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2Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
3 A. Chelkowski Institute of Physics, University of Silesia, Katowice, Poland
4Department of Onco-Hematology, Bambino Ges�u Children’s Hospital, Rome, Italy

Glioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense muta-

tions) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12–15 months following standard ther-

apy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling

pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach

combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR-specific affibody (ZEGFR:03115)

was conjugated to the phthalocyanine dye, IR700DX, which when excited with near-infrared light produces a cytotoxic response.

ZEGFR:03115–IR700DX EGFR-specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed

effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro,

in GBM cell lines and spheroids by the CellTiter-GloVR assay, and in vivo using subcutaneous U87-MGvIII xenografts. In addition,

mice were imaged pre- and post-PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate corre-

lated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor-dependent response

between the tested cell lines. Inhibition of EGFRvIII1ve tumor growth was observed following administration of the immunoconju-

gate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115–IR700DX showed

specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof-of-

concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.

Glioblastoma (GBM) is a primary neuroepithelial tumor of the

central nervous system, characterized by extremely aggressive

clinical behavior driven by inter- and intrapatient genomic

and histopathological diversity.1 Patients with GBM have a

poor prognosis, with a median overall survival of only 12–15

months and a 5-year survival rate of 3–5%.2 Currently,

standard-of-care treatment includes maximal tumor resection

followed by radiotherapy with concomitant and adjuvant sys-

temic therapies, for example, temozolomide.3 The presence of

residual tumor cells post-surgery for high-grade gliomas has

been reported in 65% of cases and is one of the major factors

contributing to GBM recurrence.4,5 Several groups have dem-

onstrated that patients with gross total resection in the setting

of low- and high-grade gliomas have improved survival rates

compared to patients undergoing subtotal resection.6,7 There-

fore, real-time intraoperative treatment strategies are urgently

needed to improve surgical outcomes. Fluorescence-guided

surgery (FGS) combined with photodynamic therapy (PDT) is

an interesting approach that may allow simultaneous visualiza-

tion and treatment of infiltrating tumor cells. Recently, a num-

ber of fluorescent markers, including fluorescein sodium,

indocyanine green (ICG) and photosensitizers (PSs), such as

Photofrin, Talaporfirin sodium and 5-aminolevulinic acid

(5-ALA), have been validated in clinical trials for intraopera-

tive delineation of tumor boundaries to facilitate maximal safe

resection and/or eradiation of infiltrative tumor cells.8–10 For

instance, Stummer et al. have shown that patients who
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underwent FGS with 5-ALA had significantly improved gross

total resection (65% vs. 36%; p <0.0001) and 6-month progres-

sion-free survival (41% vs. 21%; p <0.0003) rates compared to

patients that underwent conventional microsurgery under

white light.4 In addition, Eljamel et al. have reported that FGS

and repetitive Photofrin or 5-ALA-based PDT significantly

improved median overall (12.2 vs. 5.6 months for the control

group) and progression-free survival (8.6 vs. 4.8 months) in a

Phase III randomized controlled trial in patients with GBM.11

Even though these PSs have been used as diagnostic and thera-

peutic agents, they lack specific cancer cell-targeting potential

and, due to their low absorption coefficients, suffer from poor

activation sensitivity.12 Therefore, developing novel, near-

infrared (NIR) molecularly targeted probes for intraoperative

treatment of high-grade gliomas is an attractive prospect.13,14

In recent years, there has been considerable interest sur-

rounding antibody-based PDT, also called photoimmunother-

apy (PIT), which utilizes the targeting ability of a highly

specific monoclonal antibody (mAb) conjugated to a PS. Fol-

lowing excitation with NIR light, the PS generates reactive oxy-

gen species (ROS), which cause cytotoxic effects exclusively in

cancer cells aberrantly overexpressing the target receptors and

sparing adjacent normal tissues.15 Conversely, conventional

PDT, while effective in inducing cell death, employs non-tar-

geted PSs that affect non-cancerous cells, relying entirely on

physical targeting by localized optical irradiation, which limits

their clinical application due to side effects (e.g., cutaneous

photosensitivity).16 Accordingly, PIT applied during GBM sur-

gery could be used as an adjuvant strategy, allowing the sur-

geon not only to visualize fluorescently positive margins or

microscopic residual lesions, but also to eradicate residual or

surgically inaccessible tumor cells.

Amplification of the epidermal growth factor receptor

(EGFR) is the commonest genetic aberration, occurring in

about 50% of de novo primary GBMs, half of which harbor the

EGFRvIII mutation (in-frame deletion of exons 2–7) leading

to constitutive and ligand-independent receptor activity.17

Thus, there is a strong rationale to develop an EGFR-targeted

PIT strategy, guided by functional molecular imaging, which

could significantly improve GBM patient management.

Among all of the clinically useful PSs, the phthalocyanine

IRDye700DX (hereafter called IR700DX) seems to have the

most favorable chemical properties. The dye is considerably less

sensitive to photobleaching than many other fluorochromes,

has excellent water solubility and can be covalently conjugated

to a targeted molecule via an N-hydroxysuccinimide ester or

maleimide.15 Recent in vitro studies have demonstrated that

IR700DX-based mAb conjugates are highly specific for cells

that express the target antigen, and have no effect on adjacent

non-expressing cells.15,18 It has been found that, when the con-

jugate selectively binds to a target on the cell membrane and is

exposed to NIR light, it induces rapid alterations in the cell

membrane that ultimately lead to cell death.18 These promising

preclinical findings have resulted in clinical trial initiation for

the IR700DX–cetuximab conjugate, currently in a Phase I study

in inoperable squamous cell carcinomas of the head and neck

[NCT02422979]. In line with these findings, Ogawa and cow-

orkers have reported that this process promotes the relocation

of immunogenic cell death markers (e.g., calreticulin, Hsp90) to

the cell membrane and subsequent release of immunogenic sig-

nals including ATP and HMGB1.19

While mAb-based immunoconjugates offer exquisite selec-

tivity of binding to their designated targets, their poor extravasa-

tion into the tumor (due to their relatively large molecular size)

hampers penetration into the tumor’s parenchyma, markedly

limiting the effectiveness of therapy. Therefore, to circumvent

this concern, we have developed an IR700DX-based conjugate

using low molecular weight (�7 kDa) EGFR-specific affibody

molecules as our targeting moiety (ZEGFR:03115–IR700DX). The

lack of disulfide bonds and internal cysteines, rapid folding

properties and high stability of affibody molecules facilitate their

conjugation with different radionuclides or fluorophores.20

Moreover, the high binding affinity (pM to nM range) of these

molecules to wild-type EGFR, as well as EGFRvIII, their small

size (resulting in rapid clearance from the circulation with pre-

dominantly renal excretion in vivo), and good tumor penetra-

tion make them ideal targeting agents for GBM therapy.21

Herein, we demonstrate that administration of an

affibody-infrared light-activated conjugate targeting EGFR

selectively induces cell death in EGFR1ve GBM cells, while

limiting toxicity in normal tissues.

Material and Methods

Reagents

The EGFR-targeted affibody (ZEGFR:03115-Cys) and the non-

specific affibody (ZTaq) were provided through our ongoing

collaboration with AffibodyAB (Stockholm, Sweden). The

hydrophilic IR700DX–maleimide used for affibody

What’s new?

Photoimmunotherapy combines the destructive power of photodynamic therapy with the specificity of immunotherapy. But

monoclonal antibodies bound to photosensitizers are large, and difficult to get deep into the tumor. Here, the authors attach

a photosensitive dye to tiny “affibody” ligands designed to seek out EGFR, which is often overexpressed in glioblastoma. The

affibody molecule brings the dye molecules into the cancer cells, and when it is exposed to near-infrared wavelengths of light.

It kills the cell. They showed that the EGFR-affibody combined with the photoreactive dye selectively kills glioblastoma cells

overexpressing EGFR in mice.
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conjugation, IR700DX–NHS ester, IR700DX–carboxylate and

IR800CW–maleimide were purchased from LI-COR Biosci-

ences (Lincoln, NE).

Cell lines and cell culture

The GBM cell lines U87-MG and U87-MGvIII were kindly pro-

vided by Dr Frank Furnari (Ludwig Cancer Research, San

Diego, CA) and maintained as previously described.22 The

U251 cell line was courtesy of Prof. Chris Jones (The Institute

of Cancer Research, London, UK). The WSz4 primary-patient-

derived cell line was recently established in our lab (detailed

method is provided in the Supporting Information). The breast

cancer cell line MCF7 was obtained from the American Type

Tissue Culture Collection (ATCC, Manassas, VA) within the

last 6 months and cultured in DMEM (Gibco, Life Technolo-

gies) supplemented with 10% heat-inactivated fetal bovine

serum (FBS; Gibco, Life Technologies, Carlsbad, CA). Spheroids

were generated as previously described.23 All cell lines were

grown at 378C in a humidified atmosphere containing 5% CO2.

Conjugation of the affibody molecules with IR700DX

The conjugation of ZEGFR:03115 and ZTaq to IR700DX–malei-

mide are described in detail in the Supporting Information.

Western blotting

Western blotting was performed as previously described.24

For antibody details, see the Supporting Information.

Flow cytometry

The specificity of the ZEGFR:03115–IR700DX binding in vitro

was investigated using flow cytometry. A detailed description

of the protocol and data analysis is given in the Supporting

Information.

Confocal microscopy

U251, U87-MGvIII and MCF7 cells were plated onto confo-

cal glass-bottomed dishes (MatTek, Ashland, MA) at 2 3 105

cells/dish and incubated for 24 h. For the 3D U87-MGvIII or

WSz4 cultures, cells (4 3 103) were first seeded in 96-well

ultra-low attachment plates (CorningVR CostarVR , Corning,

NY) for 72 or 120 h and then transferred to confocal glass-

bottomed dishes. To test the specificity of conjugate binding,

ZEGFR:03115–IR700DX (1 mM) or IR700DX alone (1 mM) were

added to the medium and cells were incubated for 1, 3 or

6 h at 378C. To analyse the penetration of the conjugate in

comparison to an antibody-based conjugate, U87-MGvIII

spheroids were incubated with either ZEGFR:03115–IR700DX

(500 nM), anti-EGFR-targeted antibody-FITC (500 nM) or

IR700DX–maleimide alone (500 nM). Detailed descriptions

of the procedures and image acquisition are described in the

Supporting Information.

Immunohistochemistry and fluorescence ex vivo imaging

Formalin-fixed patient-derived tumor samples, spheroids and

excised U87-MGvIII tumors, either following irradiation or

affibody-based PIT, were embedded in paraffin, sectioned

(5 lm-thick slices) and mounted on microscope slides. Multi-

ple sections were taken at regular intervals across each tumor,

with sequential sections being stained with H&E (Leica bio-

systems, Buffalo Grove, IL), anti-Ki67 mAb (1:400, Cell Sig-

naling Technology, Danvers, Massachusetts) and anti-EGFR

mAb (1:400, Dako, Santa Clara, CA). Orthotopic tumors

were snap-frozen in OCT solution and sectioned (10 mm-

thick slices) and mounted on microscope slides before being

fixed in ice-cold acetone and imaged using a TyphoonTM

FLA7000 scanner (ex. 635 nm, band filter 670 nm; GE

Healthcare Life Sciences, Chicago, IL). Following fluorescence

imaging, the slides underwent IHC by staining with H&E

(Leica Biosystems, Buffalo Grove, IL), anti-affibody IgG mAb

(1:50, AffibodyAB, Stockholm, Sweden) and anti-EGFR mAb

(1:200, Dako, Santa Clara, CA).

Photoimmunotherapy in vitro studies

The cytotoxic effect of ZEGFR:03115–IR700DX-based PIT in

vitro was investigated using cells grown as 2D and 3D cell

cultures. U87-MGvIII or MCF7 cells (4 3 103) were seeded

in black 96-well plates with clear bottoms for 24 h. For 3D

U87-MGvIII or WSz4 cultures, cells (4 3 103) were seeded

in 96-well ultra-low attachment plates (CorningVR CostarVR ,

Corning, NY) for 72 or 120 h (for WSz4). On the day of the

experiment, fresh medium containing ZEGFR:03115–IR700DX

(50 nM to 5 mM) or IR700DX (500 nM to 5 mM) was added

for 6 h at 378C. Cells or spheroids were then rinsed twice

with phenol-red-free medium. Wells were irradiated in

groups of nine using a red LED L690-66-60 (Marubeni,

Tokyo, Japan). Further experimental details about light

dosimetry are given in the Supporting Information. Cell

response to PIT was evaluated by the CellTiter-GloVR lumi-

nescent cell viability assay (Promega, Madison, WI) 24 or

96 h post-irradiation in the 2D and 3D cell cultures. In addi-

tion, formation and growth of 3D spheroids was monitored

daily by the CeligoVR image cytometry system (Nexcelom Bio-

science, Lawrence, MA).

In vivo studies

Detailed treatment methods are described in the Supporting

Information. All in vivo experiments were performed in com-

pliance with licences issued under the UK Animals (Scientific

Procedures) Act 1986 and following local ethical review.

Studies were compliant with the United Kingdom National

Cancer Research Institute Guidelines for Animal Welfare in

Cancer Research.25 Female NCr athymic mice (6 weeks) were

obtained from the in-house breeding colony. Mice were inoc-

ulated subcutaneously (s.c.) in the top right shoulder with

U87-MGvIII cells (5 3 105) resuspended in PBS and mixed

with BD MatrigelTM Matrix (40%, v/v%, BD MatrigelTM

Matrix, BD Bioscience, San Jose, CA). Details of the intracra-

nial model are in the Supporting Information. Orthotopic

brain tumors grew for 11 days, at which point MR and
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fluorescent imaging (for details see the Supporting Informa-

tion) and brain extraction was performed.

Statistical analyses

Unless otherwise stated, in vitro data were expressed as the

mean6 SEM and in vivo as the mean6 SD. Statistical signifi-

cance, sample size calculations and correlation analysis are

described in detail in the Supporting Information.

Results

In vitro characterization of ZEGFR:03115–IR700DX

EGFR expression in the selected GBM cancer cell lines and

the breast cancer cell line, MCF7, was confirmed by Western

blot (WB; Fig. 1a). The corresponding densitometric analysis

of protein bands indicated that EGFR expression level ranged

from overexpression (U87-MGvIII, 1), through intermediate

(WSz4, 0.18) to very low (U251, 0.06; U87-MG, 0.03) and

negligible expression (MCF7, 0; Fig. 1a). The EGFR-specific

(ZEGFR:03115) and non-specific (ZTaq) affibody molecules were

successfully conjugated via the maleimide group to IR700DX

and the fluorescent-SDS-PAGE as well as silver staining con-

firmed labeling of the conjugates (Supporting Information

Figs. 1a and 1b).

The specificity of ZEGFR:03115–IR700DX binding in vitro

correlated with the expression level of EGFR as seen by flow

cytometry and, importantly, pre-blocking the cells with 100-

fold excess of unlabeled affibody molecules effectively reduced

the median fluorescence in all tested cell lines (Fig. 1b).

Figure 1. Expression of EGFR in GBM cell lines and specificity of the ZEGFR:03115–IR700DX binding to EGFR. (a) Varying EGFR expression in

the selected cancer cell lines was confirmed by Western blot. The numbers in the brackets represent the relative EGFR expression as deter-

mined by densitometric analysis. (b) ZEGFR:03115–IR700DX (30 nM) binding as assessed by flow cytometry in the selected cancer cells with

varying EGFR expression and after blocking with 100-fold excess of unlabeled ZEGFR:03115. Data are presented as mean6SEM (n53). (c–f)

Confocal microscopy images demonstrating target-specific binding (48C) and internalization (378C) of either the ZEGFR:03115–IR700DX (1 mM),

anti-EGFR-FITC antibody (25 nM for visualization purposes) or IR700DX alone (1 mM): (c) U251 cell lines (1 h incubation time), (d1 e) U87-

MGvIII or MCF7 cell lines (1–6 h incubation time), (f) U87-MGvIII spheroids (6 h incubation time). HoechstVR33342 (blue) and LysoTrackerTM-

Green DND-26 (green) were used for counterstaining. (g) Quantification of fluorescence intensity (median fluorescence intensity) of �8 mm

slices through U87-MGvIII spheroids following a 6 h incubation with ZEGFR:03115–IR700DX (500 nM) or an anti-EGFR-FITC antibody (500 nM).

Data are presented as mean6SEM (n53). (h) H&E, EGFR and Ki67 immunostaining of U87-MGvIII spheroid (400–500 mm) sections 72 h

after seeding.
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Furthermore, confocal microscopy images showed intense

binding of the conjugate to the cell membrane of U251 cells at

48C, which further confirmed binding specificity of the

ZEGFR03115–IR700DX to EGFR (Fig. 1c, first row). At 378C,

however, the majority of the ZEGFR03115–IR700DX was

uniformly distributed in the cytoplasm after 1 h (Fig. 1c,

second row, Fig. 1e). Blocking cells with 100-fold excess of

unlabeled affibody resulted in an almost complete absence of

fluorescence from the corresponding conjugate, confirming

that the process is receptor mediated (Fig. 1d). Additionally, as

expected, MCF7 cells expressing very low levels of EGFR

showed negligible fluorescent signal from the conjugate

(Fig. 1d). Cytoplasmic uptake was found to increase with incu-

bation time, which indicated time-dependent internalization of

the conjugate (Fig. 1e). In addition, co-staining the cells with

the conjugate and a lysosomal marker revealed significant

colocalization (Fig. 1c). Afterwards, in order to assess the

penetration depth of the ZEGFR:03115–IR700DX, which is criti-

cal for successful PIT, 3D U87-MGvIII or WSz4 spheroids that

more closely resemble in vivo tissue in terms of cellular com-

munication, were cultured with media containing either the

conjugate, IR700DX or mAbEGFR-FITC (Fig. 1f, Supporting

Information Fig. 2b, Supporting Information Movie 2–4).

Importantly, ZEGFR:03115–IR700DX penetrated to a depth of

around 200 lm after incubation for 6 h (Figs. 1f, first row and

1g). Whereas, as expected, the antibody-based conjugate was

mostly restricted to the exterior layers (Figs. 1f, third row and

1g), and hydrophilic IR700DX dye alone formed only a few

fluorescent clusters on the very outer layer of the spheroid

(Fig. 1e, second row). Of note, by 72 h, H&E staining of the

tumor spheres (400–500 mm) did not indicate any necrosis and

positive nuclear staining for Ki-67 confirmed that the relatively

large inner cores of the spheroids still contained actively prolif-

erating cells (Fig. 1h, Supporting Information Fig. 2a).

Figure 2. In vitro morphological changes following affibody-based PIT. (a) Incubation of U87-MGvIII spheroids with the ZEGFR:03115–IR700DX for

6 h and irradiation with a red LED (16 J/cm2) induced phototoxic cell death and disintegration of the architectural structure of the spheroid

population. (b) U87-MGvIII cells grown as a monolayer culture showed rapid cell swelling and bleb formation (see arrows) as visualized by a

phase-contrast image 1 h post ZEGFR:03115–IR700DX (red) irradiation with the 639 nm laser on a confocal microscope. (c) Following methanol

fixation of U87-MGvIII cells, either treated by PIT or just irradiated, and staining with an anti-calreticulin-AlexaFluor488 antibody overnight

(48C), images were acquired by confocal microscopy. (d) Cell membrane disruption was monitored by propidium iodide (1 mg/mL) staining.

U87-MGvIII cells irradiated only or treated with ZEGFR:03115–IR700DX-based PIT were analyzed by flow cytometry 1 and 24 h post-treatment. (e)

Reactive oxygen species production was assessed using the DCFDA cellular ROS detection assay kit using U87-MGvIII cells treated with

affibody-based PIT (15 min after light exposure). The results were normalized to the control cells. Data are presented as mean6SEM (n53).
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ZEGFR:03115–IR700DX-mediated cell death in vitro

In order to capture cell morphologic changes induced by

ZEGFR:03115–IR700DX-based PIT, U87-MGvIII and WSz4

spheroids were imaged using a CeligoVR cytometer 1, 24, 48

and 96 h (Fig. 2a) post-continuous irradiation with the red

LED L690-66-60 for 1,280 sec (16 J/cm2). Phase-contrast

images of cells grown in monolayers (2D) were taken using

the Zeiss LSM700 confocal microscope to monitor the cells

up to 2 h post-irradiation with the 639 nm laser (5 mW; Fig.

2b) and showed very rapid cell swelling and bleb formation

shortly after irradiation (Fig. 2b, Supporting Information

Movie 1), indicating rapid cell death, most likely by necrosis.

Similar effects were also observed for 3D spheroids, but more

evidently at later time points (Fig. 2a, Supporting Informa-

tion Fig. 2d). Necrotic cell death was further confirmed by

propidium iodide (PI) staining, demonstrating that cell mem-

brane integrity had been disrupted as early as 1 h post-irradi-

ation (Fig. 2d). Furthermore, light activation of ZEGFR:03115–

IR700DX induced ROS generation (Fig. 2e) that triggered cell

death-associated signals involved in immunogenic cell death

leading to the apparent translocation of calreticulin to the

cellular membrane (Fig. 2c).

To determine the phototoxicity of ZEGFR:03115–IR700DX,

cells were incubated with the conjugate for 6 h and exposed to

two different doses of NIR light. Cell viability of the 2D cul-

tures was measured 24 h post-treatment and after 24 and 96 h

for 3D spheroids. The percentage of cell death in targeted cells

was significantly influenced by the dose of excitation light

(Fig. 3a) and by the number of receptors (U87-MGvIII1ve vs.

MCF7-ve; Figs. 3a and 3b). U87-MGvIII cells treated with

500 nM of conjugate and irradiated with 16 J/cm2 demon-

strated �90% decrease in cell viability 24 h post-irradiation

(CellTiter-GloVR luminescent cell viability assay). In contrast,

the treatment had no effect on the negative control (MCF7-ve;

Fig. 3b). As expected, there was no significant cytotoxicity

associated with exposure to ZEGFR:03115–IR700DX without NIR

Figure 3. ZEGFR:03115–IR700DX-mediated PIT causes cellular death selectively in EGFR1ve cells. Decrease in cell viability as assessed by the CellTiter-

GloVR luminescent cell viability assay 24 or 96 h post-PIT in 2D cells and 3D spheroids, following 6 h incubation with the ZEGFR:03115–IR700DX and irra-

diation with a light dose of 8 or 16 J/cm2, was confirmed to be dose dependent and receptor mediated. (a) U87-MGvIII cells 24 h post-PIT. (b) MCF7

cells 24 h post-PIT. (c, d) U87-MGvIII spheroids 24 and 96 h post-PIT. (e) WSz4 spheroids 96 h post-PIT. Data are presented as mean6SEM (n53).

Statistical significance in comparison to the control group was determined using an unpaired two-tailed Student’s t-test with Welch’s correction.

*p�0.05, **p�0.01, ***p�0.001 and ****p�0.0001. [Color figure can be viewed at wileyonlinelibrary.com]
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irradiation, IR700DX or light irradiation alone. Importantly, as

shown in Figure 3a, when cells were pre-incubated with 100-

fold excess of non-labeled affibody molecules, no cell death

was observed, confirming that the phototoxicity is target spe-

cific. In light of these findings, cell viability following exposure

to PIT was investigated in 3D cultures using U87-MGvIII and

WSz4 spheroids. The CellTiter-GloVR luminescent assay again

showed a significant and light dose-dependent decrease in cell

viability of U87-MGvIII spheroids, with �85% of the cells

dying 24 h post-PIT treatment (500 nM of conjugate, 16 J/cm2

light exposure from the LED L690-66-60). WSz4 spheroid cul-

tures were less sensitive than U87-MGvIII spheroids (Fig. 3e),

presumably due to the lower EGFR density and likely a more

resistant phenotype. In line with the results obtained for 2D

cell cultures, there was no response when conjugate or light

were used alone in either of the cell lines (Figs. 3c–3e).

Imaging in vivo tumor targeting with ZEGFR:03115–IR700DX

The specific uptake of ZEGFR:03115–IR700DX in vivo was evalu-

ated using mice bearing EGFR1ve subcutaneous U87-MGvIII

xenografts (Supporting Information Figs. 3a and 3b). When

tumors reached 70–100 mm3, mice (n5 3) were injected with

the conjugate (6 lg/mouse) or with the non-specific affibody-

based conjugate ZTaq-IR700DX (6 lg/mouse; Fig. 4a,

Figure 4. Testing ZEGFR:03115–IR700DX specificity in vivo and studying the effect of functional groups on dye pharmacokinetics. (a) The U87-

MGvIII tumor could easily be differentiated as early as 1 h post ZEGFR:03115–IR700DX (6 mg/mouse) being intravenously injected, whereas

minimal tumor uptake was observed when administering the same amount of the non-specific ZTaq-IR700DX. (b) Fluorescence imaging of

ZEGFR:03115–IR700DX uptake in excised tissues (1 h post-injection) and respective tumor-to-organ ratios. (c) Mean radiant efficiency in U87-

MGvIII tumors 1 h after administering either 6 mg ZEGFR:03115–IR700DX, 18 mg ZEGFR:03115–IR700DX or 6 mg of the non-specific ZTaq-IR700DX.

(d) Tumor-to-background ratio comparison when altering the injected dose of ZEGFR:03115–IR700DX. (e, f) Fluorescence intensity and tumor-

to-background ratio in the U87-MGvIII tumors over time after 18 mg ZEGFR:03115–IR700DX. (g, h) Fluorescence imaging of mice bearing subcu-

taneous U87-MGvIII tumors. Images were acquired 30 min, 1 h or 3 h post IR700DX–maleimide, IR800CW–maleimide, IR700DX–NHS ester

and IR700DX–carboxylate injection and the mean radiant efficiency was determined for each of the dyes. (i) An SDS-PAGE gel of mouse

blood serum imaged using the IVIS/Spectrum imaging system to visualize the fluorescent dyes’ association with blood proteins. All data

are presented as mean6SD (n�3).
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Supporting Information Fig. 3a). Due to high EGFR expression

in normal tissues, for example, the liver and submaxillary sali-

vary gland, 10 lg of non-labeled ZEGFR:03115 was co-injected

with the conjugate in order to reduce off-target EGFR binding.

Subsequently, images were acquired 1 h post-injection, the

mice were sacrificed immediately afterward and their major

organs extracted for further image analysis (Fig. 4b). The tumor

targeting by the ZEGFR:03115–IR700DX estimated from image

ROIs showed a prominent fluorescence signal ((3.06

0.43)3108 p/sec/cm2/sr/lW/cm2) as early as 1 h post-conjugate

administration (Figs. 4b and 4c). The tumor signal intensity

after ZEGFR:03115–IR700DX injection (6 lg) was calculated to be

>6-fold higher than the signal measured for ZTaq-IR700DX,

which confirmed the EGFR specificity of the affibody-based

conjugate in vivo (Figs. 4a and 4c). Ex vivo fluorescence images

demonstrated that amongst the non-targeted organs, the kid-

neys and liver exhibited the highest accumulation of the conju-

gate, producing tumor-to-organ ratios of 0.856 0.15 and

0.096 0.02, respectively (Fig. 4b, Supporting Information Fig.

3a). This high renal accumulation is due to the glomerular fil-

tration of the affibody molecules followed by protein reabsorp-

tion, degradation and retention in proximal tubular cells. The

significant liver uptake is associated with high endogenous

EGFR expression. Importantly, in contrast to radioisotope-

based imaging approaches, this does not predict toxicity

because the conjugate is only cytotoxic within the very limited

field in which NIR irradiation is delivered.

To determine the effect of increasing the conjugate dose, 18

mg of ZEGFR:03115–IR700DX was also administered which

resulted in more than a twofold increase in tumor uptake

(Fig. 4c), although there was a decrease in tumor-to-

background ratio (Fig. 4d). Of note, tumor-to-background

ratios are less important when the conjugate has no inherent

toxicity of its own (in contrast to radioisotope-based agents).

Therefore, the conjugate dose of 18 mg was subsequently

selected for PIT studies. To select the optimal therapeutic win-

dow for optical irradiation in the PIT study, we next evaluated

the uptake of the conjugate at different time points. The fluo-

rescence signal in the tumor was greatest 1 h post-injection

and then gradually decreased over time (Fig. 4e), whereas the

tumor-to-background ratios remained almost unchanged from

1 to 48 h (Fig. 4f). Surprisingly, when we injected the equiva-

lent to 18 mg ZEGFR:03115–IR700DX, of the highly hydrophilic

IR700DX–maleimide, there was an intense tumor fluorescence

that gradually increased over time and slow clearance was

observed only after 24 h (Supporting Information Figs. 4b and

4e). Furthermore, ex vivo images of the �1.5 mm tumor sec-

tions confirmed deep penetration of the affibody molecules

into the tumor tissue and high accumulation of the fluoro-

phore (Supporting Information Fig. 4d). We hypothesized that

this uptake was due to the reactive nature of the maleimide, so

we compared the pharmacokinetics (PK) of IR700DX with

three different functional groups: IR700DX–maleimide,

IR700DX–NHS ester, IR700DX–carboxylate. Interestingly,

tumor uptake was markedly lower when administering the

IR700DX–NHS ester and IR700DX–carboxylate and was

almost completely washed out after 3 h (Figs. 4g and 4h, Sup-

porting Information Fig. 4e), indicating that the functional

group was affecting the PK of IR700DX and the dye itself has

no preferential uptake in the tumor. To further evaluate the

influence of the maleimide linker, we also injected an equiva-

lent dose of IR800CW–maleimide and found that the agent’s

behavior was very similar to the IR700DX–maleimide (Fig. 4g,

second row). We, therefore, postulated that the increased

Figure 5. ZEGFR:03115–IR700DX accumulates in U87-MGvIII orthotopic glioma tumors. (a) T2-weighted MRI images of an intracranial brain tumor

model 11 days post-cell implantation. (b) Photographic image of the brain and the corresponding ZEGFR:03115–IR700DX fluorescent image dem-

onstrates predominant accumulation of the conjugate within the brain tumor mass. (c) Transaxial brain histological sections (10lm) containing

tumor tissue were obtained for ex vivo analysis immediately after 1 h in vivo image acquisition. ZEGFR:03115–IR700DX clearly delineated tumor

mass from the surrounding normal tissues which correlated well with H&E and EGFR staining of the consecutive sections.
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uptake of IR700DX–maleimide is due to an association with

blood proteins, primarily blood serum albumin, via thiols

which lead to longer systemic circulation and preferential

accumulation in the tumor. To test our hypothesis, we ana-

lyzed mouse serum following administration of the respective

dyes and discovered that the IR700DX–maleimide dyes

appeared to have the highest affinity for the blood proteins

based on the clear and intense fluorescent protein bands on

the SDS-PAGE gel (Fig. 4i, Supporting Information Fig. 4a).

Uptake of ZEGFR:03115–IR700DX in an orthotopic glioma

model

T2-weighted images confirmed an intracranial tumor located in

the right side of the brain of each mouse (Fig. 5a). Tumor vol-

umes determined from the MR images on the day of imaging,

varied from 40 to 50 mm3 (n5 4). The fluorescence images

acquired 1 h after i.v. injection of ZEGFR:03115–IR700DX (18 lg)

revealed a fluorescent signal from the top of the skull (Support-

ing Information Fig. 5a). To confirm that the signal originated

from the brain tumor, surgical excisions were performed to

remove the brain which subsequently was imaged ex vivo (Fig.

5b). An intense light signal was emitted from the site of tumor

implantation (1.1 3 108 p/sec/cm2/sr/lW/cm2) (Fig. 5b). Cal-

culated mean tumor-to-brain ratio was 16.66 7.4 (n5 4; Sup-

porting Information Fig. 5b). Although an equivalent dose of

IR700DX–maleimide alone had higher tumor uptake (2.9 3

108 p/sec/cm2/sr/lW/cm2), the surrounding brain had large

amounts of non-specific uptake and, therefore, only produced

a mean tumor-to-brain ratio of 2.956 1.07 (Supporting

Information Fig. 5b). To further demonstrate that the signal

following ZEGFR:03115–IR700DX administration correlated

with EGFR expression, frozen brain sections were prepared,

imaged by immunofluorescence and subjected to IHC. Dis-

tinct receptor expression correlated well with the histological

Figure 6. In vivo ZEGFR:03115–IR700DX-mediated PIT studies. (a) Fluorescence imaging of mice bearing subcutaneous U87-MGvIII tumors 1 h after

injecting 18 lg of ZEGFR:03115–IR700DX or IR700DX–maleimide (top row). Subsequently, mice were irradiated with an optical dose of 100 J/cm2

by a red LED and, immediately after, imaged again (bottom row). (b) Tumor growth inhibition of the ZEGFR:03115–IR700DX-targeted PIT in U87-

MGvIII tumors after administering three doses of 18 mg of the conjugate and irradiating with 100 J/cm2 at days 1, 3 and 5 in comparison to con-

trol groups. Data are presented as mean6SD (n56 for each group, **p�0.01 as assessed by the Kruskal–Wallis test). (c) Visual observation

of normal tissue damage in the PDT treated mice, while no skin damage was present in the ZEGFR:03115–IR700DX PIT mice. These were the appear-

ances seen in all mice. (d) H&E staining of treated and untreated U87-MGvIIII tumors (arrows indicate regions of tissue necrosis).
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staining of the tumor, the fluorescence image and IHC stain-

ing of ZEGFR:03115–IR700DX distribution. Importantly, mini-

mal conjugate fluorescence was present in the surrounding

mouse brain.

ZEGFR:03115–IR700DX-mediated PIT

For the PIT studies, mice bearing subcutaneous U87-MGvIII

tumors were randomized into four groups (as in the Material

and Methods section) and injected with ZEGFR:03115–IR700DX

or IR700DX–maleimide. Following 1 h pre-treatment image

acquisition, the mice received a light dose of 100 J/cm2 using

the LED L690-66-60. Figure 6a clearly demonstrates that this

dose was sufficient to photobleach the fluorescence signal,

decreasing tumor fluorescence almost to background in the

case of the conjugate. Interestingly, the IR700DX–maleimide

fluorescence intensity not only did not photobleach, but

rather increased in the tissues surrounding the tumor. This

may be due to vessel dilation in response to irradiation with

the NIR light and subsequent reaccumulation of the

IR700DX in the tumor.

In total, each mouse received three PIT cycles, once every

other day. There was a significant inhibition of tumor growth

in mice treated with the ZEGFR:03115–IR700DX-based PIT, as

well as IR700DX-based PDT, in comparison to the control

groups that received only light or each of the agents alone

(p< 0.01; control groups vs. PIT) over a period of 18 days

(Fig. 6b). Of note, control groups had to be sacrificed earlier

(�Day 11) because the tumor sizes approached the limits

stipulated in institutional guidelines and animal project

licence. The advantage of PIT over PDT was highlighted as

mice treated with the IR700DX-based PDT started to devel-

oped skin necrosis on the treated lesion, as early as 1 day

after the first light exposure, whereas in PIT-treated mice the

normal tissue was spared (Fig. 6c). Histopathological staining

of tumor sections with H&E confirmed that the U87-MGvIII

control tumors had intact tumor morphology, whereas

tumors treated with a single dose of PIT (18 mg ZEGFR:03115–

IR700DX and an optical dose of 100 J/cm2) showed numer-

ous regions of tissue necrosis (cells appeared to be sparse

with less intense nuclei staining and vacuolar degradation),

4 h post-irradiation (Fig. 6d).

Discussion

Considering the risk of recurrence of GBM if tumor cells

remain following resection, any improvement in the intrao-

perative approaches that help to differentiate between tissue

types and eradicate remaining tumor cells could substantially

improve outcomes for GBM patients. To address this chal-

lenging problem, we evaluated an IR700DX affibody-based

conjugate (ZEGFR:03115–IR700DX) for image-guided PIT using

an EGFR1ve xenograft model of GBM. The rationale behind

developing this particular conjugate came from recent find-

ings showing that various disease-specific NIR fluorophore-

based mAb probes (e.g., IR800CW–cetuximab) have been

developed for FGS of GBM.26 However, the relatively large

molecular size of mAbs may limit their extravasation into the

GBM tumor, especially in areas with only partial BBB disrup-

tion. Additionally, mAbs may not reach glioma cells that

have migrated beyond the main tumor mass. Therefore, Sex-

ton et al. and others, have recently investigated EGFR-

specific affibody molecules, that are �20 times smaller than

mAbs, labeled with IR800CW and revealed that the probe

can successfully detect glioma margins.21,27–29 Interestingly, it

was reported that there is a significantly higher accumulation

of AffibodyEGFR–IR800CW than cetuximab–IR680RD in the

boundaries of glioma tumor, even though cetuximab has �30

times greater affinity for EGFR than affibody molecules.27

Building on these findings, we went one step further and

conjugated ZEGFR:03115 affibody molecules with the highly

hydrophilic IR700DX via a maleimide group. Of note,

IR700DX-mAb-based PIT targeting EGFR has been previ-

ously demonstrated to be effective in cancers such as breast,

lung and bladder by Kobayashi and co-workers.30–34 We

found that ZEGFR:03115–IR700DX has significant activity in

inducing cell death selectively in EGFR1ve GBM cells both

in vitro and in vivo. NIR light irradiation of U87-MGvIII

cells following incubation with the conjugate effectively

induced cellular death in a receptor-mediated manner. No

toxicity was observed when the cells were treated with the

ZEGFR:03115–IR700DX or IR700DX alone.

We then asked whether exposure of ZEGFR:03115–IR700DX

to NIR light results in cell membrane disruption shortly after

treatment, since it has been previously reported that PIT

leads to rapid necrotic cell death.15,18 Consistent with previ-

ous studies, we observed prominent cellular swelling, bleb

formation and release of cellular content from U87-MGvIII

cells within 1 h post-treatment initiation which suggested

necrotic cell death. Complementary to this, at 1 h 37.8% of

cells subjected to both light exposure and the conjugate

showed positive PI staining, confirming that the integrity of

the cellular membrane was compromised.

Similarly to our in vitro data with ZEGFR:03115–IR700DX,

in vivo imaging studies demonstrated that the conjugate pen-

etrates deeply in the EGFR highly expressing U87-MGvIII

subcutaneous and orthotopic tumors, allowing for clear

tumor visualization as early as 1 h post-injection. In contrast,

intact antibodies require at least a day to achieve a high

tumor-to-background ratio due to a high blood background,

which could prove problematic for pre-surgery administra-

tion. Moreover, there was only negligible tumor uptake when

mice were injected with the non-specific ZTaq-IR700DX affi-

body molecules that confirmed in vivo specificity of the con-

jugate. Importantly, the in vivo PIT experiments showed

significant differences in tumor growth between U87-MGvIII

tumor-bearing mice treated with the conjugate and control

groups: (i) mice that were optically irradiated only and (ii)

mice that received ZEGFR:03115–IR700DX or saline only. While

a promising start, these findings require further in-depth vali-

dation studies using orthotopic PDX glioma models that

more precisely recapitulate the histopathological properties
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and maintain genomic characteristics of parental GBMs in

situ. It will be challenging, but orthotopic GBM brain tumors

underneath the intact skin and skull have recently been

unambiguously visualized using the enhanced NIR fluores-

cent protein IFP2.0.35 In addition, Jing et al. have reported

that CD133-IR700DX mAb-based NIR-PIT extended the

overall survival of mice with patient-derived orthotopic glio-

mas by a factor of two when light was applied through the

skull following i.v. administration of the conjugate.36

We also questioned whether IR700DX alone induces any

antitumor effects. Surprisingly, and in contrast to our in vitro

experiments, we showed that IR700DX rapidly penetrated

into the tumor mass and, when exposed to NIR light, inhib-

ited tumor growth. Intrigued by these findings, we compared

the PK of IR700DX with three different functionalities:

(i) maleimide (required for affibody conjugation), (ii) N-

hydroxysuccinimide (NHS) ester (the most frequently used

functional group for mAb conjugation), and (iii) carboxylate.

All of them demonstrated distinctly different PK behaviors.

The IR700DX–NHS ester and IR700DX–carboxylate had

their highest uptake in the U87-MGvIII tumor at 30 min

post-injection and were cleared from the tumor faster than

the IR700DX–maleimide. This could be attributed to the

highly hydrolysable nature of the NHS group in aqueous

solution which, in vivo, may be catalysed by hydrolytic

enzymes present in various tissues and plasma. Conversely,

maleimide functionalities may adhere to blood proteins with

active thiol-groups remaining in the body much longer.

These results were in agreement with previous evidence

showing that the linker moiety can affect the PK of the

probe.37 Even though the IR700DX–maleimide was highly

effective and has the potential to be a useful non-targeted PS

in vivo, its high non-specific binding to serum proteins, post-

treatment skin toxicity and lack of tumor specificity will limit

the probe’s utility especially for intraoperative PDT of brain

tumors.

In conclusion, GBM is characterized by a heterogeneous

expression of amplified and mutated EGFR which presents a

substantial challenge for the effective use of EGFR-directed

therapies. Recently, several clinical trials using first- and

second-generation PSs have demonstrated promising results

when used as PDT agents targeting GBM, but have not yet

been approved for routine clinical practice. This may be

attributed to the lack of specific cancer-targeting properties

of these PSs and poor optical activation sensitivity, which is

particularly important at greater tissue depth. Encouragingly,

our in vitro and proof-of-concept in vivo studies clearly high-

light the potential of eradicating EGFR1ve glioma cells using

ZEGFR:03115–IR700DX-targeted PIT. The conjugate benefits

from the small molecular weight of its targeting moiety, high

specificity of binding to EGFR (wild-type and EGFRvIII), and

emission of NIR fluorescence that permits high imaging reso-

lution with increased tissue penetration depth (>2 cm).

These results are particularly exciting in light of recent find-

ings suggesting that EGFR amplification and mutation are

initial events in the pathogenesis of GBM and that anti-

EGFR treatments might be effective as an early therapeutic

intervention.38 While EGFRvIII-positive GBM cells may only

represent a small percentage of total population of cancer

cells, as lately demonstrated, they can be responsible for the

survival of non-EGFRvIII-expressing tumor cells and the eva-

sion of molecularly targeted systemic therapy regimens.39

Therefore, killing EGFRvIII-positive “linchpin” cells using

intraoperative EGFRvIII-based PIT may alter the complex

behavior of the microscopic residual tumor cells, resulting in

better outcomes for GBM patients.
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