2)° Fu(€)Fo(€) de.

The complection of this space with respect to the norm || - ||s is a Hilbert
space denoted by H*(R).

Proposition 7.0.8. Spaces H*(R) coincide with W*2(R) for s € R.

Proof of this fact can be found for example in book of L. Tartar [37].
Pazy’s definition of the spaces H*(R) is one of the oldest attempt to expand
the definition of classical Sobolev spaces for fractional indexes.

A. Pazy in [31], paragraph 8.5, proves the theorem on the local solvability
of the KdV equation.

Theorem 7.0.9 (Theorem 5.6 in [31]). For every ugp € H*(R), s > 3 there
is a T > 0 such that the initial value problem (7.5) has a unique solution
w e C(0, 7], H*(R)) N C([0, 7], L*(R)).
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The aim of the next examples is to show that to treat certain equations
of mathematical physics it is necessary to consider the spaces X% with
fractional a.

Example 7.0.10 (Quasi-Geostrophic Equation). P. Constantin in [10] and
A. Cordoba, D. Cordoba in [11] study the two dimensional quasi-geostrophic
equation which has the form

(O +u-V)0 = —kr(—A)20,
w= Vi = (=85, 00, )0, 0= —(—A)39,

with the parameters a € (0,1) and x > 0. This equation is an important
character of Geophysical Fluid Dynamics. Here v is the stream function,
0 represents the potential temperature, u the velocity and « is the viscosity.
The equation will be considered with initial data 6(x,0) = 6g(x). The
velocity u can be written in the following norm

u = (=0, A710,0,,A710),

(7.6)

where A represents the operator (—A)%.
In the supercritical cases, 0 < a < 1, we have the following global
existence results for small data.

Theorem 7.0.11. Let k > 0, 0 < «a < 1, and assume that the initial
data satisfies ||0o|pmz2 < & (where m > 2 and C = C(m) < oo is a fized
constant). Then there exists a unique solution to (7.6) which belongs to
W™2 for all time t > 0.

In the critical case a =1, k > 0, we have the following:

Theorem 7.0.12 (Global existence for small data). Let 6 be a weak solution
of (7.6) with an initial data 6y € a2 satisfying [|0ol| L < & (where C' < oo
is a fived constant). Then § € C1([0,0); W%’2) is a classical solution.

Example 7.0.13. Another class of equations forcing us to consider frac-

tional spaces are given by equations with so called anomalous diffusion.
The examples of such equation are multifractal conservation laws, i.e.

U + f(u>$ = Au7
where z € R, ¢t > 0, u: R x Rt — R, f(u) is a polynomially bounded

nonlinear term, and
N o5
0? 0%\ ?
a=aga =30 (-5a)

J=1
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with cg, c; > 0, is the diffusion operator including fractional powers of order
%, 0 < a; < 2, of the square root of the second derivative with respect to
x. Such problem is related to the, so called, Lévy stochastic processes. This
problem is a generalization of the one-dimensional Burgers equation

Ut + 2Uly = Ugpy.

This type of equations was considered e.g. by P. Biler, G. Karch and
W. Woyczynski in paper [6]. These authors focus their attention on simpler
problem called fractal Burgers-type equation

Ut — Ugg + DU + 2uu, =0 (7.7)
with initial condition u(0, z) = ug(z), where D* = (788—;2)% is the fractional
symmetric derivative of order a € (0, 2).

By a solution to the Cauchy problem for the fractal Burgers equation
we mean a mild solution, i.e., a function v € C([0,7]; X) satisfying the
Duhamel formula

t
0
u(t) = e xug /0 5t s u”(T) dr

for each ¢ € (0,T). Here X is a suitable Banach space such that e!4 acts as
a strongly continuous semigroup in X. As usual e!4 denotes the (integral
kernel of the) semigroup generated by the operator A = g—; — D%, so that
v = et x ug solves the linear equation vy = vz, — D% with the initial
condition v(0) = ug. However, our preferred choice is X = L'(R) N L>°(R),
which leads to a small modification of the above definition. Because of poor
properties of /4 on L>°(R), we need u to belong to a larger space C([0, T; X)

of weakly continuous functions with values in X.

Theorem 7.0.14. Assume that 0 < a < 2. Given ug € L*(R) N L>®(R),
there exists a unique mild solution u = u(xz,t) to the problem (7.7) in the
space C([0,00); LY(R) N L®(R)). This solution satisfies the inequalities
[u(®)l[Lr < lluollpr,
lu(®) |2 < C(1+ )1/,

for allt > 0 and a constant C' > 0.

P. Biler et al in their paper [6] prove also the following theorem of the
large-time asymptotics for the solutions of (7.7):
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Theorem 7.0.15. Let 0 < o < 2. Assume that u is a solution to the Cauchy
problem (7.7) with ugp € L*(R) N L>®(R). For every p € [1,00] there exists
a constant C' such that

t—(1-1/p)/a=2/a+1 forl<a<?2,
lu(t) — et s ugl|r < C{ ¢t~ A-1p/e=Yealoe (1 4 a), fora=1,
t—(1=1/p)/a=1/a for0 < a<1,

for allt > 0.






Chapter 8

The abstract Cauchy problem

Let us consider the Cauchy problem

{ u + Au= F(u), t>0,

w(0) = o, (8.1)

where A is sectorial in a Banach space X. Without loss of generality (adding
— if necessary — a term cu to both sides of (8.1)), we may assume that A is
sectorial and Reo(A) > 0.

Definition 8.0.1. Let X be a Banach space, z € [0, 1) and uy be an element
of X#. If, for some real 7 > 0, a function u € C([0,7), X?) satisfies

u(0) = up,

u € CH(0,7), X),

u(t) € D(A), forallte (0,7),

u solves the first equation in (8.1) in X for all ¢ € (0, 7),

then wu is called a local X?*-solution of the problem (8.1).

Theorem 8.0.2. Let X be a Banach space, A: D(A) — X a sectorial
operator in X with Rec(A) > 0. Let F': X* — X be Lipschitz continuous
on bounded subsets of X* for some z € [0,1). Then, for each ug € X?, there
exists a unique XZ-solution w = u(t,up) of (8.1) defined on its mazimal
interval of existence [0, Ty, ), which means that either 7,, = 400 or

if Tuy < 00 then limsup ||u(t, uo)||x= = +o0. (8.2)

t~>7'u70

We can find the proof of this Theorem in D. Henry [20], section 3.3.
Following examples show some equations, which have local X?-solution.
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8.1. Examples and applications

Example 8.1.1. Regular spaces will be used to solve the Cauchy’s problem
in this example. Expected solution has to be more regular. Let 0 C R" be
a bounded open set with 9 € C? and let us consider the Cauchy’s problem

{ u — Au =0, (8.3)

ulag = 0.

An abstract operator A: X O D(A) — X in the base space X will be defined
by the differential operator —A subjected to suitable boundary conditions.
Usually we take set X as LP(2) and the domain

D(A) = W, (@) = W2(Q) N Wy ¥(Q).
But we can select the base space in another way, taking
X' = D(A) = Wh(Q) = WP(Q) N Wy P ()
as an example. We can define the base space as
X*=[X,X"%a, a€(0,1),

where [+, -] denote the complex interpolation functor. Then we can consider
an operator A in the base space X = X° with the domain
D(A) = X' = X! as a restriction of the operator A, which means that
Au = Au for all u € X+,

Using Sobolev’s embedding theorem (see R.A. Adams [1|, pp. 97-98,
Theorem 5.4) we know that W*P(Q) C C™*#(Q) if and only if
0<pu<k-—m-—2 <1 We will find the conditions which allow us to
select p € [1, 00] such that the solutions of the problem (8.3) will belong to
the space C™TH(Q).

Taking p > pg = m we have

—u+m—k
n——m——— =

k—m—EZk—m—
D n

M?
what shows, that pg is the smallest exponent which assures the embedding
of the Sobolev space W*P0(()) in the space of continuous functions.

In this example operator A is the Laplace operator with Dirichlet bound-
ary conditions, so to find continuous solutions of (8.3) we have to know that
the base space is contained in C¢(Q) for some ¢ € [0, 1), in order to what is
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satisfied if the domain D(A) is contained in C?7¢(Q). Taking the base space
typically as LP(Q) and D(A) = Wfbp}(g) = W2P(Q) N W,y P(Q) we have to
show that W2P(Q) C C?4(Q2) and Wol’p(Q) C C**4(Q)). This is true for
pP=>po= 1.

It means that when we consider the problem (8.3) in the base space LP(2)
with p > pg, then every solution u has the property that Awu is continuous
on 2 C R™ and so is uy.

The theorem presented below gathers what was shown in the example.

Theorem 8.1.2. Let Q C R” be a bounded open set with 0Q € C?. Let
us consider the Cauchy problem (8.3) in the base space LP(S). Then, if
p > po = 1=, every solution u € WP (Q) = W2P(Q) N Wol’p(Q) of (8.3)

{D}
has the property that u; and Au are continuous on 2 C R™.

Example 8.1.3. Let us consider following problem

ug—Au=0 in Dy =1[0,T] x £,
ulaq =0, (8.4)
u(0,2) = up(z), =z €,

where 7' > 0 and Q C R” is an open bounded set with 9Q € C?. We will
search for the solutions u in the base space Wol P(Dr). Our aim is to set
p € [1,00) such that all solutions are continuous, i.e. W1P(Dy) C C*(Dr)
for some p € [0,1). Let’s take p > pg = ﬁ Then we see that 1 — % >
>1- p% = p > 0, and from Sobolev’s embedding theorem we conclude that
WLP(Dr) C CH(D7).

Since u € W1P(Dr) we know that all derivatives uy, uy, fori € {1,...,n}
belong to the space LP(Dr) and using equations (8.4) we claim that
Au = u; € LP(Dr).

Now, our purpose is to show that u belongs to W?2P?(D7). Knowing that
u € T/VO1 P(Q) and using the Calderén-Zygmund type estimations (see The-
orem 8.12 and Theorem 8.13 in D. Gilbarg, N. Trudinger [18], pp.186-187)
we get that u € W2P(Q) and fulfills an estimate

[ullwzp) < CUIAU| Lr@) + [[ullr@));

for some constant C' > 0 depending on €2, n. Then, for every multiindex «
with |a| = 2 we have D% € LP(Q), so there exist constants M, such that
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D%l p(0) < Mo < 00, (Ja| = 2). Thus we have the estimation:

lullwesppy = > IDUll Loy + ltlwrenyy =

|a|=2
T 7
s (/ /|Dau|p dz dt> + lullwin(og <
a2 Mo Ja
T 7
<y ( J dt) tulinogy =
|a|=2

1
= > My -Tv + |ullyre(pg < oo
|a|=2

This example showed that, under our assumptions and when p > ﬁ,

every solution u of (8.4) which belongs to WO1 P(Dr), is also an element of
the space C*(Dr) NW?P(Dr). Consequently, the above example lead us to
the theorem.

Theorem 8.1.4. Let Q@ C R"™ be a bounded open set with 0 € C?,
p € [1,00) and T > 0. Assume that u € Wol’p(DT) is a solution of the

n

problem (8.4). Then, if p > po = =5 the function u belongs to the space
CH(Dr) NW?2P(Dr).

Example 8.1.5. Previous examples showed us how to use the regular spaces
to solve the Dirichlet problem. Now we will present how we can use the
hyper-spaces to solve such a problem. Using Theorem 8.0.2 to get a solutions
of

uy — Au = f(u),

ulag = 0, (8.5)

u(0,2) =up € X7,

we have to show that the function f: X7 — X satisfies a Lipschitz condition
on bounded subsets of X7. It is often easier to verify this condition in
a bigger space on the scale.

Let us take X = LP(2) where Q C R”™ is an open bounded set with
00 € C? as an example. Then the Banach scale is in the form
X7 = Wé%p(Q), where Wé’y’p(Q) denotes the fractional Sobolev space with
Qirichlet1 boundary conditions. ) If we cllloose the base space as
X =X"2=W5"(Q), then f: X727 — X~ 2.
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Further, we will consider exemplary nonlinearity f given by:

fu) = ulul?,

where s € RT. We would like to find the largest possible1 value of s such
that f is Lipschitz continuous on bounded subsets of X 277 with certain
v €10,1].

Let us take 7 = 1. Then we have f: W4P(Q) — W~1P(Q) and (using the
mean value theorem):

[ (u) = f(0)] = [ulu]® = vo*| < Jul|Jul® = "] + [u = vl|o]* <
< fulslu = of (Ju*™" + [o]*71) + Ju = vfjo]* =
= [u = (slul* + slullo]" ™ +[o]*) <
< cslu = [ (Jul” +[v]) -

Our aim is to estimate the difference || f(u) — f(v)[lw-1p(q). For that pur-

pose, going through the dual spaces, we first observe that

L%(Q) C W=LP(Q). To prove this fact, we will show the corresponding

embedding for dual spaces W' (Q) C L' (Q) where p' is Holder conjugate
1 np

exponent to p (% + v = 1) and 7’ to ntpe from the Sobolev’s theorem

(see Theorem 6 (General Sobolev inequatities) in Evans [13], page 270) we

know that this embedding appears when % > ]% — % and 1 < 1%' If we take
r' = —"__ we will have
p—np+n

1 p—np+n _p _’_nfnp_pfl

so that the embedding W' (Q) C L' (Q) holds.

Let us fix a bounded set B C Wé’p(ﬂ) and let u,v € B. Let us choose
P = pJFTn, = HT" so that % + é = 1. Then using Holder inequality, with
exponents P and ), we obtain:



94 Chapter 8. The abstract Cauchy problem

1 (@)= f(0)llw-1p0) <

< enll ) ~ S0, 28, o
s _ =
= collulul® — elol ||W(m
n+p
np
=cp (/ |u|ul® — v|v|® ]n+ﬁ da:) <
n+p (86)
np
<en ([ lho=vlesfup + bl ) ™ <
% n—+p
n np
< ¢s,B (/ lu— U|"T?’"P dﬂ?) :
Q
n+p

%
< / (2 max ([ul, |o]))* 5 @ d”’“‘) K
Q

We see that WHP(Q) C L%P(Q) = LP(Q), since p = "5 P. Now our

goal is to prove that W1P(Q) C LS%Q(Q) = L*"(Q). If p > n, then we
obtain that W1P(Q2) C L>®(Q) C L¥() for all s < 0, since 0 < 1— 7 and O

is bounded subset of R™. If p < n, we define 51 = npp and takmg s < $1 we
have that W'P(Q) C L*"(Q), since — 2 < — np =2 =1- 2.1t follows
that both integrals on the right side of (8 6) Converge and we obtaln

b

1£() = F@)llw-roy < con < [ a5 dx>

1
n Qn
(/ (2max (Ju], [v]))* *5 @ dé’f) "<
Q

< c¢sB </Qyu_v’p dx)‘l’
' (/Q(QmaX(M o)) dx>’1’ _

= ¢s,Bllu — v r)Mp < C(s, B)[lu — vl[wir(q),

1
where Mp is a constant such that ( [,(2max (|ul, [v]))? dz)? < Mp (it exists
because u and v belong to a bounded set in Wé’p (Q)).
This example showed that if we take the exponent s < s; = nLip for

function f: Wé’p(ﬂ) — W=LP(Q), f(u) = u|ul®, the Lipschitz condition on
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bounded sets is satisfied and we can use the Theorem 8.0.2 for solving the
problem (8.5). Such s is called a critical exponent, which means that for
every s < sp Lipschitz condition is satisfied, but it fails for s > s;. The
conclusions from this example are the base for the theorem given below.

Theorem 8.1.6. Let Q C R™ be a bounded open set with 9Q € C? and

X7 = WZP(Q) be the Banach scale, where W5*(Q) denotes the frac-

tional Sobolev space with Dirichlet boundary conditions. Let us consider the

problem (8.5) with function f: Wé’p(Q) — W=LP(Q), f(u) = ulu|® where

s € R*. Then the problem (8.5) has a local X7 -solution if and only if
P

8§31:T_p.

It is worth to observe that for p > n the Lipschitz condition on bounded
subsets of Wé’p () is satisfied for all s > 0.

Example 8.1.7. Now we consider the Cauchy’s problem (8.5) with the
same function f but in another base space X = LP(2), where 2 is a bounded
subset of R™ with C? boundary. Taking v = 1 we notice that X7 = Wé’p (Q).
So our equation has the form

— Au = ulul?,
ulgq = 0, (8.7)
u(0,2) = up € X7,

where f: Wé’p(ﬂ) — LP(2), f(u) = u|ul®. Our aim is to use Theorem 8.0.2
again to find solutions of the problem above. For the same reasons as in the
previous example, when u,v € B C Wé’p(Q) (B is bounded in Wé’p(Q)) we

get:
[f(u) = f(v)|lr ) (/ lu|ul® — v|v|®|P dx> <

%
< ¢ (/ lu —v|P (Ju]® + |v]*)? da:)
Q

Using Holder inequality, with exponents 2 and 2%, we obtain

2p?

—2p 2p

|UW%?@NM@)§%(AJU—M$%d%>W

([ a5 o)™

To assure that the seglond integral is finite we have to find the biggest s such
that W2P(Q) C L2 (Q). For that purpose, if we take 2p > n, we verify
that W2P(Q) C L>®(Q2) C L*72 (Q) for each s > 0, since 0 < 2 — 35 and Q
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is a bounded set. On the second hand if we take 2p < n, so = nzp2p and it
is enough to check for s < sy the condition

n n n—2p n

spQ n};pp% D p

Then, because u, v are elements of the set B which is bounded in W?2?(Q),
hence bounded in L*P25 () for s < sq, we observe that the second integral
Jo (Jul® + \v\s)% dzx is finite and bounded by some constant. Therefore our
estimation has the form

n—2p

_np np
l|f(u) — f(U)HLp(Q) < ¢s,B </Q |u — v|n=2p da:) = ¢s,Bllu — ”HL%(Q)'

At the end we notice that W2P(Q) C L%(Q), since

n n—2p n
- == =2-—.
n—2p p p

This finishes the proof of Lipschitz continuity of f on bounded subsets of
2,p
W5 () because

1£0) = £©)lzoi@) < copll =l oy, < Enllu = vlwaso)

The theorem presented below gathers what was shown in the example.

Theorem 8.1.8. Let  C R™ be a bounded open set with 0Q € C? and
X7 = Wgy’p(Q) be the Banach scale, where Wgy’p(Q) denotes the fractional
Sobolev space with Dirichlet boundary conditions. Then the problem (8.7)

has local X7-solution if and only if s < sg = nEpr.

Finally we notice that if 2p > n, the Lipschitz condition on bounded sets
is fulfilled for all s > 0.

Remark 8.1.9. In previous examples we considered Cauchy’s problem (8.7)
with the nonlinearity f(u) = wu|u|®. If we assume that 2p < n then the
critical exponent for function f with the domain W1P(Q) equals s; = 2 and
in case of the domain W2P(Q) is so = nz—f’ép. It is easy to check that s; < s9,
so we can conclude that if we consider function f on smaller domain on the
scale, then the critical exponent will be bigger. Consequently, f can grow

faster on smaller space.
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Example 8.1.10. Let us consider the n-dimensional Navier-Stokes equation

uy = vAu —Vp — (u,V)u+h, fort >0,z €,

div u =0,
8.8
ulon =0, 8:8)
u(0,z) = ug, forxz e Q,
where v > 0 is a constant viscosity, u = (u1(t,x),...,u,(t,z)) denotes

velocity, p = p(t,z) — pressure and h = (hi(t,z),...,hn(t,z)) — exter-
nal force. Here Q is a bounded domain in R™ with C?*¢ boundary, with
e €(0,1).

Let us take r € (1,00) and introduce the space

X, = Cl[Lr(Q)]n{¢ S [CSO(Q)]n div ¢ = 0}.

Let us denote the linear continuous projection from [L"(€2)]" to X, by
P.: [L"(Q)]™ — X,, which corresponds to the Helmholtz decomposition of
[L"(2)]" onto the space of divergence free vector fields and scalar function
gradients such that

X, = PILQ)", L))" = X, & {Vé: 6 € W (Q)]").
Let us define an unbounded, sectorial operator A, by
A, = —vP(A,...,A).

which considered on the domain D(A,) = X, N {¢ € [W2"(Q)]": ¢|aq = 0}
generates an analytic semigroup, Reo(A,) > a > 0 and has a compact
resolvent. It allow us to define fractional powers AY (a € (0,1)) of A, having
domains X;* = D(AY). Further characterization of the scale (X;*)ac(0,1)
(see 9], pp.169-177) gives us embeddings

Xe W ("N X, 2a>tre(20),

C [CHO)]" N X,, 20—22 k+pkeN e (0,1),r € (2, 00).

Let us define F, = —P.(V,...,V)u. Then the Navier-Stokes can be
studied as an abstract Cauchy’s problem in X,

{ u + Apu = Fru+ Pohy, t>0, (8.9)

u(0) = up.
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We will show that for a € [3,1) and r > n the nonlinearity F,: X2 — X,
is Lipschitz continuous on bounded sets. Let us take bounded set U C X/
and u,v € U. Then the estimate (see Lemma 3.3 (iii) in Y. Giga et al. [17])

1P:-(&, V)Yl ir e < erllollr i 19l wr @y
for ¢, € WH"(Q)]",r > n, implies that

[Fru = Frollx, < || = Pr(u, V)u+ Pr(v, V)vl x, =
= [l = Pr(u, V)(u = 0) + Br(u — v, Vo[ x, <

< ¢ llullprr @y llu = vl @+
+ crllu — vl @ ol @) <
< ¢y max (||ull 1y [0l e @pe) [lw = vl @) <

S C,«7UHU — 'UH[WLT(Q)]H.

1 1
Note that X C X;? for a € [1,1) and X;? is continuously embedded in
X, N [WET(Q)]". That implies Lipschitz continuous on bounded sets of X
for function F;.

The summary of this example is the theorem.

Theorem 8.1.11. Under above assumptions the n-dimensional Navier-Stokes
equation has local X&-solution if a € [%, 1) and r > n.

Remark 8.1.12. Previous examples showed us the applications of the the-
orem on existence of local X?-solutions of Cauchy’s problems (8.1). It is
possible to investigate these examples without abstract theory of scales of
Banach spaces, using only the Sobolev embeddings. This is the proof that
both presented approaches led us to the same results.



Appendix A

Theory of distributions and the Fourier
transform

In this chapter the theory of distribution and Fourier transform will be
reminded. Only the definitions and basic theorems will be cited, excluding
the proofs, which can be found among others in the chapters I and VI of
K. Yosida’s monograph [41] or in paragraphs 7.58-7.61 of R.A. Adams in
book [1].

A.1. Theory of distributions

Let Q C RY. Space C5°(92) of infinietly smooth functions with compact
supports is a linear space. For any compact subset K C Q, let D () be the
set of all functions f € C§°(Q2) such that supp(f) € K. Define on Dk ()
a family of seminorms by

Prm(f) = sup |D°f(x)], where m < oo.
|s|<m,
reK

Then Dk () is a locally convex linear topological space and, if K; C Ko,
then it follows that the topology od Dk, () is identical with the relative
topology Dk, (2) as a subset of Dg,(2). Then the inductive limits of
Dk (2)’s, where K ranges over all compact subsets of €, is a locally convex,
linear topological space. Topologized in this way C3°(€2) is denoted by D(£2).
It is to be remarked that

p(f) = sup|f(z)]

e

is one of the seminorms which defines the topology of D(f2).
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Proposition A.1.1. The convergence
lim f, =0, inD(Q)
n—oo

means that the following two conditions are satisfied:

(i) there exists a compact subset K of Q0 such that supp(f,) C K forn € N,
(ii) for any differential operator D?, the sequence (D* fy,)nen converges to 0
uniformly on K.

Definition A.1.2. A linear functional 7" defined and continuous on D(2)
is called a generalized function or distribution in €.

The value T'(¢) is called the value of the generalized function T at the testing
function ¢ € D(Q).

A.2. The Fourier transform of rapidly decreasing
functions

We start with recalling the Schwartz class S.
Definition A.2.1. The function f € C§°(RY) such that

sup [|z7 D f(z)| < oo
zCRN

for every a = (aq,...,an) and 8 = (B1,...,Bn) with nonnegative integers
aj, B, where zf = mfl -a:ﬁ,N is called rapidly decreasing or Schwartz test
function. The totality of such functions is denoted by S(R™).

Proposition A.2.2. S(RY) is a locally convex linear topological space.

Proposition A.2.3. With respect to the topology of S(RY), the space C§°(RY)
is a dense subset of S(RY).

Definition A.2.4. The Fourier transform Ff of function f € S(RV) is
defined by
1

Ff(f):W

[ e ) da,
]RN

N
where £ = (&1,...,¢éN), ¢ = (21,...,2N), (&, x) = §xj

J=1
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We also define the inverse Fourier transform F~1g of g € S(RY) by

1 .
i(&,x
7 o 00)

Proposition A.2.5. The Fourier transform f — Ff maps S(RN) linearly
and continuously into S(RY). The inverse Fourier transform g — F™lg
maps S(RYN) linearly and continuously into S(RY).

Flg(6) =

Theorem A.2.6 (Fourier’s inverse theorem). For every f € S(RV)
F'Ff=f, FFl'f=F

Remark A.2.7. From the previous theorem it is easy to see that the Fourier
transform maps S(RY) onto S(RY) linearly and continuously in both direc-
tions, and the inverse Fourier transform gives the inverse mapping of the
Fourier transform.

A.3. The Fourier transform of tempered
distributions

Definition A.3.1. A linear functional 7' defined and continuous on S(R")
is called a tempered distribution (in RY). The totality of tempered distribu-
tions is denoted by S’(RY)

Proposition A.3.2. Since Cg°(RY) C S(RY) as an abstract set, and since
the topology in D(RYN) is stronger than the topology in S(RY), the restriction
the tempered distribution to C§°(RYN) is a distribution in RN. Two differ-
ent distributions define, when restricted to C§°(RY), two different distribu-
tions in RY, because C§°(RY) is dense in S(RN) with respect the topology
of S(RN), and hence a distribution belongs to S'(RN) which vanishes on
C5°(RY) must vanish on S(RY). Therefore S'(RN) C D'(RY).

Definition A.3.3. Since the mapping ¢ — F¢ from S(RY) onto S(RY) is
linear and continuous in the topology of S(RY), we can define the Fourier
transform F'T" of a tempered distribution 7" as a tempered distribution F'T
defined as

FT(¢) = T(F$), ¢€SRY).

Remark A.3.4. In the above sens, the Fourier transform of tempered dis-
tribution is a generalization of the Fourier transform of functions.



102 Appendix A. Theory of distributions and the Fourier transform

Theorem A.3.5 (Plancherel’s Theorem). If f € L?2(RY), then the Fourier
transform FTy of Ty is defined by a function Ff € L*(RY), i.e.

FT; =Tpy, with Ff € L*(RY),

and

IEfIF=1LA1-
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Fukasz Dawidowski
Skale przestrzeni Banacha, teoria interpolacji wraz z zastosowaniami

Streszczenie

Celem niniejszej monografii jest oméwienie teorii skal przestrzeni Banacha oraz teorii interpo-
lacji wraz z podaniem przyktadéw ich zastosowan. Praca sklada sie z trzech czesci: dwie pierwsze
opisuja teorie zastosowang nastepnie w czesci trzeciej, w ktérej zanalizowane sg przyklady jej
uzycia.

W pierwszej kolejnosci opisano teoretyczne podstawy teorii interpolacji. Podano definicje oraz
podstawowe twierdzenia dotyczace konstrukcji przestrzeni interpolacyjnych (interpolacja rzeczy-
wista i zespolona).

Druga, gléwna, cze$¢ monografii przedstawia definicje poteg ulamkowych operatoréw,
w szczegb6lnosci dodatnich operatoréw sektorialnych. Zaprezentowano takze ich zastosowanie do
konstrukcji skal przestrzeni Banacha, ktére jako gtéwny obiekt badan sa przykladem przestrzeni
interpolacyjnych. W pracy zamieszczono réwniez charakteryzacje skal przestrzeni Banacha, ktora
stuzy jako podstawa teoretyczna do opisu zastosowan tej teorii.

W trzeciej czesci oméwiono zastosowanie podanej wczesniej teorii do badania ,zachowan”
operatoréw na réznych poziomach skali. Udowodniono twierdzenia dotyczace operatoréow do-
mknigtych oraz operatoréw sektorialnych. Gwarantuja one, pod pewnymi zalozeniami, posiadanie
tych wlasciwosci przez operatory rozwazane na dowolnych poziomach skali. Nastepnie opisano
konkretne réwnania czastkowe, w rozwigzywaniu ktérych mozna zastosowa¢ wspomniang teorie.
Podane przyklady dotycza szukania rozwiazan o wiekszej regularnosci pewnych réwnan drugiego
rzedu z warunkami brzegowymi typu Dirichleta oraz rozwiazywania nieliniowego réwnania La-
place’a na podstawie teorii Henry’ego, ktéra dotyczy rownan z nieliniowoscia spelniajaca warunek
Lipschitza na podzbiorach ograniczonych.

Jlykam JIaBuIOBCKH
IITkana BanaxoBux npocrpaHcTB. Teopusi MHTEPIIOISILUN U €e IPUMEHEHUE

Peswowme

Ilenbio HacTogAmeir MoOHOTpadUK ABJSENd pPACCMOTPEHHE TEOPHH IIMKAJIbl OAHAXOBBIX
OPOCTPAHCTB, a TAaKXXe TEOPHHM WHTEPIOJANUN HapALy C IIPUBEJUEHHEM IPHMEpPOB HX
HCIOJIb30BaHUsI. PaboTa COCTOMT M3 Tpex dYacTeil: J[Be MepBble U3 HUX ONHCBHIBAIOT TEOPHIO,
BOCTPeOOBAHHYIO 3aTEM B TPeTheil YacCTH, B KOTOPOH aHAJU3UPYIOIS IPUMEPH! e IPUMEeHEHH.

B mnepsyro ouepenph ONHCHIBAIOLUA TEOPETUYECKHE OCHOBAHUS TEOPUM WHTEPIIOJIALINH.
IlpuBomsina pedunMIMM, a TaKKe OCHOBHBIE YTBEPIKJEHHUs, KacCalomuecs KOHCTPYKITUN
MHTEPIOJSANUOEHOBO IPOCTPAHCTEA, (PANMOHAJIBHAS B KOMILUIEKCHAS MHTEPIIOISAIAS ).

Bo Bropoii, rnaBuo#l wacTu MoOHOrpaduu, NUpenCTaBiIeHA AedUHUIMS APOOHBIX CTEleHeH
OIIEPATOPOB, B OCOOEHHOCTH MOJOXKHUTEJBHBIX CEKTOPUAJBHBIX OllepaTopoB. llokazaHO Tak:xKe
X OIPUMEHEHWEe B O0JIaCTH KOHCTPYKIUH HIKAJBI OAHAXOBBIX IPOCTPAHCTB, KOTODLIE B KAa<IECTBE
IJIAaBHOTO IIpesIMeTa HCCJIEIOBAHUM SABJAIONA HIIIOCTpaluell MHTEePHOJISNUOHHBIX IPOCTPAHCTB.
Kpowme Toro, B pabore gaHa XapaKTEPUCTHUKA IIKAJIbI OAHAXOBBIX IPOCTPAHCTB, KOTOPOS CJLy2KUT
TEOPETUIECKUM OCHOBAHHMEM [JIsI OMUCAHUS UCIOJL30BAHUS €TOH TEOPHH.

TpeTbs 4YacTh NIpoOEIUpYET INIPEJCTABJIEHHYI0 TEOPHIO HA HCCJEJIOBAHHME <IIOBEJIEHUSIY
OIIEPATOPOB HA PA3HBIX YPOBHAX HIKaJbl. JIOKa3aHBI TeOpeMBI, KaCaIoIUecd 3aMKHYTBIX
U CEeKTOPHAJBHBIX OIeparopoB. OHH rapaHTUPYIOT, C OIpeJeJeHHBIMHU OI'OBOPDKAMH, HaJU4ue
0CODEHHOCTEH OIepaTOPOB HA JIIOOBIX YPOBHAX MIKabl. Jlanee OmrcaHbl KOHKPDETHBIE YaCTHUYIHbBIE
ypaBHEHNUs, IPU PEIIeHuN KOTOPBIX MOXKHO HCIOJIb30BATh YIOMSAHYTYIO Teopuro. llpusemennbre
MIPEMEPBI KacaoIlsd IOUCKA PeIeHn ¢ OOoJbIIeil PeryIapHOCTbIO OTAEJIbHBIX YPaBHEHUN BTOPOTO
HOPAJKa C I'PDAHUYHBIMU yCJ0BUAMHU Tuia Jupuxie, a Takke perneHuil MCAMHERHOrO ypaBHeHU:
Jlannmaca Ha ocHoBaHUM Teopum [eHpu, KOTOpas Kacaeld yYpPaBHEHHUH C HEJIMHEHHOCTBIO,
BBIIOJIHSIONIEH ycaoBre JIMNImMuna Ha OrpaHNYEHHBIX [TOJCUCTEMAX.
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